Add missing newline to debug statement.
[llvm/stm8.git] / docs / LangRef.html
blobff707a45b600efab4cfbe9e4e6031704cacaee84
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11 </head>
13 <body>
15 <div class="doc_title"> LLVM Language Reference Manual </div>
16 <ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a>
24 <ol>
25 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
28 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
29 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
30 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
31 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
32 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
33 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
34 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
35 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
36 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
37 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
38 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
39 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
40 </ol>
41 </li>
42 <li><a href="#callingconv">Calling Conventions</a></li>
43 <li><a href="#namedtypes">Named Types</a></li>
44 <li><a href="#globalvars">Global Variables</a></li>
45 <li><a href="#functionstructure">Functions</a></li>
46 <li><a href="#aliasstructure">Aliases</a></li>
47 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
48 <li><a href="#paramattrs">Parameter Attributes</a></li>
49 <li><a href="#fnattrs">Function Attributes</a></li>
50 <li><a href="#gc">Garbage Collector Names</a></li>
51 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
52 <li><a href="#datalayout">Data Layout</a></li>
53 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
54 <li><a href="#volatile">Volatile Memory Accesses</a></li>
55 </ol>
56 </li>
57 <li><a href="#typesystem">Type System</a>
58 <ol>
59 <li><a href="#t_classifications">Type Classifications</a></li>
60 <li><a href="#t_primitive">Primitive Types</a>
61 <ol>
62 <li><a href="#t_integer">Integer Type</a></li>
63 <li><a href="#t_floating">Floating Point Types</a></li>
64 <li><a href="#t_void">Void Type</a></li>
65 <li><a href="#t_label">Label Type</a></li>
66 <li><a href="#t_metadata">Metadata Type</a></li>
67 </ol>
68 </li>
69 <li><a href="#t_derived">Derived Types</a>
70 <ol>
71 <li><a href="#t_aggregate">Aggregate Types</a>
72 <ol>
73 <li><a href="#t_array">Array Type</a></li>
74 <li><a href="#t_struct">Structure Type</a></li>
75 <li><a href="#t_pstruct">Packed Structure Type</a></li>
76 <li><a href="#t_union">Union Type</a></li>
77 <li><a href="#t_vector">Vector Type</a></li>
78 </ol>
79 </li>
80 <li><a href="#t_function">Function Type</a></li>
81 <li><a href="#t_pointer">Pointer Type</a></li>
82 <li><a href="#t_opaque">Opaque Type</a></li>
83 </ol>
84 </li>
85 <li><a href="#t_uprefs">Type Up-references</a></li>
86 </ol>
87 </li>
88 <li><a href="#constants">Constants</a>
89 <ol>
90 <li><a href="#simpleconstants">Simple Constants</a></li>
91 <li><a href="#complexconstants">Complex Constants</a></li>
92 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
93 <li><a href="#undefvalues">Undefined Values</a></li>
94 <li><a href="#trapvalues">Trap Values</a></li>
95 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
96 <li><a href="#constantexprs">Constant Expressions</a></li>
97 </ol>
98 </li>
99 <li><a href="#othervalues">Other Values</a>
100 <ol>
101 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
102 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
103 </ol>
104 </li>
105 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
106 <ol>
107 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
108 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
109 Global Variable</a></li>
110 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
111 Global Variable</a></li>
112 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
113 Global Variable</a></li>
114 </ol>
115 </li>
116 <li><a href="#instref">Instruction Reference</a>
117 <ol>
118 <li><a href="#terminators">Terminator Instructions</a>
119 <ol>
120 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
121 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
122 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
123 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
124 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
125 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
126 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
127 </ol>
128 </li>
129 <li><a href="#binaryops">Binary Operations</a>
130 <ol>
131 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
132 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
133 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
134 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
135 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
136 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
137 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
138 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
139 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
140 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
141 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
142 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
143 </ol>
144 </li>
145 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
146 <ol>
147 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
148 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
149 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
150 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
151 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
152 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
153 </ol>
154 </li>
155 <li><a href="#vectorops">Vector Operations</a>
156 <ol>
157 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
158 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
159 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
160 </ol>
161 </li>
162 <li><a href="#aggregateops">Aggregate Operations</a>
163 <ol>
164 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
165 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
166 </ol>
167 </li>
168 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
169 <ol>
170 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
171 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
172 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
173 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
174 </ol>
175 </li>
176 <li><a href="#convertops">Conversion Operations</a>
177 <ol>
178 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
179 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
180 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
181 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
182 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
183 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
184 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
185 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
186 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
187 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
188 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
189 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
190 </ol>
191 </li>
192 <li><a href="#otherops">Other Operations</a>
193 <ol>
194 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
195 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
196 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
197 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
198 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
199 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
200 </ol>
201 </li>
202 </ol>
203 </li>
204 <li><a href="#intrinsics">Intrinsic Functions</a>
205 <ol>
206 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
207 <ol>
208 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
209 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
210 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
211 </ol>
212 </li>
213 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
214 <ol>
215 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
216 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
217 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
218 </ol>
219 </li>
220 <li><a href="#int_codegen">Code Generator Intrinsics</a>
221 <ol>
222 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
223 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
224 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
225 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
226 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
227 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
228 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
229 </ol>
230 </li>
231 <li><a href="#int_libc">Standard C Library Intrinsics</a>
232 <ol>
233 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
234 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
235 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
236 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
237 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
238 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
239 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
240 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
241 </ol>
242 </li>
243 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
244 <ol>
245 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
246 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
247 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
248 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
249 </ol>
250 </li>
251 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
252 <ol>
253 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
254 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
255 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
256 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
257 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
258 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
259 </ol>
260 </li>
261 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
262 <ol>
263 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
264 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
265 </ol>
266 </li>
267 <li><a href="#int_debugger">Debugger intrinsics</a></li>
268 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
269 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
270 <ol>
271 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
272 </ol>
273 </li>
274 <li><a href="#int_atomics">Atomic intrinsics</a>
275 <ol>
276 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
277 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
278 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
279 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
280 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
281 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
282 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
283 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
284 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
285 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
286 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
287 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
288 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
289 </ol>
290 </li>
291 <li><a href="#int_memorymarkers">Memory Use Markers</a>
292 <ol>
293 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
294 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
295 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
296 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
297 </ol>
298 </li>
299 <li><a href="#int_general">General intrinsics</a>
300 <ol>
301 <li><a href="#int_var_annotation">
302 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
303 <li><a href="#int_annotation">
304 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
305 <li><a href="#int_trap">
306 '<tt>llvm.trap</tt>' Intrinsic</a></li>
307 <li><a href="#int_stackprotector">
308 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
309 <li><a href="#int_objectsize">
310 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
311 </ol>
312 </li>
313 </ol>
314 </li>
315 </ol>
317 <div class="doc_author">
318 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
319 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
320 </div>
322 <!-- *********************************************************************** -->
323 <div class="doc_section"> <a name="abstract">Abstract </a></div>
324 <!-- *********************************************************************** -->
326 <div class="doc_text">
328 <p>This document is a reference manual for the LLVM assembly language. LLVM is
329 a Static Single Assignment (SSA) based representation that provides type
330 safety, low-level operations, flexibility, and the capability of representing
331 'all' high-level languages cleanly. It is the common code representation
332 used throughout all phases of the LLVM compilation strategy.</p>
334 </div>
336 <!-- *********************************************************************** -->
337 <div class="doc_section"> <a name="introduction">Introduction</a> </div>
338 <!-- *********************************************************************** -->
340 <div class="doc_text">
342 <p>The LLVM code representation is designed to be used in three different forms:
343 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
344 for fast loading by a Just-In-Time compiler), and as a human readable
345 assembly language representation. This allows LLVM to provide a powerful
346 intermediate representation for efficient compiler transformations and
347 analysis, while providing a natural means to debug and visualize the
348 transformations. The three different forms of LLVM are all equivalent. This
349 document describes the human readable representation and notation.</p>
351 <p>The LLVM representation aims to be light-weight and low-level while being
352 expressive, typed, and extensible at the same time. It aims to be a
353 "universal IR" of sorts, by being at a low enough level that high-level ideas
354 may be cleanly mapped to it (similar to how microprocessors are "universal
355 IR's", allowing many source languages to be mapped to them). By providing
356 type information, LLVM can be used as the target of optimizations: for
357 example, through pointer analysis, it can be proven that a C automatic
358 variable is never accessed outside of the current function, allowing it to
359 be promoted to a simple SSA value instead of a memory location.</p>
361 </div>
363 <!-- _______________________________________________________________________ -->
364 <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
366 <div class="doc_text">
368 <p>It is important to note that this document describes 'well formed' LLVM
369 assembly language. There is a difference between what the parser accepts and
370 what is considered 'well formed'. For example, the following instruction is
371 syntactically okay, but not well formed:</p>
373 <pre class="doc_code">
374 %x = <a href="#i_add">add</a> i32 1, %x
375 </pre>
377 <p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
378 LLVM infrastructure provides a verification pass that may be used to verify
379 that an LLVM module is well formed. This pass is automatically run by the
380 parser after parsing input assembly and by the optimizer before it outputs
381 bitcode. The violations pointed out by the verifier pass indicate bugs in
382 transformation passes or input to the parser.</p>
384 </div>
386 <!-- Describe the typesetting conventions here. -->
388 <!-- *********************************************************************** -->
389 <div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
390 <!-- *********************************************************************** -->
392 <div class="doc_text">
394 <p>LLVM identifiers come in two basic types: global and local. Global
395 identifiers (functions, global variables) begin with the <tt>'@'</tt>
396 character. Local identifiers (register names, types) begin with
397 the <tt>'%'</tt> character. Additionally, there are three different formats
398 for identifiers, for different purposes:</p>
400 <ol>
401 <li>Named values are represented as a string of characters with their prefix.
402 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
403 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
404 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
405 other characters in their names can be surrounded with quotes. Special
406 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
407 ASCII code for the character in hexadecimal. In this way, any character
408 can be used in a name value, even quotes themselves.</li>
410 <li>Unnamed values are represented as an unsigned numeric value with their
411 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
413 <li>Constants, which are described in a <a href="#constants">section about
414 constants</a>, below.</li>
415 </ol>
417 <p>LLVM requires that values start with a prefix for two reasons: Compilers
418 don't need to worry about name clashes with reserved words, and the set of
419 reserved words may be expanded in the future without penalty. Additionally,
420 unnamed identifiers allow a compiler to quickly come up with a temporary
421 variable without having to avoid symbol table conflicts.</p>
423 <p>Reserved words in LLVM are very similar to reserved words in other
424 languages. There are keywords for different opcodes
425 ('<tt><a href="#i_add">add</a></tt>',
426 '<tt><a href="#i_bitcast">bitcast</a></tt>',
427 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
428 ('<tt><a href="#t_void">void</a></tt>',
429 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
430 reserved words cannot conflict with variable names, because none of them
431 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
433 <p>Here is an example of LLVM code to multiply the integer variable
434 '<tt>%X</tt>' by 8:</p>
436 <p>The easy way:</p>
438 <pre class="doc_code">
439 %result = <a href="#i_mul">mul</a> i32 %X, 8
440 </pre>
442 <p>After strength reduction:</p>
444 <pre class="doc_code">
445 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
446 </pre>
448 <p>And the hard way:</p>
450 <pre class="doc_code">
451 %0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
452 %1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
453 %result = <a href="#i_add">add</a> i32 %1, %1
454 </pre>
456 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
457 lexical features of LLVM:</p>
459 <ol>
460 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
461 line.</li>
463 <li>Unnamed temporaries are created when the result of a computation is not
464 assigned to a named value.</li>
466 <li>Unnamed temporaries are numbered sequentially</li>
467 </ol>
469 <p>It also shows a convention that we follow in this document. When
470 demonstrating instructions, we will follow an instruction with a comment that
471 defines the type and name of value produced. Comments are shown in italic
472 text.</p>
474 </div>
476 <!-- *********************************************************************** -->
477 <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
478 <!-- *********************************************************************** -->
480 <!-- ======================================================================= -->
481 <div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
482 </div>
484 <div class="doc_text">
486 <p>LLVM programs are composed of "Module"s, each of which is a translation unit
487 of the input programs. Each module consists of functions, global variables,
488 and symbol table entries. Modules may be combined together with the LLVM
489 linker, which merges function (and global variable) definitions, resolves
490 forward declarations, and merges symbol table entries. Here is an example of
491 the "hello world" module:</p>
493 <pre class="doc_code">
494 <i>; Declare the string constant as a global constant.</i>
495 <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
497 <i>; External declaration of the puts function</i>
498 <a href="#functionstructure">declare</a> i32 @puts(i8*) <i>; i32 (i8*)* </i>
500 <i>; Definition of main function</i>
501 define i32 @main() { <i>; i32()* </i>
502 <i>; Convert [13 x i8]* to i8 *...</i>
503 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8*</i>
505 <i>; Call puts function to write out the string to stdout.</i>
506 <a href="#i_call">call</a> i32 @puts(i8* %cast210) <i>; i32</i>
507 <a href="#i_ret">ret</a> i32 0<br>}
509 <i>; Named metadata</i>
510 !1 = metadata !{i32 41}
511 !foo = !{!1, null}
512 </pre>
514 <p>This example is made up of a <a href="#globalvars">global variable</a> named
515 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
516 a <a href="#functionstructure">function definition</a> for
517 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
518 "<tt>foo"</tt>.</p>
520 <p>In general, a module is made up of a list of global values, where both
521 functions and global variables are global values. Global values are
522 represented by a pointer to a memory location (in this case, a pointer to an
523 array of char, and a pointer to a function), and have one of the
524 following <a href="#linkage">linkage types</a>.</p>
526 </div>
528 <!-- ======================================================================= -->
529 <div class="doc_subsection">
530 <a name="linkage">Linkage Types</a>
531 </div>
533 <div class="doc_text">
535 <p>All Global Variables and Functions have one of the following types of
536 linkage:</p>
538 <dl>
539 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
540 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
541 by objects in the current module. In particular, linking code into a
542 module with an private global value may cause the private to be renamed as
543 necessary to avoid collisions. Because the symbol is private to the
544 module, all references can be updated. This doesn't show up in any symbol
545 table in the object file.</dd>
547 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
548 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
549 assembler and evaluated by the linker. Unlike normal strong symbols, they
550 are removed by the linker from the final linked image (executable or
551 dynamic library).</dd>
553 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
554 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
555 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
556 linker. The symbols are removed by the linker from the final linked image
557 (executable or dynamic library).</dd>
559 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
560 <dd>Similar to private, but the value shows as a local symbol
561 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
562 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
564 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
565 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
566 into the object file corresponding to the LLVM module. They exist to
567 allow inlining and other optimizations to take place given knowledge of
568 the definition of the global, which is known to be somewhere outside the
569 module. Globals with <tt>available_externally</tt> linkage are allowed to
570 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
571 This linkage type is only allowed on definitions, not declarations.</dd>
573 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
574 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
575 the same name when linkage occurs. This can be used to implement
576 some forms of inline functions, templates, or other code which must be
577 generated in each translation unit that uses it, but where the body may
578 be overridden with a more definitive definition later. Unreferenced
579 <tt>linkonce</tt> globals are allowed to be discarded. Note that
580 <tt>linkonce</tt> linkage does not actually allow the optimizer to
581 inline the body of this function into callers because it doesn't know if
582 this definition of the function is the definitive definition within the
583 program or whether it will be overridden by a stronger definition.
584 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
585 linkage.</dd>
587 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
588 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
589 <tt>linkonce</tt> linkage, except that unreferenced globals with
590 <tt>weak</tt> linkage may not be discarded. This is used for globals that
591 are declared "weak" in C source code.</dd>
593 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
594 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
595 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
596 global scope.
597 Symbols with "<tt>common</tt>" linkage are merged in the same way as
598 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
599 <tt>common</tt> symbols may not have an explicit section,
600 must have a zero initializer, and may not be marked '<a
601 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
602 have common linkage.</dd>
605 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
606 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
607 pointer to array type. When two global variables with appending linkage
608 are linked together, the two global arrays are appended together. This is
609 the LLVM, typesafe, equivalent of having the system linker append together
610 "sections" with identical names when .o files are linked.</dd>
612 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
613 <dd>The semantics of this linkage follow the ELF object file model: the symbol
614 is weak until linked, if not linked, the symbol becomes null instead of
615 being an undefined reference.</dd>
617 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
618 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
619 <dd>Some languages allow differing globals to be merged, such as two functions
620 with different semantics. Other languages, such as <tt>C++</tt>, ensure
621 that only equivalent globals are ever merged (the "one definition rule"
622 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
623 and <tt>weak_odr</tt> linkage types to indicate that the global will only
624 be merged with equivalent globals. These linkage types are otherwise the
625 same as their non-<tt>odr</tt> versions.</dd>
627 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
628 <dd>If none of the above identifiers are used, the global is externally
629 visible, meaning that it participates in linkage and can be used to
630 resolve external symbol references.</dd>
631 </dl>
633 <p>The next two types of linkage are targeted for Microsoft Windows platform
634 only. They are designed to support importing (exporting) symbols from (to)
635 DLLs (Dynamic Link Libraries).</p>
637 <dl>
638 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
639 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
640 or variable via a global pointer to a pointer that is set up by the DLL
641 exporting the symbol. On Microsoft Windows targets, the pointer name is
642 formed by combining <code>__imp_</code> and the function or variable
643 name.</dd>
645 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
646 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
647 pointer to a pointer in a DLL, so that it can be referenced with the
648 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
649 name is formed by combining <code>__imp_</code> and the function or
650 variable name.</dd>
651 </dl>
653 <p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
654 another module defined a "<tt>.LC0</tt>" variable and was linked with this
655 one, one of the two would be renamed, preventing a collision. Since
656 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
657 declarations), they are accessible outside of the current module.</p>
659 <p>It is illegal for a function <i>declaration</i> to have any linkage type
660 other than "externally visible", <tt>dllimport</tt>
661 or <tt>extern_weak</tt>.</p>
663 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
664 or <tt>weak_odr</tt> linkages.</p>
666 </div>
668 <!-- ======================================================================= -->
669 <div class="doc_subsection">
670 <a name="callingconv">Calling Conventions</a>
671 </div>
673 <div class="doc_text">
675 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
676 and <a href="#i_invoke">invokes</a> can all have an optional calling
677 convention specified for the call. The calling convention of any pair of
678 dynamic caller/callee must match, or the behavior of the program is
679 undefined. The following calling conventions are supported by LLVM, and more
680 may be added in the future:</p>
682 <dl>
683 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
684 <dd>This calling convention (the default if no other calling convention is
685 specified) matches the target C calling conventions. This calling
686 convention supports varargs function calls and tolerates some mismatch in
687 the declared prototype and implemented declaration of the function (as
688 does normal C).</dd>
690 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
691 <dd>This calling convention attempts to make calls as fast as possible
692 (e.g. by passing things in registers). This calling convention allows the
693 target to use whatever tricks it wants to produce fast code for the
694 target, without having to conform to an externally specified ABI
695 (Application Binary Interface).
696 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
697 when this or the GHC convention is used.</a> This calling convention
698 does not support varargs and requires the prototype of all callees to
699 exactly match the prototype of the function definition.</dd>
701 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
702 <dd>This calling convention attempts to make code in the caller as efficient
703 as possible under the assumption that the call is not commonly executed.
704 As such, these calls often preserve all registers so that the call does
705 not break any live ranges in the caller side. This calling convention
706 does not support varargs and requires the prototype of all callees to
707 exactly match the prototype of the function definition.</dd>
709 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
710 <dd>This calling convention has been implemented specifically for use by the
711 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
712 It passes everything in registers, going to extremes to achieve this by
713 disabling callee save registers. This calling convention should not be
714 used lightly but only for specific situations such as an alternative to
715 the <em>register pinning</em> performance technique often used when
716 implementing functional programming languages.At the moment only X86
717 supports this convention and it has the following limitations:
718 <ul>
719 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
720 floating point types are supported.</li>
721 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
722 6 floating point parameters.</li>
723 </ul>
724 This calling convention supports
725 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
726 requires both the caller and callee are using it.
727 </dd>
729 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
730 <dd>Any calling convention may be specified by number, allowing
731 target-specific calling conventions to be used. Target specific calling
732 conventions start at 64.</dd>
733 </dl>
735 <p>More calling conventions can be added/defined on an as-needed basis, to
736 support Pascal conventions or any other well-known target-independent
737 convention.</p>
739 </div>
741 <!-- ======================================================================= -->
742 <div class="doc_subsection">
743 <a name="visibility">Visibility Styles</a>
744 </div>
746 <div class="doc_text">
748 <p>All Global Variables and Functions have one of the following visibility
749 styles:</p>
751 <dl>
752 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
753 <dd>On targets that use the ELF object file format, default visibility means
754 that the declaration is visible to other modules and, in shared libraries,
755 means that the declared entity may be overridden. On Darwin, default
756 visibility means that the declaration is visible to other modules. Default
757 visibility corresponds to "external linkage" in the language.</dd>
759 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
760 <dd>Two declarations of an object with hidden visibility refer to the same
761 object if they are in the same shared object. Usually, hidden visibility
762 indicates that the symbol will not be placed into the dynamic symbol
763 table, so no other module (executable or shared library) can reference it
764 directly.</dd>
766 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
767 <dd>On ELF, protected visibility indicates that the symbol will be placed in
768 the dynamic symbol table, but that references within the defining module
769 will bind to the local symbol. That is, the symbol cannot be overridden by
770 another module.</dd>
771 </dl>
773 </div>
775 <!-- ======================================================================= -->
776 <div class="doc_subsection">
777 <a name="namedtypes">Named Types</a>
778 </div>
780 <div class="doc_text">
782 <p>LLVM IR allows you to specify name aliases for certain types. This can make
783 it easier to read the IR and make the IR more condensed (particularly when
784 recursive types are involved). An example of a name specification is:</p>
786 <pre class="doc_code">
787 %mytype = type { %mytype*, i32 }
788 </pre>
790 <p>You may give a name to any <a href="#typesystem">type</a> except
791 "<a href="t_void">void</a>". Type name aliases may be used anywhere a type
792 is expected with the syntax "%mytype".</p>
794 <p>Note that type names are aliases for the structural type that they indicate,
795 and that you can therefore specify multiple names for the same type. This
796 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
797 uses structural typing, the name is not part of the type. When printing out
798 LLVM IR, the printer will pick <em>one name</em> to render all types of a
799 particular shape. This means that if you have code where two different
800 source types end up having the same LLVM type, that the dumper will sometimes
801 print the "wrong" or unexpected type. This is an important design point and
802 isn't going to change.</p>
804 </div>
806 <!-- ======================================================================= -->
807 <div class="doc_subsection">
808 <a name="globalvars">Global Variables</a>
809 </div>
811 <div class="doc_text">
813 <p>Global variables define regions of memory allocated at compilation time
814 instead of run-time. Global variables may optionally be initialized, may
815 have an explicit section to be placed in, and may have an optional explicit
816 alignment specified. A variable may be defined as "thread_local", which
817 means that it will not be shared by threads (each thread will have a
818 separated copy of the variable). A variable may be defined as a global
819 "constant," which indicates that the contents of the variable
820 will <b>never</b> be modified (enabling better optimization, allowing the
821 global data to be placed in the read-only section of an executable, etc).
822 Note that variables that need runtime initialization cannot be marked
823 "constant" as there is a store to the variable.</p>
825 <p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
826 constant, even if the final definition of the global is not. This capability
827 can be used to enable slightly better optimization of the program, but
828 requires the language definition to guarantee that optimizations based on the
829 'constantness' are valid for the translation units that do not include the
830 definition.</p>
832 <p>As SSA values, global variables define pointer values that are in scope
833 (i.e. they dominate) all basic blocks in the program. Global variables
834 always define a pointer to their "content" type because they describe a
835 region of memory, and all memory objects in LLVM are accessed through
836 pointers.</p>
838 <p>A global variable may be declared to reside in a target-specific numbered
839 address space. For targets that support them, address spaces may affect how
840 optimizations are performed and/or what target instructions are used to
841 access the variable. The default address space is zero. The address space
842 qualifier must precede any other attributes.</p>
844 <p>LLVM allows an explicit section to be specified for globals. If the target
845 supports it, it will emit globals to the section specified.</p>
847 <p>An explicit alignment may be specified for a global, which must be a power
848 of 2. If not present, or if the alignment is set to zero, the alignment of
849 the global is set by the target to whatever it feels convenient. If an
850 explicit alignment is specified, the global is forced to have exactly that
851 alignment. Targets and optimizers are not allowed to over-align the global
852 if the global has an assigned section. In this case, the extra alignment
853 could be observable: for example, code could assume that the globals are
854 densely packed in their section and try to iterate over them as an array,
855 alignment padding would break this iteration.</p>
857 <p>For example, the following defines a global in a numbered address space with
858 an initializer, section, and alignment:</p>
860 <pre class="doc_code">
861 @G = addrspace(5) constant float 1.0, section "foo", align 4
862 </pre>
864 </div>
867 <!-- ======================================================================= -->
868 <div class="doc_subsection">
869 <a name="functionstructure">Functions</a>
870 </div>
872 <div class="doc_text">
874 <p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
875 optional <a href="#linkage">linkage type</a>, an optional
876 <a href="#visibility">visibility style</a>, an optional
877 <a href="#callingconv">calling convention</a>, a return type, an optional
878 <a href="#paramattrs">parameter attribute</a> for the return type, a function
879 name, a (possibly empty) argument list (each with optional
880 <a href="#paramattrs">parameter attributes</a>), optional
881 <a href="#fnattrs">function attributes</a>, an optional section, an optional
882 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
883 curly brace, a list of basic blocks, and a closing curly brace.</p>
885 <p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
886 optional <a href="#linkage">linkage type</a>, an optional
887 <a href="#visibility">visibility style</a>, an optional
888 <a href="#callingconv">calling convention</a>, a return type, an optional
889 <a href="#paramattrs">parameter attribute</a> for the return type, a function
890 name, a possibly empty list of arguments, an optional alignment, and an
891 optional <a href="#gc">garbage collector name</a>.</p>
893 <p>A function definition contains a list of basic blocks, forming the CFG
894 (Control Flow Graph) for the function. Each basic block may optionally start
895 with a label (giving the basic block a symbol table entry), contains a list
896 of instructions, and ends with a <a href="#terminators">terminator</a>
897 instruction (such as a branch or function return).</p>
899 <p>The first basic block in a function is special in two ways: it is immediately
900 executed on entrance to the function, and it is not allowed to have
901 predecessor basic blocks (i.e. there can not be any branches to the entry
902 block of a function). Because the block can have no predecessors, it also
903 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
905 <p>LLVM allows an explicit section to be specified for functions. If the target
906 supports it, it will emit functions to the section specified.</p>
908 <p>An explicit alignment may be specified for a function. If not present, or if
909 the alignment is set to zero, the alignment of the function is set by the
910 target to whatever it feels convenient. If an explicit alignment is
911 specified, the function is forced to have at least that much alignment. All
912 alignments must be a power of 2.</p>
914 <h5>Syntax:</h5>
915 <pre class="doc_code">
916 define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
917 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
918 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
919 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
920 [<a href="#gc">gc</a>] { ... }
921 </pre>
923 </div>
925 <!-- ======================================================================= -->
926 <div class="doc_subsection">
927 <a name="aliasstructure">Aliases</a>
928 </div>
930 <div class="doc_text">
932 <p>Aliases act as "second name" for the aliasee value (which can be either
933 function, global variable, another alias or bitcast of global value). Aliases
934 may have an optional <a href="#linkage">linkage type</a>, and an
935 optional <a href="#visibility">visibility style</a>.</p>
937 <h5>Syntax:</h5>
938 <pre class="doc_code">
939 @&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
940 </pre>
942 </div>
944 <!-- ======================================================================= -->
945 <div class="doc_subsection">
946 <a name="namedmetadatastructure">Named Metadata</a>
947 </div>
949 <div class="doc_text">
951 <p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
952 nodes</a> (but not metadata strings) are the only valid operands for
953 a named metadata.</p>
955 <h5>Syntax:</h5>
956 <pre class="doc_code">
957 ; Some unnamed metadata nodes, which are referenced by the named metadata.
958 !0 = metadata !{metadata !"zero"}
959 !1 = metadata !{metadata !"one"}
960 !2 = metadata !{metadata !"two"}
961 ; A named metadata.
962 !name = !{!0, !1, !2}
963 </pre>
965 </div>
967 <!-- ======================================================================= -->
968 <div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
970 <div class="doc_text">
972 <p>The return type and each parameter of a function type may have a set of
973 <i>parameter attributes</i> associated with them. Parameter attributes are
974 used to communicate additional information about the result or parameters of
975 a function. Parameter attributes are considered to be part of the function,
976 not of the function type, so functions with different parameter attributes
977 can have the same function type.</p>
979 <p>Parameter attributes are simple keywords that follow the type specified. If
980 multiple parameter attributes are needed, they are space separated. For
981 example:</p>
983 <pre class="doc_code">
984 declare i32 @printf(i8* noalias nocapture, ...)
985 declare i32 @atoi(i8 zeroext)
986 declare signext i8 @returns_signed_char()
987 </pre>
989 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
990 <tt>readonly</tt>) come immediately after the argument list.</p>
992 <p>Currently, only the following parameter attributes are defined:</p>
994 <dl>
995 <dt><tt><b>zeroext</b></tt></dt>
996 <dd>This indicates to the code generator that the parameter or return value
997 should be zero-extended to a 32-bit value by the caller (for a parameter)
998 or the callee (for a return value).</dd>
1000 <dt><tt><b>signext</b></tt></dt>
1001 <dd>This indicates to the code generator that the parameter or return value
1002 should be sign-extended to a 32-bit value by the caller (for a parameter)
1003 or the callee (for a return value).</dd>
1005 <dt><tt><b>inreg</b></tt></dt>
1006 <dd>This indicates that this parameter or return value should be treated in a
1007 special target-dependent fashion during while emitting code for a function
1008 call or return (usually, by putting it in a register as opposed to memory,
1009 though some targets use it to distinguish between two different kinds of
1010 registers). Use of this attribute is target-specific.</dd>
1012 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
1013 <dd>This indicates that the pointer parameter should really be passed by value
1014 to the function. The attribute implies that a hidden copy of the pointee
1015 is made between the caller and the callee, so the callee is unable to
1016 modify the value in the callee. This attribute is only valid on LLVM
1017 pointer arguments. It is generally used to pass structs and arrays by
1018 value, but is also valid on pointers to scalars. The copy is considered
1019 to belong to the caller not the callee (for example,
1020 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1021 <tt>byval</tt> parameters). This is not a valid attribute for return
1022 values. The byval attribute also supports specifying an alignment with
1023 the align attribute. This has a target-specific effect on the code
1024 generator that usually indicates a desired alignment for the synthesized
1025 stack slot.</dd>
1027 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
1028 <dd>This indicates that the pointer parameter specifies the address of a
1029 structure that is the return value of the function in the source program.
1030 This pointer must be guaranteed by the caller to be valid: loads and
1031 stores to the structure may be assumed by the callee to not to trap. This
1032 may only be applied to the first parameter. This is not a valid attribute
1033 for return values. </dd>
1035 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
1036 <dd>This indicates that pointer values
1037 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
1038 value do not alias pointer values which are not <i>based</i> on it,
1039 ignoring certain "irrelevant" dependencies.
1040 For a call to the parent function, dependencies between memory
1041 references from before or after the call and from those during the call
1042 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1043 return value used in that call.
1044 The caller shares the responsibility with the callee for ensuring that
1045 these requirements are met.
1046 For further details, please see the discussion of the NoAlias response in
1047 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1048 <br>
1049 Note that this definition of <tt>noalias</tt> is intentionally
1050 similar to the definition of <tt>restrict</tt> in C99 for function
1051 arguments, though it is slightly weaker.
1052 <br>
1053 For function return values, C99's <tt>restrict</tt> is not meaningful,
1054 while LLVM's <tt>noalias</tt> is.
1055 </dd>
1057 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
1058 <dd>This indicates that the callee does not make any copies of the pointer
1059 that outlive the callee itself. This is not a valid attribute for return
1060 values.</dd>
1062 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
1063 <dd>This indicates that the pointer parameter can be excised using the
1064 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1065 attribute for return values.</dd>
1066 </dl>
1068 </div>
1070 <!-- ======================================================================= -->
1071 <div class="doc_subsection">
1072 <a name="gc">Garbage Collector Names</a>
1073 </div>
1075 <div class="doc_text">
1077 <p>Each function may specify a garbage collector name, which is simply a
1078 string:</p>
1080 <pre class="doc_code">
1081 define void @f() gc "name" { ... }
1082 </pre>
1084 <p>The compiler declares the supported values of <i>name</i>. Specifying a
1085 collector which will cause the compiler to alter its output in order to
1086 support the named garbage collection algorithm.</p>
1088 </div>
1090 <!-- ======================================================================= -->
1091 <div class="doc_subsection">
1092 <a name="fnattrs">Function Attributes</a>
1093 </div>
1095 <div class="doc_text">
1097 <p>Function attributes are set to communicate additional information about a
1098 function. Function attributes are considered to be part of the function, not
1099 of the function type, so functions with different parameter attributes can
1100 have the same function type.</p>
1102 <p>Function attributes are simple keywords that follow the type specified. If
1103 multiple attributes are needed, they are space separated. For example:</p>
1105 <pre class="doc_code">
1106 define void @f() noinline { ... }
1107 define void @f() alwaysinline { ... }
1108 define void @f() alwaysinline optsize { ... }
1109 define void @f() optsize { ... }
1110 </pre>
1112 <dl>
1113 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1114 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1115 the backend should forcibly align the stack pointer. Specify the
1116 desired alignment, which must be a power of two, in parentheses.
1118 <dt><tt><b>alwaysinline</b></tt></dt>
1119 <dd>This attribute indicates that the inliner should attempt to inline this
1120 function into callers whenever possible, ignoring any active inlining size
1121 threshold for this caller.</dd>
1123 <dt><tt><b>inlinehint</b></tt></dt>
1124 <dd>This attribute indicates that the source code contained a hint that inlining
1125 this function is desirable (such as the "inline" keyword in C/C++). It
1126 is just a hint; it imposes no requirements on the inliner.</dd>
1128 <dt><tt><b>naked</b></tt></dt>
1129 <dd>This attribute disables prologue / epilogue emission for the function.
1130 This can have very system-specific consequences.</dd>
1132 <dt><tt><b>noimplicitfloat</b></tt></dt>
1133 <dd>This attributes disables implicit floating point instructions.</dd>
1135 <dt><tt><b>noinline</b></tt></dt>
1136 <dd>This attribute indicates that the inliner should never inline this
1137 function in any situation. This attribute may not be used together with
1138 the <tt>alwaysinline</tt> attribute.</dd>
1140 <dt><tt><b>noredzone</b></tt></dt>
1141 <dd>This attribute indicates that the code generator should not use a red
1142 zone, even if the target-specific ABI normally permits it.</dd>
1144 <dt><tt><b>noreturn</b></tt></dt>
1145 <dd>This function attribute indicates that the function never returns
1146 normally. This produces undefined behavior at runtime if the function
1147 ever does dynamically return.</dd>
1149 <dt><tt><b>nounwind</b></tt></dt>
1150 <dd>This function attribute indicates that the function never returns with an
1151 unwind or exceptional control flow. If the function does unwind, its
1152 runtime behavior is undefined.</dd>
1154 <dt><tt><b>optsize</b></tt></dt>
1155 <dd>This attribute suggests that optimization passes and code generator passes
1156 make choices that keep the code size of this function low, and otherwise
1157 do optimizations specifically to reduce code size.</dd>
1159 <dt><tt><b>readnone</b></tt></dt>
1160 <dd>This attribute indicates that the function computes its result (or decides
1161 to unwind an exception) based strictly on its arguments, without
1162 dereferencing any pointer arguments or otherwise accessing any mutable
1163 state (e.g. memory, control registers, etc) visible to caller functions.
1164 It does not write through any pointer arguments
1165 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1166 changes any state visible to callers. This means that it cannot unwind
1167 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1168 could use the <tt>unwind</tt> instruction.</dd>
1170 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
1171 <dd>This attribute indicates that the function does not write through any
1172 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1173 arguments) or otherwise modify any state (e.g. memory, control registers,
1174 etc) visible to caller functions. It may dereference pointer arguments
1175 and read state that may be set in the caller. A readonly function always
1176 returns the same value (or unwinds an exception identically) when called
1177 with the same set of arguments and global state. It cannot unwind an
1178 exception by calling the <tt>C++</tt> exception throwing methods, but may
1179 use the <tt>unwind</tt> instruction.</dd>
1181 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
1182 <dd>This attribute indicates that the function should emit a stack smashing
1183 protector. It is in the form of a "canary"&mdash;a random value placed on
1184 the stack before the local variables that's checked upon return from the
1185 function to see if it has been overwritten. A heuristic is used to
1186 determine if a function needs stack protectors or not.<br>
1187 <br>
1188 If a function that has an <tt>ssp</tt> attribute is inlined into a
1189 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1190 function will have an <tt>ssp</tt> attribute.</dd>
1192 <dt><tt><b>sspreq</b></tt></dt>
1193 <dd>This attribute indicates that the function should <em>always</em> emit a
1194 stack smashing protector. This overrides
1195 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1196 <br>
1197 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1198 function that doesn't have an <tt>sspreq</tt> attribute or which has
1199 an <tt>ssp</tt> attribute, then the resulting function will have
1200 an <tt>sspreq</tt> attribute.</dd>
1201 </dl>
1203 </div>
1205 <!-- ======================================================================= -->
1206 <div class="doc_subsection">
1207 <a name="moduleasm">Module-Level Inline Assembly</a>
1208 </div>
1210 <div class="doc_text">
1212 <p>Modules may contain "module-level inline asm" blocks, which corresponds to
1213 the GCC "file scope inline asm" blocks. These blocks are internally
1214 concatenated by LLVM and treated as a single unit, but may be separated in
1215 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
1217 <pre class="doc_code">
1218 module asm "inline asm code goes here"
1219 module asm "more can go here"
1220 </pre>
1222 <p>The strings can contain any character by escaping non-printable characters.
1223 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1224 for the number.</p>
1226 <p>The inline asm code is simply printed to the machine code .s file when
1227 assembly code is generated.</p>
1229 </div>
1231 <!-- ======================================================================= -->
1232 <div class="doc_subsection">
1233 <a name="datalayout">Data Layout</a>
1234 </div>
1236 <div class="doc_text">
1238 <p>A module may specify a target specific data layout string that specifies how
1239 data is to be laid out in memory. The syntax for the data layout is
1240 simply:</p>
1242 <pre class="doc_code">
1243 target datalayout = "<i>layout specification</i>"
1244 </pre>
1246 <p>The <i>layout specification</i> consists of a list of specifications
1247 separated by the minus sign character ('-'). Each specification starts with
1248 a letter and may include other information after the letter to define some
1249 aspect of the data layout. The specifications accepted are as follows:</p>
1251 <dl>
1252 <dt><tt>E</tt></dt>
1253 <dd>Specifies that the target lays out data in big-endian form. That is, the
1254 bits with the most significance have the lowest address location.</dd>
1256 <dt><tt>e</tt></dt>
1257 <dd>Specifies that the target lays out data in little-endian form. That is,
1258 the bits with the least significance have the lowest address
1259 location.</dd>
1261 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1262 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1263 <i>preferred</i> alignments. All sizes are in bits. Specifying
1264 the <i>pref</i> alignment is optional. If omitted, the
1265 preceding <tt>:</tt> should be omitted too.</dd>
1267 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1268 <dd>This specifies the alignment for an integer type of a given bit
1269 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1271 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1272 <dd>This specifies the alignment for a vector type of a given bit
1273 <i>size</i>.</dd>
1275 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1276 <dd>This specifies the alignment for a floating point type of a given bit
1277 <i>size</i>. Only values of <i>size</i> that are supported by the target
1278 will work. 32 (float) and 64 (double) are supported on all targets;
1279 80 or 128 (different flavors of long double) are also supported on some
1280 targets.
1282 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1283 <dd>This specifies the alignment for an aggregate type of a given bit
1284 <i>size</i>.</dd>
1286 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1287 <dd>This specifies the alignment for a stack object of a given bit
1288 <i>size</i>.</dd>
1290 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1291 <dd>This specifies a set of native integer widths for the target CPU
1292 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1293 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
1294 this set are considered to support most general arithmetic
1295 operations efficiently.</dd>
1296 </dl>
1298 <p>When constructing the data layout for a given target, LLVM starts with a
1299 default set of specifications which are then (possibly) overridden by the
1300 specifications in the <tt>datalayout</tt> keyword. The default specifications
1301 are given in this list:</p>
1303 <ul>
1304 <li><tt>E</tt> - big endian</li>
1305 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
1306 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1307 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1308 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1309 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
1310 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
1311 alignment of 64-bits</li>
1312 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1313 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1314 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1315 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1316 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1317 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
1318 </ul>
1320 <p>When LLVM is determining the alignment for a given type, it uses the
1321 following rules:</p>
1323 <ol>
1324 <li>If the type sought is an exact match for one of the specifications, that
1325 specification is used.</li>
1327 <li>If no match is found, and the type sought is an integer type, then the
1328 smallest integer type that is larger than the bitwidth of the sought type
1329 is used. If none of the specifications are larger than the bitwidth then
1330 the the largest integer type is used. For example, given the default
1331 specifications above, the i7 type will use the alignment of i8 (next
1332 largest) while both i65 and i256 will use the alignment of i64 (largest
1333 specified).</li>
1335 <li>If no match is found, and the type sought is a vector type, then the
1336 largest vector type that is smaller than the sought vector type will be
1337 used as a fall back. This happens because &lt;128 x double&gt; can be
1338 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
1339 </ol>
1341 </div>
1343 <!-- ======================================================================= -->
1344 <div class="doc_subsection">
1345 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1346 </div>
1348 <div class="doc_text">
1350 <p>Any memory access must be done through a pointer value associated
1351 with an address range of the memory access, otherwise the behavior
1352 is undefined. Pointer values are associated with address ranges
1353 according to the following rules:</p>
1355 <ul>
1356 <li>A pointer value is associated with the addresses associated with
1357 any value it is <i>based</i> on.
1358 <li>An address of a global variable is associated with the address
1359 range of the variable's storage.</li>
1360 <li>The result value of an allocation instruction is associated with
1361 the address range of the allocated storage.</li>
1362 <li>A null pointer in the default address-space is associated with
1363 no address.</li>
1364 <li>An integer constant other than zero or a pointer value returned
1365 from a function not defined within LLVM may be associated with address
1366 ranges allocated through mechanisms other than those provided by
1367 LLVM. Such ranges shall not overlap with any ranges of addresses
1368 allocated by mechanisms provided by LLVM.</li>
1369 </ul>
1371 <p>A pointer value is <i>based</i> on another pointer value according
1372 to the following rules:</p>
1374 <ul>
1375 <li>A pointer value formed from a
1376 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1377 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1378 <li>The result value of a
1379 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1380 of the <tt>bitcast</tt>.</li>
1381 <li>A pointer value formed by an
1382 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1383 pointer values that contribute (directly or indirectly) to the
1384 computation of the pointer's value.</li>
1385 <li>The "<i>based</i> on" relationship is transitive.</li>
1386 </ul>
1388 <p>Note that this definition of <i>"based"</i> is intentionally
1389 similar to the definition of <i>"based"</i> in C99, though it is
1390 slightly weaker.</p>
1392 <p>LLVM IR does not associate types with memory. The result type of a
1393 <tt><a href="#i_load">load</a></tt> merely indicates the size and
1394 alignment of the memory from which to load, as well as the
1395 interpretation of the value. The first operand type of a
1396 <tt><a href="#i_store">store</a></tt> similarly only indicates the size
1397 and alignment of the store.</p>
1399 <p>Consequently, type-based alias analysis, aka TBAA, aka
1400 <tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1401 LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1402 additional information which specialized optimization passes may use
1403 to implement type-based alias analysis.</p>
1405 </div>
1407 <!-- ======================================================================= -->
1408 <div class="doc_subsection">
1409 <a name="volatile">Volatile Memory Accesses</a>
1410 </div>
1412 <div class="doc_text">
1414 <p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1415 href="#i_store"><tt>store</tt></a>s, and <a
1416 href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1417 The optimizers must not change the number of volatile operations or change their
1418 order of execution relative to other volatile operations. The optimizers
1419 <i>may</i> change the order of volatile operations relative to non-volatile
1420 operations. This is not Java's "volatile" and has no cross-thread
1421 synchronization behavior.</p>
1423 </div>
1425 <!-- *********************************************************************** -->
1426 <div class="doc_section"> <a name="typesystem">Type System</a> </div>
1427 <!-- *********************************************************************** -->
1429 <div class="doc_text">
1431 <p>The LLVM type system is one of the most important features of the
1432 intermediate representation. Being typed enables a number of optimizations
1433 to be performed on the intermediate representation directly, without having
1434 to do extra analyses on the side before the transformation. A strong type
1435 system makes it easier to read the generated code and enables novel analyses
1436 and transformations that are not feasible to perform on normal three address
1437 code representations.</p>
1439 </div>
1441 <!-- ======================================================================= -->
1442 <div class="doc_subsection"> <a name="t_classifications">Type
1443 Classifications</a> </div>
1445 <div class="doc_text">
1447 <p>The types fall into a few useful classifications:</p>
1449 <table border="1" cellspacing="0" cellpadding="4">
1450 <tbody>
1451 <tr><th>Classification</th><th>Types</th></tr>
1452 <tr>
1453 <td><a href="#t_integer">integer</a></td>
1454 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1455 </tr>
1456 <tr>
1457 <td><a href="#t_floating">floating point</a></td>
1458 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
1459 </tr>
1460 <tr>
1461 <td><a name="t_firstclass">first class</a></td>
1462 <td><a href="#t_integer">integer</a>,
1463 <a href="#t_floating">floating point</a>,
1464 <a href="#t_pointer">pointer</a>,
1465 <a href="#t_vector">vector</a>,
1466 <a href="#t_struct">structure</a>,
1467 <a href="#t_union">union</a>,
1468 <a href="#t_array">array</a>,
1469 <a href="#t_label">label</a>,
1470 <a href="#t_metadata">metadata</a>.
1471 </td>
1472 </tr>
1473 <tr>
1474 <td><a href="#t_primitive">primitive</a></td>
1475 <td><a href="#t_label">label</a>,
1476 <a href="#t_void">void</a>,
1477 <a href="#t_floating">floating point</a>,
1478 <a href="#t_metadata">metadata</a>.</td>
1479 </tr>
1480 <tr>
1481 <td><a href="#t_derived">derived</a></td>
1482 <td><a href="#t_array">array</a>,
1483 <a href="#t_function">function</a>,
1484 <a href="#t_pointer">pointer</a>,
1485 <a href="#t_struct">structure</a>,
1486 <a href="#t_pstruct">packed structure</a>,
1487 <a href="#t_union">union</a>,
1488 <a href="#t_vector">vector</a>,
1489 <a href="#t_opaque">opaque</a>.
1490 </td>
1491 </tr>
1492 </tbody>
1493 </table>
1495 <p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1496 important. Values of these types are the only ones which can be produced by
1497 instructions.</p>
1499 </div>
1501 <!-- ======================================================================= -->
1502 <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
1504 <div class="doc_text">
1506 <p>The primitive types are the fundamental building blocks of the LLVM
1507 system.</p>
1509 </div>
1511 <!-- _______________________________________________________________________ -->
1512 <div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1514 <div class="doc_text">
1516 <h5>Overview:</h5>
1517 <p>The integer type is a very simple type that simply specifies an arbitrary
1518 bit width for the integer type desired. Any bit width from 1 bit to
1519 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1521 <h5>Syntax:</h5>
1522 <pre>
1524 </pre>
1526 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1527 value.</p>
1529 <h5>Examples:</h5>
1530 <table class="layout">
1531 <tr class="layout">
1532 <td class="left"><tt>i1</tt></td>
1533 <td class="left">a single-bit integer.</td>
1534 </tr>
1535 <tr class="layout">
1536 <td class="left"><tt>i32</tt></td>
1537 <td class="left">a 32-bit integer.</td>
1538 </tr>
1539 <tr class="layout">
1540 <td class="left"><tt>i1942652</tt></td>
1541 <td class="left">a really big integer of over 1 million bits.</td>
1542 </tr>
1543 </table>
1545 </div>
1547 <!-- _______________________________________________________________________ -->
1548 <div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1550 <div class="doc_text">
1552 <table>
1553 <tbody>
1554 <tr><th>Type</th><th>Description</th></tr>
1555 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1556 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1557 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1558 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1559 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1560 </tbody>
1561 </table>
1563 </div>
1565 <!-- _______________________________________________________________________ -->
1566 <div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1568 <div class="doc_text">
1570 <h5>Overview:</h5>
1571 <p>The void type does not represent any value and has no size.</p>
1573 <h5>Syntax:</h5>
1574 <pre>
1575 void
1576 </pre>
1578 </div>
1580 <!-- _______________________________________________________________________ -->
1581 <div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1583 <div class="doc_text">
1585 <h5>Overview:</h5>
1586 <p>The label type represents code labels.</p>
1588 <h5>Syntax:</h5>
1589 <pre>
1590 label
1591 </pre>
1593 </div>
1595 <!-- _______________________________________________________________________ -->
1596 <div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1598 <div class="doc_text">
1600 <h5>Overview:</h5>
1601 <p>The metadata type represents embedded metadata. No derived types may be
1602 created from metadata except for <a href="#t_function">function</a>
1603 arguments.
1605 <h5>Syntax:</h5>
1606 <pre>
1607 metadata
1608 </pre>
1610 </div>
1613 <!-- ======================================================================= -->
1614 <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1616 <div class="doc_text">
1618 <p>The real power in LLVM comes from the derived types in the system. This is
1619 what allows a programmer to represent arrays, functions, pointers, and other
1620 useful types. Each of these types contain one or more element types which
1621 may be a primitive type, or another derived type. For example, it is
1622 possible to have a two dimensional array, using an array as the element type
1623 of another array.</p>
1626 </div>
1628 <!-- _______________________________________________________________________ -->
1629 <div class="doc_subsubsection"> <a name="t_aggregate">Aggregate Types</a> </div>
1631 <div class="doc_text">
1633 <p>Aggregate Types are a subset of derived types that can contain multiple
1634 member types. <a href="#t_array">Arrays</a>,
1635 <a href="#t_struct">structs</a>, <a href="#t_vector">vectors</a> and
1636 <a href="#t_union">unions</a> are aggregate types.</p>
1638 </div>
1640 <!-- _______________________________________________________________________ -->
1641 <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1643 <div class="doc_text">
1645 <h5>Overview:</h5>
1646 <p>The array type is a very simple derived type that arranges elements
1647 sequentially in memory. The array type requires a size (number of elements)
1648 and an underlying data type.</p>
1650 <h5>Syntax:</h5>
1651 <pre>
1652 [&lt;# elements&gt; x &lt;elementtype&gt;]
1653 </pre>
1655 <p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1656 be any type with a size.</p>
1658 <h5>Examples:</h5>
1659 <table class="layout">
1660 <tr class="layout">
1661 <td class="left"><tt>[40 x i32]</tt></td>
1662 <td class="left">Array of 40 32-bit integer values.</td>
1663 </tr>
1664 <tr class="layout">
1665 <td class="left"><tt>[41 x i32]</tt></td>
1666 <td class="left">Array of 41 32-bit integer values.</td>
1667 </tr>
1668 <tr class="layout">
1669 <td class="left"><tt>[4 x i8]</tt></td>
1670 <td class="left">Array of 4 8-bit integer values.</td>
1671 </tr>
1672 </table>
1673 <p>Here are some examples of multidimensional arrays:</p>
1674 <table class="layout">
1675 <tr class="layout">
1676 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1677 <td class="left">3x4 array of 32-bit integer values.</td>
1678 </tr>
1679 <tr class="layout">
1680 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1681 <td class="left">12x10 array of single precision floating point values.</td>
1682 </tr>
1683 <tr class="layout">
1684 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1685 <td class="left">2x3x4 array of 16-bit integer values.</td>
1686 </tr>
1687 </table>
1689 <p>There is no restriction on indexing beyond the end of the array implied by
1690 a static type (though there are restrictions on indexing beyond the bounds
1691 of an allocated object in some cases). This means that single-dimension
1692 'variable sized array' addressing can be implemented in LLVM with a zero
1693 length array type. An implementation of 'pascal style arrays' in LLVM could
1694 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
1696 </div>
1698 <!-- _______________________________________________________________________ -->
1699 <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1701 <div class="doc_text">
1703 <h5>Overview:</h5>
1704 <p>The function type can be thought of as a function signature. It consists of
1705 a return type and a list of formal parameter types. The return type of a
1706 function type is a scalar type, a void type, a struct type, or a union
1707 type. If the return type is a struct type then all struct elements must be
1708 of first class types, and the struct must have at least one element.</p>
1710 <h5>Syntax:</h5>
1711 <pre>
1712 &lt;returntype&gt; (&lt;parameter list&gt;)
1713 </pre>
1715 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1716 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1717 which indicates that the function takes a variable number of arguments.
1718 Variable argument functions can access their arguments with
1719 the <a href="#int_varargs">variable argument handling intrinsic</a>
1720 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
1721 <a href="#t_label">label</a>.</p>
1723 <h5>Examples:</h5>
1724 <table class="layout">
1725 <tr class="layout">
1726 <td class="left"><tt>i32 (i32)</tt></td>
1727 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1728 </td>
1729 </tr><tr class="layout">
1730 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
1731 </tt></td>
1732 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1733 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
1734 returning <tt>float</tt>.
1735 </td>
1736 </tr><tr class="layout">
1737 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1738 <td class="left">A vararg function that takes at least one
1739 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1740 which returns an integer. This is the signature for <tt>printf</tt> in
1741 LLVM.
1742 </td>
1743 </tr><tr class="layout">
1744 <td class="left"><tt>{i32, i32} (i32)</tt></td>
1745 <td class="left">A function taking an <tt>i32</tt>, returning a
1746 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
1747 </td>
1748 </tr>
1749 </table>
1751 </div>
1753 <!-- _______________________________________________________________________ -->
1754 <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1756 <div class="doc_text">
1758 <h5>Overview:</h5>
1759 <p>The structure type is used to represent a collection of data members together
1760 in memory. The packing of the field types is defined to match the ABI of the
1761 underlying processor. The elements of a structure may be any type that has a
1762 size.</p>
1764 <p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
1765 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
1766 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1767 Structures in registers are accessed using the
1768 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
1769 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
1770 <h5>Syntax:</h5>
1771 <pre>
1772 { &lt;type list&gt; }
1773 </pre>
1775 <h5>Examples:</h5>
1776 <table class="layout">
1777 <tr class="layout">
1778 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1779 <td class="left">A triple of three <tt>i32</tt> values</td>
1780 </tr><tr class="layout">
1781 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1782 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1783 second element is a <a href="#t_pointer">pointer</a> to a
1784 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1785 an <tt>i32</tt>.</td>
1786 </tr>
1787 </table>
1789 </div>
1791 <!-- _______________________________________________________________________ -->
1792 <div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1793 </div>
1795 <div class="doc_text">
1797 <h5>Overview:</h5>
1798 <p>The packed structure type is used to represent a collection of data members
1799 together in memory. There is no padding between fields. Further, the
1800 alignment of a packed structure is 1 byte. The elements of a packed
1801 structure may be any type that has a size.</p>
1803 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1804 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1805 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1807 <h5>Syntax:</h5>
1808 <pre>
1809 &lt; { &lt;type list&gt; } &gt;
1810 </pre>
1812 <h5>Examples:</h5>
1813 <table class="layout">
1814 <tr class="layout">
1815 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1816 <td class="left">A triple of three <tt>i32</tt> values</td>
1817 </tr><tr class="layout">
1818 <td class="left">
1819 <tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
1820 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1821 second element is a <a href="#t_pointer">pointer</a> to a
1822 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1823 an <tt>i32</tt>.</td>
1824 </tr>
1825 </table>
1827 </div>
1829 <!-- _______________________________________________________________________ -->
1830 <div class="doc_subsubsection"> <a name="t_union">Union Type</a> </div>
1832 <div class="doc_text">
1834 <h5>Overview:</h5>
1835 <p>A union type describes an object with size and alignment suitable for
1836 an object of any one of a given set of types (also known as an "untagged"
1837 union). It is similar in concept and usage to a
1838 <a href="#t_struct">struct</a>, except that all members of the union
1839 have an offset of zero. The elements of a union may be any type that has a
1840 size. Unions must have at least one member - empty unions are not allowed.
1841 </p>
1843 <p>The size of the union as a whole will be the size of its largest member,
1844 and the alignment requirements of the union as a whole will be the largest
1845 alignment requirement of any member.</p>
1847 <p>Union members are accessed using '<tt><a href="#i_load">load</a></tt> and
1848 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1849 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1850 Since all members are at offset zero, the getelementptr instruction does
1851 not affect the address, only the type of the resulting pointer.</p>
1853 <h5>Syntax:</h5>
1854 <pre>
1855 union { &lt;type list&gt; }
1856 </pre>
1858 <h5>Examples:</h5>
1859 <table class="layout">
1860 <tr class="layout">
1861 <td class="left"><tt>union { i32, i32*, float }</tt></td>
1862 <td class="left">A union of three types: an <tt>i32</tt>, a pointer to
1863 an <tt>i32</tt>, and a <tt>float</tt>.</td>
1864 </tr><tr class="layout">
1865 <td class="left">
1866 <tt>union {&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1867 <td class="left">A union, where the first element is a <tt>float</tt> and the
1868 second element is a <a href="#t_pointer">pointer</a> to a
1869 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1870 an <tt>i32</tt>.</td>
1871 </tr>
1872 </table>
1874 </div>
1876 <!-- _______________________________________________________________________ -->
1877 <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1879 <div class="doc_text">
1881 <h5>Overview:</h5>
1882 <p>The pointer type is used to specify memory locations.
1883 Pointers are commonly used to reference objects in memory.</p>
1885 <p>Pointer types may have an optional address space attribute defining the
1886 numbered address space where the pointed-to object resides. The default
1887 address space is number zero. The semantics of non-zero address
1888 spaces are target-specific.</p>
1890 <p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1891 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
1893 <h5>Syntax:</h5>
1894 <pre>
1895 &lt;type&gt; *
1896 </pre>
1898 <h5>Examples:</h5>
1899 <table class="layout">
1900 <tr class="layout">
1901 <td class="left"><tt>[4 x i32]*</tt></td>
1902 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1903 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1904 </tr>
1905 <tr class="layout">
1906 <td class="left"><tt>i32 (i32*) *</tt></td>
1907 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
1908 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1909 <tt>i32</tt>.</td>
1910 </tr>
1911 <tr class="layout">
1912 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1913 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1914 that resides in address space #5.</td>
1915 </tr>
1916 </table>
1918 </div>
1920 <!-- _______________________________________________________________________ -->
1921 <div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1923 <div class="doc_text">
1925 <h5>Overview:</h5>
1926 <p>A vector type is a simple derived type that represents a vector of elements.
1927 Vector types are used when multiple primitive data are operated in parallel
1928 using a single instruction (SIMD). A vector type requires a size (number of
1929 elements) and an underlying primitive data type. Vector types are considered
1930 <a href="#t_firstclass">first class</a>.</p>
1932 <h5>Syntax:</h5>
1933 <pre>
1934 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1935 </pre>
1937 <p>The number of elements is a constant integer value; elementtype may be any
1938 integer or floating point type.</p>
1940 <h5>Examples:</h5>
1941 <table class="layout">
1942 <tr class="layout">
1943 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1944 <td class="left">Vector of 4 32-bit integer values.</td>
1945 </tr>
1946 <tr class="layout">
1947 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1948 <td class="left">Vector of 8 32-bit floating-point values.</td>
1949 </tr>
1950 <tr class="layout">
1951 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1952 <td class="left">Vector of 2 64-bit integer values.</td>
1953 </tr>
1954 </table>
1956 </div>
1958 <!-- _______________________________________________________________________ -->
1959 <div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1960 <div class="doc_text">
1962 <h5>Overview:</h5>
1963 <p>Opaque types are used to represent unknown types in the system. This
1964 corresponds (for example) to the C notion of a forward declared structure
1965 type. In LLVM, opaque types can eventually be resolved to any type (not just
1966 a structure type).</p>
1968 <h5>Syntax:</h5>
1969 <pre>
1970 opaque
1971 </pre>
1973 <h5>Examples:</h5>
1974 <table class="layout">
1975 <tr class="layout">
1976 <td class="left"><tt>opaque</tt></td>
1977 <td class="left">An opaque type.</td>
1978 </tr>
1979 </table>
1981 </div>
1983 <!-- ======================================================================= -->
1984 <div class="doc_subsection">
1985 <a name="t_uprefs">Type Up-references</a>
1986 </div>
1988 <div class="doc_text">
1990 <h5>Overview:</h5>
1991 <p>An "up reference" allows you to refer to a lexically enclosing type without
1992 requiring it to have a name. For instance, a structure declaration may
1993 contain a pointer to any of the types it is lexically a member of. Example
1994 of up references (with their equivalent as named type declarations)
1995 include:</p>
1997 <pre>
1998 { \2 * } %x = type { %x* }
1999 { \2 }* %y = type { %y }*
2000 \1* %z = type %z*
2001 </pre>
2003 <p>An up reference is needed by the asmprinter for printing out cyclic types
2004 when there is no declared name for a type in the cycle. Because the
2005 asmprinter does not want to print out an infinite type string, it needs a
2006 syntax to handle recursive types that have no names (all names are optional
2007 in llvm IR).</p>
2009 <h5>Syntax:</h5>
2010 <pre>
2011 \&lt;level&gt;
2012 </pre>
2014 <p>The level is the count of the lexical type that is being referred to.</p>
2016 <h5>Examples:</h5>
2017 <table class="layout">
2018 <tr class="layout">
2019 <td class="left"><tt>\1*</tt></td>
2020 <td class="left">Self-referential pointer.</td>
2021 </tr>
2022 <tr class="layout">
2023 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
2024 <td class="left">Recursive structure where the upref refers to the out-most
2025 structure.</td>
2026 </tr>
2027 </table>
2029 </div>
2031 <!-- *********************************************************************** -->
2032 <div class="doc_section"> <a name="constants">Constants</a> </div>
2033 <!-- *********************************************************************** -->
2035 <div class="doc_text">
2037 <p>LLVM has several different basic types of constants. This section describes
2038 them all and their syntax.</p>
2040 </div>
2042 <!-- ======================================================================= -->
2043 <div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
2045 <div class="doc_text">
2047 <dl>
2048 <dt><b>Boolean constants</b></dt>
2049 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
2050 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
2052 <dt><b>Integer constants</b></dt>
2053 <dd>Standard integers (such as '4') are constants of
2054 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2055 with integer types.</dd>
2057 <dt><b>Floating point constants</b></dt>
2058 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
2059 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2060 notation (see below). The assembler requires the exact decimal value of a
2061 floating-point constant. For example, the assembler accepts 1.25 but
2062 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2063 constants must have a <a href="#t_floating">floating point</a> type. </dd>
2065 <dt><b>Null pointer constants</b></dt>
2066 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
2067 and must be of <a href="#t_pointer">pointer type</a>.</dd>
2068 </dl>
2070 <p>The one non-intuitive notation for constants is the hexadecimal form of
2071 floating point constants. For example, the form '<tt>double
2072 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2073 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2074 constants are required (and the only time that they are generated by the
2075 disassembler) is when a floating point constant must be emitted but it cannot
2076 be represented as a decimal floating point number in a reasonable number of
2077 digits. For example, NaN's, infinities, and other special values are
2078 represented in their IEEE hexadecimal format so that assembly and disassembly
2079 do not cause any bits to change in the constants.</p>
2081 <p>When using the hexadecimal form, constants of types float and double are
2082 represented using the 16-digit form shown above (which matches the IEEE754
2083 representation for double); float values must, however, be exactly
2084 representable as IEE754 single precision. Hexadecimal format is always used
2085 for long double, and there are three forms of long double. The 80-bit format
2086 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2087 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2088 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2089 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2090 currently supported target uses this format. Long doubles will only work if
2091 they match the long double format on your target. All hexadecimal formats
2092 are big-endian (sign bit at the left).</p>
2094 </div>
2096 <!-- ======================================================================= -->
2097 <div class="doc_subsection">
2098 <a name="aggregateconstants"></a> <!-- old anchor -->
2099 <a name="complexconstants">Complex Constants</a>
2100 </div>
2102 <div class="doc_text">
2104 <p>Complex constants are a (potentially recursive) combination of simple
2105 constants and smaller complex constants.</p>
2107 <dl>
2108 <dt><b>Structure constants</b></dt>
2109 <dd>Structure constants are represented with notation similar to structure
2110 type definitions (a comma separated list of elements, surrounded by braces
2111 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2112 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2113 Structure constants must have <a href="#t_struct">structure type</a>, and
2114 the number and types of elements must match those specified by the
2115 type.</dd>
2117 <dt><b>Union constants</b></dt>
2118 <dd>Union constants are represented with notation similar to a structure with
2119 a single element - that is, a single typed element surrounded
2120 by braces (<tt>{}</tt>)). For example: "<tt>{ i32 4 }</tt>". The
2121 <a href="#t_union">union type</a> can be initialized with a single-element
2122 struct as long as the type of the struct element matches the type of
2123 one of the union members.</dd>
2125 <dt><b>Array constants</b></dt>
2126 <dd>Array constants are represented with notation similar to array type
2127 definitions (a comma separated list of elements, surrounded by square
2128 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2129 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2130 the number and types of elements must match those specified by the
2131 type.</dd>
2133 <dt><b>Vector constants</b></dt>
2134 <dd>Vector constants are represented with notation similar to vector type
2135 definitions (a comma separated list of elements, surrounded by
2136 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2137 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2138 have <a href="#t_vector">vector type</a>, and the number and types of
2139 elements must match those specified by the type.</dd>
2141 <dt><b>Zero initialization</b></dt>
2142 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
2143 value to zero of <em>any</em> type, including scalar and
2144 <a href="#t_aggregate">aggregate</a> types.
2145 This is often used to avoid having to print large zero initializers
2146 (e.g. for large arrays) and is always exactly equivalent to using explicit
2147 zero initializers.</dd>
2149 <dt><b>Metadata node</b></dt>
2150 <dd>A metadata node is a structure-like constant with
2151 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2152 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2153 be interpreted as part of the instruction stream, metadata is a place to
2154 attach additional information such as debug info.</dd>
2155 </dl>
2157 </div>
2159 <!-- ======================================================================= -->
2160 <div class="doc_subsection">
2161 <a name="globalconstants">Global Variable and Function Addresses</a>
2162 </div>
2164 <div class="doc_text">
2166 <p>The addresses of <a href="#globalvars">global variables</a>
2167 and <a href="#functionstructure">functions</a> are always implicitly valid
2168 (link-time) constants. These constants are explicitly referenced when
2169 the <a href="#identifiers">identifier for the global</a> is used and always
2170 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2171 legal LLVM file:</p>
2173 <pre class="doc_code">
2174 @X = global i32 17
2175 @Y = global i32 42
2176 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2177 </pre>
2179 </div>
2181 <!-- ======================================================================= -->
2182 <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
2183 <div class="doc_text">
2185 <p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
2186 indicates that the user of the value may receive an unspecified bit-pattern.
2187 Undefined values may be of any type (other than label or void) and be used
2188 anywhere a constant is permitted.</p>
2190 <p>Undefined values are useful because they indicate to the compiler that the
2191 program is well defined no matter what value is used. This gives the
2192 compiler more freedom to optimize. Here are some examples of (potentially
2193 surprising) transformations that are valid (in pseudo IR):</p>
2196 <pre class="doc_code">
2197 %A = add %X, undef
2198 %B = sub %X, undef
2199 %C = xor %X, undef
2200 Safe:
2201 %A = undef
2202 %B = undef
2203 %C = undef
2204 </pre>
2206 <p>This is safe because all of the output bits are affected by the undef bits.
2207 Any output bit can have a zero or one depending on the input bits.</p>
2209 <pre class="doc_code">
2210 %A = or %X, undef
2211 %B = and %X, undef
2212 Safe:
2213 %A = -1
2214 %B = 0
2215 Unsafe:
2216 %A = undef
2217 %B = undef
2218 </pre>
2220 <p>These logical operations have bits that are not always affected by the input.
2221 For example, if "%X" has a zero bit, then the output of the 'and' operation will
2222 always be a zero, no matter what the corresponding bit from the undef is. As
2223 such, it is unsafe to optimize or assume that the result of the and is undef.
2224 However, it is safe to assume that all bits of the undef could be 0, and
2225 optimize the and to 0. Likewise, it is safe to assume that all the bits of
2226 the undef operand to the or could be set, allowing the or to be folded to
2227 -1.</p>
2229 <pre class="doc_code">
2230 %A = select undef, %X, %Y
2231 %B = select undef, 42, %Y
2232 %C = select %X, %Y, undef
2233 Safe:
2234 %A = %X (or %Y)
2235 %B = 42 (or %Y)
2236 %C = %Y
2237 Unsafe:
2238 %A = undef
2239 %B = undef
2240 %C = undef
2241 </pre>
2243 <p>This set of examples show that undefined select (and conditional branch)
2244 conditions can go "either way" but they have to come from one of the two
2245 operands. In the %A example, if %X and %Y were both known to have a clear low
2246 bit, then %A would have to have a cleared low bit. However, in the %C example,
2247 the optimizer is allowed to assume that the undef operand could be the same as
2248 %Y, allowing the whole select to be eliminated.</p>
2251 <pre class="doc_code">
2252 %A = xor undef, undef
2254 %B = undef
2255 %C = xor %B, %B
2257 %D = undef
2258 %E = icmp lt %D, 4
2259 %F = icmp gte %D, 4
2261 Safe:
2262 %A = undef
2263 %B = undef
2264 %C = undef
2265 %D = undef
2266 %E = undef
2267 %F = undef
2268 </pre>
2270 <p>This example points out that two undef operands are not necessarily the same.
2271 This can be surprising to people (and also matches C semantics) where they
2272 assume that "X^X" is always zero, even if X is undef. This isn't true for a
2273 number of reasons, but the short answer is that an undef "variable" can
2274 arbitrarily change its value over its "live range". This is true because the
2275 "variable" doesn't actually <em>have a live range</em>. Instead, the value is
2276 logically read from arbitrary registers that happen to be around when needed,
2277 so the value is not necessarily consistent over time. In fact, %A and %C need
2278 to have the same semantics or the core LLVM "replace all uses with" concept
2279 would not hold.</p>
2281 <pre class="doc_code">
2282 %A = fdiv undef, %X
2283 %B = fdiv %X, undef
2284 Safe:
2285 %A = undef
2286 b: unreachable
2287 </pre>
2289 <p>These examples show the crucial difference between an <em>undefined
2290 value</em> and <em>undefined behavior</em>. An undefined value (like undef) is
2291 allowed to have an arbitrary bit-pattern. This means that the %A operation
2292 can be constant folded to undef because the undef could be an SNaN, and fdiv is
2293 not (currently) defined on SNaN's. However, in the second example, we can make
2294 a more aggressive assumption: because the undef is allowed to be an arbitrary
2295 value, we are allowed to assume that it could be zero. Since a divide by zero
2296 has <em>undefined behavior</em>, we are allowed to assume that the operation
2297 does not execute at all. This allows us to delete the divide and all code after
2298 it: since the undefined operation "can't happen", the optimizer can assume that
2299 it occurs in dead code.
2300 </p>
2302 <pre class="doc_code">
2303 a: store undef -> %X
2304 b: store %X -> undef
2305 Safe:
2306 a: &lt;deleted&gt;
2307 b: unreachable
2308 </pre>
2310 <p>These examples reiterate the fdiv example: a store "of" an undefined value
2311 can be assumed to not have any effect: we can assume that the value is
2312 overwritten with bits that happen to match what was already there. However, a
2313 store "to" an undefined location could clobber arbitrary memory, therefore, it
2314 has undefined behavior.</p>
2316 </div>
2318 <!-- ======================================================================= -->
2319 <div class="doc_subsection"><a name="trapvalues">Trap Values</a></div>
2320 <div class="doc_text">
2322 <p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
2323 instead of representing an unspecified bit pattern, they represent the
2324 fact that an instruction or constant expression which cannot evoke side
2325 effects has nevertheless detected a condition which results in undefined
2326 behavior.</p>
2328 <p>There is currently no way of representing a trap value in the IR; they
2329 only exist when produced by operations such as
2330 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
2332 <p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
2334 <ul>
2335 <li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2336 their operands.</li>
2338 <li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2339 to their dynamic predecessor basic block.</li>
2341 <li>Function arguments depend on the corresponding actual argument values in
2342 the dynamic callers of their functions.</li>
2344 <li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2345 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2346 control back to them.</li>
2348 <li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2349 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
2350 or exception-throwing call instructions that dynamically transfer control
2351 back to them.</li>
2353 <li>Non-volatile loads and stores depend on the most recent stores to all of the
2354 referenced memory addresses, following the order in the IR
2355 (including loads and stores implied by intrinsics such as
2356 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2358 <!-- TODO: In the case of multiple threads, this only applies if the store
2359 "happens-before" the load or store. -->
2361 <!-- TODO: floating-point exception state -->
2363 <li>An instruction with externally visible side effects depends on the most
2364 recent preceding instruction with externally visible side effects, following
2365 the order in the IR. (This includes
2366 <a href="#volatile">volatile operations</a>.)</li>
2368 <li>An instruction <i>control-depends</i> on a
2369 <a href="#terminators">terminator instruction</a>
2370 if the terminator instruction has multiple successors and the instruction
2371 is always executed when control transfers to one of the successors, and
2372 may not be executed when control is transfered to another.</li>
2374 <li>Dependence is transitive.</li>
2376 </ul>
2378 <p>Whenever a trap value is generated, all values which depend on it evaluate
2379 to trap. If they have side effects, the evoke their side effects as if each
2380 operand with a trap value were undef. If they have externally-visible side
2381 effects, the behavior is undefined.</p>
2383 <p>Here are some examples:</p>
2385 <pre class="doc_code">
2386 entry:
2387 %trap = sub nuw i32 0, 1 ; Results in a trap value.
2388 %still_trap = and i32 %trap, 0 ; Whereas (and i32 undef, 0) would return 0.
2389 %trap_yet_again = getelementptr i32* @h, i32 %still_trap
2390 store i32 0, i32* %trap_yet_again ; undefined behavior
2392 store i32 %trap, i32* @g ; Trap value conceptually stored to memory.
2393 %trap2 = load i32* @g ; Returns a trap value, not just undef.
2395 volatile store i32 %trap, i32* @g ; External observation; undefined behavior.
2397 %narrowaddr = bitcast i32* @g to i16*
2398 %wideaddr = bitcast i32* @g to i64*
2399 %trap3 = load 16* %narrowaddr ; Returns a trap value.
2400 %trap4 = load i64* %widaddr ; Returns a trap value.
2402 %cmp = icmp i32 slt %trap, 0 ; Returns a trap value.
2403 %br i1 %cmp, %true, %end ; Branch to either destination.
2405 true:
2406 volatile store i32 0, i32* @g ; This is control-dependent on %cmp, so
2407 ; it has undefined behavior.
2408 br label %end
2410 end:
2411 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2412 ; Both edges into this PHI are
2413 ; control-dependent on %cmp, so this
2414 ; always results in a trap value.
2416 volatile store i32 0, i32* @g ; %end is control-equivalent to %entry
2417 ; so this is defined (ignoring earlier
2418 ; undefined behavior in this example).
2419 </pre>
2421 </div>
2423 <!-- ======================================================================= -->
2424 <div class="doc_subsection"><a name="blockaddress">Addresses of Basic
2425 Blocks</a></div>
2426 <div class="doc_text">
2428 <p><b><tt>blockaddress(@function, %block)</tt></b></p>
2430 <p>The '<tt>blockaddress</tt>' constant computes the address of the specified
2431 basic block in the specified function, and always has an i8* type. Taking
2432 the address of the entry block is illegal.</p>
2434 <p>This value only has defined behavior when used as an operand to the
2435 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction or for comparisons
2436 against null. Pointer equality tests between labels addresses is undefined
2437 behavior - though, again, comparison against null is ok, and no label is
2438 equal to the null pointer. This may also be passed around as an opaque
2439 pointer sized value as long as the bits are not inspected. This allows
2440 <tt>ptrtoint</tt> and arithmetic to be performed on these values so long as
2441 the original value is reconstituted before the <tt>indirectbr</tt>.</p>
2443 <p>Finally, some targets may provide defined semantics when
2444 using the value as the operand to an inline assembly, but that is target
2445 specific.
2446 </p>
2448 </div>
2451 <!-- ======================================================================= -->
2452 <div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2453 </div>
2455 <div class="doc_text">
2457 <p>Constant expressions are used to allow expressions involving other constants
2458 to be used as constants. Constant expressions may be of
2459 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2460 operation that does not have side effects (e.g. load and call are not
2461 supported). The following is the syntax for constant expressions:</p>
2463 <dl>
2464 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
2465 <dd>Truncate a constant to another type. The bit size of CST must be larger
2466 than the bit size of TYPE. Both types must be integers.</dd>
2468 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
2469 <dd>Zero extend a constant to another type. The bit size of CST must be
2470 smaller than the bit size of TYPE. Both types must be integers.</dd>
2472 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
2473 <dd>Sign extend a constant to another type. The bit size of CST must be
2474 smaller than the bit size of TYPE. Both types must be integers.</dd>
2476 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
2477 <dd>Truncate a floating point constant to another floating point type. The
2478 size of CST must be larger than the size of TYPE. Both types must be
2479 floating point.</dd>
2481 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
2482 <dd>Floating point extend a constant to another type. The size of CST must be
2483 smaller or equal to the size of TYPE. Both types must be floating
2484 point.</dd>
2486 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
2487 <dd>Convert a floating point constant to the corresponding unsigned integer
2488 constant. TYPE must be a scalar or vector integer type. CST must be of
2489 scalar or vector floating point type. Both CST and TYPE must be scalars,
2490 or vectors of the same number of elements. If the value won't fit in the
2491 integer type, the results are undefined.</dd>
2493 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
2494 <dd>Convert a floating point constant to the corresponding signed integer
2495 constant. TYPE must be a scalar or vector integer type. CST must be of
2496 scalar or vector floating point type. Both CST and TYPE must be scalars,
2497 or vectors of the same number of elements. If the value won't fit in the
2498 integer type, the results are undefined.</dd>
2500 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
2501 <dd>Convert an unsigned integer constant to the corresponding floating point
2502 constant. TYPE must be a scalar or vector floating point type. CST must be
2503 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2504 vectors of the same number of elements. If the value won't fit in the
2505 floating point type, the results are undefined.</dd>
2507 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
2508 <dd>Convert a signed integer constant to the corresponding floating point
2509 constant. TYPE must be a scalar or vector floating point type. CST must be
2510 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2511 vectors of the same number of elements. If the value won't fit in the
2512 floating point type, the results are undefined.</dd>
2514 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
2515 <dd>Convert a pointer typed constant to the corresponding integer constant
2516 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2517 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2518 make it fit in <tt>TYPE</tt>.</dd>
2520 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
2521 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2522 type. CST must be of integer type. The CST value is zero extended,
2523 truncated, or unchanged to make it fit in a pointer size. This one is
2524 <i>really</i> dangerous!</dd>
2526 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
2527 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2528 are the same as those for the <a href="#i_bitcast">bitcast
2529 instruction</a>.</dd>
2531 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2532 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2533 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2534 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2535 instruction, the index list may have zero or more indexes, which are
2536 required to make sense for the type of "CSTPTR".</dd>
2538 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
2539 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
2541 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
2542 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2544 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
2545 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
2547 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
2548 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2549 constants.</dd>
2551 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
2552 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2553 constants.</dd>
2555 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
2556 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2557 constants.</dd>
2559 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2560 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2561 constants. The index list is interpreted in a similar manner as indices in
2562 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2563 index value must be specified.</dd>
2565 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2566 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2567 constants. The index list is interpreted in a similar manner as indices in
2568 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2569 index value must be specified.</dd>
2571 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
2572 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2573 be any of the <a href="#binaryops">binary</a>
2574 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2575 on operands are the same as those for the corresponding instruction
2576 (e.g. no bitwise operations on floating point values are allowed).</dd>
2577 </dl>
2579 </div>
2581 <!-- *********************************************************************** -->
2582 <div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2583 <!-- *********************************************************************** -->
2585 <!-- ======================================================================= -->
2586 <div class="doc_subsection">
2587 <a name="inlineasm">Inline Assembler Expressions</a>
2588 </div>
2590 <div class="doc_text">
2592 <p>LLVM supports inline assembler expressions (as opposed
2593 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2594 a special value. This value represents the inline assembler as a string
2595 (containing the instructions to emit), a list of operand constraints (stored
2596 as a string), a flag that indicates whether or not the inline asm
2597 expression has side effects, and a flag indicating whether the function
2598 containing the asm needs to align its stack conservatively. An example
2599 inline assembler expression is:</p>
2601 <pre class="doc_code">
2602 i32 (i32) asm "bswap $0", "=r,r"
2603 </pre>
2605 <p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2606 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2607 have:</p>
2609 <pre class="doc_code">
2610 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
2611 </pre>
2613 <p>Inline asms with side effects not visible in the constraint list must be
2614 marked as having side effects. This is done through the use of the
2615 '<tt>sideeffect</tt>' keyword, like so:</p>
2617 <pre class="doc_code">
2618 call void asm sideeffect "eieio", ""()
2619 </pre>
2621 <p>In some cases inline asms will contain code that will not work unless the
2622 stack is aligned in some way, such as calls or SSE instructions on x86,
2623 yet will not contain code that does that alignment within the asm.
2624 The compiler should make conservative assumptions about what the asm might
2625 contain and should generate its usual stack alignment code in the prologue
2626 if the '<tt>alignstack</tt>' keyword is present:</p>
2628 <pre class="doc_code">
2629 call void asm alignstack "eieio", ""()
2630 </pre>
2632 <p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2633 first.</p>
2635 <p>TODO: The format of the asm and constraints string still need to be
2636 documented here. Constraints on what can be done (e.g. duplication, moving,
2637 etc need to be documented). This is probably best done by reference to
2638 another document that covers inline asm from a holistic perspective.</p>
2639 </div>
2641 <div class="doc_subsubsection">
2642 <a name="inlineasm_md">Inline Asm Metadata</a>
2643 </div>
2645 <div class="doc_text">
2647 <p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
2648 attached to it that contains a constant integer. If present, the code
2649 generator will use the integer as the location cookie value when report
2650 errors through the LLVMContext error reporting mechanisms. This allows a
2651 front-end to correlate backend errors that occur with inline asm back to the
2652 source code that produced it. For example:</p>
2654 <pre class="doc_code">
2655 call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2657 !42 = !{ i32 1234567 }
2658 </pre>
2660 <p>It is up to the front-end to make sense of the magic numbers it places in the
2661 IR.</p>
2663 </div>
2665 <!-- ======================================================================= -->
2666 <div class="doc_subsection"><a name="metadata">Metadata Nodes and Metadata
2667 Strings</a>
2668 </div>
2670 <div class="doc_text">
2672 <p>LLVM IR allows metadata to be attached to instructions in the program that
2673 can convey extra information about the code to the optimizers and code
2674 generator. One example application of metadata is source-level debug
2675 information. There are two metadata primitives: strings and nodes. All
2676 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2677 preceding exclamation point ('<tt>!</tt>').</p>
2679 <p>A metadata string is a string surrounded by double quotes. It can contain
2680 any character by escaping non-printable characters with "\xx" where "xx" is
2681 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2683 <p>Metadata nodes are represented with notation similar to structure constants
2684 (a comma separated list of elements, surrounded by braces and preceded by an
2685 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2686 10}</tt>". Metadata nodes can have any values as their operand.</p>
2688 <p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2689 metadata nodes, which can be looked up in the module symbol table. For
2690 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2692 <p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
2693 function is using two metadata arguments.</p>
2695 <pre class="doc_code">
2696 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2697 </pre>
2699 <p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
2700 attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
2702 <pre class="doc_code">
2703 %indvar.next = add i64 %indvar, 1, !dbg !21
2704 </pre>
2705 </div>
2708 <!-- *********************************************************************** -->
2709 <div class="doc_section">
2710 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2711 </div>
2712 <!-- *********************************************************************** -->
2714 <p>LLVM has a number of "magic" global variables that contain data that affect
2715 code generation or other IR semantics. These are documented here. All globals
2716 of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2717 section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2718 by LLVM.</p>
2720 <!-- ======================================================================= -->
2721 <div class="doc_subsection">
2722 <a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2723 </div>
2725 <div class="doc_text">
2727 <p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2728 href="#linkage_appending">appending linkage</a>. This array contains a list of
2729 pointers to global variables and functions which may optionally have a pointer
2730 cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2732 <pre>
2733 @X = global i8 4
2734 @Y = global i32 123
2736 @llvm.used = appending global [2 x i8*] [
2737 i8* @X,
2738 i8* bitcast (i32* @Y to i8*)
2739 ], section "llvm.metadata"
2740 </pre>
2742 <p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2743 compiler, assembler, and linker are required to treat the symbol as if there is
2744 a reference to the global that it cannot see. For example, if a variable has
2745 internal linkage and no references other than that from the <tt>@llvm.used</tt>
2746 list, it cannot be deleted. This is commonly used to represent references from
2747 inline asms and other things the compiler cannot "see", and corresponds to
2748 "attribute((used))" in GNU C.</p>
2750 <p>On some targets, the code generator must emit a directive to the assembler or
2751 object file to prevent the assembler and linker from molesting the symbol.</p>
2753 </div>
2755 <!-- ======================================================================= -->
2756 <div class="doc_subsection">
2757 <a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2758 </div>
2760 <div class="doc_text">
2762 <p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2763 <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2764 touching the symbol. On targets that support it, this allows an intelligent
2765 linker to optimize references to the symbol without being impeded as it would be
2766 by <tt>@llvm.used</tt>.</p>
2768 <p>This is a rare construct that should only be used in rare circumstances, and
2769 should not be exposed to source languages.</p>
2771 </div>
2773 <!-- ======================================================================= -->
2774 <div class="doc_subsection">
2775 <a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2776 </div>
2778 <div class="doc_text">
2779 <pre>
2780 %0 = type { i32, void ()* }
2781 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2782 </pre>
2783 <p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor functions and associated priorities. The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded. The order of functions with the same priority is not defined.
2784 </p>
2786 </div>
2788 <!-- ======================================================================= -->
2789 <div class="doc_subsection">
2790 <a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2791 </div>
2793 <div class="doc_text">
2794 <pre>
2795 %0 = type { i32, void ()* }
2796 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2797 </pre>
2799 <p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions and associated priorities. The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded. The order of functions with the same priority is not defined.
2800 </p>
2802 </div>
2805 <!-- *********************************************************************** -->
2806 <div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2807 <!-- *********************************************************************** -->
2809 <div class="doc_text">
2811 <p>The LLVM instruction set consists of several different classifications of
2812 instructions: <a href="#terminators">terminator
2813 instructions</a>, <a href="#binaryops">binary instructions</a>,
2814 <a href="#bitwiseops">bitwise binary instructions</a>,
2815 <a href="#memoryops">memory instructions</a>, and
2816 <a href="#otherops">other instructions</a>.</p>
2818 </div>
2820 <!-- ======================================================================= -->
2821 <div class="doc_subsection"> <a name="terminators">Terminator
2822 Instructions</a> </div>
2824 <div class="doc_text">
2826 <p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2827 in a program ends with a "Terminator" instruction, which indicates which
2828 block should be executed after the current block is finished. These
2829 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2830 control flow, not values (the one exception being the
2831 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2833 <p>There are seven different terminator instructions: the
2834 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2835 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2836 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
2837 '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
2838 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2839 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2840 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
2842 </div>
2844 <!-- _______________________________________________________________________ -->
2845 <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2846 Instruction</a> </div>
2848 <div class="doc_text">
2850 <h5>Syntax:</h5>
2851 <pre>
2852 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
2853 ret void <i>; Return from void function</i>
2854 </pre>
2856 <h5>Overview:</h5>
2857 <p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2858 a value) from a function back to the caller.</p>
2860 <p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2861 value and then causes control flow, and one that just causes control flow to
2862 occur.</p>
2864 <h5>Arguments:</h5>
2865 <p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2866 return value. The type of the return value must be a
2867 '<a href="#t_firstclass">first class</a>' type.</p>
2869 <p>A function is not <a href="#wellformed">well formed</a> if it it has a
2870 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2871 value or a return value with a type that does not match its type, or if it
2872 has a void return type and contains a '<tt>ret</tt>' instruction with a
2873 return value.</p>
2875 <h5>Semantics:</h5>
2876 <p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2877 the calling function's context. If the caller is a
2878 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2879 instruction after the call. If the caller was an
2880 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2881 the beginning of the "normal" destination block. If the instruction returns
2882 a value, that value shall set the call or invoke instruction's return
2883 value.</p>
2885 <h5>Example:</h5>
2886 <pre>
2887 ret i32 5 <i>; Return an integer value of 5</i>
2888 ret void <i>; Return from a void function</i>
2889 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
2890 </pre>
2892 </div>
2893 <!-- _______________________________________________________________________ -->
2894 <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
2896 <div class="doc_text">
2898 <h5>Syntax:</h5>
2899 <pre>
2900 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
2901 </pre>
2903 <h5>Overview:</h5>
2904 <p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2905 different basic block in the current function. There are two forms of this
2906 instruction, corresponding to a conditional branch and an unconditional
2907 branch.</p>
2909 <h5>Arguments:</h5>
2910 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2911 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2912 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2913 target.</p>
2915 <h5>Semantics:</h5>
2916 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
2917 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2918 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2919 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2921 <h5>Example:</h5>
2922 <pre>
2923 Test:
2924 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2925 br i1 %cond, label %IfEqual, label %IfUnequal
2926 IfEqual:
2927 <a href="#i_ret">ret</a> i32 1
2928 IfUnequal:
2929 <a href="#i_ret">ret</a> i32 0
2930 </pre>
2932 </div>
2934 <!-- _______________________________________________________________________ -->
2935 <div class="doc_subsubsection">
2936 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2937 </div>
2939 <div class="doc_text">
2941 <h5>Syntax:</h5>
2942 <pre>
2943 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2944 </pre>
2946 <h5>Overview:</h5>
2947 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2948 several different places. It is a generalization of the '<tt>br</tt>'
2949 instruction, allowing a branch to occur to one of many possible
2950 destinations.</p>
2952 <h5>Arguments:</h5>
2953 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2954 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2955 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2956 The table is not allowed to contain duplicate constant entries.</p>
2958 <h5>Semantics:</h5>
2959 <p>The <tt>switch</tt> instruction specifies a table of values and
2960 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2961 is searched for the given value. If the value is found, control flow is
2962 transferred to the corresponding destination; otherwise, control flow is
2963 transferred to the default destination.</p>
2965 <h5>Implementation:</h5>
2966 <p>Depending on properties of the target machine and the particular
2967 <tt>switch</tt> instruction, this instruction may be code generated in
2968 different ways. For example, it could be generated as a series of chained
2969 conditional branches or with a lookup table.</p>
2971 <h5>Example:</h5>
2972 <pre>
2973 <i>; Emulate a conditional br instruction</i>
2974 %Val = <a href="#i_zext">zext</a> i1 %value to i32
2975 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2977 <i>; Emulate an unconditional br instruction</i>
2978 switch i32 0, label %dest [ ]
2980 <i>; Implement a jump table:</i>
2981 switch i32 %val, label %otherwise [ i32 0, label %onzero
2982 i32 1, label %onone
2983 i32 2, label %ontwo ]
2984 </pre>
2986 </div>
2989 <!-- _______________________________________________________________________ -->
2990 <div class="doc_subsubsection">
2991 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
2992 </div>
2994 <div class="doc_text">
2996 <h5>Syntax:</h5>
2997 <pre>
2998 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
2999 </pre>
3001 <h5>Overview:</h5>
3003 <p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
3004 within the current function, whose address is specified by
3005 "<tt>address</tt>". Address must be derived from a <a
3006 href="#blockaddress">blockaddress</a> constant.</p>
3008 <h5>Arguments:</h5>
3010 <p>The '<tt>address</tt>' argument is the address of the label to jump to. The
3011 rest of the arguments indicate the full set of possible destinations that the
3012 address may point to. Blocks are allowed to occur multiple times in the
3013 destination list, though this isn't particularly useful.</p>
3015 <p>This destination list is required so that dataflow analysis has an accurate
3016 understanding of the CFG.</p>
3018 <h5>Semantics:</h5>
3020 <p>Control transfers to the block specified in the address argument. All
3021 possible destination blocks must be listed in the label list, otherwise this
3022 instruction has undefined behavior. This implies that jumps to labels
3023 defined in other functions have undefined behavior as well.</p>
3025 <h5>Implementation:</h5>
3027 <p>This is typically implemented with a jump through a register.</p>
3029 <h5>Example:</h5>
3030 <pre>
3031 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3032 </pre>
3034 </div>
3037 <!-- _______________________________________________________________________ -->
3038 <div class="doc_subsubsection">
3039 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
3040 </div>
3042 <div class="doc_text">
3044 <h5>Syntax:</h5>
3045 <pre>
3046 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
3047 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
3048 </pre>
3050 <h5>Overview:</h5>
3051 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
3052 function, with the possibility of control flow transfer to either the
3053 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3054 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3055 control flow will return to the "normal" label. If the callee (or any
3056 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
3057 instruction, control is interrupted and continued at the dynamically nearest
3058 "exception" label.</p>
3060 <h5>Arguments:</h5>
3061 <p>This instruction requires several arguments:</p>
3063 <ol>
3064 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3065 convention</a> the call should use. If none is specified, the call
3066 defaults to using C calling conventions.</li>
3068 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
3069 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3070 '<tt>inreg</tt>' attributes are valid here.</li>
3072 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
3073 function value being invoked. In most cases, this is a direct function
3074 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3075 off an arbitrary pointer to function value.</li>
3077 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
3078 function to be invoked. </li>
3080 <li>'<tt>function args</tt>': argument list whose types match the function
3081 signature argument types and parameter attributes. All arguments must be
3082 of <a href="#t_firstclass">first class</a> type. If the function
3083 signature indicates the function accepts a variable number of arguments,
3084 the extra arguments can be specified.</li>
3086 <li>'<tt>normal label</tt>': the label reached when the called function
3087 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
3089 <li>'<tt>exception label</tt>': the label reached when a callee returns with
3090 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
3092 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
3093 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3094 '<tt>readnone</tt>' attributes are valid here.</li>
3095 </ol>
3097 <h5>Semantics:</h5>
3098 <p>This instruction is designed to operate as a standard
3099 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3100 primary difference is that it establishes an association with a label, which
3101 is used by the runtime library to unwind the stack.</p>
3103 <p>This instruction is used in languages with destructors to ensure that proper
3104 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3105 exception. Additionally, this is important for implementation of
3106 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
3108 <p>For the purposes of the SSA form, the definition of the value returned by the
3109 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3110 block to the "normal" label. If the callee unwinds then no return value is
3111 available.</p>
3113 <p>Note that the code generator does not yet completely support unwind, and
3114 that the invoke/unwind semantics are likely to change in future versions.</p>
3116 <h5>Example:</h5>
3117 <pre>
3118 %retval = invoke i32 @Test(i32 15) to label %Continue
3119 unwind label %TestCleanup <i>; {i32}:retval set</i>
3120 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
3121 unwind label %TestCleanup <i>; {i32}:retval set</i>
3122 </pre>
3124 </div>
3126 <!-- _______________________________________________________________________ -->
3128 <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
3129 Instruction</a> </div>
3131 <div class="doc_text">
3133 <h5>Syntax:</h5>
3134 <pre>
3135 unwind
3136 </pre>
3138 <h5>Overview:</h5>
3139 <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
3140 at the first callee in the dynamic call stack which used
3141 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3142 This is primarily used to implement exception handling.</p>
3144 <h5>Semantics:</h5>
3145 <p>The '<tt>unwind</tt>' instruction causes execution of the current function to
3146 immediately halt. The dynamic call stack is then searched for the
3147 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3148 Once found, execution continues at the "exceptional" destination block
3149 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
3150 instruction in the dynamic call chain, undefined behavior results.</p>
3152 <p>Note that the code generator does not yet completely support unwind, and
3153 that the invoke/unwind semantics are likely to change in future versions.</p>
3155 </div>
3157 <!-- _______________________________________________________________________ -->
3159 <div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
3160 Instruction</a> </div>
3162 <div class="doc_text">
3164 <h5>Syntax:</h5>
3165 <pre>
3166 unreachable
3167 </pre>
3169 <h5>Overview:</h5>
3170 <p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
3171 instruction is used to inform the optimizer that a particular portion of the
3172 code is not reachable. This can be used to indicate that the code after a
3173 no-return function cannot be reached, and other facts.</p>
3175 <h5>Semantics:</h5>
3176 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
3178 </div>
3180 <!-- ======================================================================= -->
3181 <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
3183 <div class="doc_text">
3185 <p>Binary operators are used to do most of the computation in a program. They
3186 require two operands of the same type, execute an operation on them, and
3187 produce a single value. The operands might represent multiple data, as is
3188 the case with the <a href="#t_vector">vector</a> data type. The result value
3189 has the same type as its operands.</p>
3191 <p>There are several different binary operators:</p>
3193 </div>
3195 <!-- _______________________________________________________________________ -->
3196 <div class="doc_subsubsection">
3197 <a name="i_add">'<tt>add</tt>' Instruction</a>
3198 </div>
3200 <div class="doc_text">
3202 <h5>Syntax:</h5>
3203 <pre>
3204 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3205 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3206 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3207 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3208 </pre>
3210 <h5>Overview:</h5>
3211 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
3213 <h5>Arguments:</h5>
3214 <p>The two arguments to the '<tt>add</tt>' instruction must
3215 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3216 integer values. Both arguments must have identical types.</p>
3218 <h5>Semantics:</h5>
3219 <p>The value produced is the integer sum of the two operands.</p>
3221 <p>If the sum has unsigned overflow, the result returned is the mathematical
3222 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
3224 <p>Because LLVM integers use a two's complement representation, this instruction
3225 is appropriate for both signed and unsigned integers.</p>
3227 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3228 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3229 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
3230 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3231 respectively, occurs.</p>
3233 <h5>Example:</h5>
3234 <pre>
3235 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
3236 </pre>
3238 </div>
3240 <!-- _______________________________________________________________________ -->
3241 <div class="doc_subsubsection">
3242 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
3243 </div>
3245 <div class="doc_text">
3247 <h5>Syntax:</h5>
3248 <pre>
3249 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3250 </pre>
3252 <h5>Overview:</h5>
3253 <p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3255 <h5>Arguments:</h5>
3256 <p>The two arguments to the '<tt>fadd</tt>' instruction must be
3257 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3258 floating point values. Both arguments must have identical types.</p>
3260 <h5>Semantics:</h5>
3261 <p>The value produced is the floating point sum of the two operands.</p>
3263 <h5>Example:</h5>
3264 <pre>
3265 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3266 </pre>
3268 </div>
3270 <!-- _______________________________________________________________________ -->
3271 <div class="doc_subsubsection">
3272 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
3273 </div>
3275 <div class="doc_text">
3277 <h5>Syntax:</h5>
3278 <pre>
3279 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3280 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3281 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3282 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3283 </pre>
3285 <h5>Overview:</h5>
3286 <p>The '<tt>sub</tt>' instruction returns the difference of its two
3287 operands.</p>
3289 <p>Note that the '<tt>sub</tt>' instruction is used to represent the
3290 '<tt>neg</tt>' instruction present in most other intermediate
3291 representations.</p>
3293 <h5>Arguments:</h5>
3294 <p>The two arguments to the '<tt>sub</tt>' instruction must
3295 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3296 integer values. Both arguments must have identical types.</p>
3298 <h5>Semantics:</h5>
3299 <p>The value produced is the integer difference of the two operands.</p>
3301 <p>If the difference has unsigned overflow, the result returned is the
3302 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3303 result.</p>
3305 <p>Because LLVM integers use a two's complement representation, this instruction
3306 is appropriate for both signed and unsigned integers.</p>
3308 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3309 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3310 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
3311 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3312 respectively, occurs.</p>
3314 <h5>Example:</h5>
3315 <pre>
3316 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
3317 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
3318 </pre>
3320 </div>
3322 <!-- _______________________________________________________________________ -->
3323 <div class="doc_subsubsection">
3324 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
3325 </div>
3327 <div class="doc_text">
3329 <h5>Syntax:</h5>
3330 <pre>
3331 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3332 </pre>
3334 <h5>Overview:</h5>
3335 <p>The '<tt>fsub</tt>' instruction returns the difference of its two
3336 operands.</p>
3338 <p>Note that the '<tt>fsub</tt>' instruction is used to represent the
3339 '<tt>fneg</tt>' instruction present in most other intermediate
3340 representations.</p>
3342 <h5>Arguments:</h5>
3343 <p>The two arguments to the '<tt>fsub</tt>' instruction must be
3344 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3345 floating point values. Both arguments must have identical types.</p>
3347 <h5>Semantics:</h5>
3348 <p>The value produced is the floating point difference of the two operands.</p>
3350 <h5>Example:</h5>
3351 <pre>
3352 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3353 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3354 </pre>
3356 </div>
3358 <!-- _______________________________________________________________________ -->
3359 <div class="doc_subsubsection">
3360 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
3361 </div>
3363 <div class="doc_text">
3365 <h5>Syntax:</h5>
3366 <pre>
3367 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3368 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3369 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3370 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3371 </pre>
3373 <h5>Overview:</h5>
3374 <p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
3376 <h5>Arguments:</h5>
3377 <p>The two arguments to the '<tt>mul</tt>' instruction must
3378 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3379 integer values. Both arguments must have identical types.</p>
3381 <h5>Semantics:</h5>
3382 <p>The value produced is the integer product of the two operands.</p>
3384 <p>If the result of the multiplication has unsigned overflow, the result
3385 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3386 width of the result.</p>
3388 <p>Because LLVM integers use a two's complement representation, and the result
3389 is the same width as the operands, this instruction returns the correct
3390 result for both signed and unsigned integers. If a full product
3391 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3392 be sign-extended or zero-extended as appropriate to the width of the full
3393 product.</p>
3395 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3396 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3397 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
3398 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3399 respectively, occurs.</p>
3401 <h5>Example:</h5>
3402 <pre>
3403 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
3404 </pre>
3406 </div>
3408 <!-- _______________________________________________________________________ -->
3409 <div class="doc_subsubsection">
3410 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
3411 </div>
3413 <div class="doc_text">
3415 <h5>Syntax:</h5>
3416 <pre>
3417 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3418 </pre>
3420 <h5>Overview:</h5>
3421 <p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
3423 <h5>Arguments:</h5>
3424 <p>The two arguments to the '<tt>fmul</tt>' instruction must be
3425 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3426 floating point values. Both arguments must have identical types.</p>
3428 <h5>Semantics:</h5>
3429 <p>The value produced is the floating point product of the two operands.</p>
3431 <h5>Example:</h5>
3432 <pre>
3433 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
3434 </pre>
3436 </div>
3438 <!-- _______________________________________________________________________ -->
3439 <div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
3440 </a></div>
3442 <div class="doc_text">
3444 <h5>Syntax:</h5>
3445 <pre>
3446 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3447 </pre>
3449 <h5>Overview:</h5>
3450 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
3452 <h5>Arguments:</h5>
3453 <p>The two arguments to the '<tt>udiv</tt>' instruction must be
3454 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3455 values. Both arguments must have identical types.</p>
3457 <h5>Semantics:</h5>
3458 <p>The value produced is the unsigned integer quotient of the two operands.</p>
3460 <p>Note that unsigned integer division and signed integer division are distinct
3461 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3463 <p>Division by zero leads to undefined behavior.</p>
3465 <h5>Example:</h5>
3466 <pre>
3467 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
3468 </pre>
3470 </div>
3472 <!-- _______________________________________________________________________ -->
3473 <div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
3474 </a> </div>
3476 <div class="doc_text">
3478 <h5>Syntax:</h5>
3479 <pre>
3480 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3481 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3482 </pre>
3484 <h5>Overview:</h5>
3485 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
3487 <h5>Arguments:</h5>
3488 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
3489 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3490 values. Both arguments must have identical types.</p>
3492 <h5>Semantics:</h5>
3493 <p>The value produced is the signed integer quotient of the two operands rounded
3494 towards zero.</p>
3496 <p>Note that signed integer division and unsigned integer division are distinct
3497 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3499 <p>Division by zero leads to undefined behavior. Overflow also leads to
3500 undefined behavior; this is a rare case, but can occur, for example, by doing
3501 a 32-bit division of -2147483648 by -1.</p>
3503 <p>If the <tt>exact</tt> keyword is present, the result value of the
3504 <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
3505 be rounded.</p>
3507 <h5>Example:</h5>
3508 <pre>
3509 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
3510 </pre>
3512 </div>
3514 <!-- _______________________________________________________________________ -->
3515 <div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
3516 Instruction</a> </div>
3518 <div class="doc_text">
3520 <h5>Syntax:</h5>
3521 <pre>
3522 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3523 </pre>
3525 <h5>Overview:</h5>
3526 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
3528 <h5>Arguments:</h5>
3529 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
3530 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3531 floating point values. Both arguments must have identical types.</p>
3533 <h5>Semantics:</h5>
3534 <p>The value produced is the floating point quotient of the two operands.</p>
3536 <h5>Example:</h5>
3537 <pre>
3538 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
3539 </pre>
3541 </div>
3543 <!-- _______________________________________________________________________ -->
3544 <div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3545 </div>
3547 <div class="doc_text">
3549 <h5>Syntax:</h5>
3550 <pre>
3551 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3552 </pre>
3554 <h5>Overview:</h5>
3555 <p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3556 division of its two arguments.</p>
3558 <h5>Arguments:</h5>
3559 <p>The two arguments to the '<tt>urem</tt>' instruction must be
3560 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3561 values. Both arguments must have identical types.</p>
3563 <h5>Semantics:</h5>
3564 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
3565 This instruction always performs an unsigned division to get the
3566 remainder.</p>
3568 <p>Note that unsigned integer remainder and signed integer remainder are
3569 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3571 <p>Taking the remainder of a division by zero leads to undefined behavior.</p>
3573 <h5>Example:</h5>
3574 <pre>
3575 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
3576 </pre>
3578 </div>
3580 <!-- _______________________________________________________________________ -->
3581 <div class="doc_subsubsection">
3582 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3583 </div>
3585 <div class="doc_text">
3587 <h5>Syntax:</h5>
3588 <pre>
3589 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3590 </pre>
3592 <h5>Overview:</h5>
3593 <p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3594 division of its two operands. This instruction can also take
3595 <a href="#t_vector">vector</a> versions of the values in which case the
3596 elements must be integers.</p>
3598 <h5>Arguments:</h5>
3599 <p>The two arguments to the '<tt>srem</tt>' instruction must be
3600 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3601 values. Both arguments must have identical types.</p>
3603 <h5>Semantics:</h5>
3604 <p>This instruction returns the <i>remainder</i> of a division (where the result
3605 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
3606 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
3607 a value. For more information about the difference,
3608 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3609 Math Forum</a>. For a table of how this is implemented in various languages,
3610 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3611 Wikipedia: modulo operation</a>.</p>
3613 <p>Note that signed integer remainder and unsigned integer remainder are
3614 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3616 <p>Taking the remainder of a division by zero leads to undefined behavior.
3617 Overflow also leads to undefined behavior; this is a rare case, but can
3618 occur, for example, by taking the remainder of a 32-bit division of
3619 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3620 lets srem be implemented using instructions that return both the result of
3621 the division and the remainder.)</p>
3623 <h5>Example:</h5>
3624 <pre>
3625 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
3626 </pre>
3628 </div>
3630 <!-- _______________________________________________________________________ -->
3631 <div class="doc_subsubsection">
3632 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3634 <div class="doc_text">
3636 <h5>Syntax:</h5>
3637 <pre>
3638 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3639 </pre>
3641 <h5>Overview:</h5>
3642 <p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3643 its two operands.</p>
3645 <h5>Arguments:</h5>
3646 <p>The two arguments to the '<tt>frem</tt>' instruction must be
3647 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3648 floating point values. Both arguments must have identical types.</p>
3650 <h5>Semantics:</h5>
3651 <p>This instruction returns the <i>remainder</i> of a division. The remainder
3652 has the same sign as the dividend.</p>
3654 <h5>Example:</h5>
3655 <pre>
3656 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
3657 </pre>
3659 </div>
3661 <!-- ======================================================================= -->
3662 <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3663 Operations</a> </div>
3665 <div class="doc_text">
3667 <p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3668 program. They are generally very efficient instructions and can commonly be
3669 strength reduced from other instructions. They require two operands of the
3670 same type, execute an operation on them, and produce a single value. The
3671 resulting value is the same type as its operands.</p>
3673 </div>
3675 <!-- _______________________________________________________________________ -->
3676 <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3677 Instruction</a> </div>
3679 <div class="doc_text">
3681 <h5>Syntax:</h5>
3682 <pre>
3683 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3684 </pre>
3686 <h5>Overview:</h5>
3687 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3688 a specified number of bits.</p>
3690 <h5>Arguments:</h5>
3691 <p>Both arguments to the '<tt>shl</tt>' instruction must be the
3692 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3693 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
3695 <h5>Semantics:</h5>
3696 <p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3697 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3698 is (statically or dynamically) negative or equal to or larger than the number
3699 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3700 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3701 shift amount in <tt>op2</tt>.</p>
3703 <h5>Example:</h5>
3704 <pre>
3705 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3706 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3707 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
3708 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
3709 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
3710 </pre>
3712 </div>
3714 <!-- _______________________________________________________________________ -->
3715 <div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3716 Instruction</a> </div>
3718 <div class="doc_text">
3720 <h5>Syntax:</h5>
3721 <pre>
3722 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3723 </pre>
3725 <h5>Overview:</h5>
3726 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3727 operand shifted to the right a specified number of bits with zero fill.</p>
3729 <h5>Arguments:</h5>
3730 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
3731 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3732 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
3734 <h5>Semantics:</h5>
3735 <p>This instruction always performs a logical shift right operation. The most
3736 significant bits of the result will be filled with zero bits after the shift.
3737 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3738 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3739 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3740 shift amount in <tt>op2</tt>.</p>
3742 <h5>Example:</h5>
3743 <pre>
3744 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3745 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3746 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3747 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
3748 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
3749 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
3750 </pre>
3752 </div>
3754 <!-- _______________________________________________________________________ -->
3755 <div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3756 Instruction</a> </div>
3757 <div class="doc_text">
3759 <h5>Syntax:</h5>
3760 <pre>
3761 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3762 </pre>
3764 <h5>Overview:</h5>
3765 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3766 operand shifted to the right a specified number of bits with sign
3767 extension.</p>
3769 <h5>Arguments:</h5>
3770 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
3771 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3772 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
3774 <h5>Semantics:</h5>
3775 <p>This instruction always performs an arithmetic shift right operation, The
3776 most significant bits of the result will be filled with the sign bit
3777 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3778 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3779 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3780 the corresponding shift amount in <tt>op2</tt>.</p>
3782 <h5>Example:</h5>
3783 <pre>
3784 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3785 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3786 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3787 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
3788 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
3789 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
3790 </pre>
3792 </div>
3794 <!-- _______________________________________________________________________ -->
3795 <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3796 Instruction</a> </div>
3798 <div class="doc_text">
3800 <h5>Syntax:</h5>
3801 <pre>
3802 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3803 </pre>
3805 <h5>Overview:</h5>
3806 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3807 operands.</p>
3809 <h5>Arguments:</h5>
3810 <p>The two arguments to the '<tt>and</tt>' instruction must be
3811 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3812 values. Both arguments must have identical types.</p>
3814 <h5>Semantics:</h5>
3815 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
3817 <table border="1" cellspacing="0" cellpadding="4">
3818 <tbody>
3819 <tr>
3820 <td>In0</td>
3821 <td>In1</td>
3822 <td>Out</td>
3823 </tr>
3824 <tr>
3825 <td>0</td>
3826 <td>0</td>
3827 <td>0</td>
3828 </tr>
3829 <tr>
3830 <td>0</td>
3831 <td>1</td>
3832 <td>0</td>
3833 </tr>
3834 <tr>
3835 <td>1</td>
3836 <td>0</td>
3837 <td>0</td>
3838 </tr>
3839 <tr>
3840 <td>1</td>
3841 <td>1</td>
3842 <td>1</td>
3843 </tr>
3844 </tbody>
3845 </table>
3847 <h5>Example:</h5>
3848 <pre>
3849 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
3850 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3851 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
3852 </pre>
3853 </div>
3854 <!-- _______________________________________________________________________ -->
3855 <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
3857 <div class="doc_text">
3859 <h5>Syntax:</h5>
3860 <pre>
3861 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3862 </pre>
3864 <h5>Overview:</h5>
3865 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3866 two operands.</p>
3868 <h5>Arguments:</h5>
3869 <p>The two arguments to the '<tt>or</tt>' instruction must be
3870 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3871 values. Both arguments must have identical types.</p>
3873 <h5>Semantics:</h5>
3874 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
3876 <table border="1" cellspacing="0" cellpadding="4">
3877 <tbody>
3878 <tr>
3879 <td>In0</td>
3880 <td>In1</td>
3881 <td>Out</td>
3882 </tr>
3883 <tr>
3884 <td>0</td>
3885 <td>0</td>
3886 <td>0</td>
3887 </tr>
3888 <tr>
3889 <td>0</td>
3890 <td>1</td>
3891 <td>1</td>
3892 </tr>
3893 <tr>
3894 <td>1</td>
3895 <td>0</td>
3896 <td>1</td>
3897 </tr>
3898 <tr>
3899 <td>1</td>
3900 <td>1</td>
3901 <td>1</td>
3902 </tr>
3903 </tbody>
3904 </table>
3906 <h5>Example:</h5>
3907 <pre>
3908 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3909 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3910 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
3911 </pre>
3913 </div>
3915 <!-- _______________________________________________________________________ -->
3916 <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3917 Instruction</a> </div>
3919 <div class="doc_text">
3921 <h5>Syntax:</h5>
3922 <pre>
3923 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3924 </pre>
3926 <h5>Overview:</h5>
3927 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3928 its two operands. The <tt>xor</tt> is used to implement the "one's
3929 complement" operation, which is the "~" operator in C.</p>
3931 <h5>Arguments:</h5>
3932 <p>The two arguments to the '<tt>xor</tt>' instruction must be
3933 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3934 values. Both arguments must have identical types.</p>
3936 <h5>Semantics:</h5>
3937 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
3939 <table border="1" cellspacing="0" cellpadding="4">
3940 <tbody>
3941 <tr>
3942 <td>In0</td>
3943 <td>In1</td>
3944 <td>Out</td>
3945 </tr>
3946 <tr>
3947 <td>0</td>
3948 <td>0</td>
3949 <td>0</td>
3950 </tr>
3951 <tr>
3952 <td>0</td>
3953 <td>1</td>
3954 <td>1</td>
3955 </tr>
3956 <tr>
3957 <td>1</td>
3958 <td>0</td>
3959 <td>1</td>
3960 </tr>
3961 <tr>
3962 <td>1</td>
3963 <td>1</td>
3964 <td>0</td>
3965 </tr>
3966 </tbody>
3967 </table>
3969 <h5>Example:</h5>
3970 <pre>
3971 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3972 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3973 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3974 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
3975 </pre>
3977 </div>
3979 <!-- ======================================================================= -->
3980 <div class="doc_subsection">
3981 <a name="vectorops">Vector Operations</a>
3982 </div>
3984 <div class="doc_text">
3986 <p>LLVM supports several instructions to represent vector operations in a
3987 target-independent manner. These instructions cover the element-access and
3988 vector-specific operations needed to process vectors effectively. While LLVM
3989 does directly support these vector operations, many sophisticated algorithms
3990 will want to use target-specific intrinsics to take full advantage of a
3991 specific target.</p>
3993 </div>
3995 <!-- _______________________________________________________________________ -->
3996 <div class="doc_subsubsection">
3997 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3998 </div>
4000 <div class="doc_text">
4002 <h5>Syntax:</h5>
4003 <pre>
4004 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
4005 </pre>
4007 <h5>Overview:</h5>
4008 <p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4009 from a vector at a specified index.</p>
4012 <h5>Arguments:</h5>
4013 <p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4014 of <a href="#t_vector">vector</a> type. The second operand is an index
4015 indicating the position from which to extract the element. The index may be
4016 a variable.</p>
4018 <h5>Semantics:</h5>
4019 <p>The result is a scalar of the same type as the element type of
4020 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4021 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4022 results are undefined.</p>
4024 <h5>Example:</h5>
4025 <pre>
4026 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
4027 </pre>
4029 </div>
4031 <!-- _______________________________________________________________________ -->
4032 <div class="doc_subsubsection">
4033 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
4034 </div>
4036 <div class="doc_text">
4038 <h5>Syntax:</h5>
4039 <pre>
4040 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
4041 </pre>
4043 <h5>Overview:</h5>
4044 <p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4045 vector at a specified index.</p>
4047 <h5>Arguments:</h5>
4048 <p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4049 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4050 whose type must equal the element type of the first operand. The third
4051 operand is an index indicating the position at which to insert the value.
4052 The index may be a variable.</p>
4054 <h5>Semantics:</h5>
4055 <p>The result is a vector of the same type as <tt>val</tt>. Its element values
4056 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4057 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4058 results are undefined.</p>
4060 <h5>Example:</h5>
4061 <pre>
4062 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
4063 </pre>
4065 </div>
4067 <!-- _______________________________________________________________________ -->
4068 <div class="doc_subsubsection">
4069 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
4070 </div>
4072 <div class="doc_text">
4074 <h5>Syntax:</h5>
4075 <pre>
4076 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
4077 </pre>
4079 <h5>Overview:</h5>
4080 <p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4081 from two input vectors, returning a vector with the same element type as the
4082 input and length that is the same as the shuffle mask.</p>
4084 <h5>Arguments:</h5>
4085 <p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4086 with types that match each other. The third argument is a shuffle mask whose
4087 element type is always 'i32'. The result of the instruction is a vector
4088 whose length is the same as the shuffle mask and whose element type is the
4089 same as the element type of the first two operands.</p>
4091 <p>The shuffle mask operand is required to be a constant vector with either
4092 constant integer or undef values.</p>
4094 <h5>Semantics:</h5>
4095 <p>The elements of the two input vectors are numbered from left to right across
4096 both of the vectors. The shuffle mask operand specifies, for each element of
4097 the result vector, which element of the two input vectors the result element
4098 gets. The element selector may be undef (meaning "don't care") and the
4099 second operand may be undef if performing a shuffle from only one vector.</p>
4101 <h5>Example:</h5>
4102 <pre>
4103 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
4104 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
4105 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
4106 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
4107 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
4108 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
4109 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
4110 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
4111 </pre>
4113 </div>
4115 <!-- ======================================================================= -->
4116 <div class="doc_subsection">
4117 <a name="aggregateops">Aggregate Operations</a>
4118 </div>
4120 <div class="doc_text">
4122 <p>LLVM supports several instructions for working with
4123 <a href="#t_aggregate">aggregate</a> values.</p>
4125 </div>
4127 <!-- _______________________________________________________________________ -->
4128 <div class="doc_subsubsection">
4129 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
4130 </div>
4132 <div class="doc_text">
4134 <h5>Syntax:</h5>
4135 <pre>
4136 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4137 </pre>
4139 <h5>Overview:</h5>
4140 <p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4141 from an <a href="#t_aggregate">aggregate</a> value.</p>
4143 <h5>Arguments:</h5>
4144 <p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
4145 of <a href="#t_struct">struct</a>, <a href="#t_union">union</a> or
4146 <a href="#t_array">array</a> type. The operands are constant indices to
4147 specify which value to extract in a similar manner as indices in a
4148 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
4150 <h5>Semantics:</h5>
4151 <p>The result is the value at the position in the aggregate specified by the
4152 index operands.</p>
4154 <h5>Example:</h5>
4155 <pre>
4156 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
4157 </pre>
4159 </div>
4161 <!-- _______________________________________________________________________ -->
4162 <div class="doc_subsubsection">
4163 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
4164 </div>
4166 <div class="doc_text">
4168 <h5>Syntax:</h5>
4169 <pre>
4170 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt; <i>; yields &lt;aggregate type&gt;</i>
4171 </pre>
4173 <h5>Overview:</h5>
4174 <p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4175 in an <a href="#t_aggregate">aggregate</a> value.</p>
4177 <h5>Arguments:</h5>
4178 <p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
4179 of <a href="#t_struct">struct</a>, <a href="#t_union">union</a> or
4180 <a href="#t_array">array</a> type. The second operand is a first-class
4181 value to insert. The following operands are constant indices indicating
4182 the position at which to insert the value in a similar manner as indices in a
4183 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. The
4184 value to insert must have the same type as the value identified by the
4185 indices.</p>
4187 <h5>Semantics:</h5>
4188 <p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4189 that of <tt>val</tt> except that the value at the position specified by the
4190 indices is that of <tt>elt</tt>.</p>
4192 <h5>Example:</h5>
4193 <pre>
4194 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4195 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
4196 </pre>
4198 </div>
4201 <!-- ======================================================================= -->
4202 <div class="doc_subsection">
4203 <a name="memoryops">Memory Access and Addressing Operations</a>
4204 </div>
4206 <div class="doc_text">
4208 <p>A key design point of an SSA-based representation is how it represents
4209 memory. In LLVM, no memory locations are in SSA form, which makes things
4210 very simple. This section describes how to read, write, and allocate
4211 memory in LLVM.</p>
4213 </div>
4215 <!-- _______________________________________________________________________ -->
4216 <div class="doc_subsubsection">
4217 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
4218 </div>
4220 <div class="doc_text">
4222 <h5>Syntax:</h5>
4223 <pre>
4224 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
4225 </pre>
4227 <h5>Overview:</h5>
4228 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
4229 currently executing function, to be automatically released when this function
4230 returns to its caller. The object is always allocated in the generic address
4231 space (address space zero).</p>
4233 <h5>Arguments:</h5>
4234 <p>The '<tt>alloca</tt>' instruction
4235 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4236 runtime stack, returning a pointer of the appropriate type to the program.
4237 If "NumElements" is specified, it is the number of elements allocated,
4238 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4239 specified, the value result of the allocation is guaranteed to be aligned to
4240 at least that boundary. If not specified, or if zero, the target can choose
4241 to align the allocation on any convenient boundary compatible with the
4242 type.</p>
4244 <p>'<tt>type</tt>' may be any sized type.</p>
4246 <h5>Semantics:</h5>
4247 <p>Memory is allocated; a pointer is returned. The operation is undefined if
4248 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4249 memory is automatically released when the function returns. The
4250 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4251 variables that must have an address available. When the function returns
4252 (either with the <tt><a href="#i_ret">ret</a></tt>
4253 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4254 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
4256 <h5>Example:</h5>
4257 <pre>
4258 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4259 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4260 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4261 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
4262 </pre>
4264 </div>
4266 <!-- _______________________________________________________________________ -->
4267 <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
4268 Instruction</a> </div>
4270 <div class="doc_text">
4272 <h5>Syntax:</h5>
4273 <pre>
4274 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4275 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4276 !&lt;index&gt; = !{ i32 1 }
4277 </pre>
4279 <h5>Overview:</h5>
4280 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
4282 <h5>Arguments:</h5>
4283 <p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4284 from which to load. The pointer must point to
4285 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4286 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
4287 number or order of execution of this <tt>load</tt> with other <a
4288 href="#volatile">volatile operations</a>.</p>
4290 <p>The optional constant <tt>align</tt> argument specifies the alignment of the
4291 operation (that is, the alignment of the memory address). A value of 0 or an
4292 omitted <tt>align</tt> argument means that the operation has the preferential
4293 alignment for the target. It is the responsibility of the code emitter to
4294 ensure that the alignment information is correct. Overestimating the
4295 alignment results in undefined behavior. Underestimating the alignment may
4296 produce less efficient code. An alignment of 1 is always safe.</p>
4298 <p>The optional <tt>!nontemporal</tt> metadata must reference a single
4299 metatadata name &lt;index&gt; corresponding to a metadata node with
4300 one <tt>i32</tt> entry of value 1. The existence of
4301 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4302 and code generator that this load is not expected to be reused in the cache.
4303 The code generator may select special instructions to save cache bandwidth,
4304 such as the <tt>MOVNT</tt> instruction on x86.</p>
4306 <h5>Semantics:</h5>
4307 <p>The location of memory pointed to is loaded. If the value being loaded is of
4308 scalar type then the number of bytes read does not exceed the minimum number
4309 of bytes needed to hold all bits of the type. For example, loading an
4310 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4311 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4312 is undefined if the value was not originally written using a store of the
4313 same type.</p>
4315 <h5>Examples:</h5>
4316 <pre>
4317 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4318 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
4319 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
4320 </pre>
4322 </div>
4324 <!-- _______________________________________________________________________ -->
4325 <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
4326 Instruction</a> </div>
4328 <div class="doc_text">
4330 <h5>Syntax:</h5>
4331 <pre>
4332 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4333 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4334 </pre>
4336 <h5>Overview:</h5>
4337 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
4339 <h5>Arguments:</h5>
4340 <p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4341 and an address at which to store it. The type of the
4342 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4343 the <a href="#t_firstclass">first class</a> type of the
4344 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
4345 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
4346 order of execution of this <tt>store</tt> with other <a
4347 href="#volatile">volatile operations</a>.</p>
4349 <p>The optional constant "align" argument specifies the alignment of the
4350 operation (that is, the alignment of the memory address). A value of 0 or an
4351 omitted "align" argument means that the operation has the preferential
4352 alignment for the target. It is the responsibility of the code emitter to
4353 ensure that the alignment information is correct. Overestimating the
4354 alignment results in an undefined behavior. Underestimating the alignment may
4355 produce less efficient code. An alignment of 1 is always safe.</p>
4357 <p>The optional !nontemporal metadata must reference a single metatadata
4358 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
4359 value 1. The existence of the !nontemporal metatadata on the
4360 instruction tells the optimizer and code generator that this load is
4361 not expected to be reused in the cache. The code generator may
4362 select special instructions to save cache bandwidth, such as the
4363 MOVNT instruction on x86.</p>
4366 <h5>Semantics:</h5>
4367 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4368 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4369 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4370 does not exceed the minimum number of bytes needed to hold all bits of the
4371 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4372 writing a value of a type like <tt>i20</tt> with a size that is not an
4373 integral number of bytes, it is unspecified what happens to the extra bits
4374 that do not belong to the type, but they will typically be overwritten.</p>
4376 <h5>Example:</h5>
4377 <pre>
4378 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4379 store i32 3, i32* %ptr <i>; yields {void}</i>
4380 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
4381 </pre>
4383 </div>
4385 <!-- _______________________________________________________________________ -->
4386 <div class="doc_subsubsection">
4387 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
4388 </div>
4390 <div class="doc_text">
4392 <h5>Syntax:</h5>
4393 <pre>
4394 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
4395 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
4396 </pre>
4398 <h5>Overview:</h5>
4399 <p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
4400 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
4401 It performs address calculation only and does not access memory.</p>
4403 <h5>Arguments:</h5>
4404 <p>The first argument is always a pointer, and forms the basis of the
4405 calculation. The remaining arguments are indices that indicate which of the
4406 elements of the aggregate object are indexed. The interpretation of each
4407 index is dependent on the type being indexed into. The first index always
4408 indexes the pointer value given as the first argument, the second index
4409 indexes a value of the type pointed to (not necessarily the value directly
4410 pointed to, since the first index can be non-zero), etc. The first type
4411 indexed into must be a pointer value, subsequent types can be arrays,
4412 vectors, structs and unions. Note that subsequent types being indexed into
4413 can never be pointers, since that would require loading the pointer before
4414 continuing calculation.</p>
4416 <p>The type of each index argument depends on the type it is indexing into.
4417 When indexing into a (optionally packed) structure or union, only <tt>i32</tt>
4418 integer <b>constants</b> are allowed. When indexing into an array, pointer
4419 or vector, integers of any width are allowed, and they are not required to be
4420 constant.</p>
4422 <p>For example, let's consider a C code fragment and how it gets compiled to
4423 LLVM:</p>
4425 <pre class="doc_code">
4426 struct RT {
4427 char A;
4428 int B[10][20];
4429 char C;
4431 struct ST {
4432 int X;
4433 double Y;
4434 struct RT Z;
4437 int *foo(struct ST *s) {
4438 return &amp;s[1].Z.B[5][13];
4440 </pre>
4442 <p>The LLVM code generated by the GCC frontend is:</p>
4444 <pre class="doc_code">
4445 %RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
4446 %ST = <a href="#namedtypes">type</a> { i32, double, %RT }
4448 define i32* @foo(%ST* %s) {
4449 entry:
4450 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4451 ret i32* %reg
4453 </pre>
4455 <h5>Semantics:</h5>
4456 <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
4457 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4458 }</tt>' type, a structure. The second index indexes into the third element
4459 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4460 i8 }</tt>' type, another structure. The third index indexes into the second
4461 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4462 array. The two dimensions of the array are subscripted into, yielding an
4463 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
4464 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
4466 <p>Note that it is perfectly legal to index partially through a structure,
4467 returning a pointer to an inner element. Because of this, the LLVM code for
4468 the given testcase is equivalent to:</p>
4470 <pre>
4471 define i32* @foo(%ST* %s) {
4472 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
4473 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
4474 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
4475 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
4476 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
4477 ret i32* %t5
4479 </pre>
4481 <p>If the <tt>inbounds</tt> keyword is present, the result value of the
4482 <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
4483 base pointer is not an <i>in bounds</i> address of an allocated object,
4484 or if any of the addresses that would be formed by successive addition of
4485 the offsets implied by the indices to the base address with infinitely
4486 precise arithmetic are not an <i>in bounds</i> address of that allocated
4487 object. The <i>in bounds</i> addresses for an allocated object are all
4488 the addresses that point into the object, plus the address one byte past
4489 the end.</p>
4491 <p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4492 the base address with silently-wrapping two's complement arithmetic, and
4493 the result value of the <tt>getelementptr</tt> may be outside the object
4494 pointed to by the base pointer. The result value may not necessarily be
4495 used to access memory though, even if it happens to point into allocated
4496 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4497 section for more information.</p>
4499 <p>The getelementptr instruction is often confusing. For some more insight into
4500 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
4502 <h5>Example:</h5>
4503 <pre>
4504 <i>; yields [12 x i8]*:aptr</i>
4505 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4506 <i>; yields i8*:vptr</i>
4507 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
4508 <i>; yields i8*:eptr</i>
4509 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4510 <i>; yields i32*:iptr</i>
4511 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4512 </pre>
4514 </div>
4516 <!-- ======================================================================= -->
4517 <div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
4518 </div>
4520 <div class="doc_text">
4522 <p>The instructions in this category are the conversion instructions (casting)
4523 which all take a single operand and a type. They perform various bit
4524 conversions on the operand.</p>
4526 </div>
4528 <!-- _______________________________________________________________________ -->
4529 <div class="doc_subsubsection">
4530 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4531 </div>
4532 <div class="doc_text">
4534 <h5>Syntax:</h5>
4535 <pre>
4536 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4537 </pre>
4539 <h5>Overview:</h5>
4540 <p>The '<tt>trunc</tt>' instruction truncates its operand to the
4541 type <tt>ty2</tt>.</p>
4543 <h5>Arguments:</h5>
4544 <p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
4545 be an <a href="#t_integer">integer</a> type, and a type that specifies the
4546 size and type of the result, which must be
4547 an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
4548 be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
4549 allowed.</p>
4551 <h5>Semantics:</h5>
4552 <p>The '<tt>trunc</tt>' instruction truncates the high order bits
4553 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4554 source size must be larger than the destination size, <tt>trunc</tt> cannot
4555 be a <i>no-op cast</i>. It will always truncate bits.</p>
4557 <h5>Example:</h5>
4558 <pre>
4559 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
4560 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
4561 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
4562 </pre>
4564 </div>
4566 <!-- _______________________________________________________________________ -->
4567 <div class="doc_subsubsection">
4568 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4569 </div>
4570 <div class="doc_text">
4572 <h5>Syntax:</h5>
4573 <pre>
4574 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4575 </pre>
4577 <h5>Overview:</h5>
4578 <p>The '<tt>zext</tt>' instruction zero extends its operand to type
4579 <tt>ty2</tt>.</p>
4582 <h5>Arguments:</h5>
4583 <p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
4584 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4585 also be of <a href="#t_integer">integer</a> type. The bit size of the
4586 <tt>value</tt> must be smaller than the bit size of the destination type,
4587 <tt>ty2</tt>.</p>
4589 <h5>Semantics:</h5>
4590 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
4591 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
4593 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
4595 <h5>Example:</h5>
4596 <pre>
4597 %X = zext i32 257 to i64 <i>; yields i64:257</i>
4598 %Y = zext i1 true to i32 <i>; yields i32:1</i>
4599 </pre>
4601 </div>
4603 <!-- _______________________________________________________________________ -->
4604 <div class="doc_subsubsection">
4605 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4606 </div>
4607 <div class="doc_text">
4609 <h5>Syntax:</h5>
4610 <pre>
4611 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4612 </pre>
4614 <h5>Overview:</h5>
4615 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4617 <h5>Arguments:</h5>
4618 <p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
4619 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4620 also be of <a href="#t_integer">integer</a> type. The bit size of the
4621 <tt>value</tt> must be smaller than the bit size of the destination type,
4622 <tt>ty2</tt>.</p>
4624 <h5>Semantics:</h5>
4625 <p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4626 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4627 of the type <tt>ty2</tt>.</p>
4629 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
4631 <h5>Example:</h5>
4632 <pre>
4633 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
4634 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
4635 </pre>
4637 </div>
4639 <!-- _______________________________________________________________________ -->
4640 <div class="doc_subsubsection">
4641 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4642 </div>
4644 <div class="doc_text">
4646 <h5>Syntax:</h5>
4647 <pre>
4648 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4649 </pre>
4651 <h5>Overview:</h5>
4652 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
4653 <tt>ty2</tt>.</p>
4655 <h5>Arguments:</h5>
4656 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
4657 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4658 to cast it to. The size of <tt>value</tt> must be larger than the size of
4659 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4660 <i>no-op cast</i>.</p>
4662 <h5>Semantics:</h5>
4663 <p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4664 <a href="#t_floating">floating point</a> type to a smaller
4665 <a href="#t_floating">floating point</a> type. If the value cannot fit
4666 within the destination type, <tt>ty2</tt>, then the results are
4667 undefined.</p>
4669 <h5>Example:</h5>
4670 <pre>
4671 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4672 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4673 </pre>
4675 </div>
4677 <!-- _______________________________________________________________________ -->
4678 <div class="doc_subsubsection">
4679 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4680 </div>
4681 <div class="doc_text">
4683 <h5>Syntax:</h5>
4684 <pre>
4685 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4686 </pre>
4688 <h5>Overview:</h5>
4689 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
4690 floating point value.</p>
4692 <h5>Arguments:</h5>
4693 <p>The '<tt>fpext</tt>' instruction takes a
4694 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4695 a <a href="#t_floating">floating point</a> type to cast it to. The source
4696 type must be smaller than the destination type.</p>
4698 <h5>Semantics:</h5>
4699 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
4700 <a href="#t_floating">floating point</a> type to a larger
4701 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4702 used to make a <i>no-op cast</i> because it always changes bits. Use
4703 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
4705 <h5>Example:</h5>
4706 <pre>
4707 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4708 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4709 </pre>
4711 </div>
4713 <!-- _______________________________________________________________________ -->
4714 <div class="doc_subsubsection">
4715 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
4716 </div>
4717 <div class="doc_text">
4719 <h5>Syntax:</h5>
4720 <pre>
4721 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4722 </pre>
4724 <h5>Overview:</h5>
4725 <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
4726 unsigned integer equivalent of type <tt>ty2</tt>.</p>
4728 <h5>Arguments:</h5>
4729 <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4730 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4731 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4732 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4733 vector integer type with the same number of elements as <tt>ty</tt></p>
4735 <h5>Semantics:</h5>
4736 <p>The '<tt>fptoui</tt>' instruction converts its
4737 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4738 towards zero) unsigned integer value. If the value cannot fit
4739 in <tt>ty2</tt>, the results are undefined.</p>
4741 <h5>Example:</h5>
4742 <pre>
4743 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
4744 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
4745 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
4746 </pre>
4748 </div>
4750 <!-- _______________________________________________________________________ -->
4751 <div class="doc_subsubsection">
4752 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
4753 </div>
4754 <div class="doc_text">
4756 <h5>Syntax:</h5>
4757 <pre>
4758 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4759 </pre>
4761 <h5>Overview:</h5>
4762 <p>The '<tt>fptosi</tt>' instruction converts
4763 <a href="#t_floating">floating point</a> <tt>value</tt> to
4764 type <tt>ty2</tt>.</p>
4766 <h5>Arguments:</h5>
4767 <p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4768 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4769 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4770 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4771 vector integer type with the same number of elements as <tt>ty</tt></p>
4773 <h5>Semantics:</h5>
4774 <p>The '<tt>fptosi</tt>' instruction converts its
4775 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4776 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4777 the results are undefined.</p>
4779 <h5>Example:</h5>
4780 <pre>
4781 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
4782 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
4783 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
4784 </pre>
4786 </div>
4788 <!-- _______________________________________________________________________ -->
4789 <div class="doc_subsubsection">
4790 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
4791 </div>
4792 <div class="doc_text">
4794 <h5>Syntax:</h5>
4795 <pre>
4796 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4797 </pre>
4799 <h5>Overview:</h5>
4800 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
4801 integer and converts that value to the <tt>ty2</tt> type.</p>
4803 <h5>Arguments:</h5>
4804 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4805 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4806 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4807 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4808 floating point type with the same number of elements as <tt>ty</tt></p>
4810 <h5>Semantics:</h5>
4811 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
4812 integer quantity and converts it to the corresponding floating point
4813 value. If the value cannot fit in the floating point value, the results are
4814 undefined.</p>
4816 <h5>Example:</h5>
4817 <pre>
4818 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
4819 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
4820 </pre>
4822 </div>
4824 <!-- _______________________________________________________________________ -->
4825 <div class="doc_subsubsection">
4826 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
4827 </div>
4828 <div class="doc_text">
4830 <h5>Syntax:</h5>
4831 <pre>
4832 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4833 </pre>
4835 <h5>Overview:</h5>
4836 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4837 and converts that value to the <tt>ty2</tt> type.</p>
4839 <h5>Arguments:</h5>
4840 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4841 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4842 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4843 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4844 floating point type with the same number of elements as <tt>ty</tt></p>
4846 <h5>Semantics:</h5>
4847 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4848 quantity and converts it to the corresponding floating point value. If the
4849 value cannot fit in the floating point value, the results are undefined.</p>
4851 <h5>Example:</h5>
4852 <pre>
4853 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
4854 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
4855 </pre>
4857 </div>
4859 <!-- _______________________________________________________________________ -->
4860 <div class="doc_subsubsection">
4861 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4862 </div>
4863 <div class="doc_text">
4865 <h5>Syntax:</h5>
4866 <pre>
4867 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4868 </pre>
4870 <h5>Overview:</h5>
4871 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4872 the integer type <tt>ty2</tt>.</p>
4874 <h5>Arguments:</h5>
4875 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4876 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4877 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
4879 <h5>Semantics:</h5>
4880 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4881 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4882 truncating or zero extending that value to the size of the integer type. If
4883 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4884 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4885 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4886 change.</p>
4888 <h5>Example:</h5>
4889 <pre>
4890 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4891 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
4892 </pre>
4894 </div>
4896 <!-- _______________________________________________________________________ -->
4897 <div class="doc_subsubsection">
4898 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4899 </div>
4900 <div class="doc_text">
4902 <h5>Syntax:</h5>
4903 <pre>
4904 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4905 </pre>
4907 <h5>Overview:</h5>
4908 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4909 pointer type, <tt>ty2</tt>.</p>
4911 <h5>Arguments:</h5>
4912 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
4913 value to cast, and a type to cast it to, which must be a
4914 <a href="#t_pointer">pointer</a> type.</p>
4916 <h5>Semantics:</h5>
4917 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4918 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4919 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4920 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4921 than the size of a pointer then a zero extension is done. If they are the
4922 same size, nothing is done (<i>no-op cast</i>).</p>
4924 <h5>Example:</h5>
4925 <pre>
4926 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4927 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4928 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
4929 </pre>
4931 </div>
4933 <!-- _______________________________________________________________________ -->
4934 <div class="doc_subsubsection">
4935 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
4936 </div>
4937 <div class="doc_text">
4939 <h5>Syntax:</h5>
4940 <pre>
4941 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4942 </pre>
4944 <h5>Overview:</h5>
4945 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
4946 <tt>ty2</tt> without changing any bits.</p>
4948 <h5>Arguments:</h5>
4949 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4950 non-aggregate first class value, and a type to cast it to, which must also be
4951 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4952 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
4953 identical. If the source type is a pointer, the destination type must also be
4954 a pointer. This instruction supports bitwise conversion of vectors to
4955 integers and to vectors of other types (as long as they have the same
4956 size).</p>
4958 <h5>Semantics:</h5>
4959 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
4960 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4961 this conversion. The conversion is done as if the <tt>value</tt> had been
4962 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
4963 be converted to other pointer types with this instruction. To convert
4964 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
4965 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
4967 <h5>Example:</h5>
4968 <pre>
4969 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
4970 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
4971 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
4972 </pre>
4974 </div>
4976 <!-- ======================================================================= -->
4977 <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4979 <div class="doc_text">
4981 <p>The instructions in this category are the "miscellaneous" instructions, which
4982 defy better classification.</p>
4984 </div>
4986 <!-- _______________________________________________________________________ -->
4987 <div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4988 </div>
4990 <div class="doc_text">
4992 <h5>Syntax:</h5>
4993 <pre>
4994 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
4995 </pre>
4997 <h5>Overview:</h5>
4998 <p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
4999 boolean values based on comparison of its two integer, integer vector, or
5000 pointer operands.</p>
5002 <h5>Arguments:</h5>
5003 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
5004 the condition code indicating the kind of comparison to perform. It is not a
5005 value, just a keyword. The possible condition code are:</p>
5007 <ol>
5008 <li><tt>eq</tt>: equal</li>
5009 <li><tt>ne</tt>: not equal </li>
5010 <li><tt>ugt</tt>: unsigned greater than</li>
5011 <li><tt>uge</tt>: unsigned greater or equal</li>
5012 <li><tt>ult</tt>: unsigned less than</li>
5013 <li><tt>ule</tt>: unsigned less or equal</li>
5014 <li><tt>sgt</tt>: signed greater than</li>
5015 <li><tt>sge</tt>: signed greater or equal</li>
5016 <li><tt>slt</tt>: signed less than</li>
5017 <li><tt>sle</tt>: signed less or equal</li>
5018 </ol>
5020 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
5021 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5022 typed. They must also be identical types.</p>
5024 <h5>Semantics:</h5>
5025 <p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5026 condition code given as <tt>cond</tt>. The comparison performed always yields
5027 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
5028 result, as follows:</p>
5030 <ol>
5031 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
5032 <tt>false</tt> otherwise. No sign interpretation is necessary or
5033 performed.</li>
5035 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
5036 <tt>false</tt> otherwise. No sign interpretation is necessary or
5037 performed.</li>
5039 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
5040 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5042 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
5043 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5044 to <tt>op2</tt>.</li>
5046 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
5047 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5049 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
5050 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5052 <li><tt>sgt</tt>: interprets the operands as signed values and yields
5053 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5055 <li><tt>sge</tt>: interprets the operands as signed values and yields
5056 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5057 to <tt>op2</tt>.</li>
5059 <li><tt>slt</tt>: interprets the operands as signed values and yields
5060 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5062 <li><tt>sle</tt>: interprets the operands as signed values and yields
5063 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5064 </ol>
5066 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
5067 values are compared as if they were integers.</p>
5069 <p>If the operands are integer vectors, then they are compared element by
5070 element. The result is an <tt>i1</tt> vector with the same number of elements
5071 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
5073 <h5>Example:</h5>
5074 <pre>
5075 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
5076 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
5077 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
5078 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
5079 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
5080 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
5081 </pre>
5083 <p>Note that the code generator does not yet support vector types with
5084 the <tt>icmp</tt> instruction.</p>
5086 </div>
5088 <!-- _______________________________________________________________________ -->
5089 <div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5090 </div>
5092 <div class="doc_text">
5094 <h5>Syntax:</h5>
5095 <pre>
5096 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
5097 </pre>
5099 <h5>Overview:</h5>
5100 <p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5101 values based on comparison of its operands.</p>
5103 <p>If the operands are floating point scalars, then the result type is a boolean
5104 (<a href="#t_integer"><tt>i1</tt></a>).</p>
5106 <p>If the operands are floating point vectors, then the result type is a vector
5107 of boolean with the same number of elements as the operands being
5108 compared.</p>
5110 <h5>Arguments:</h5>
5111 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
5112 the condition code indicating the kind of comparison to perform. It is not a
5113 value, just a keyword. The possible condition code are:</p>
5115 <ol>
5116 <li><tt>false</tt>: no comparison, always returns false</li>
5117 <li><tt>oeq</tt>: ordered and equal</li>
5118 <li><tt>ogt</tt>: ordered and greater than </li>
5119 <li><tt>oge</tt>: ordered and greater than or equal</li>
5120 <li><tt>olt</tt>: ordered and less than </li>
5121 <li><tt>ole</tt>: ordered and less than or equal</li>
5122 <li><tt>one</tt>: ordered and not equal</li>
5123 <li><tt>ord</tt>: ordered (no nans)</li>
5124 <li><tt>ueq</tt>: unordered or equal</li>
5125 <li><tt>ugt</tt>: unordered or greater than </li>
5126 <li><tt>uge</tt>: unordered or greater than or equal</li>
5127 <li><tt>ult</tt>: unordered or less than </li>
5128 <li><tt>ule</tt>: unordered or less than or equal</li>
5129 <li><tt>une</tt>: unordered or not equal</li>
5130 <li><tt>uno</tt>: unordered (either nans)</li>
5131 <li><tt>true</tt>: no comparison, always returns true</li>
5132 </ol>
5134 <p><i>Ordered</i> means that neither operand is a QNAN while
5135 <i>unordered</i> means that either operand may be a QNAN.</p>
5137 <p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5138 a <a href="#t_floating">floating point</a> type or
5139 a <a href="#t_vector">vector</a> of floating point type. They must have
5140 identical types.</p>
5142 <h5>Semantics:</h5>
5143 <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
5144 according to the condition code given as <tt>cond</tt>. If the operands are
5145 vectors, then the vectors are compared element by element. Each comparison
5146 performed always yields an <a href="#t_integer">i1</a> result, as
5147 follows:</p>
5149 <ol>
5150 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
5152 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5153 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5155 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5156 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5158 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5159 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5161 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5162 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5164 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5165 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5167 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5168 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5170 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
5172 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
5173 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5175 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
5176 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5178 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
5179 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5181 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
5182 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5184 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
5185 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5187 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
5188 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5190 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
5192 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5193 </ol>
5195 <h5>Example:</h5>
5196 <pre>
5197 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
5198 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5199 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5200 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
5201 </pre>
5203 <p>Note that the code generator does not yet support vector types with
5204 the <tt>fcmp</tt> instruction.</p>
5206 </div>
5208 <!-- _______________________________________________________________________ -->
5209 <div class="doc_subsubsection">
5210 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
5211 </div>
5213 <div class="doc_text">
5215 <h5>Syntax:</h5>
5216 <pre>
5217 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5218 </pre>
5220 <h5>Overview:</h5>
5221 <p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5222 SSA graph representing the function.</p>
5224 <h5>Arguments:</h5>
5225 <p>The type of the incoming values is specified with the first type field. After
5226 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5227 one pair for each predecessor basic block of the current block. Only values
5228 of <a href="#t_firstclass">first class</a> type may be used as the value
5229 arguments to the PHI node. Only labels may be used as the label
5230 arguments.</p>
5232 <p>There must be no non-phi instructions between the start of a basic block and
5233 the PHI instructions: i.e. PHI instructions must be first in a basic
5234 block.</p>
5236 <p>For the purposes of the SSA form, the use of each incoming value is deemed to
5237 occur on the edge from the corresponding predecessor block to the current
5238 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5239 value on the same edge).</p>
5241 <h5>Semantics:</h5>
5242 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
5243 specified by the pair corresponding to the predecessor basic block that
5244 executed just prior to the current block.</p>
5246 <h5>Example:</h5>
5247 <pre>
5248 Loop: ; Infinite loop that counts from 0 on up...
5249 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5250 %nextindvar = add i32 %indvar, 1
5251 br label %Loop
5252 </pre>
5254 </div>
5256 <!-- _______________________________________________________________________ -->
5257 <div class="doc_subsubsection">
5258 <a name="i_select">'<tt>select</tt>' Instruction</a>
5259 </div>
5261 <div class="doc_text">
5263 <h5>Syntax:</h5>
5264 <pre>
5265 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5267 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
5268 </pre>
5270 <h5>Overview:</h5>
5271 <p>The '<tt>select</tt>' instruction is used to choose one value based on a
5272 condition, without branching.</p>
5275 <h5>Arguments:</h5>
5276 <p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5277 values indicating the condition, and two values of the
5278 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5279 vectors and the condition is a scalar, then entire vectors are selected, not
5280 individual elements.</p>
5282 <h5>Semantics:</h5>
5283 <p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5284 first value argument; otherwise, it returns the second value argument.</p>
5286 <p>If the condition is a vector of i1, then the value arguments must be vectors
5287 of the same size, and the selection is done element by element.</p>
5289 <h5>Example:</h5>
5290 <pre>
5291 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
5292 </pre>
5294 <p>Note that the code generator does not yet support conditions
5295 with vector type.</p>
5297 </div>
5299 <!-- _______________________________________________________________________ -->
5300 <div class="doc_subsubsection">
5301 <a name="i_call">'<tt>call</tt>' Instruction</a>
5302 </div>
5304 <div class="doc_text">
5306 <h5>Syntax:</h5>
5307 <pre>
5308 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
5309 </pre>
5311 <h5>Overview:</h5>
5312 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
5314 <h5>Arguments:</h5>
5315 <p>This instruction requires several arguments:</p>
5317 <ol>
5318 <li>The optional "tail" marker indicates that the callee function does not
5319 access any allocas or varargs in the caller. Note that calls may be
5320 marked "tail" even if they do not occur before
5321 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5322 present, the function call is eligible for tail call optimization,
5323 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
5324 optimized into a jump</a>. The code generator may optimize calls marked
5325 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
5326 sibling call optimization</a> when the caller and callee have
5327 matching signatures, or 2) forced tail call optimization when the
5328 following extra requirements are met:
5329 <ul>
5330 <li>Caller and callee both have the calling
5331 convention <tt>fastcc</tt>.</li>
5332 <li>The call is in tail position (ret immediately follows call and ret
5333 uses value of call or is void).</li>
5334 <li>Option <tt>-tailcallopt</tt> is enabled,
5335 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
5336 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5337 constraints are met.</a></li>
5338 </ul>
5339 </li>
5341 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5342 convention</a> the call should use. If none is specified, the call
5343 defaults to using C calling conventions. The calling convention of the
5344 call must match the calling convention of the target function, or else the
5345 behavior is undefined.</li>
5347 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5348 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5349 '<tt>inreg</tt>' attributes are valid here.</li>
5351 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5352 type of the return value. Functions that return no value are marked
5353 <tt><a href="#t_void">void</a></tt>.</li>
5355 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5356 being invoked. The argument types must match the types implied by this
5357 signature. This type can be omitted if the function is not varargs and if
5358 the function type does not return a pointer to a function.</li>
5360 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5361 be invoked. In most cases, this is a direct function invocation, but
5362 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5363 to function value.</li>
5365 <li>'<tt>function args</tt>': argument list whose types match the function
5366 signature argument types and parameter attributes. All arguments must be
5367 of <a href="#t_firstclass">first class</a> type. If the function
5368 signature indicates the function accepts a variable number of arguments,
5369 the extra arguments can be specified.</li>
5371 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5372 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5373 '<tt>readnone</tt>' attributes are valid here.</li>
5374 </ol>
5376 <h5>Semantics:</h5>
5377 <p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5378 a specified function, with its incoming arguments bound to the specified
5379 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5380 function, control flow continues with the instruction after the function
5381 call, and the return value of the function is bound to the result
5382 argument.</p>
5384 <h5>Example:</h5>
5385 <pre>
5386 %retval = call i32 @test(i32 %argc)
5387 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
5388 %X = tail call i32 @foo() <i>; yields i32</i>
5389 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5390 call void %foo(i8 97 signext)
5392 %struct.A = type { i32, i8 }
5393 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
5394 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5395 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
5396 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
5397 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
5398 </pre>
5400 <p>llvm treats calls to some functions with names and arguments that match the
5401 standard C99 library as being the C99 library functions, and may perform
5402 optimizations or generate code for them under that assumption. This is
5403 something we'd like to change in the future to provide better support for
5404 freestanding environments and non-C-based languages.</p>
5406 </div>
5408 <!-- _______________________________________________________________________ -->
5409 <div class="doc_subsubsection">
5410 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
5411 </div>
5413 <div class="doc_text">
5415 <h5>Syntax:</h5>
5416 <pre>
5417 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
5418 </pre>
5420 <h5>Overview:</h5>
5421 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
5422 the "variable argument" area of a function call. It is used to implement the
5423 <tt>va_arg</tt> macro in C.</p>
5425 <h5>Arguments:</h5>
5426 <p>This instruction takes a <tt>va_list*</tt> value and the type of the
5427 argument. It returns a value of the specified argument type and increments
5428 the <tt>va_list</tt> to point to the next argument. The actual type
5429 of <tt>va_list</tt> is target specific.</p>
5431 <h5>Semantics:</h5>
5432 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5433 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5434 to the next argument. For more information, see the variable argument
5435 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
5437 <p>It is legal for this instruction to be called in a function which does not
5438 take a variable number of arguments, for example, the <tt>vfprintf</tt>
5439 function.</p>
5441 <p><tt>va_arg</tt> is an LLVM instruction instead of
5442 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5443 argument.</p>
5445 <h5>Example:</h5>
5446 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5448 <p>Note that the code generator does not yet fully support va_arg on many
5449 targets. Also, it does not currently support va_arg with aggregate types on
5450 any target.</p>
5452 </div>
5454 <!-- *********************************************************************** -->
5455 <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
5456 <!-- *********************************************************************** -->
5458 <div class="doc_text">
5460 <p>LLVM supports the notion of an "intrinsic function". These functions have
5461 well known names and semantics and are required to follow certain
5462 restrictions. Overall, these intrinsics represent an extension mechanism for
5463 the LLVM language that does not require changing all of the transformations
5464 in LLVM when adding to the language (or the bitcode reader/writer, the
5465 parser, etc...).</p>
5467 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
5468 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5469 begin with this prefix. Intrinsic functions must always be external
5470 functions: you cannot define the body of intrinsic functions. Intrinsic
5471 functions may only be used in call or invoke instructions: it is illegal to
5472 take the address of an intrinsic function. Additionally, because intrinsic
5473 functions are part of the LLVM language, it is required if any are added that
5474 they be documented here.</p>
5476 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5477 family of functions that perform the same operation but on different data
5478 types. Because LLVM can represent over 8 million different integer types,
5479 overloading is used commonly to allow an intrinsic function to operate on any
5480 integer type. One or more of the argument types or the result type can be
5481 overloaded to accept any integer type. Argument types may also be defined as
5482 exactly matching a previous argument's type or the result type. This allows
5483 an intrinsic function which accepts multiple arguments, but needs all of them
5484 to be of the same type, to only be overloaded with respect to a single
5485 argument or the result.</p>
5487 <p>Overloaded intrinsics will have the names of its overloaded argument types
5488 encoded into its function name, each preceded by a period. Only those types
5489 which are overloaded result in a name suffix. Arguments whose type is matched
5490 against another type do not. For example, the <tt>llvm.ctpop</tt> function
5491 can take an integer of any width and returns an integer of exactly the same
5492 integer width. This leads to a family of functions such as
5493 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5494 %val)</tt>. Only one type, the return type, is overloaded, and only one type
5495 suffix is required. Because the argument's type is matched against the return
5496 type, it does not require its own name suffix.</p>
5498 <p>To learn how to add an intrinsic function, please see the
5499 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
5501 </div>
5503 <!-- ======================================================================= -->
5504 <div class="doc_subsection">
5505 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
5506 </div>
5508 <div class="doc_text">
5510 <p>Variable argument support is defined in LLVM with
5511 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5512 intrinsic functions. These functions are related to the similarly named
5513 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
5515 <p>All of these functions operate on arguments that use a target-specific value
5516 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5517 not define what this type is, so all transformations should be prepared to
5518 handle these functions regardless of the type used.</p>
5520 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
5521 instruction and the variable argument handling intrinsic functions are
5522 used.</p>
5524 <pre class="doc_code">
5525 define i32 @test(i32 %X, ...) {
5526 ; Initialize variable argument processing
5527 %ap = alloca i8*
5528 %ap2 = bitcast i8** %ap to i8*
5529 call void @llvm.va_start(i8* %ap2)
5531 ; Read a single integer argument
5532 %tmp = va_arg i8** %ap, i32
5534 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5535 %aq = alloca i8*
5536 %aq2 = bitcast i8** %aq to i8*
5537 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5538 call void @llvm.va_end(i8* %aq2)
5540 ; Stop processing of arguments.
5541 call void @llvm.va_end(i8* %ap2)
5542 ret i32 %tmp
5545 declare void @llvm.va_start(i8*)
5546 declare void @llvm.va_copy(i8*, i8*)
5547 declare void @llvm.va_end(i8*)
5548 </pre>
5550 </div>
5552 <!-- _______________________________________________________________________ -->
5553 <div class="doc_subsubsection">
5554 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
5555 </div>
5558 <div class="doc_text">
5560 <h5>Syntax:</h5>
5561 <pre>
5562 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5563 </pre>
5565 <h5>Overview:</h5>
5566 <p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5567 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
5569 <h5>Arguments:</h5>
5570 <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
5572 <h5>Semantics:</h5>
5573 <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
5574 macro available in C. In a target-dependent way, it initializes
5575 the <tt>va_list</tt> element to which the argument points, so that the next
5576 call to <tt>va_arg</tt> will produce the first variable argument passed to
5577 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5578 need to know the last argument of the function as the compiler can figure
5579 that out.</p>
5581 </div>
5583 <!-- _______________________________________________________________________ -->
5584 <div class="doc_subsubsection">
5585 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
5586 </div>
5588 <div class="doc_text">
5590 <h5>Syntax:</h5>
5591 <pre>
5592 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5593 </pre>
5595 <h5>Overview:</h5>
5596 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
5597 which has been initialized previously
5598 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5599 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
5601 <h5>Arguments:</h5>
5602 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
5604 <h5>Semantics:</h5>
5605 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
5606 macro available in C. In a target-dependent way, it destroys
5607 the <tt>va_list</tt> element to which the argument points. Calls
5608 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5609 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5610 with calls to <tt>llvm.va_end</tt>.</p>
5612 </div>
5614 <!-- _______________________________________________________________________ -->
5615 <div class="doc_subsubsection">
5616 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
5617 </div>
5619 <div class="doc_text">
5621 <h5>Syntax:</h5>
5622 <pre>
5623 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
5624 </pre>
5626 <h5>Overview:</h5>
5627 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
5628 from the source argument list to the destination argument list.</p>
5630 <h5>Arguments:</h5>
5631 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
5632 The second argument is a pointer to a <tt>va_list</tt> element to copy
5633 from.</p>
5635 <h5>Semantics:</h5>
5636 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
5637 macro available in C. In a target-dependent way, it copies the
5638 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5639 element. This intrinsic is necessary because
5640 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5641 arbitrarily complex and require, for example, memory allocation.</p>
5643 </div>
5645 <!-- ======================================================================= -->
5646 <div class="doc_subsection">
5647 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5648 </div>
5650 <div class="doc_text">
5652 <p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
5653 Collection</a> (GC) requires the implementation and generation of these
5654 intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5655 roots on the stack</a>, as well as garbage collector implementations that
5656 require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5657 barriers. Front-ends for type-safe garbage collected languages should generate
5658 these intrinsics to make use of the LLVM garbage collectors. For more details,
5659 see <a href="GarbageCollection.html">Accurate Garbage Collection with
5660 LLVM</a>.</p>
5662 <p>The garbage collection intrinsics only operate on objects in the generic
5663 address space (address space zero).</p>
5665 </div>
5667 <!-- _______________________________________________________________________ -->
5668 <div class="doc_subsubsection">
5669 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
5670 </div>
5672 <div class="doc_text">
5674 <h5>Syntax:</h5>
5675 <pre>
5676 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
5677 </pre>
5679 <h5>Overview:</h5>
5680 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
5681 the code generator, and allows some metadata to be associated with it.</p>
5683 <h5>Arguments:</h5>
5684 <p>The first argument specifies the address of a stack object that contains the
5685 root pointer. The second pointer (which must be either a constant or a
5686 global value address) contains the meta-data to be associated with the
5687 root.</p>
5689 <h5>Semantics:</h5>
5690 <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
5691 location. At compile-time, the code generator generates information to allow
5692 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5693 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5694 algorithm</a>.</p>
5696 </div>
5698 <!-- _______________________________________________________________________ -->
5699 <div class="doc_subsubsection">
5700 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
5701 </div>
5703 <div class="doc_text">
5705 <h5>Syntax:</h5>
5706 <pre>
5707 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
5708 </pre>
5710 <h5>Overview:</h5>
5711 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
5712 locations, allowing garbage collector implementations that require read
5713 barriers.</p>
5715 <h5>Arguments:</h5>
5716 <p>The second argument is the address to read from, which should be an address
5717 allocated from the garbage collector. The first object is a pointer to the
5718 start of the referenced object, if needed by the language runtime (otherwise
5719 null).</p>
5721 <h5>Semantics:</h5>
5722 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
5723 instruction, but may be replaced with substantially more complex code by the
5724 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5725 may only be used in a function which <a href="#gc">specifies a GC
5726 algorithm</a>.</p>
5728 </div>
5730 <!-- _______________________________________________________________________ -->
5731 <div class="doc_subsubsection">
5732 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
5733 </div>
5735 <div class="doc_text">
5737 <h5>Syntax:</h5>
5738 <pre>
5739 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
5740 </pre>
5742 <h5>Overview:</h5>
5743 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5744 locations, allowing garbage collector implementations that require write
5745 barriers (such as generational or reference counting collectors).</p>
5747 <h5>Arguments:</h5>
5748 <p>The first argument is the reference to store, the second is the start of the
5749 object to store it to, and the third is the address of the field of Obj to
5750 store to. If the runtime does not require a pointer to the object, Obj may
5751 be null.</p>
5753 <h5>Semantics:</h5>
5754 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5755 instruction, but may be replaced with substantially more complex code by the
5756 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5757 may only be used in a function which <a href="#gc">specifies a GC
5758 algorithm</a>.</p>
5760 </div>
5762 <!-- ======================================================================= -->
5763 <div class="doc_subsection">
5764 <a name="int_codegen">Code Generator Intrinsics</a>
5765 </div>
5767 <div class="doc_text">
5769 <p>These intrinsics are provided by LLVM to expose special features that may
5770 only be implemented with code generator support.</p>
5772 </div>
5774 <!-- _______________________________________________________________________ -->
5775 <div class="doc_subsubsection">
5776 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
5777 </div>
5779 <div class="doc_text">
5781 <h5>Syntax:</h5>
5782 <pre>
5783 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
5784 </pre>
5786 <h5>Overview:</h5>
5787 <p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5788 target-specific value indicating the return address of the current function
5789 or one of its callers.</p>
5791 <h5>Arguments:</h5>
5792 <p>The argument to this intrinsic indicates which function to return the address
5793 for. Zero indicates the calling function, one indicates its caller, etc.
5794 The argument is <b>required</b> to be a constant integer value.</p>
5796 <h5>Semantics:</h5>
5797 <p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5798 indicating the return address of the specified call frame, or zero if it
5799 cannot be identified. The value returned by this intrinsic is likely to be
5800 incorrect or 0 for arguments other than zero, so it should only be used for
5801 debugging purposes.</p>
5803 <p>Note that calling this intrinsic does not prevent function inlining or other
5804 aggressive transformations, so the value returned may not be that of the
5805 obvious source-language caller.</p>
5807 </div>
5809 <!-- _______________________________________________________________________ -->
5810 <div class="doc_subsubsection">
5811 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
5812 </div>
5814 <div class="doc_text">
5816 <h5>Syntax:</h5>
5817 <pre>
5818 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
5819 </pre>
5821 <h5>Overview:</h5>
5822 <p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5823 target-specific frame pointer value for the specified stack frame.</p>
5825 <h5>Arguments:</h5>
5826 <p>The argument to this intrinsic indicates which function to return the frame
5827 pointer for. Zero indicates the calling function, one indicates its caller,
5828 etc. The argument is <b>required</b> to be a constant integer value.</p>
5830 <h5>Semantics:</h5>
5831 <p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5832 indicating the frame address of the specified call frame, or zero if it
5833 cannot be identified. The value returned by this intrinsic is likely to be
5834 incorrect or 0 for arguments other than zero, so it should only be used for
5835 debugging purposes.</p>
5837 <p>Note that calling this intrinsic does not prevent function inlining or other
5838 aggressive transformations, so the value returned may not be that of the
5839 obvious source-language caller.</p>
5841 </div>
5843 <!-- _______________________________________________________________________ -->
5844 <div class="doc_subsubsection">
5845 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
5846 </div>
5848 <div class="doc_text">
5850 <h5>Syntax:</h5>
5851 <pre>
5852 declare i8* @llvm.stacksave()
5853 </pre>
5855 <h5>Overview:</h5>
5856 <p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5857 of the function stack, for use
5858 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5859 useful for implementing language features like scoped automatic variable
5860 sized arrays in C99.</p>
5862 <h5>Semantics:</h5>
5863 <p>This intrinsic returns a opaque pointer value that can be passed
5864 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5865 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5866 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5867 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5868 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5869 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
5871 </div>
5873 <!-- _______________________________________________________________________ -->
5874 <div class="doc_subsubsection">
5875 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
5876 </div>
5878 <div class="doc_text">
5880 <h5>Syntax:</h5>
5881 <pre>
5882 declare void @llvm.stackrestore(i8* %ptr)
5883 </pre>
5885 <h5>Overview:</h5>
5886 <p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5887 the function stack to the state it was in when the
5888 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5889 executed. This is useful for implementing language features like scoped
5890 automatic variable sized arrays in C99.</p>
5892 <h5>Semantics:</h5>
5893 <p>See the description
5894 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
5896 </div>
5898 <!-- _______________________________________________________________________ -->
5899 <div class="doc_subsubsection">
5900 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
5901 </div>
5903 <div class="doc_text">
5905 <h5>Syntax:</h5>
5906 <pre>
5907 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
5908 </pre>
5910 <h5>Overview:</h5>
5911 <p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5912 insert a prefetch instruction if supported; otherwise, it is a noop.
5913 Prefetches have no effect on the behavior of the program but can change its
5914 performance characteristics.</p>
5916 <h5>Arguments:</h5>
5917 <p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5918 specifier determining if the fetch should be for a read (0) or write (1),
5919 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5920 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5921 and <tt>locality</tt> arguments must be constant integers.</p>
5923 <h5>Semantics:</h5>
5924 <p>This intrinsic does not modify the behavior of the program. In particular,
5925 prefetches cannot trap and do not produce a value. On targets that support
5926 this intrinsic, the prefetch can provide hints to the processor cache for
5927 better performance.</p>
5929 </div>
5931 <!-- _______________________________________________________________________ -->
5932 <div class="doc_subsubsection">
5933 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
5934 </div>
5936 <div class="doc_text">
5938 <h5>Syntax:</h5>
5939 <pre>
5940 declare void @llvm.pcmarker(i32 &lt;id&gt;)
5941 </pre>
5943 <h5>Overview:</h5>
5944 <p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5945 Counter (PC) in a region of code to simulators and other tools. The method
5946 is target specific, but it is expected that the marker will use exported
5947 symbols to transmit the PC of the marker. The marker makes no guarantees
5948 that it will remain with any specific instruction after optimizations. It is
5949 possible that the presence of a marker will inhibit optimizations. The
5950 intended use is to be inserted after optimizations to allow correlations of
5951 simulation runs.</p>
5953 <h5>Arguments:</h5>
5954 <p><tt>id</tt> is a numerical id identifying the marker.</p>
5956 <h5>Semantics:</h5>
5957 <p>This intrinsic does not modify the behavior of the program. Backends that do
5958 not support this intrinsic may ignore it.</p>
5960 </div>
5962 <!-- _______________________________________________________________________ -->
5963 <div class="doc_subsubsection">
5964 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
5965 </div>
5967 <div class="doc_text">
5969 <h5>Syntax:</h5>
5970 <pre>
5971 declare i64 @llvm.readcyclecounter()
5972 </pre>
5974 <h5>Overview:</h5>
5975 <p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5976 counter register (or similar low latency, high accuracy clocks) on those
5977 targets that support it. On X86, it should map to RDTSC. On Alpha, it
5978 should map to RPCC. As the backing counters overflow quickly (on the order
5979 of 9 seconds on alpha), this should only be used for small timings.</p>
5981 <h5>Semantics:</h5>
5982 <p>When directly supported, reading the cycle counter should not modify any
5983 memory. Implementations are allowed to either return a application specific
5984 value or a system wide value. On backends without support, this is lowered
5985 to a constant 0.</p>
5987 </div>
5989 <!-- ======================================================================= -->
5990 <div class="doc_subsection">
5991 <a name="int_libc">Standard C Library Intrinsics</a>
5992 </div>
5994 <div class="doc_text">
5996 <p>LLVM provides intrinsics for a few important standard C library functions.
5997 These intrinsics allow source-language front-ends to pass information about
5998 the alignment of the pointer arguments to the code generator, providing
5999 opportunity for more efficient code generation.</p>
6001 </div>
6003 <!-- _______________________________________________________________________ -->
6004 <div class="doc_subsubsection">
6005 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
6006 </div>
6008 <div class="doc_text">
6010 <h5>Syntax:</h5>
6011 <p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
6012 integer bit width and for different address spaces. Not all targets support
6013 all bit widths however.</p>
6015 <pre>
6016 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6017 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6018 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6019 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6020 </pre>
6022 <h5>Overview:</h5>
6023 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6024 source location to the destination location.</p>
6026 <p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
6027 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6028 and the pointers can be in specified address spaces.</p>
6030 <h5>Arguments:</h5>
6032 <p>The first argument is a pointer to the destination, the second is a pointer
6033 to the source. The third argument is an integer argument specifying the
6034 number of bytes to copy, the fourth argument is the alignment of the
6035 source and destination locations, and the fifth is a boolean indicating a
6036 volatile access.</p>
6038 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
6039 then the caller guarantees that both the source and destination pointers are
6040 aligned to that boundary.</p>
6042 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6043 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
6044 The detailed access behavior is not very cleanly specified and it is unwise
6045 to depend on it.</p>
6047 <h5>Semantics:</h5>
6049 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6050 source location to the destination location, which are not allowed to
6051 overlap. It copies "len" bytes of memory over. If the argument is known to
6052 be aligned to some boundary, this can be specified as the fourth argument,
6053 otherwise it should be set to 0 or 1.</p>
6055 </div>
6057 <!-- _______________________________________________________________________ -->
6058 <div class="doc_subsubsection">
6059 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
6060 </div>
6062 <div class="doc_text">
6064 <h5>Syntax:</h5>
6065 <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
6066 width and for different address space. Not all targets support all bit
6067 widths however.</p>
6069 <pre>
6070 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6071 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6072 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6073 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6074 </pre>
6076 <h5>Overview:</h5>
6077 <p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
6078 source location to the destination location. It is similar to the
6079 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
6080 overlap.</p>
6082 <p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
6083 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6084 and the pointers can be in specified address spaces.</p>
6086 <h5>Arguments:</h5>
6088 <p>The first argument is a pointer to the destination, the second is a pointer
6089 to the source. The third argument is an integer argument specifying the
6090 number of bytes to copy, the fourth argument is the alignment of the
6091 source and destination locations, and the fifth is a boolean indicating a
6092 volatile access.</p>
6094 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
6095 then the caller guarantees that the source and destination pointers are
6096 aligned to that boundary.</p>
6098 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6099 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
6100 The detailed access behavior is not very cleanly specified and it is unwise
6101 to depend on it.</p>
6103 <h5>Semantics:</h5>
6105 <p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6106 source location to the destination location, which may overlap. It copies
6107 "len" bytes of memory over. If the argument is known to be aligned to some
6108 boundary, this can be specified as the fourth argument, otherwise it should
6109 be set to 0 or 1.</p>
6111 </div>
6113 <!-- _______________________________________________________________________ -->
6114 <div class="doc_subsubsection">
6115 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
6116 </div>
6118 <div class="doc_text">
6120 <h5>Syntax:</h5>
6121 <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
6122 width and for different address spaces. However, not all targets support all
6123 bit widths.</p>
6125 <pre>
6126 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
6127 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6128 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
6129 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6130 </pre>
6132 <h5>Overview:</h5>
6133 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6134 particular byte value.</p>
6136 <p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
6137 intrinsic does not return a value and takes extra alignment/volatile
6138 arguments. Also, the destination can be in an arbitrary address space.</p>
6140 <h5>Arguments:</h5>
6141 <p>The first argument is a pointer to the destination to fill, the second is the
6142 byte value with which to fill it, the third argument is an integer argument
6143 specifying the number of bytes to fill, and the fourth argument is the known
6144 alignment of the destination location.</p>
6146 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
6147 then the caller guarantees that the destination pointer is aligned to that
6148 boundary.</p>
6150 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6151 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
6152 The detailed access behavior is not very cleanly specified and it is unwise
6153 to depend on it.</p>
6155 <h5>Semantics:</h5>
6156 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6157 at the destination location. If the argument is known to be aligned to some
6158 boundary, this can be specified as the fourth argument, otherwise it should
6159 be set to 0 or 1.</p>
6161 </div>
6163 <!-- _______________________________________________________________________ -->
6164 <div class="doc_subsubsection">
6165 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
6166 </div>
6168 <div class="doc_text">
6170 <h5>Syntax:</h5>
6171 <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6172 floating point or vector of floating point type. Not all targets support all
6173 types however.</p>
6175 <pre>
6176 declare float @llvm.sqrt.f32(float %Val)
6177 declare double @llvm.sqrt.f64(double %Val)
6178 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6179 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6180 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6181 </pre>
6183 <h5>Overview:</h5>
6184 <p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6185 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6186 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6187 behavior for negative numbers other than -0.0 (which allows for better
6188 optimization, because there is no need to worry about errno being
6189 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
6191 <h5>Arguments:</h5>
6192 <p>The argument and return value are floating point numbers of the same
6193 type.</p>
6195 <h5>Semantics:</h5>
6196 <p>This function returns the sqrt of the specified operand if it is a
6197 nonnegative floating point number.</p>
6199 </div>
6201 <!-- _______________________________________________________________________ -->
6202 <div class="doc_subsubsection">
6203 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
6204 </div>
6206 <div class="doc_text">
6208 <h5>Syntax:</h5>
6209 <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6210 floating point or vector of floating point type. Not all targets support all
6211 types however.</p>
6213 <pre>
6214 declare float @llvm.powi.f32(float %Val, i32 %power)
6215 declare double @llvm.powi.f64(double %Val, i32 %power)
6216 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6217 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6218 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6219 </pre>
6221 <h5>Overview:</h5>
6222 <p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6223 specified (positive or negative) power. The order of evaluation of
6224 multiplications is not defined. When a vector of floating point type is
6225 used, the second argument remains a scalar integer value.</p>
6227 <h5>Arguments:</h5>
6228 <p>The second argument is an integer power, and the first is a value to raise to
6229 that power.</p>
6231 <h5>Semantics:</h5>
6232 <p>This function returns the first value raised to the second power with an
6233 unspecified sequence of rounding operations.</p>
6235 </div>
6237 <!-- _______________________________________________________________________ -->
6238 <div class="doc_subsubsection">
6239 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
6240 </div>
6242 <div class="doc_text">
6244 <h5>Syntax:</h5>
6245 <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6246 floating point or vector of floating point type. Not all targets support all
6247 types however.</p>
6249 <pre>
6250 declare float @llvm.sin.f32(float %Val)
6251 declare double @llvm.sin.f64(double %Val)
6252 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6253 declare fp128 @llvm.sin.f128(fp128 %Val)
6254 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6255 </pre>
6257 <h5>Overview:</h5>
6258 <p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
6260 <h5>Arguments:</h5>
6261 <p>The argument and return value are floating point numbers of the same
6262 type.</p>
6264 <h5>Semantics:</h5>
6265 <p>This function returns the sine of the specified operand, returning the same
6266 values as the libm <tt>sin</tt> functions would, and handles error conditions
6267 in the same way.</p>
6269 </div>
6271 <!-- _______________________________________________________________________ -->
6272 <div class="doc_subsubsection">
6273 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
6274 </div>
6276 <div class="doc_text">
6278 <h5>Syntax:</h5>
6279 <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
6280 floating point or vector of floating point type. Not all targets support all
6281 types however.</p>
6283 <pre>
6284 declare float @llvm.cos.f32(float %Val)
6285 declare double @llvm.cos.f64(double %Val)
6286 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6287 declare fp128 @llvm.cos.f128(fp128 %Val)
6288 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6289 </pre>
6291 <h5>Overview:</h5>
6292 <p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
6294 <h5>Arguments:</h5>
6295 <p>The argument and return value are floating point numbers of the same
6296 type.</p>
6298 <h5>Semantics:</h5>
6299 <p>This function returns the cosine of the specified operand, returning the same
6300 values as the libm <tt>cos</tt> functions would, and handles error conditions
6301 in the same way.</p>
6303 </div>
6305 <!-- _______________________________________________________________________ -->
6306 <div class="doc_subsubsection">
6307 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
6308 </div>
6310 <div class="doc_text">
6312 <h5>Syntax:</h5>
6313 <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
6314 floating point or vector of floating point type. Not all targets support all
6315 types however.</p>
6317 <pre>
6318 declare float @llvm.pow.f32(float %Val, float %Power)
6319 declare double @llvm.pow.f64(double %Val, double %Power)
6320 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6321 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6322 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6323 </pre>
6325 <h5>Overview:</h5>
6326 <p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
6327 specified (positive or negative) power.</p>
6329 <h5>Arguments:</h5>
6330 <p>The second argument is a floating point power, and the first is a value to
6331 raise to that power.</p>
6333 <h5>Semantics:</h5>
6334 <p>This function returns the first value raised to the second power, returning
6335 the same values as the libm <tt>pow</tt> functions would, and handles error
6336 conditions in the same way.</p>
6338 </div>
6340 <!-- ======================================================================= -->
6341 <div class="doc_subsection">
6342 <a name="int_manip">Bit Manipulation Intrinsics</a>
6343 </div>
6345 <div class="doc_text">
6347 <p>LLVM provides intrinsics for a few important bit manipulation operations.
6348 These allow efficient code generation for some algorithms.</p>
6350 </div>
6352 <!-- _______________________________________________________________________ -->
6353 <div class="doc_subsubsection">
6354 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
6355 </div>
6357 <div class="doc_text">
6359 <h5>Syntax:</h5>
6360 <p>This is an overloaded intrinsic function. You can use bswap on any integer
6361 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
6363 <pre>
6364 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6365 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6366 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
6367 </pre>
6369 <h5>Overview:</h5>
6370 <p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6371 values with an even number of bytes (positive multiple of 16 bits). These
6372 are useful for performing operations on data that is not in the target's
6373 native byte order.</p>
6375 <h5>Semantics:</h5>
6376 <p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6377 and low byte of the input i16 swapped. Similarly,
6378 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6379 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6380 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6381 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6382 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6383 more, respectively).</p>
6385 </div>
6387 <!-- _______________________________________________________________________ -->
6388 <div class="doc_subsubsection">
6389 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
6390 </div>
6392 <div class="doc_text">
6394 <h5>Syntax:</h5>
6395 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
6396 width. Not all targets support all bit widths however.</p>
6398 <pre>
6399 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
6400 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
6401 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
6402 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6403 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
6404 </pre>
6406 <h5>Overview:</h5>
6407 <p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6408 in a value.</p>
6410 <h5>Arguments:</h5>
6411 <p>The only argument is the value to be counted. The argument may be of any
6412 integer type. The return type must match the argument type.</p>
6414 <h5>Semantics:</h5>
6415 <p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
6417 </div>
6419 <!-- _______________________________________________________________________ -->
6420 <div class="doc_subsubsection">
6421 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
6422 </div>
6424 <div class="doc_text">
6426 <h5>Syntax:</h5>
6427 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6428 integer bit width. Not all targets support all bit widths however.</p>
6430 <pre>
6431 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
6432 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
6433 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
6434 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6435 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
6436 </pre>
6438 <h5>Overview:</h5>
6439 <p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6440 leading zeros in a variable.</p>
6442 <h5>Arguments:</h5>
6443 <p>The only argument is the value to be counted. The argument may be of any
6444 integer type. The return type must match the argument type.</p>
6446 <h5>Semantics:</h5>
6447 <p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6448 zeros in a variable. If the src == 0 then the result is the size in bits of
6449 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
6451 </div>
6453 <!-- _______________________________________________________________________ -->
6454 <div class="doc_subsubsection">
6455 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
6456 </div>
6458 <div class="doc_text">
6460 <h5>Syntax:</h5>
6461 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6462 integer bit width. Not all targets support all bit widths however.</p>
6464 <pre>
6465 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6466 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
6467 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
6468 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6469 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
6470 </pre>
6472 <h5>Overview:</h5>
6473 <p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6474 trailing zeros.</p>
6476 <h5>Arguments:</h5>
6477 <p>The only argument is the value to be counted. The argument may be of any
6478 integer type. The return type must match the argument type.</p>
6480 <h5>Semantics:</h5>
6481 <p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6482 zeros in a variable. If the src == 0 then the result is the size in bits of
6483 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
6485 </div>
6487 <!-- ======================================================================= -->
6488 <div class="doc_subsection">
6489 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6490 </div>
6492 <div class="doc_text">
6494 <p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
6496 </div>
6498 <!-- _______________________________________________________________________ -->
6499 <div class="doc_subsubsection">
6500 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
6501 </div>
6503 <div class="doc_text">
6505 <h5>Syntax:</h5>
6506 <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
6507 on any integer bit width.</p>
6509 <pre>
6510 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6511 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6512 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6513 </pre>
6515 <h5>Overview:</h5>
6516 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6517 a signed addition of the two arguments, and indicate whether an overflow
6518 occurred during the signed summation.</p>
6520 <h5>Arguments:</h5>
6521 <p>The arguments (%a and %b) and the first element of the result structure may
6522 be of integer types of any bit width, but they must have the same bit
6523 width. The second element of the result structure must be of
6524 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6525 undergo signed addition.</p>
6527 <h5>Semantics:</h5>
6528 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6529 a signed addition of the two variables. They return a structure &mdash; the
6530 first element of which is the signed summation, and the second element of
6531 which is a bit specifying if the signed summation resulted in an
6532 overflow.</p>
6534 <h5>Examples:</h5>
6535 <pre>
6536 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6537 %sum = extractvalue {i32, i1} %res, 0
6538 %obit = extractvalue {i32, i1} %res, 1
6539 br i1 %obit, label %overflow, label %normal
6540 </pre>
6542 </div>
6544 <!-- _______________________________________________________________________ -->
6545 <div class="doc_subsubsection">
6546 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
6547 </div>
6549 <div class="doc_text">
6551 <h5>Syntax:</h5>
6552 <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
6553 on any integer bit width.</p>
6555 <pre>
6556 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6557 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6558 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6559 </pre>
6561 <h5>Overview:</h5>
6562 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6563 an unsigned addition of the two arguments, and indicate whether a carry
6564 occurred during the unsigned summation.</p>
6566 <h5>Arguments:</h5>
6567 <p>The arguments (%a and %b) and the first element of the result structure may
6568 be of integer types of any bit width, but they must have the same bit
6569 width. The second element of the result structure must be of
6570 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6571 undergo unsigned addition.</p>
6573 <h5>Semantics:</h5>
6574 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6575 an unsigned addition of the two arguments. They return a structure &mdash;
6576 the first element of which is the sum, and the second element of which is a
6577 bit specifying if the unsigned summation resulted in a carry.</p>
6579 <h5>Examples:</h5>
6580 <pre>
6581 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6582 %sum = extractvalue {i32, i1} %res, 0
6583 %obit = extractvalue {i32, i1} %res, 1
6584 br i1 %obit, label %carry, label %normal
6585 </pre>
6587 </div>
6589 <!-- _______________________________________________________________________ -->
6590 <div class="doc_subsubsection">
6591 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
6592 </div>
6594 <div class="doc_text">
6596 <h5>Syntax:</h5>
6597 <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
6598 on any integer bit width.</p>
6600 <pre>
6601 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6602 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6603 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6604 </pre>
6606 <h5>Overview:</h5>
6607 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6608 a signed subtraction of the two arguments, and indicate whether an overflow
6609 occurred during the signed subtraction.</p>
6611 <h5>Arguments:</h5>
6612 <p>The arguments (%a and %b) and the first element of the result structure may
6613 be of integer types of any bit width, but they must have the same bit
6614 width. The second element of the result structure must be of
6615 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6616 undergo signed subtraction.</p>
6618 <h5>Semantics:</h5>
6619 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6620 a signed subtraction of the two arguments. They return a structure &mdash;
6621 the first element of which is the subtraction, and the second element of
6622 which is a bit specifying if the signed subtraction resulted in an
6623 overflow.</p>
6625 <h5>Examples:</h5>
6626 <pre>
6627 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6628 %sum = extractvalue {i32, i1} %res, 0
6629 %obit = extractvalue {i32, i1} %res, 1
6630 br i1 %obit, label %overflow, label %normal
6631 </pre>
6633 </div>
6635 <!-- _______________________________________________________________________ -->
6636 <div class="doc_subsubsection">
6637 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
6638 </div>
6640 <div class="doc_text">
6642 <h5>Syntax:</h5>
6643 <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
6644 on any integer bit width.</p>
6646 <pre>
6647 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6648 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6649 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6650 </pre>
6652 <h5>Overview:</h5>
6653 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6654 an unsigned subtraction of the two arguments, and indicate whether an
6655 overflow occurred during the unsigned subtraction.</p>
6657 <h5>Arguments:</h5>
6658 <p>The arguments (%a and %b) and the first element of the result structure may
6659 be of integer types of any bit width, but they must have the same bit
6660 width. The second element of the result structure must be of
6661 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6662 undergo unsigned subtraction.</p>
6664 <h5>Semantics:</h5>
6665 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6666 an unsigned subtraction of the two arguments. They return a structure &mdash;
6667 the first element of which is the subtraction, and the second element of
6668 which is a bit specifying if the unsigned subtraction resulted in an
6669 overflow.</p>
6671 <h5>Examples:</h5>
6672 <pre>
6673 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6674 %sum = extractvalue {i32, i1} %res, 0
6675 %obit = extractvalue {i32, i1} %res, 1
6676 br i1 %obit, label %overflow, label %normal
6677 </pre>
6679 </div>
6681 <!-- _______________________________________________________________________ -->
6682 <div class="doc_subsubsection">
6683 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
6684 </div>
6686 <div class="doc_text">
6688 <h5>Syntax:</h5>
6689 <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
6690 on any integer bit width.</p>
6692 <pre>
6693 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6694 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6695 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6696 </pre>
6698 <h5>Overview:</h5>
6700 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6701 a signed multiplication of the two arguments, and indicate whether an
6702 overflow occurred during the signed multiplication.</p>
6704 <h5>Arguments:</h5>
6705 <p>The arguments (%a and %b) and the first element of the result structure may
6706 be of integer types of any bit width, but they must have the same bit
6707 width. The second element of the result structure must be of
6708 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6709 undergo signed multiplication.</p>
6711 <h5>Semantics:</h5>
6712 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6713 a signed multiplication of the two arguments. They return a structure &mdash;
6714 the first element of which is the multiplication, and the second element of
6715 which is a bit specifying if the signed multiplication resulted in an
6716 overflow.</p>
6718 <h5>Examples:</h5>
6719 <pre>
6720 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6721 %sum = extractvalue {i32, i1} %res, 0
6722 %obit = extractvalue {i32, i1} %res, 1
6723 br i1 %obit, label %overflow, label %normal
6724 </pre>
6726 </div>
6728 <!-- _______________________________________________________________________ -->
6729 <div class="doc_subsubsection">
6730 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6731 </div>
6733 <div class="doc_text">
6735 <h5>Syntax:</h5>
6736 <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6737 on any integer bit width.</p>
6739 <pre>
6740 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6741 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6742 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6743 </pre>
6745 <h5>Overview:</h5>
6746 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6747 a unsigned multiplication of the two arguments, and indicate whether an
6748 overflow occurred during the unsigned multiplication.</p>
6750 <h5>Arguments:</h5>
6751 <p>The arguments (%a and %b) and the first element of the result structure may
6752 be of integer types of any bit width, but they must have the same bit
6753 width. The second element of the result structure must be of
6754 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6755 undergo unsigned multiplication.</p>
6757 <h5>Semantics:</h5>
6758 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6759 an unsigned multiplication of the two arguments. They return a structure
6760 &mdash; the first element of which is the multiplication, and the second
6761 element of which is a bit specifying if the unsigned multiplication resulted
6762 in an overflow.</p>
6764 <h5>Examples:</h5>
6765 <pre>
6766 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6767 %sum = extractvalue {i32, i1} %res, 0
6768 %obit = extractvalue {i32, i1} %res, 1
6769 br i1 %obit, label %overflow, label %normal
6770 </pre>
6772 </div>
6774 <!-- ======================================================================= -->
6775 <div class="doc_subsection">
6776 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
6777 </div>
6779 <div class="doc_text">
6781 <p>Half precision floating point is a storage-only format. This means that it is
6782 a dense encoding (in memory) but does not support computation in the
6783 format.</p>
6785 <p>This means that code must first load the half-precision floating point
6786 value as an i16, then convert it to float with <a
6787 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
6788 Computation can then be performed on the float value (including extending to
6789 double etc). To store the value back to memory, it is first converted to
6790 float if needed, then converted to i16 with
6791 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
6792 storing as an i16 value.</p>
6793 </div>
6795 <!-- _______________________________________________________________________ -->
6796 <div class="doc_subsubsection">
6797 <a name="int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a>
6798 </div>
6800 <div class="doc_text">
6802 <h5>Syntax:</h5>
6803 <pre>
6804 declare i16 @llvm.convert.to.fp16(f32 %a)
6805 </pre>
6807 <h5>Overview:</h5>
6808 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
6809 a conversion from single precision floating point format to half precision
6810 floating point format.</p>
6812 <h5>Arguments:</h5>
6813 <p>The intrinsic function contains single argument - the value to be
6814 converted.</p>
6816 <h5>Semantics:</h5>
6817 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
6818 a conversion from single precision floating point format to half precision
6819 floating point format. The return value is an <tt>i16</tt> which
6820 contains the converted number.</p>
6822 <h5>Examples:</h5>
6823 <pre>
6824 %res = call i16 @llvm.convert.to.fp16(f32 %a)
6825 store i16 %res, i16* @x, align 2
6826 </pre>
6828 </div>
6830 <!-- _______________________________________________________________________ -->
6831 <div class="doc_subsubsection">
6832 <a name="int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a>
6833 </div>
6835 <div class="doc_text">
6837 <h5>Syntax:</h5>
6838 <pre>
6839 declare f32 @llvm.convert.from.fp16(i16 %a)
6840 </pre>
6842 <h5>Overview:</h5>
6843 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
6844 a conversion from half precision floating point format to single precision
6845 floating point format.</p>
6847 <h5>Arguments:</h5>
6848 <p>The intrinsic function contains single argument - the value to be
6849 converted.</p>
6851 <h5>Semantics:</h5>
6852 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
6853 conversion from half single precision floating point format to single
6854 precision floating point format. The input half-float value is represented by
6855 an <tt>i16</tt> value.</p>
6857 <h5>Examples:</h5>
6858 <pre>
6859 %a = load i16* @x, align 2
6860 %res = call f32 @llvm.convert.from.fp16(i16 %a)
6861 </pre>
6863 </div>
6865 <!-- ======================================================================= -->
6866 <div class="doc_subsection">
6867 <a name="int_debugger">Debugger Intrinsics</a>
6868 </div>
6870 <div class="doc_text">
6872 <p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6873 prefix), are described in
6874 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6875 Level Debugging</a> document.</p>
6877 </div>
6879 <!-- ======================================================================= -->
6880 <div class="doc_subsection">
6881 <a name="int_eh">Exception Handling Intrinsics</a>
6882 </div>
6884 <div class="doc_text">
6886 <p>The LLVM exception handling intrinsics (which all start with
6887 <tt>llvm.eh.</tt> prefix), are described in
6888 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6889 Handling</a> document.</p>
6891 </div>
6893 <!-- ======================================================================= -->
6894 <div class="doc_subsection">
6895 <a name="int_trampoline">Trampoline Intrinsic</a>
6896 </div>
6898 <div class="doc_text">
6900 <p>This intrinsic makes it possible to excise one parameter, marked with
6901 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
6902 The result is a callable
6903 function pointer lacking the nest parameter - the caller does not need to
6904 provide a value for it. Instead, the value to use is stored in advance in a
6905 "trampoline", a block of memory usually allocated on the stack, which also
6906 contains code to splice the nest value into the argument list. This is used
6907 to implement the GCC nested function address extension.</p>
6909 <p>For example, if the function is
6910 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6911 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6912 follows:</p>
6914 <pre class="doc_code">
6915 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6916 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6917 %p = call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval)
6918 %fp = bitcast i8* %p to i32 (i32, i32)*
6919 </pre>
6921 <p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
6922 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
6924 </div>
6926 <!-- _______________________________________________________________________ -->
6927 <div class="doc_subsubsection">
6928 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6929 </div>
6931 <div class="doc_text">
6933 <h5>Syntax:</h5>
6934 <pre>
6935 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
6936 </pre>
6938 <h5>Overview:</h5>
6939 <p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6940 function pointer suitable for executing it.</p>
6942 <h5>Arguments:</h5>
6943 <p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6944 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6945 sufficiently aligned block of memory; this memory is written to by the
6946 intrinsic. Note that the size and the alignment are target-specific - LLVM
6947 currently provides no portable way of determining them, so a front-end that
6948 generates this intrinsic needs to have some target-specific knowledge.
6949 The <tt>func</tt> argument must hold a function bitcast to
6950 an <tt>i8*</tt>.</p>
6952 <h5>Semantics:</h5>
6953 <p>The block of memory pointed to by <tt>tramp</tt> is filled with target
6954 dependent code, turning it into a function. A pointer to this function is
6955 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
6956 function pointer type</a> before being called. The new function's signature
6957 is the same as that of <tt>func</tt> with any arguments marked with
6958 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
6959 is allowed, and it must be of pointer type. Calling the new function is
6960 equivalent to calling <tt>func</tt> with the same argument list, but
6961 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
6962 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
6963 by <tt>tramp</tt> is modified, then the effect of any later call to the
6964 returned function pointer is undefined.</p>
6966 </div>
6968 <!-- ======================================================================= -->
6969 <div class="doc_subsection">
6970 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6971 </div>
6973 <div class="doc_text">
6975 <p>These intrinsic functions expand the "universal IR" of LLVM to represent
6976 hardware constructs for atomic operations and memory synchronization. This
6977 provides an interface to the hardware, not an interface to the programmer. It
6978 is aimed at a low enough level to allow any programming models or APIs
6979 (Application Programming Interfaces) which need atomic behaviors to map
6980 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
6981 hardware provides a "universal IR" for source languages, it also provides a
6982 starting point for developing a "universal" atomic operation and
6983 synchronization IR.</p>
6985 <p>These do <em>not</em> form an API such as high-level threading libraries,
6986 software transaction memory systems, atomic primitives, and intrinsic
6987 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6988 application libraries. The hardware interface provided by LLVM should allow
6989 a clean implementation of all of these APIs and parallel programming models.
6990 No one model or paradigm should be selected above others unless the hardware
6991 itself ubiquitously does so.</p>
6993 </div>
6995 <!-- _______________________________________________________________________ -->
6996 <div class="doc_subsubsection">
6997 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6998 </div>
6999 <div class="doc_text">
7000 <h5>Syntax:</h5>
7001 <pre>
7002 declare void @llvm.memory.barrier(i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt;)
7003 </pre>
7005 <h5>Overview:</h5>
7006 <p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
7007 specific pairs of memory access types.</p>
7009 <h5>Arguments:</h5>
7010 <p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
7011 The first four arguments enables a specific barrier as listed below. The
7012 fifth argument specifies that the barrier applies to io or device or uncached
7013 memory.</p>
7015 <ul>
7016 <li><tt>ll</tt>: load-load barrier</li>
7017 <li><tt>ls</tt>: load-store barrier</li>
7018 <li><tt>sl</tt>: store-load barrier</li>
7019 <li><tt>ss</tt>: store-store barrier</li>
7020 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
7021 </ul>
7023 <h5>Semantics:</h5>
7024 <p>This intrinsic causes the system to enforce some ordering constraints upon
7025 the loads and stores of the program. This barrier does not
7026 indicate <em>when</em> any events will occur, it only enforces
7027 an <em>order</em> in which they occur. For any of the specified pairs of load
7028 and store operations (f.ex. load-load, or store-load), all of the first
7029 operations preceding the barrier will complete before any of the second
7030 operations succeeding the barrier begin. Specifically the semantics for each
7031 pairing is as follows:</p>
7033 <ul>
7034 <li><tt>ll</tt>: All loads before the barrier must complete before any load
7035 after the barrier begins.</li>
7036 <li><tt>ls</tt>: All loads before the barrier must complete before any
7037 store after the barrier begins.</li>
7038 <li><tt>ss</tt>: All stores before the barrier must complete before any
7039 store after the barrier begins.</li>
7040 <li><tt>sl</tt>: All stores before the barrier must complete before any
7041 load after the barrier begins.</li>
7042 </ul>
7044 <p>These semantics are applied with a logical "and" behavior when more than one
7045 is enabled in a single memory barrier intrinsic.</p>
7047 <p>Backends may implement stronger barriers than those requested when they do
7048 not support as fine grained a barrier as requested. Some architectures do
7049 not need all types of barriers and on such architectures, these become
7050 noops.</p>
7052 <h5>Example:</h5>
7053 <pre>
7054 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7055 %ptr = bitcast i8* %mallocP to i32*
7056 store i32 4, %ptr
7058 %result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
7059 call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false)
7060 <i>; guarantee the above finishes</i>
7061 store i32 8, %ptr <i>; before this begins</i>
7062 </pre>
7064 </div>
7066 <!-- _______________________________________________________________________ -->
7067 <div class="doc_subsubsection">
7068 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
7069 </div>
7071 <div class="doc_text">
7073 <h5>Syntax:</h5>
7074 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
7075 any integer bit width and for different address spaces. Not all targets
7076 support all bit widths however.</p>
7078 <pre>
7079 declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt;)
7080 declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt;)
7081 declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt;)
7082 declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt;)
7083 </pre>
7085 <h5>Overview:</h5>
7086 <p>This loads a value in memory and compares it to a given value. If they are
7087 equal, it stores a new value into the memory.</p>
7089 <h5>Arguments:</h5>
7090 <p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
7091 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
7092 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
7093 this integer type. While any bit width integer may be used, targets may only
7094 lower representations they support in hardware.</p>
7096 <h5>Semantics:</h5>
7097 <p>This entire intrinsic must be executed atomically. It first loads the value
7098 in memory pointed to by <tt>ptr</tt> and compares it with the
7099 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
7100 memory. The loaded value is yielded in all cases. This provides the
7101 equivalent of an atomic compare-and-swap operation within the SSA
7102 framework.</p>
7104 <h5>Examples:</h5>
7105 <pre>
7106 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7107 %ptr = bitcast i8* %mallocP to i32*
7108 store i32 4, %ptr
7110 %val1 = add i32 4, 4
7111 %result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)
7112 <i>; yields {i32}:result1 = 4</i>
7113 %stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7114 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7116 %val2 = add i32 1, 1
7117 %result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)
7118 <i>; yields {i32}:result2 = 8</i>
7119 %stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
7121 %memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
7122 </pre>
7124 </div>
7126 <!-- _______________________________________________________________________ -->
7127 <div class="doc_subsubsection">
7128 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
7129 </div>
7130 <div class="doc_text">
7131 <h5>Syntax:</h5>
7133 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
7134 integer bit width. Not all targets support all bit widths however.</p>
7136 <pre>
7137 declare i8 @llvm.atomic.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;val&gt;)
7138 declare i16 @llvm.atomic.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;val&gt;)
7139 declare i32 @llvm.atomic.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;val&gt;)
7140 declare i64 @llvm.atomic.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;val&gt;)
7141 </pre>
7143 <h5>Overview:</h5>
7144 <p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
7145 the value from memory. It then stores the value in <tt>val</tt> in the memory
7146 at <tt>ptr</tt>.</p>
7148 <h5>Arguments:</h5>
7149 <p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
7150 the <tt>val</tt> argument and the result must be integers of the same bit
7151 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
7152 integer type. The targets may only lower integer representations they
7153 support.</p>
7155 <h5>Semantics:</h5>
7156 <p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
7157 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
7158 equivalent of an atomic swap operation within the SSA framework.</p>
7160 <h5>Examples:</h5>
7161 <pre>
7162 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7163 %ptr = bitcast i8* %mallocP to i32*
7164 store i32 4, %ptr
7166 %val1 = add i32 4, 4
7167 %result1 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
7168 <i>; yields {i32}:result1 = 4</i>
7169 %stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7170 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7172 %val2 = add i32 1, 1
7173 %result2 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
7174 <i>; yields {i32}:result2 = 8</i>
7176 %stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
7177 %memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
7178 </pre>
7180 </div>
7182 <!-- _______________________________________________________________________ -->
7183 <div class="doc_subsubsection">
7184 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
7186 </div>
7188 <div class="doc_text">
7190 <h5>Syntax:</h5>
7191 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
7192 any integer bit width. Not all targets support all bit widths however.</p>
7194 <pre>
7195 declare i8 @llvm.atomic.load.add.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7196 declare i16 @llvm.atomic.load.add.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7197 declare i32 @llvm.atomic.load.add.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7198 declare i64 @llvm.atomic.load.add.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7199 </pre>
7201 <h5>Overview:</h5>
7202 <p>This intrinsic adds <tt>delta</tt> to the value stored in memory
7203 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7205 <h5>Arguments:</h5>
7206 <p>The intrinsic takes two arguments, the first a pointer to an integer value
7207 and the second an integer value. The result is also an integer value. These
7208 integer types can have any bit width, but they must all have the same bit
7209 width. The targets may only lower integer representations they support.</p>
7211 <h5>Semantics:</h5>
7212 <p>This intrinsic does a series of operations atomically. It first loads the
7213 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
7214 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
7216 <h5>Examples:</h5>
7217 <pre>
7218 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7219 %ptr = bitcast i8* %mallocP to i32*
7220 store i32 4, %ptr
7221 %result1 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)
7222 <i>; yields {i32}:result1 = 4</i>
7223 %result2 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)
7224 <i>; yields {i32}:result2 = 8</i>
7225 %result3 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)
7226 <i>; yields {i32}:result3 = 10</i>
7227 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
7228 </pre>
7230 </div>
7232 <!-- _______________________________________________________________________ -->
7233 <div class="doc_subsubsection">
7234 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
7236 </div>
7238 <div class="doc_text">
7240 <h5>Syntax:</h5>
7241 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
7242 any integer bit width and for different address spaces. Not all targets
7243 support all bit widths however.</p>
7245 <pre>
7246 declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7247 declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7248 declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7249 declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7250 </pre>
7252 <h5>Overview:</h5>
7253 <p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
7254 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7256 <h5>Arguments:</h5>
7257 <p>The intrinsic takes two arguments, the first a pointer to an integer value
7258 and the second an integer value. The result is also an integer value. These
7259 integer types can have any bit width, but they must all have the same bit
7260 width. The targets may only lower integer representations they support.</p>
7262 <h5>Semantics:</h5>
7263 <p>This intrinsic does a series of operations atomically. It first loads the
7264 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
7265 result to <tt>ptr</tt>. It yields the original value stored
7266 at <tt>ptr</tt>.</p>
7268 <h5>Examples:</h5>
7269 <pre>
7270 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7271 %ptr = bitcast i8* %mallocP to i32*
7272 store i32 8, %ptr
7273 %result1 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)
7274 <i>; yields {i32}:result1 = 8</i>
7275 %result2 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)
7276 <i>; yields {i32}:result2 = 4</i>
7277 %result3 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)
7278 <i>; yields {i32}:result3 = 2</i>
7279 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
7280 </pre>
7282 </div>
7284 <!-- _______________________________________________________________________ -->
7285 <div class="doc_subsubsection">
7286 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
7287 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
7288 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
7289 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
7290 </div>
7292 <div class="doc_text">
7294 <h5>Syntax:</h5>
7295 <p>These are overloaded intrinsics. You can
7296 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
7297 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
7298 bit width and for different address spaces. Not all targets support all bit
7299 widths however.</p>
7301 <pre>
7302 declare i8 @llvm.atomic.load.and.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7303 declare i16 @llvm.atomic.load.and.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7304 declare i32 @llvm.atomic.load.and.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7305 declare i64 @llvm.atomic.load.and.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7306 </pre>
7308 <pre>
7309 declare i8 @llvm.atomic.load.or.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7310 declare i16 @llvm.atomic.load.or.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7311 declare i32 @llvm.atomic.load.or.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7312 declare i64 @llvm.atomic.load.or.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7313 </pre>
7315 <pre>
7316 declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7317 declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7318 declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7319 declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7320 </pre>
7322 <pre>
7323 declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7324 declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7325 declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7326 declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7327 </pre>
7329 <h5>Overview:</h5>
7330 <p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
7331 the value stored in memory at <tt>ptr</tt>. It yields the original value
7332 at <tt>ptr</tt>.</p>
7334 <h5>Arguments:</h5>
7335 <p>These intrinsics take two arguments, the first a pointer to an integer value
7336 and the second an integer value. The result is also an integer value. These
7337 integer types can have any bit width, but they must all have the same bit
7338 width. The targets may only lower integer representations they support.</p>
7340 <h5>Semantics:</h5>
7341 <p>These intrinsics does a series of operations atomically. They first load the
7342 value stored at <tt>ptr</tt>. They then do the bitwise
7343 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
7344 original value stored at <tt>ptr</tt>.</p>
7346 <h5>Examples:</h5>
7347 <pre>
7348 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7349 %ptr = bitcast i8* %mallocP to i32*
7350 store i32 0x0F0F, %ptr
7351 %result0 = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)
7352 <i>; yields {i32}:result0 = 0x0F0F</i>
7353 %result1 = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)
7354 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
7355 %result2 = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)
7356 <i>; yields {i32}:result2 = 0xF0</i>
7357 %result3 = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)
7358 <i>; yields {i32}:result3 = FF</i>
7359 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
7360 </pre>
7362 </div>
7364 <!-- _______________________________________________________________________ -->
7365 <div class="doc_subsubsection">
7366 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
7367 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
7368 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
7369 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
7370 </div>
7372 <div class="doc_text">
7374 <h5>Syntax:</h5>
7375 <p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
7376 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
7377 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
7378 address spaces. Not all targets support all bit widths however.</p>
7380 <pre>
7381 declare i8 @llvm.atomic.load.max.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7382 declare i16 @llvm.atomic.load.max.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7383 declare i32 @llvm.atomic.load.max.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7384 declare i64 @llvm.atomic.load.max.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7385 </pre>
7387 <pre>
7388 declare i8 @llvm.atomic.load.min.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7389 declare i16 @llvm.atomic.load.min.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7390 declare i32 @llvm.atomic.load.min.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7391 declare i64 @llvm.atomic.load.min.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7392 </pre>
7394 <pre>
7395 declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7396 declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7397 declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7398 declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7399 </pre>
7401 <pre>
7402 declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7403 declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7404 declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7405 declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7406 </pre>
7408 <h5>Overview:</h5>
7409 <p>These intrinsics takes the signed or unsigned minimum or maximum of
7410 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7411 original value at <tt>ptr</tt>.</p>
7413 <h5>Arguments:</h5>
7414 <p>These intrinsics take two arguments, the first a pointer to an integer value
7415 and the second an integer value. The result is also an integer value. These
7416 integer types can have any bit width, but they must all have the same bit
7417 width. The targets may only lower integer representations they support.</p>
7419 <h5>Semantics:</h5>
7420 <p>These intrinsics does a series of operations atomically. They first load the
7421 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
7422 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
7423 yield the original value stored at <tt>ptr</tt>.</p>
7425 <h5>Examples:</h5>
7426 <pre>
7427 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7428 %ptr = bitcast i8* %mallocP to i32*
7429 store i32 7, %ptr
7430 %result0 = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)
7431 <i>; yields {i32}:result0 = 7</i>
7432 %result1 = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)
7433 <i>; yields {i32}:result1 = -2</i>
7434 %result2 = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)
7435 <i>; yields {i32}:result2 = 8</i>
7436 %result3 = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)
7437 <i>; yields {i32}:result3 = 8</i>
7438 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7439 </pre>
7441 </div>
7444 <!-- ======================================================================= -->
7445 <div class="doc_subsection">
7446 <a name="int_memorymarkers">Memory Use Markers</a>
7447 </div>
7449 <div class="doc_text">
7451 <p>This class of intrinsics exists to information about the lifetime of memory
7452 objects and ranges where variables are immutable.</p>
7454 </div>
7456 <!-- _______________________________________________________________________ -->
7457 <div class="doc_subsubsection">
7458 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
7459 </div>
7461 <div class="doc_text">
7463 <h5>Syntax:</h5>
7464 <pre>
7465 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7466 </pre>
7468 <h5>Overview:</h5>
7469 <p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7470 object's lifetime.</p>
7472 <h5>Arguments:</h5>
7473 <p>The first argument is a constant integer representing the size of the
7474 object, or -1 if it is variable sized. The second argument is a pointer to
7475 the object.</p>
7477 <h5>Semantics:</h5>
7478 <p>This intrinsic indicates that before this point in the code, the value of the
7479 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7480 never be used and has an undefined value. A load from the pointer that
7481 precedes this intrinsic can be replaced with
7482 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7484 </div>
7486 <!-- _______________________________________________________________________ -->
7487 <div class="doc_subsubsection">
7488 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
7489 </div>
7491 <div class="doc_text">
7493 <h5>Syntax:</h5>
7494 <pre>
7495 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7496 </pre>
7498 <h5>Overview:</h5>
7499 <p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7500 object's lifetime.</p>
7502 <h5>Arguments:</h5>
7503 <p>The first argument is a constant integer representing the size of the
7504 object, or -1 if it is variable sized. The second argument is a pointer to
7505 the object.</p>
7507 <h5>Semantics:</h5>
7508 <p>This intrinsic indicates that after this point in the code, the value of the
7509 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7510 never be used and has an undefined value. Any stores into the memory object
7511 following this intrinsic may be removed as dead.
7513 </div>
7515 <!-- _______________________________________________________________________ -->
7516 <div class="doc_subsubsection">
7517 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
7518 </div>
7520 <div class="doc_text">
7522 <h5>Syntax:</h5>
7523 <pre>
7524 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;) readonly
7525 </pre>
7527 <h5>Overview:</h5>
7528 <p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7529 a memory object will not change.</p>
7531 <h5>Arguments:</h5>
7532 <p>The first argument is a constant integer representing the size of the
7533 object, or -1 if it is variable sized. The second argument is a pointer to
7534 the object.</p>
7536 <h5>Semantics:</h5>
7537 <p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7538 the return value, the referenced memory location is constant and
7539 unchanging.</p>
7541 </div>
7543 <!-- _______________________________________________________________________ -->
7544 <div class="doc_subsubsection">
7545 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
7546 </div>
7548 <div class="doc_text">
7550 <h5>Syntax:</h5>
7551 <pre>
7552 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7553 </pre>
7555 <h5>Overview:</h5>
7556 <p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7557 a memory object are mutable.</p>
7559 <h5>Arguments:</h5>
7560 <p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
7561 The second argument is a constant integer representing the size of the
7562 object, or -1 if it is variable sized and the third argument is a pointer
7563 to the object.</p>
7565 <h5>Semantics:</h5>
7566 <p>This intrinsic indicates that the memory is mutable again.</p>
7568 </div>
7570 <!-- ======================================================================= -->
7571 <div class="doc_subsection">
7572 <a name="int_general">General Intrinsics</a>
7573 </div>
7575 <div class="doc_text">
7577 <p>This class of intrinsics is designed to be generic and has no specific
7578 purpose.</p>
7580 </div>
7582 <!-- _______________________________________________________________________ -->
7583 <div class="doc_subsubsection">
7584 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7585 </div>
7587 <div class="doc_text">
7589 <h5>Syntax:</h5>
7590 <pre>
7591 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7592 </pre>
7594 <h5>Overview:</h5>
7595 <p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
7597 <h5>Arguments:</h5>
7598 <p>The first argument is a pointer to a value, the second is a pointer to a
7599 global string, the third is a pointer to a global string which is the source
7600 file name, and the last argument is the line number.</p>
7602 <h5>Semantics:</h5>
7603 <p>This intrinsic allows annotation of local variables with arbitrary strings.
7604 This can be useful for special purpose optimizations that want to look for
7605 these annotations. These have no other defined use, they are ignored by code
7606 generation and optimization.</p>
7608 </div>
7610 <!-- _______________________________________________________________________ -->
7611 <div class="doc_subsubsection">
7612 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
7613 </div>
7615 <div class="doc_text">
7617 <h5>Syntax:</h5>
7618 <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7619 any integer bit width.</p>
7621 <pre>
7622 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7623 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7624 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7625 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7626 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7627 </pre>
7629 <h5>Overview:</h5>
7630 <p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
7632 <h5>Arguments:</h5>
7633 <p>The first argument is an integer value (result of some expression), the
7634 second is a pointer to a global string, the third is a pointer to a global
7635 string which is the source file name, and the last argument is the line
7636 number. It returns the value of the first argument.</p>
7638 <h5>Semantics:</h5>
7639 <p>This intrinsic allows annotations to be put on arbitrary expressions with
7640 arbitrary strings. This can be useful for special purpose optimizations that
7641 want to look for these annotations. These have no other defined use, they
7642 are ignored by code generation and optimization.</p>
7644 </div>
7646 <!-- _______________________________________________________________________ -->
7647 <div class="doc_subsubsection">
7648 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7649 </div>
7651 <div class="doc_text">
7653 <h5>Syntax:</h5>
7654 <pre>
7655 declare void @llvm.trap()
7656 </pre>
7658 <h5>Overview:</h5>
7659 <p>The '<tt>llvm.trap</tt>' intrinsic.</p>
7661 <h5>Arguments:</h5>
7662 <p>None.</p>
7664 <h5>Semantics:</h5>
7665 <p>This intrinsics is lowered to the target dependent trap instruction. If the
7666 target does not have a trap instruction, this intrinsic will be lowered to
7667 the call of the <tt>abort()</tt> function.</p>
7669 </div>
7671 <!-- _______________________________________________________________________ -->
7672 <div class="doc_subsubsection">
7673 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
7674 </div>
7676 <div class="doc_text">
7678 <h5>Syntax:</h5>
7679 <pre>
7680 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
7681 </pre>
7683 <h5>Overview:</h5>
7684 <p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7685 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7686 ensure that it is placed on the stack before local variables.</p>
7688 <h5>Arguments:</h5>
7689 <p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7690 arguments. The first argument is the value loaded from the stack
7691 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7692 that has enough space to hold the value of the guard.</p>
7694 <h5>Semantics:</h5>
7695 <p>This intrinsic causes the prologue/epilogue inserter to force the position of
7696 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7697 stack. This is to ensure that if a local variable on the stack is
7698 overwritten, it will destroy the value of the guard. When the function exits,
7699 the guard on the stack is checked against the original guard. If they're
7700 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7701 function.</p>
7703 </div>
7705 <!-- _______________________________________________________________________ -->
7706 <div class="doc_subsubsection">
7707 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
7708 </div>
7710 <div class="doc_text">
7712 <h5>Syntax:</h5>
7713 <pre>
7714 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
7715 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
7716 </pre>
7718 <h5>Overview:</h5>
7719 <p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information
7720 to the optimizers to discover at compile time either a) when an
7721 operation like memcpy will either overflow a buffer that corresponds to
7722 an object, or b) to determine that a runtime check for overflow isn't
7723 necessary. An object in this context means an allocation of a
7724 specific class, structure, array, or other object.</p>
7726 <h5>Arguments:</h5>
7727 <p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
7728 argument is a pointer to or into the <tt>object</tt>. The second argument
7729 is a boolean 0 or 1. This argument determines whether you want the
7730 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
7731 1, variables are not allowed.</p>
7733 <h5>Semantics:</h5>
7734 <p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
7735 representing the size of the object concerned or <tt>i32/i64 -1 or 0</tt>
7736 (depending on the <tt>type</tt> argument if the size cannot be determined
7737 at compile time.</p>
7739 </div>
7741 <!-- *********************************************************************** -->
7742 <hr>
7743 <address>
7744 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
7745 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
7746 <a href="http://validator.w3.org/check/referer"><img
7747 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
7749 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
7750 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
7751 Last modified: $Date$
7752 </address>
7754 </body>
7755 </html>