Don't analyze block if it's not considered for ifcvt anymore.
[llvm/stm8.git] / lib / CodeGen / TwoAddressInstructionPass.cpp
blob6d6244e4f879a9f10f90b46679d3860fa71e6f86
1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
12 // from:
14 // A = B op C
16 // to:
18 // A = B
19 // A op= C
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
23 // virtual registers.
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "twoaddrinstr"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/Function.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40 #include "llvm/Target/TargetInstrInfo.h"
41 #include "llvm/Target/TargetMachine.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/ADT/BitVector.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/SmallSet.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/ADT/STLExtras.h"
50 using namespace llvm;
52 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
53 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
54 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
55 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
56 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
57 STATISTIC(NumReMats, "Number of instructions re-materialized");
58 STATISTIC(NumDeletes, "Number of dead instructions deleted");
60 namespace {
61 class TwoAddressInstructionPass : public MachineFunctionPass {
62 const TargetInstrInfo *TII;
63 const TargetRegisterInfo *TRI;
64 MachineRegisterInfo *MRI;
65 LiveVariables *LV;
66 AliasAnalysis *AA;
68 // DistanceMap - Keep track the distance of a MI from the start of the
69 // current basic block.
70 DenseMap<MachineInstr*, unsigned> DistanceMap;
72 // SrcRegMap - A map from virtual registers to physical registers which
73 // are likely targets to be coalesced to due to copies from physical
74 // registers to virtual registers. e.g. v1024 = move r0.
75 DenseMap<unsigned, unsigned> SrcRegMap;
77 // DstRegMap - A map from virtual registers to physical registers which
78 // are likely targets to be coalesced to due to copies to physical
79 // registers from virtual registers. e.g. r1 = move v1024.
80 DenseMap<unsigned, unsigned> DstRegMap;
82 /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
83 /// during the initial walk of the machine function.
84 SmallVector<MachineInstr*, 16> RegSequences;
86 bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
87 unsigned Reg,
88 MachineBasicBlock::iterator OldPos);
90 bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
91 MachineInstr *MI, MachineInstr *DefMI,
92 MachineBasicBlock *MBB, unsigned Loc);
94 bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
95 unsigned &LastDef);
97 MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
98 unsigned Dist);
100 bool isProfitableToCommute(unsigned regB, unsigned regC,
101 MachineInstr *MI, MachineBasicBlock *MBB,
102 unsigned Dist);
104 bool CommuteInstruction(MachineBasicBlock::iterator &mi,
105 MachineFunction::iterator &mbbi,
106 unsigned RegB, unsigned RegC, unsigned Dist);
108 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
110 bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
111 MachineBasicBlock::iterator &nmi,
112 MachineFunction::iterator &mbbi,
113 unsigned RegA, unsigned RegB, unsigned Dist);
115 typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
116 bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
117 SmallVector<NewKill, 4> &NewKills,
118 MachineBasicBlock *MBB, unsigned Dist);
119 bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
120 MachineBasicBlock::iterator &nmi,
121 MachineFunction::iterator &mbbi, unsigned Dist);
123 bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
124 MachineBasicBlock::iterator &nmi,
125 MachineFunction::iterator &mbbi,
126 unsigned SrcIdx, unsigned DstIdx,
127 unsigned Dist,
128 SmallPtrSet<MachineInstr*, 8> &Processed);
130 void ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
131 SmallPtrSet<MachineInstr*, 8> &Processed);
133 void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
134 SmallPtrSet<MachineInstr*, 8> &Processed);
136 void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
138 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
139 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
140 /// sub-register references of the register defined by REG_SEQUENCE.
141 bool EliminateRegSequences();
143 public:
144 static char ID; // Pass identification, replacement for typeid
145 TwoAddressInstructionPass() : MachineFunctionPass(ID) {
146 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
149 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
150 AU.setPreservesCFG();
151 AU.addRequired<AliasAnalysis>();
152 AU.addPreserved<LiveVariables>();
153 AU.addPreservedID(MachineLoopInfoID);
154 AU.addPreservedID(MachineDominatorsID);
155 AU.addPreservedID(PHIEliminationID);
156 MachineFunctionPass::getAnalysisUsage(AU);
159 /// runOnMachineFunction - Pass entry point.
160 bool runOnMachineFunction(MachineFunction&);
164 char TwoAddressInstructionPass::ID = 0;
165 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
166 "Two-Address instruction pass", false, false)
167 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
168 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
169 "Two-Address instruction pass", false, false)
171 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
173 /// Sink3AddrInstruction - A two-address instruction has been converted to a
174 /// three-address instruction to avoid clobbering a register. Try to sink it
175 /// past the instruction that would kill the above mentioned register to reduce
176 /// register pressure.
177 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
178 MachineInstr *MI, unsigned SavedReg,
179 MachineBasicBlock::iterator OldPos) {
180 // Check if it's safe to move this instruction.
181 bool SeenStore = true; // Be conservative.
182 if (!MI->isSafeToMove(TII, AA, SeenStore))
183 return false;
185 unsigned DefReg = 0;
186 SmallSet<unsigned, 4> UseRegs;
188 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
189 const MachineOperand &MO = MI->getOperand(i);
190 if (!MO.isReg())
191 continue;
192 unsigned MOReg = MO.getReg();
193 if (!MOReg)
194 continue;
195 if (MO.isUse() && MOReg != SavedReg)
196 UseRegs.insert(MO.getReg());
197 if (!MO.isDef())
198 continue;
199 if (MO.isImplicit())
200 // Don't try to move it if it implicitly defines a register.
201 return false;
202 if (DefReg)
203 // For now, don't move any instructions that define multiple registers.
204 return false;
205 DefReg = MO.getReg();
208 // Find the instruction that kills SavedReg.
209 MachineInstr *KillMI = NULL;
210 for (MachineRegisterInfo::use_nodbg_iterator
211 UI = MRI->use_nodbg_begin(SavedReg),
212 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
213 MachineOperand &UseMO = UI.getOperand();
214 if (!UseMO.isKill())
215 continue;
216 KillMI = UseMO.getParent();
217 break;
220 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
221 return false;
223 // If any of the definitions are used by another instruction between the
224 // position and the kill use, then it's not safe to sink it.
226 // FIXME: This can be sped up if there is an easy way to query whether an
227 // instruction is before or after another instruction. Then we can use
228 // MachineRegisterInfo def / use instead.
229 MachineOperand *KillMO = NULL;
230 MachineBasicBlock::iterator KillPos = KillMI;
231 ++KillPos;
233 unsigned NumVisited = 0;
234 for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
235 MachineInstr *OtherMI = I;
236 // DBG_VALUE cannot be counted against the limit.
237 if (OtherMI->isDebugValue())
238 continue;
239 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
240 return false;
241 ++NumVisited;
242 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
243 MachineOperand &MO = OtherMI->getOperand(i);
244 if (!MO.isReg())
245 continue;
246 unsigned MOReg = MO.getReg();
247 if (!MOReg)
248 continue;
249 if (DefReg == MOReg)
250 return false;
252 if (MO.isKill()) {
253 if (OtherMI == KillMI && MOReg == SavedReg)
254 // Save the operand that kills the register. We want to unset the kill
255 // marker if we can sink MI past it.
256 KillMO = &MO;
257 else if (UseRegs.count(MOReg))
258 // One of the uses is killed before the destination.
259 return false;
264 // Update kill and LV information.
265 KillMO->setIsKill(false);
266 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
267 KillMO->setIsKill(true);
269 if (LV)
270 LV->replaceKillInstruction(SavedReg, KillMI, MI);
272 // Move instruction to its destination.
273 MBB->remove(MI);
274 MBB->insert(KillPos, MI);
276 ++Num3AddrSunk;
277 return true;
280 /// isTwoAddrUse - Return true if the specified MI is using the specified
281 /// register as a two-address operand.
282 static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
283 const MCInstrDesc &MCID = UseMI->getDesc();
284 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
285 MachineOperand &MO = UseMI->getOperand(i);
286 if (MO.isReg() && MO.getReg() == Reg &&
287 (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
288 // Earlier use is a two-address one.
289 return true;
291 return false;
294 /// isProfitableToReMat - Return true if the heuristics determines it is likely
295 /// to be profitable to re-materialize the definition of Reg rather than copy
296 /// the register.
297 bool
298 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
299 const TargetRegisterClass *RC,
300 MachineInstr *MI, MachineInstr *DefMI,
301 MachineBasicBlock *MBB, unsigned Loc) {
302 bool OtherUse = false;
303 for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
304 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
305 MachineOperand &UseMO = UI.getOperand();
306 MachineInstr *UseMI = UseMO.getParent();
307 MachineBasicBlock *UseMBB = UseMI->getParent();
308 if (UseMBB == MBB) {
309 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
310 if (DI != DistanceMap.end() && DI->second == Loc)
311 continue; // Current use.
312 OtherUse = true;
313 // There is at least one other use in the MBB that will clobber the
314 // register.
315 if (isTwoAddrUse(UseMI, Reg))
316 return true;
320 // If other uses in MBB are not two-address uses, then don't remat.
321 if (OtherUse)
322 return false;
324 // No other uses in the same block, remat if it's defined in the same
325 // block so it does not unnecessarily extend the live range.
326 return MBB == DefMI->getParent();
329 /// NoUseAfterLastDef - Return true if there are no intervening uses between the
330 /// last instruction in the MBB that defines the specified register and the
331 /// two-address instruction which is being processed. It also returns the last
332 /// def location by reference
333 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
334 MachineBasicBlock *MBB, unsigned Dist,
335 unsigned &LastDef) {
336 LastDef = 0;
337 unsigned LastUse = Dist;
338 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
339 E = MRI->reg_end(); I != E; ++I) {
340 MachineOperand &MO = I.getOperand();
341 MachineInstr *MI = MO.getParent();
342 if (MI->getParent() != MBB || MI->isDebugValue())
343 continue;
344 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
345 if (DI == DistanceMap.end())
346 continue;
347 if (MO.isUse() && DI->second < LastUse)
348 LastUse = DI->second;
349 if (MO.isDef() && DI->second > LastDef)
350 LastDef = DI->second;
353 return !(LastUse > LastDef && LastUse < Dist);
356 MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
357 MachineBasicBlock *MBB,
358 unsigned Dist) {
359 unsigned LastUseDist = 0;
360 MachineInstr *LastUse = 0;
361 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
362 E = MRI->reg_end(); I != E; ++I) {
363 MachineOperand &MO = I.getOperand();
364 MachineInstr *MI = MO.getParent();
365 if (MI->getParent() != MBB || MI->isDebugValue())
366 continue;
367 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
368 if (DI == DistanceMap.end())
369 continue;
370 if (DI->second >= Dist)
371 continue;
373 if (MO.isUse() && DI->second > LastUseDist) {
374 LastUse = DI->first;
375 LastUseDist = DI->second;
378 return LastUse;
381 /// isCopyToReg - Return true if the specified MI is a copy instruction or
382 /// a extract_subreg instruction. It also returns the source and destination
383 /// registers and whether they are physical registers by reference.
384 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
385 unsigned &SrcReg, unsigned &DstReg,
386 bool &IsSrcPhys, bool &IsDstPhys) {
387 SrcReg = 0;
388 DstReg = 0;
389 if (MI.isCopy()) {
390 DstReg = MI.getOperand(0).getReg();
391 SrcReg = MI.getOperand(1).getReg();
392 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
393 DstReg = MI.getOperand(0).getReg();
394 SrcReg = MI.getOperand(2).getReg();
395 } else
396 return false;
398 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
399 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
400 return true;
403 /// isKilled - Test if the given register value, which is used by the given
404 /// instruction, is killed by the given instruction. This looks through
405 /// coalescable copies to see if the original value is potentially not killed.
407 /// For example, in this code:
409 /// %reg1034 = copy %reg1024
410 /// %reg1035 = copy %reg1025<kill>
411 /// %reg1036 = add %reg1034<kill>, %reg1035<kill>
413 /// %reg1034 is not considered to be killed, since it is copied from a
414 /// register which is not killed. Treating it as not killed lets the
415 /// normal heuristics commute the (two-address) add, which lets
416 /// coalescing eliminate the extra copy.
418 static bool isKilled(MachineInstr &MI, unsigned Reg,
419 const MachineRegisterInfo *MRI,
420 const TargetInstrInfo *TII) {
421 MachineInstr *DefMI = &MI;
422 for (;;) {
423 if (!DefMI->killsRegister(Reg))
424 return false;
425 if (TargetRegisterInfo::isPhysicalRegister(Reg))
426 return true;
427 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
428 // If there are multiple defs, we can't do a simple analysis, so just
429 // go with what the kill flag says.
430 if (llvm::next(Begin) != MRI->def_end())
431 return true;
432 DefMI = &*Begin;
433 bool IsSrcPhys, IsDstPhys;
434 unsigned SrcReg, DstReg;
435 // If the def is something other than a copy, then it isn't going to
436 // be coalesced, so follow the kill flag.
437 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
438 return true;
439 Reg = SrcReg;
443 /// isTwoAddrUse - Return true if the specified MI uses the specified register
444 /// as a two-address use. If so, return the destination register by reference.
445 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
446 const MCInstrDesc &MCID = MI.getDesc();
447 unsigned NumOps = MI.isInlineAsm()
448 ? MI.getNumOperands() : MCID.getNumOperands();
449 for (unsigned i = 0; i != NumOps; ++i) {
450 const MachineOperand &MO = MI.getOperand(i);
451 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
452 continue;
453 unsigned ti;
454 if (MI.isRegTiedToDefOperand(i, &ti)) {
455 DstReg = MI.getOperand(ti).getReg();
456 return true;
459 return false;
462 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
463 /// use, return the use instruction if it's a copy or a two-address use.
464 static
465 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
466 MachineRegisterInfo *MRI,
467 const TargetInstrInfo *TII,
468 bool &IsCopy,
469 unsigned &DstReg, bool &IsDstPhys) {
470 if (!MRI->hasOneNonDBGUse(Reg))
471 // None or more than one use.
472 return 0;
473 MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
474 if (UseMI.getParent() != MBB)
475 return 0;
476 unsigned SrcReg;
477 bool IsSrcPhys;
478 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
479 IsCopy = true;
480 return &UseMI;
482 IsDstPhys = false;
483 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
484 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
485 return &UseMI;
487 return 0;
490 /// getMappedReg - Return the physical register the specified virtual register
491 /// might be mapped to.
492 static unsigned
493 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
494 while (TargetRegisterInfo::isVirtualRegister(Reg)) {
495 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
496 if (SI == RegMap.end())
497 return 0;
498 Reg = SI->second;
500 if (TargetRegisterInfo::isPhysicalRegister(Reg))
501 return Reg;
502 return 0;
505 /// regsAreCompatible - Return true if the two registers are equal or aliased.
507 static bool
508 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
509 if (RegA == RegB)
510 return true;
511 if (!RegA || !RegB)
512 return false;
513 return TRI->regsOverlap(RegA, RegB);
517 /// isProfitableToReMat - Return true if it's potentially profitable to commute
518 /// the two-address instruction that's being processed.
519 bool
520 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
521 MachineInstr *MI, MachineBasicBlock *MBB,
522 unsigned Dist) {
523 // Determine if it's profitable to commute this two address instruction. In
524 // general, we want no uses between this instruction and the definition of
525 // the two-address register.
526 // e.g.
527 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
528 // %reg1029<def> = MOV8rr %reg1028
529 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
530 // insert => %reg1030<def> = MOV8rr %reg1028
531 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
532 // In this case, it might not be possible to coalesce the second MOV8rr
533 // instruction if the first one is coalesced. So it would be profitable to
534 // commute it:
535 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
536 // %reg1029<def> = MOV8rr %reg1028
537 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
538 // insert => %reg1030<def> = MOV8rr %reg1029
539 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
541 if (!MI->killsRegister(regC))
542 return false;
544 // Ok, we have something like:
545 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
546 // let's see if it's worth commuting it.
548 // Look for situations like this:
549 // %reg1024<def> = MOV r1
550 // %reg1025<def> = MOV r0
551 // %reg1026<def> = ADD %reg1024, %reg1025
552 // r0 = MOV %reg1026
553 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
554 unsigned FromRegB = getMappedReg(regB, SrcRegMap);
555 unsigned FromRegC = getMappedReg(regC, SrcRegMap);
556 unsigned ToRegB = getMappedReg(regB, DstRegMap);
557 unsigned ToRegC = getMappedReg(regC, DstRegMap);
558 if ((FromRegB && ToRegB && !regsAreCompatible(FromRegB, ToRegB, TRI)) &&
559 ((!FromRegC && !ToRegC) ||
560 regsAreCompatible(FromRegB, ToRegC, TRI) ||
561 regsAreCompatible(FromRegC, ToRegB, TRI)))
562 return true;
564 // If there is a use of regC between its last def (could be livein) and this
565 // instruction, then bail.
566 unsigned LastDefC = 0;
567 if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
568 return false;
570 // If there is a use of regB between its last def (could be livein) and this
571 // instruction, then go ahead and make this transformation.
572 unsigned LastDefB = 0;
573 if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
574 return true;
576 // Since there are no intervening uses for both registers, then commute
577 // if the def of regC is closer. Its live interval is shorter.
578 return LastDefB && LastDefC && LastDefC > LastDefB;
581 /// CommuteInstruction - Commute a two-address instruction and update the basic
582 /// block, distance map, and live variables if needed. Return true if it is
583 /// successful.
584 bool
585 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
586 MachineFunction::iterator &mbbi,
587 unsigned RegB, unsigned RegC, unsigned Dist) {
588 MachineInstr *MI = mi;
589 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
590 MachineInstr *NewMI = TII->commuteInstruction(MI);
592 if (NewMI == 0) {
593 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
594 return false;
597 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
598 // If the instruction changed to commute it, update livevar.
599 if (NewMI != MI) {
600 if (LV)
601 // Update live variables
602 LV->replaceKillInstruction(RegC, MI, NewMI);
604 mbbi->insert(mi, NewMI); // Insert the new inst
605 mbbi->erase(mi); // Nuke the old inst.
606 mi = NewMI;
607 DistanceMap.insert(std::make_pair(NewMI, Dist));
610 // Update source register map.
611 unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
612 if (FromRegC) {
613 unsigned RegA = MI->getOperand(0).getReg();
614 SrcRegMap[RegA] = FromRegC;
617 return true;
620 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
621 /// given 2-address instruction to a 3-address one.
622 bool
623 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
624 // Look for situations like this:
625 // %reg1024<def> = MOV r1
626 // %reg1025<def> = MOV r0
627 // %reg1026<def> = ADD %reg1024, %reg1025
628 // r2 = MOV %reg1026
629 // Turn ADD into a 3-address instruction to avoid a copy.
630 unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
631 if (!FromRegB)
632 return false;
633 unsigned ToRegA = getMappedReg(RegA, DstRegMap);
634 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
637 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
638 /// three address one. Return true if this transformation was successful.
639 bool
640 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
641 MachineBasicBlock::iterator &nmi,
642 MachineFunction::iterator &mbbi,
643 unsigned RegA, unsigned RegB,
644 unsigned Dist) {
645 MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
646 if (NewMI) {
647 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
648 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
649 bool Sunk = false;
651 if (NewMI->findRegisterUseOperand(RegB, false, TRI))
652 // FIXME: Temporary workaround. If the new instruction doesn't
653 // uses RegB, convertToThreeAddress must have created more
654 // then one instruction.
655 Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
657 mbbi->erase(mi); // Nuke the old inst.
659 if (!Sunk) {
660 DistanceMap.insert(std::make_pair(NewMI, Dist));
661 mi = NewMI;
662 nmi = llvm::next(mi);
665 // Update source and destination register maps.
666 SrcRegMap.erase(RegA);
667 DstRegMap.erase(RegB);
668 return true;
671 return false;
674 /// ScanUses - Scan forward recursively for only uses, update maps if the use
675 /// is a copy or a two-address instruction.
676 void
677 TwoAddressInstructionPass::ScanUses(unsigned DstReg, MachineBasicBlock *MBB,
678 SmallPtrSet<MachineInstr*, 8> &Processed) {
679 SmallVector<unsigned, 4> VirtRegPairs;
680 bool IsDstPhys;
681 bool IsCopy = false;
682 unsigned NewReg = 0;
683 unsigned Reg = DstReg;
684 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
685 NewReg, IsDstPhys)) {
686 if (IsCopy && !Processed.insert(UseMI))
687 break;
689 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
690 if (DI != DistanceMap.end())
691 // Earlier in the same MBB.Reached via a back edge.
692 break;
694 if (IsDstPhys) {
695 VirtRegPairs.push_back(NewReg);
696 break;
698 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
699 if (!isNew)
700 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
701 VirtRegPairs.push_back(NewReg);
702 Reg = NewReg;
705 if (!VirtRegPairs.empty()) {
706 unsigned ToReg = VirtRegPairs.back();
707 VirtRegPairs.pop_back();
708 while (!VirtRegPairs.empty()) {
709 unsigned FromReg = VirtRegPairs.back();
710 VirtRegPairs.pop_back();
711 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
712 if (!isNew)
713 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
714 ToReg = FromReg;
716 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
717 if (!isNew)
718 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
722 /// ProcessCopy - If the specified instruction is not yet processed, process it
723 /// if it's a copy. For a copy instruction, we find the physical registers the
724 /// source and destination registers might be mapped to. These are kept in
725 /// point-to maps used to determine future optimizations. e.g.
726 /// v1024 = mov r0
727 /// v1025 = mov r1
728 /// v1026 = add v1024, v1025
729 /// r1 = mov r1026
730 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
731 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
732 /// potentially joined with r1 on the output side. It's worthwhile to commute
733 /// 'add' to eliminate a copy.
734 void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
735 MachineBasicBlock *MBB,
736 SmallPtrSet<MachineInstr*, 8> &Processed) {
737 if (Processed.count(MI))
738 return;
740 bool IsSrcPhys, IsDstPhys;
741 unsigned SrcReg, DstReg;
742 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
743 return;
745 if (IsDstPhys && !IsSrcPhys)
746 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
747 else if (!IsDstPhys && IsSrcPhys) {
748 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
749 if (!isNew)
750 assert(SrcRegMap[DstReg] == SrcReg &&
751 "Can't map to two src physical registers!");
753 ScanUses(DstReg, MBB, Processed);
756 Processed.insert(MI);
757 return;
760 /// isSafeToDelete - If the specified instruction does not produce any side
761 /// effects and all of its defs are dead, then it's safe to delete.
762 static bool isSafeToDelete(MachineInstr *MI,
763 const TargetInstrInfo *TII,
764 SmallVector<unsigned, 4> &Kills) {
765 const MCInstrDesc &MCID = MI->getDesc();
766 if (MCID.mayStore() || MCID.isCall())
767 return false;
768 if (MCID.isTerminator() || MI->hasUnmodeledSideEffects())
769 return false;
771 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
772 MachineOperand &MO = MI->getOperand(i);
773 if (!MO.isReg())
774 continue;
775 if (MO.isDef() && !MO.isDead())
776 return false;
777 if (MO.isUse() && MO.isKill())
778 Kills.push_back(MO.getReg());
780 return true;
783 /// canUpdateDeletedKills - Check if all the registers listed in Kills are
784 /// killed by instructions in MBB preceding the current instruction at
785 /// position Dist. If so, return true and record information about the
786 /// preceding kills in NewKills.
787 bool TwoAddressInstructionPass::
788 canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
789 SmallVector<NewKill, 4> &NewKills,
790 MachineBasicBlock *MBB, unsigned Dist) {
791 while (!Kills.empty()) {
792 unsigned Kill = Kills.back();
793 Kills.pop_back();
794 if (TargetRegisterInfo::isPhysicalRegister(Kill))
795 return false;
797 MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
798 if (!LastKill)
799 return false;
801 bool isModRef = LastKill->definesRegister(Kill);
802 NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
803 LastKill));
805 return true;
808 /// DeleteUnusedInstr - If an instruction with a tied register operand can
809 /// be safely deleted, just delete it.
810 bool
811 TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
812 MachineBasicBlock::iterator &nmi,
813 MachineFunction::iterator &mbbi,
814 unsigned Dist) {
815 // Check if the instruction has no side effects and if all its defs are dead.
816 SmallVector<unsigned, 4> Kills;
817 if (!isSafeToDelete(mi, TII, Kills))
818 return false;
820 // If this instruction kills some virtual registers, we need to
821 // update the kill information. If it's not possible to do so,
822 // then bail out.
823 SmallVector<NewKill, 4> NewKills;
824 if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
825 return false;
827 if (LV) {
828 while (!NewKills.empty()) {
829 MachineInstr *NewKill = NewKills.back().second;
830 unsigned Kill = NewKills.back().first.first;
831 bool isDead = NewKills.back().first.second;
832 NewKills.pop_back();
833 if (LV->removeVirtualRegisterKilled(Kill, mi)) {
834 if (isDead)
835 LV->addVirtualRegisterDead(Kill, NewKill);
836 else
837 LV->addVirtualRegisterKilled(Kill, NewKill);
842 mbbi->erase(mi); // Nuke the old inst.
843 mi = nmi;
844 return true;
847 /// TryInstructionTransform - For the case where an instruction has a single
848 /// pair of tied register operands, attempt some transformations that may
849 /// either eliminate the tied operands or improve the opportunities for
850 /// coalescing away the register copy. Returns true if the tied operands
851 /// are eliminated altogether.
852 bool TwoAddressInstructionPass::
853 TryInstructionTransform(MachineBasicBlock::iterator &mi,
854 MachineBasicBlock::iterator &nmi,
855 MachineFunction::iterator &mbbi,
856 unsigned SrcIdx, unsigned DstIdx, unsigned Dist,
857 SmallPtrSet<MachineInstr*, 8> &Processed) {
858 const MCInstrDesc &MCID = mi->getDesc();
859 unsigned regA = mi->getOperand(DstIdx).getReg();
860 unsigned regB = mi->getOperand(SrcIdx).getReg();
862 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
863 "cannot make instruction into two-address form");
865 // If regA is dead and the instruction can be deleted, just delete
866 // it so it doesn't clobber regB.
867 bool regBKilled = isKilled(*mi, regB, MRI, TII);
868 if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
869 DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
870 ++NumDeletes;
871 return true; // Done with this instruction.
874 // Check if it is profitable to commute the operands.
875 unsigned SrcOp1, SrcOp2;
876 unsigned regC = 0;
877 unsigned regCIdx = ~0U;
878 bool TryCommute = false;
879 bool AggressiveCommute = false;
880 if (MCID.isCommutable() && mi->getNumOperands() >= 3 &&
881 TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
882 if (SrcIdx == SrcOp1)
883 regCIdx = SrcOp2;
884 else if (SrcIdx == SrcOp2)
885 regCIdx = SrcOp1;
887 if (regCIdx != ~0U) {
888 regC = mi->getOperand(regCIdx).getReg();
889 if (!regBKilled && isKilled(*mi, regC, MRI, TII))
890 // If C dies but B does not, swap the B and C operands.
891 // This makes the live ranges of A and C joinable.
892 TryCommute = true;
893 else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
894 TryCommute = true;
895 AggressiveCommute = true;
900 // If it's profitable to commute, try to do so.
901 if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
902 ++NumCommuted;
903 if (AggressiveCommute)
904 ++NumAggrCommuted;
905 return false;
908 if (TargetRegisterInfo::isVirtualRegister(regA))
909 ScanUses(regA, &*mbbi, Processed);
911 if (MCID.isConvertibleTo3Addr()) {
912 // This instruction is potentially convertible to a true
913 // three-address instruction. Check if it is profitable.
914 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
915 // Try to convert it.
916 if (ConvertInstTo3Addr(mi, nmi, mbbi, regA, regB, Dist)) {
917 ++NumConvertedTo3Addr;
918 return true; // Done with this instruction.
923 // If this is an instruction with a load folded into it, try unfolding
924 // the load, e.g. avoid this:
925 // movq %rdx, %rcx
926 // addq (%rax), %rcx
927 // in favor of this:
928 // movq (%rax), %rcx
929 // addq %rdx, %rcx
930 // because it's preferable to schedule a load than a register copy.
931 if (MCID.mayLoad() && !regBKilled) {
932 // Determine if a load can be unfolded.
933 unsigned LoadRegIndex;
934 unsigned NewOpc =
935 TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(),
936 /*UnfoldLoad=*/true,
937 /*UnfoldStore=*/false,
938 &LoadRegIndex);
939 if (NewOpc != 0) {
940 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
941 if (UnfoldMCID.getNumDefs() == 1) {
942 MachineFunction &MF = *mbbi->getParent();
944 // Unfold the load.
945 DEBUG(dbgs() << "2addr: UNFOLDING: " << *mi);
946 const TargetRegisterClass *RC =
947 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI);
948 unsigned Reg = MRI->createVirtualRegister(RC);
949 SmallVector<MachineInstr *, 2> NewMIs;
950 if (!TII->unfoldMemoryOperand(MF, mi, Reg,
951 /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
952 NewMIs)) {
953 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
954 return false;
956 assert(NewMIs.size() == 2 &&
957 "Unfolded a load into multiple instructions!");
958 // The load was previously folded, so this is the only use.
959 NewMIs[1]->addRegisterKilled(Reg, TRI);
961 // Tentatively insert the instructions into the block so that they
962 // look "normal" to the transformation logic.
963 mbbi->insert(mi, NewMIs[0]);
964 mbbi->insert(mi, NewMIs[1]);
966 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0]
967 << "2addr: NEW INST: " << *NewMIs[1]);
969 // Transform the instruction, now that it no longer has a load.
970 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
971 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
972 MachineBasicBlock::iterator NewMI = NewMIs[1];
973 bool TransformSuccess =
974 TryInstructionTransform(NewMI, mi, mbbi,
975 NewSrcIdx, NewDstIdx, Dist, Processed);
976 if (TransformSuccess ||
977 NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
978 // Success, or at least we made an improvement. Keep the unfolded
979 // instructions and discard the original.
980 if (LV) {
981 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
982 MachineOperand &MO = mi->getOperand(i);
983 if (MO.isReg() &&
984 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
985 if (MO.isUse()) {
986 if (MO.isKill()) {
987 if (NewMIs[0]->killsRegister(MO.getReg()))
988 LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]);
989 else {
990 assert(NewMIs[1]->killsRegister(MO.getReg()) &&
991 "Kill missing after load unfold!");
992 LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]);
995 } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) {
996 if (NewMIs[1]->registerDefIsDead(MO.getReg()))
997 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
998 else {
999 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1000 "Dead flag missing after load unfold!");
1001 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1006 LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1008 mi->eraseFromParent();
1009 mi = NewMIs[1];
1010 if (TransformSuccess)
1011 return true;
1012 } else {
1013 // Transforming didn't eliminate the tie and didn't lead to an
1014 // improvement. Clean up the unfolded instructions and keep the
1015 // original.
1016 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1017 NewMIs[0]->eraseFromParent();
1018 NewMIs[1]->eraseFromParent();
1024 return false;
1027 /// runOnMachineFunction - Reduce two-address instructions to two operands.
1029 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1030 DEBUG(dbgs() << "Machine Function\n");
1031 const TargetMachine &TM = MF.getTarget();
1032 MRI = &MF.getRegInfo();
1033 TII = TM.getInstrInfo();
1034 TRI = TM.getRegisterInfo();
1035 LV = getAnalysisIfAvailable<LiveVariables>();
1036 AA = &getAnalysis<AliasAnalysis>();
1038 bool MadeChange = false;
1040 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1041 DEBUG(dbgs() << "********** Function: "
1042 << MF.getFunction()->getName() << '\n');
1044 // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1045 BitVector ReMatRegs(MRI->getNumVirtRegs());
1047 typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1048 TiedOperandMap;
1049 TiedOperandMap TiedOperands(4);
1051 SmallPtrSet<MachineInstr*, 8> Processed;
1052 for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1053 mbbi != mbbe; ++mbbi) {
1054 unsigned Dist = 0;
1055 DistanceMap.clear();
1056 SrcRegMap.clear();
1057 DstRegMap.clear();
1058 Processed.clear();
1059 for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1060 mi != me; ) {
1061 MachineBasicBlock::iterator nmi = llvm::next(mi);
1062 if (mi->isDebugValue()) {
1063 mi = nmi;
1064 continue;
1067 // Remember REG_SEQUENCE instructions, we'll deal with them later.
1068 if (mi->isRegSequence())
1069 RegSequences.push_back(&*mi);
1071 const MCInstrDesc &MCID = mi->getDesc();
1072 bool FirstTied = true;
1074 DistanceMap.insert(std::make_pair(mi, ++Dist));
1076 ProcessCopy(&*mi, &*mbbi, Processed);
1078 // First scan through all the tied register uses in this instruction
1079 // and record a list of pairs of tied operands for each register.
1080 unsigned NumOps = mi->isInlineAsm()
1081 ? mi->getNumOperands() : MCID.getNumOperands();
1082 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1083 unsigned DstIdx = 0;
1084 if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1085 continue;
1087 if (FirstTied) {
1088 FirstTied = false;
1089 ++NumTwoAddressInstrs;
1090 DEBUG(dbgs() << '\t' << *mi);
1093 assert(mi->getOperand(SrcIdx).isReg() &&
1094 mi->getOperand(SrcIdx).getReg() &&
1095 mi->getOperand(SrcIdx).isUse() &&
1096 "two address instruction invalid");
1098 unsigned regB = mi->getOperand(SrcIdx).getReg();
1099 TiedOperands[regB].push_back(std::make_pair(SrcIdx, DstIdx));
1102 // Now iterate over the information collected above.
1103 for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1104 OE = TiedOperands.end(); OI != OE; ++OI) {
1105 SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1107 // If the instruction has a single pair of tied operands, try some
1108 // transformations that may either eliminate the tied operands or
1109 // improve the opportunities for coalescing away the register copy.
1110 if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1111 unsigned SrcIdx = TiedPairs[0].first;
1112 unsigned DstIdx = TiedPairs[0].second;
1114 // If the registers are already equal, nothing needs to be done.
1115 if (mi->getOperand(SrcIdx).getReg() ==
1116 mi->getOperand(DstIdx).getReg())
1117 break; // Done with this instruction.
1119 if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist,
1120 Processed))
1121 break; // The tied operands have been eliminated.
1124 bool IsEarlyClobber = false;
1125 bool RemovedKillFlag = false;
1126 bool AllUsesCopied = true;
1127 unsigned LastCopiedReg = 0;
1128 unsigned regB = OI->first;
1129 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1130 unsigned SrcIdx = TiedPairs[tpi].first;
1131 unsigned DstIdx = TiedPairs[tpi].second;
1133 const MachineOperand &DstMO = mi->getOperand(DstIdx);
1134 unsigned regA = DstMO.getReg();
1135 IsEarlyClobber |= DstMO.isEarlyClobber();
1137 // Grab regB from the instruction because it may have changed if the
1138 // instruction was commuted.
1139 regB = mi->getOperand(SrcIdx).getReg();
1141 if (regA == regB) {
1142 // The register is tied to multiple destinations (or else we would
1143 // not have continued this far), but this use of the register
1144 // already matches the tied destination. Leave it.
1145 AllUsesCopied = false;
1146 continue;
1148 LastCopiedReg = regA;
1150 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1151 "cannot make instruction into two-address form");
1153 #ifndef NDEBUG
1154 // First, verify that we don't have a use of "a" in the instruction
1155 // (a = b + a for example) because our transformation will not
1156 // work. This should never occur because we are in SSA form.
1157 for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1158 assert(i == DstIdx ||
1159 !mi->getOperand(i).isReg() ||
1160 mi->getOperand(i).getReg() != regA);
1161 #endif
1163 // Emit a copy or rematerialize the definition.
1164 const TargetRegisterClass *rc = MRI->getRegClass(regB);
1165 MachineInstr *DefMI = MRI->getVRegDef(regB);
1166 // If it's safe and profitable, remat the definition instead of
1167 // copying it.
1168 if (DefMI &&
1169 DefMI->getDesc().isAsCheapAsAMove() &&
1170 DefMI->isSafeToReMat(TII, AA, regB) &&
1171 isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1172 DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1173 unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1174 TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1175 ReMatRegs.set(TargetRegisterInfo::virtReg2Index(regB));
1176 ++NumReMats;
1177 } else {
1178 BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1179 regA).addReg(regB);
1182 MachineBasicBlock::iterator prevMI = prior(mi);
1183 // Update DistanceMap.
1184 DistanceMap.insert(std::make_pair(prevMI, Dist));
1185 DistanceMap[mi] = ++Dist;
1187 DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1189 MachineOperand &MO = mi->getOperand(SrcIdx);
1190 assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1191 "inconsistent operand info for 2-reg pass");
1192 if (MO.isKill()) {
1193 MO.setIsKill(false);
1194 RemovedKillFlag = true;
1196 MO.setReg(regA);
1199 if (AllUsesCopied) {
1200 if (!IsEarlyClobber) {
1201 // Replace other (un-tied) uses of regB with LastCopiedReg.
1202 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1203 MachineOperand &MO = mi->getOperand(i);
1204 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1205 if (MO.isKill()) {
1206 MO.setIsKill(false);
1207 RemovedKillFlag = true;
1209 MO.setReg(LastCopiedReg);
1214 // Update live variables for regB.
1215 if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1216 LV->addVirtualRegisterKilled(regB, prior(mi));
1218 } else if (RemovedKillFlag) {
1219 // Some tied uses of regB matched their destination registers, so
1220 // regB is still used in this instruction, but a kill flag was
1221 // removed from a different tied use of regB, so now we need to add
1222 // a kill flag to one of the remaining uses of regB.
1223 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1224 MachineOperand &MO = mi->getOperand(i);
1225 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1226 MO.setIsKill(true);
1227 break;
1232 // Schedule the source copy / remat inserted to form two-address
1233 // instruction. FIXME: Does it matter the distance map may not be
1234 // accurate after it's scheduled?
1235 TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1237 MadeChange = true;
1239 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1242 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1243 if (mi->isInsertSubreg()) {
1244 // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1245 // To %reg:subidx = COPY %subreg
1246 unsigned SubIdx = mi->getOperand(3).getImm();
1247 mi->RemoveOperand(3);
1248 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1249 mi->getOperand(0).setSubReg(SubIdx);
1250 mi->RemoveOperand(1);
1251 mi->setDesc(TII->get(TargetOpcode::COPY));
1252 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1255 // Clear TiedOperands here instead of at the top of the loop
1256 // since most instructions do not have tied operands.
1257 TiedOperands.clear();
1258 mi = nmi;
1262 // Some remat'ed instructions are dead.
1263 for (int i = ReMatRegs.find_first(); i != -1; i = ReMatRegs.find_next(i)) {
1264 unsigned VReg = TargetRegisterInfo::index2VirtReg(i);
1265 if (MRI->use_nodbg_empty(VReg)) {
1266 MachineInstr *DefMI = MRI->getVRegDef(VReg);
1267 DefMI->eraseFromParent();
1271 // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1272 // SSA form. It's now safe to de-SSA.
1273 MadeChange |= EliminateRegSequences();
1275 return MadeChange;
1278 static void UpdateRegSequenceSrcs(unsigned SrcReg,
1279 unsigned DstReg, unsigned SubIdx,
1280 MachineRegisterInfo *MRI,
1281 const TargetRegisterInfo &TRI) {
1282 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1283 RE = MRI->reg_end(); RI != RE; ) {
1284 MachineOperand &MO = RI.getOperand();
1285 ++RI;
1286 MO.substVirtReg(DstReg, SubIdx, TRI);
1290 /// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1291 /// EXTRACT_SUBREG from the same register and to the same virtual register
1292 /// with different sub-register indices, attempt to combine the
1293 /// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1294 /// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1295 /// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1296 /// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1297 /// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1298 /// reg1026 to reg1029.
1299 void
1300 TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1301 unsigned DstReg) {
1302 SmallSet<unsigned, 4> Seen;
1303 for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1304 unsigned SrcReg = Srcs[i];
1305 if (!Seen.insert(SrcReg))
1306 continue;
1308 // Check that the instructions are all in the same basic block.
1309 MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1310 MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1311 if (SrcDefMI->getParent() != DstDefMI->getParent())
1312 continue;
1314 // If there are no other uses than copies which feed into
1315 // the reg_sequence, then we might be able to coalesce them.
1316 bool CanCoalesce = true;
1317 SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1318 for (MachineRegisterInfo::use_nodbg_iterator
1319 UI = MRI->use_nodbg_begin(SrcReg),
1320 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1321 MachineInstr *UseMI = &*UI;
1322 if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1323 CanCoalesce = false;
1324 break;
1326 SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1327 DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1330 if (!CanCoalesce || SrcSubIndices.size() < 2)
1331 continue;
1333 // Check that the source subregisters can be combined.
1334 std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1335 unsigned NewSrcSubIdx = 0;
1336 if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1337 NewSrcSubIdx))
1338 continue;
1340 // Check that the destination subregisters can also be combined.
1341 std::sort(DstSubIndices.begin(), DstSubIndices.end());
1342 unsigned NewDstSubIdx = 0;
1343 if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1344 NewDstSubIdx))
1345 continue;
1347 // If neither source nor destination can be combined to the full register,
1348 // just give up. This could be improved if it ever matters.
1349 if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1350 continue;
1352 // Now that we know that all the uses are extract_subregs and that those
1353 // subregs can somehow be combined, scan all the extract_subregs again to
1354 // make sure the subregs are in the right order and can be composed.
1355 MachineInstr *SomeMI = 0;
1356 CanCoalesce = true;
1357 for (MachineRegisterInfo::use_nodbg_iterator
1358 UI = MRI->use_nodbg_begin(SrcReg),
1359 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1360 MachineInstr *UseMI = &*UI;
1361 assert(UseMI->isCopy());
1362 unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1363 unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1364 assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1365 if ((NewDstSubIdx == 0 &&
1366 TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1367 (NewSrcSubIdx == 0 &&
1368 TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1369 CanCoalesce = false;
1370 break;
1372 // Keep track of one of the uses.
1373 SomeMI = UseMI;
1375 if (!CanCoalesce)
1376 continue;
1378 // Insert a copy to replace the original.
1379 MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1380 SomeMI->getDebugLoc(),
1381 TII->get(TargetOpcode::COPY))
1382 .addReg(DstReg, RegState::Define, NewDstSubIdx)
1383 .addReg(SrcReg, 0, NewSrcSubIdx);
1385 // Remove all the old extract instructions.
1386 for (MachineRegisterInfo::use_nodbg_iterator
1387 UI = MRI->use_nodbg_begin(SrcReg),
1388 UE = MRI->use_nodbg_end(); UI != UE; ) {
1389 MachineInstr *UseMI = &*UI;
1390 ++UI;
1391 if (UseMI == CopyMI)
1392 continue;
1393 assert(UseMI->isCopy());
1394 // Move any kills to the new copy or extract instruction.
1395 if (UseMI->getOperand(1).isKill()) {
1396 CopyMI->getOperand(1).setIsKill();
1397 if (LV)
1398 // Update live variables
1399 LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1401 UseMI->eraseFromParent();
1406 static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1407 MachineRegisterInfo *MRI) {
1408 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1409 UE = MRI->use_end(); UI != UE; ++UI) {
1410 MachineInstr *UseMI = &*UI;
1411 if (UseMI != RegSeq && UseMI->isRegSequence())
1412 return true;
1414 return false;
1417 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1418 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1419 /// sub-register references of the register defined by REG_SEQUENCE. e.g.
1421 /// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1422 /// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1423 /// =>
1424 /// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1425 bool TwoAddressInstructionPass::EliminateRegSequences() {
1426 if (RegSequences.empty())
1427 return false;
1429 for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1430 MachineInstr *MI = RegSequences[i];
1431 unsigned DstReg = MI->getOperand(0).getReg();
1432 if (MI->getOperand(0).getSubReg() ||
1433 TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1434 !(MI->getNumOperands() & 1)) {
1435 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1436 llvm_unreachable(0);
1439 bool IsImpDef = true;
1440 SmallVector<unsigned, 4> RealSrcs;
1441 SmallSet<unsigned, 4> Seen;
1442 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1443 unsigned SrcReg = MI->getOperand(i).getReg();
1444 unsigned SubIdx = MI->getOperand(i+1).getImm();
1445 if (MI->getOperand(i).getSubReg() ||
1446 TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1447 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1448 llvm_unreachable(0);
1451 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
1452 if (DefMI->isImplicitDef()) {
1453 DefMI->eraseFromParent();
1454 continue;
1456 IsImpDef = false;
1458 // Remember COPY sources. These might be candidate for coalescing.
1459 if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1460 RealSrcs.push_back(DefMI->getOperand(1).getReg());
1462 bool isKill = MI->getOperand(i).isKill();
1463 if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
1464 !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI) ||
1465 !TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg),
1466 MRI->getRegClass(SrcReg), SubIdx)) {
1467 // REG_SEQUENCE cannot have duplicated operands, add a copy.
1468 // Also add an copy if the source is live-in the block. We don't want
1469 // to end up with a partial-redef of a livein, e.g.
1470 // BB0:
1471 // reg1051:10<def> =
1472 // ...
1473 // BB1:
1474 // ... = reg1051:10
1475 // BB2:
1476 // reg1051:9<def> =
1477 // LiveIntervalAnalysis won't like it.
1479 // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1480 // correctly up to date becomes very difficult. Insert a copy.
1482 // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1483 // might insert a COPY that uses SrcReg after is was killed.
1484 if (isKill)
1485 for (unsigned j = i + 2; j < e; j += 2)
1486 if (MI->getOperand(j).getReg() == SrcReg) {
1487 MI->getOperand(j).setIsKill();
1488 isKill = false;
1489 break;
1492 MachineBasicBlock::iterator InsertLoc = MI;
1493 MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1494 MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1495 .addReg(DstReg, RegState::Define, SubIdx)
1496 .addReg(SrcReg, getKillRegState(isKill));
1497 MI->getOperand(i).setReg(0);
1498 if (LV && isKill)
1499 LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1500 DEBUG(dbgs() << "Inserted: " << *CopyMI);
1504 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1505 unsigned SrcReg = MI->getOperand(i).getReg();
1506 if (!SrcReg) continue;
1507 unsigned SubIdx = MI->getOperand(i+1).getImm();
1508 UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1511 if (IsImpDef) {
1512 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1513 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1514 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1515 MI->RemoveOperand(j);
1516 } else {
1517 DEBUG(dbgs() << "Eliminated: " << *MI);
1518 MI->eraseFromParent();
1521 // Try coalescing some EXTRACT_SUBREG instructions. This can create
1522 // INSERT_SUBREG instructions that must have <undef> flags added by
1523 // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1524 if (LV)
1525 CoalesceExtSubRegs(RealSrcs, DstReg);
1528 RegSequences.clear();
1529 return true;