1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the DAG Matcher optimizer.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel-opt"
15 #include "DAGISelMatcher.h"
16 #include "CodeGenDAGPatterns.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/StringSet.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/raw_ostream.h"
24 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
25 /// into single compound nodes like RecordChild.
26 static void ContractNodes(OwningPtr
<Matcher
> &MatcherPtr
,
27 const CodeGenDAGPatterns
&CGP
) {
28 // If we reached the end of the chain, we're done.
29 Matcher
*N
= MatcherPtr
.get();
32 // If we have a scope node, walk down all of the children.
33 if (ScopeMatcher
*Scope
= dyn_cast
<ScopeMatcher
>(N
)) {
34 for (unsigned i
= 0, e
= Scope
->getNumChildren(); i
!= e
; ++i
) {
35 OwningPtr
<Matcher
> Child(Scope
->takeChild(i
));
36 ContractNodes(Child
, CGP
);
37 Scope
->resetChild(i
, Child
.take());
42 // If we found a movechild node with a node that comes in a 'foochild' form,
44 if (MoveChildMatcher
*MC
= dyn_cast
<MoveChildMatcher
>(N
)) {
46 if (RecordMatcher
*RM
= dyn_cast
<RecordMatcher
>(MC
->getNext()))
47 if (MC
->getChildNo() < 8) // Only have RecordChild0...7
48 New
= new RecordChildMatcher(MC
->getChildNo(), RM
->getWhatFor(),
51 if (CheckTypeMatcher
*CT
= dyn_cast
<CheckTypeMatcher
>(MC
->getNext()))
52 if (MC
->getChildNo() < 8 && // Only have CheckChildType0...7
53 CT
->getResNo() == 0) // CheckChildType checks res #0
54 New
= new CheckChildTypeMatcher(MC
->getChildNo(), CT
->getType());
57 // Insert the new node.
58 New
->setNext(MatcherPtr
.take());
59 MatcherPtr
.reset(New
);
60 // Remove the old one.
61 MC
->setNext(MC
->getNext()->takeNext());
62 return ContractNodes(MatcherPtr
, CGP
);
66 // Zap movechild -> moveparent.
67 if (MoveChildMatcher
*MC
= dyn_cast
<MoveChildMatcher
>(N
))
68 if (MoveParentMatcher
*MP
=
69 dyn_cast
<MoveParentMatcher
>(MC
->getNext())) {
70 MatcherPtr
.reset(MP
->takeNext());
71 return ContractNodes(MatcherPtr
, CGP
);
74 // Turn EmitNode->MarkFlagResults->CompleteMatch into
75 // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage
76 // MorphNodeTo formation. This is safe because MarkFlagResults never refers
77 // to the root of the pattern.
78 if (isa
<EmitNodeMatcher
>(N
) && isa
<MarkFlagResultsMatcher
>(N
->getNext()) &&
79 isa
<CompleteMatchMatcher
>(N
->getNext()->getNext())) {
80 // Unlink the two nodes from the list.
81 Matcher
*EmitNode
= MatcherPtr
.take();
82 Matcher
*MFR
= EmitNode
->takeNext();
83 Matcher
*Tail
= MFR
->takeNext();
86 MatcherPtr
.reset(MFR
);
87 MFR
->setNext(EmitNode
);
88 EmitNode
->setNext(Tail
);
89 return ContractNodes(MatcherPtr
, CGP
);
92 // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
93 if (EmitNodeMatcher
*EN
= dyn_cast
<EmitNodeMatcher
>(N
))
94 if (CompleteMatchMatcher
*CM
=
95 dyn_cast
<CompleteMatchMatcher
>(EN
->getNext())) {
96 // We can only use MorphNodeTo if the result values match up.
97 unsigned RootResultFirst
= EN
->getFirstResultSlot();
98 bool ResultsMatch
= true;
99 for (unsigned i
= 0, e
= CM
->getNumResults(); i
!= e
; ++i
)
100 if (CM
->getResult(i
) != RootResultFirst
+i
)
101 ResultsMatch
= false;
103 // If the selected node defines a subset of the flag/chain results, we
104 // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the
105 // matched pattern has a chain but the root node doesn't.
106 const PatternToMatch
&Pattern
= CM
->getPattern();
108 if (!EN
->hasChain() &&
109 Pattern
.getSrcPattern()->NodeHasProperty(SDNPHasChain
, CGP
))
110 ResultsMatch
= false;
112 // If the matched node has a flag and the output root doesn't, we can't
115 // NOTE: Strictly speaking, we don't have to check for the flag here
116 // because the code in the pattern generator doesn't handle it right. We
117 // do it anyway for thoroughness.
118 if (!EN
->hasOutFlag() &&
119 Pattern
.getSrcPattern()->NodeHasProperty(SDNPOutFlag
, CGP
))
120 ResultsMatch
= false;
123 // If the root result node defines more results than the source root node
124 // *and* has a chain or flag input, then we can't match it because it
125 // would end up replacing the extra result with the chain/flag.
127 if ((EN
->hasFlag() || EN
->hasChain()) &&
128 EN
->getNumNonChainFlagVTs() > ... need to get no results reliably
...)
133 const SmallVectorImpl
<MVT::SimpleValueType
> &VTs
= EN
->getVTList();
134 const SmallVectorImpl
<unsigned> &Operands
= EN
->getOperandList();
135 MatcherPtr
.reset(new MorphNodeToMatcher(EN
->getOpcodeName(),
136 VTs
.data(), VTs
.size(),
137 Operands
.data(),Operands
.size(),
138 EN
->hasChain(), EN
->hasInFlag(),
141 EN
->getNumFixedArityOperands(),
146 // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
150 ContractNodes(N
->getNextPtr(), CGP
);
153 // If we have a CheckType/CheckChildType/Record node followed by a
154 // CheckOpcode, invert the two nodes. We prefer to do structural checks
155 // before type checks, as this opens opportunities for factoring on targets
156 // like X86 where many operations are valid on multiple types.
157 if ((isa
<CheckTypeMatcher
>(N
) || isa
<CheckChildTypeMatcher
>(N
) ||
158 isa
<RecordMatcher
>(N
)) &&
159 isa
<CheckOpcodeMatcher
>(N
->getNext())) {
160 // Unlink the two nodes from the list.
161 Matcher
*CheckType
= MatcherPtr
.take();
162 Matcher
*CheckOpcode
= CheckType
->takeNext();
163 Matcher
*Tail
= CheckOpcode
->takeNext();
166 MatcherPtr
.reset(CheckOpcode
);
167 CheckOpcode
->setNext(CheckType
);
168 CheckType
->setNext(Tail
);
169 return ContractNodes(MatcherPtr
, CGP
);
173 /// SinkPatternPredicates - Pattern predicates can be checked at any level of
174 /// the matching tree. The generator dumps them at the top level of the pattern
175 /// though, which prevents factoring from being able to see past them. This
176 /// optimization sinks them as far down into the pattern as possible.
178 /// Conceptually, we'd like to sink these predicates all the way to the last
179 /// matcher predicate in the series. However, it turns out that some
180 /// ComplexPatterns have side effects on the graph, so we really don't want to
181 /// run a the complex pattern if the pattern predicate will fail. For this
182 /// reason, we refuse to sink the pattern predicate past a ComplexPattern.
184 static void SinkPatternPredicates(OwningPtr
<Matcher
> &MatcherPtr
) {
185 // Recursively scan for a PatternPredicate.
186 // If we reached the end of the chain, we're done.
187 Matcher
*N
= MatcherPtr
.get();
190 // Walk down all members of a scope node.
191 if (ScopeMatcher
*Scope
= dyn_cast
<ScopeMatcher
>(N
)) {
192 for (unsigned i
= 0, e
= Scope
->getNumChildren(); i
!= e
; ++i
) {
193 OwningPtr
<Matcher
> Child(Scope
->takeChild(i
));
194 SinkPatternPredicates(Child
);
195 Scope
->resetChild(i
, Child
.take());
200 // If this node isn't a CheckPatternPredicateMatcher we keep scanning until
202 CheckPatternPredicateMatcher
*CPPM
=dyn_cast
<CheckPatternPredicateMatcher
>(N
);
204 return SinkPatternPredicates(N
->getNextPtr());
206 // Ok, we found one, lets try to sink it. Check if we can sink it past the
207 // next node in the chain. If not, we won't be able to change anything and
208 // might as well bail.
209 if (!CPPM
->getNext()->isSafeToReorderWithPatternPredicate())
212 // Okay, we know we can sink it past at least one node. Unlink it from the
213 // chain and scan for the new insertion point.
214 MatcherPtr
.take(); // Don't delete CPPM.
215 MatcherPtr
.reset(CPPM
->takeNext());
217 N
= MatcherPtr
.get();
218 while (N
->getNext()->isSafeToReorderWithPatternPredicate())
221 // At this point, we want to insert CPPM after N.
222 CPPM
->setNext(N
->takeNext());
226 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
227 /// specified kind. Return null if we didn't find one otherwise return the
229 static Matcher
*FindNodeWithKind(Matcher
*M
, Matcher::KindTy Kind
) {
230 for (; M
; M
= M
->getNext())
231 if (M
->getKind() == Kind
)
237 /// FactorNodes - Turn matches like this:
239 /// OPC_CheckType i32
241 /// OPC_CheckType i32
244 /// OPC_CheckType i32
249 static void FactorNodes(OwningPtr
<Matcher
> &MatcherPtr
) {
250 // If we reached the end of the chain, we're done.
251 Matcher
*N
= MatcherPtr
.get();
254 // If this is not a push node, just scan for one.
255 ScopeMatcher
*Scope
= dyn_cast
<ScopeMatcher
>(N
);
257 return FactorNodes(N
->getNextPtr());
259 // Okay, pull together the children of the scope node into a vector so we can
260 // inspect it more easily. While we're at it, bucket them up by the hash
261 // code of their first predicate.
262 SmallVector
<Matcher
*, 32> OptionsToMatch
;
264 for (unsigned i
= 0, e
= Scope
->getNumChildren(); i
!= e
; ++i
) {
265 // Factor the subexpression.
266 OwningPtr
<Matcher
> Child(Scope
->takeChild(i
));
269 if (Matcher
*N
= Child
.take())
270 OptionsToMatch
.push_back(N
);
273 SmallVector
<Matcher
*, 32> NewOptionsToMatch
;
275 // Loop over options to match, merging neighboring patterns with identical
276 // starting nodes into a shared matcher.
277 for (unsigned OptionIdx
= 0, e
= OptionsToMatch
.size(); OptionIdx
!= e
;) {
278 // Find the set of matchers that start with this node.
279 Matcher
*Optn
= OptionsToMatch
[OptionIdx
++];
281 if (OptionIdx
== e
) {
282 NewOptionsToMatch
.push_back(Optn
);
286 // See if the next option starts with the same matcher. If the two
287 // neighbors *do* start with the same matcher, we can factor the matcher out
288 // of at least these two patterns. See what the maximal set we can merge
290 SmallVector
<Matcher
*, 8> EqualMatchers
;
291 EqualMatchers
.push_back(Optn
);
293 // Factor all of the known-equal matchers after this one into the same
295 while (OptionIdx
!= e
&& OptionsToMatch
[OptionIdx
]->isEqual(Optn
))
296 EqualMatchers
.push_back(OptionsToMatch
[OptionIdx
++]);
298 // If we found a non-equal matcher, see if it is contradictory with the
299 // current node. If so, we know that the ordering relation between the
300 // current sets of nodes and this node don't matter. Look past it to see if
301 // we can merge anything else into this matching group.
302 unsigned Scan
= OptionIdx
;
304 // If we ran out of stuff to scan, we're done.
305 if (Scan
== e
) break;
307 Matcher
*ScanMatcher
= OptionsToMatch
[Scan
];
309 // If we found an entry that matches out matcher, merge it into the set to
311 if (Optn
->isEqual(ScanMatcher
)) {
312 // If is equal after all, add the option to EqualMatchers and remove it
313 // from OptionsToMatch.
314 EqualMatchers
.push_back(ScanMatcher
);
315 OptionsToMatch
.erase(OptionsToMatch
.begin()+Scan
);
320 // If the option we're checking for contradicts the start of the list,
322 if (Optn
->isContradictory(ScanMatcher
)) {
327 // If we're scanning for a simple node, see if it occurs later in the
328 // sequence. If so, and if we can move it up, it might be contradictory
329 // or the same as what we're looking for. If so, reorder it.
330 if (Optn
->isSimplePredicateOrRecordNode()) {
331 Matcher
*M2
= FindNodeWithKind(ScanMatcher
, Optn
->getKind());
332 if (M2
!= 0 && M2
!= ScanMatcher
&&
333 M2
->canMoveBefore(ScanMatcher
) &&
334 (M2
->isEqual(Optn
) || M2
->isContradictory(Optn
))) {
335 Matcher
*MatcherWithoutM2
= ScanMatcher
->unlinkNode(M2
);
336 M2
->setNext(MatcherWithoutM2
);
337 OptionsToMatch
[Scan
] = M2
;
342 // Otherwise, we don't know how to handle this entry, we have to bail.
347 // Don't print it's obvious nothing extra could be merged anyway.
349 DEBUG(errs() << "Couldn't merge this:\n";
350 Optn
->print(errs(), 4);
351 errs() << "into this:\n";
352 OptionsToMatch
[Scan
]->print(errs(), 4);
354 OptionsToMatch
[Scan
+1]->printOne(errs());
356 OptionsToMatch
[Scan
+2]->printOne(errs());
360 // If we only found one option starting with this matcher, no factoring is
362 if (EqualMatchers
.size() == 1) {
363 NewOptionsToMatch
.push_back(EqualMatchers
[0]);
367 // Factor these checks by pulling the first node off each entry and
368 // discarding it. Take the first one off the first entry to reuse.
369 Matcher
*Shared
= Optn
;
370 Optn
= Optn
->takeNext();
371 EqualMatchers
[0] = Optn
;
373 // Remove and delete the first node from the other matchers we're factoring.
374 for (unsigned i
= 1, e
= EqualMatchers
.size(); i
!= e
; ++i
) {
375 Matcher
*Tmp
= EqualMatchers
[i
]->takeNext();
376 delete EqualMatchers
[i
];
377 EqualMatchers
[i
] = Tmp
;
380 Shared
->setNext(new ScopeMatcher(&EqualMatchers
[0], EqualMatchers
.size()));
382 // Recursively factor the newly created node.
383 FactorNodes(Shared
->getNextPtr());
385 NewOptionsToMatch
.push_back(Shared
);
388 // If we're down to a single pattern to match, then we don't need this scope
390 if (NewOptionsToMatch
.size() == 1) {
391 MatcherPtr
.reset(NewOptionsToMatch
[0]);
395 if (NewOptionsToMatch
.empty()) {
400 // If our factoring failed (didn't achieve anything) see if we can simplify in
403 // Check to see if all of the leading entries are now opcode checks. If so,
404 // we can convert this Scope to be a OpcodeSwitch instead.
405 bool AllOpcodeChecks
= true, AllTypeChecks
= true;
406 for (unsigned i
= 0, e
= NewOptionsToMatch
.size(); i
!= e
; ++i
) {
407 // Check to see if this breaks a series of CheckOpcodeMatchers.
408 if (AllOpcodeChecks
&&
409 !isa
<CheckOpcodeMatcher
>(NewOptionsToMatch
[i
])) {
412 errs() << "FAILING OPC #" << i
<< "\n";
413 NewOptionsToMatch
[i
]->dump();
416 AllOpcodeChecks
= false;
419 // Check to see if this breaks a series of CheckTypeMatcher's.
421 CheckTypeMatcher
*CTM
=
422 cast_or_null
<CheckTypeMatcher
>(FindNodeWithKind(NewOptionsToMatch
[i
],
423 Matcher::CheckType
));
425 // iPTR checks could alias any other case without us knowing, don't
427 CTM
->getType() == MVT::iPTR
||
428 // SwitchType only works for result #0.
429 CTM
->getResNo() != 0 ||
430 // If the CheckType isn't at the start of the list, see if we can move
432 !CTM
->canMoveBefore(NewOptionsToMatch
[i
])) {
434 if (i
> 3 && AllTypeChecks
) {
435 errs() << "FAILING TYPE #" << i
<< "\n";
436 NewOptionsToMatch
[i
]->dump();
439 AllTypeChecks
= false;
444 // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
445 if (AllOpcodeChecks
) {
447 SmallVector
<std::pair
<const SDNodeInfo
*, Matcher
*>, 8> Cases
;
448 for (unsigned i
= 0, e
= NewOptionsToMatch
.size(); i
!= e
; ++i
) {
449 CheckOpcodeMatcher
*COM
= cast
<CheckOpcodeMatcher
>(NewOptionsToMatch
[i
]);
450 assert(Opcodes
.insert(COM
->getOpcode().getEnumName()) &&
451 "Duplicate opcodes not factored?");
452 Cases
.push_back(std::make_pair(&COM
->getOpcode(), COM
->getNext()));
455 MatcherPtr
.reset(new SwitchOpcodeMatcher(&Cases
[0], Cases
.size()));
459 // If all the options are CheckType's, we can form the SwitchType, woot.
461 DenseMap
<unsigned, unsigned> TypeEntry
;
462 SmallVector
<std::pair
<MVT::SimpleValueType
, Matcher
*>, 8> Cases
;
463 for (unsigned i
= 0, e
= NewOptionsToMatch
.size(); i
!= e
; ++i
) {
464 CheckTypeMatcher
*CTM
=
465 cast_or_null
<CheckTypeMatcher
>(FindNodeWithKind(NewOptionsToMatch
[i
],
466 Matcher::CheckType
));
467 Matcher
*MatcherWithoutCTM
= NewOptionsToMatch
[i
]->unlinkNode(CTM
);
468 MVT::SimpleValueType CTMTy
= CTM
->getType();
471 unsigned &Entry
= TypeEntry
[CTMTy
];
473 // If we have unfactored duplicate types, then we should factor them.
474 Matcher
*PrevMatcher
= Cases
[Entry
-1].second
;
475 if (ScopeMatcher
*SM
= dyn_cast
<ScopeMatcher
>(PrevMatcher
)) {
476 SM
->setNumChildren(SM
->getNumChildren()+1);
477 SM
->resetChild(SM
->getNumChildren()-1, MatcherWithoutCTM
);
481 Matcher
*Entries
[2] = { PrevMatcher
, MatcherWithoutCTM
};
482 Cases
[Entry
-1].second
= new ScopeMatcher(Entries
, 2);
486 Entry
= Cases
.size()+1;
487 Cases
.push_back(std::make_pair(CTMTy
, MatcherWithoutCTM
));
490 if (Cases
.size() != 1) {
491 MatcherPtr
.reset(new SwitchTypeMatcher(&Cases
[0], Cases
.size()));
493 // If we factored and ended up with one case, create it now.
494 MatcherPtr
.reset(new CheckTypeMatcher(Cases
[0].first
, 0));
495 MatcherPtr
->setNext(Cases
[0].second
);
501 // Reassemble the Scope node with the adjusted children.
502 Scope
->setNumChildren(NewOptionsToMatch
.size());
503 for (unsigned i
= 0, e
= NewOptionsToMatch
.size(); i
!= e
; ++i
)
504 Scope
->resetChild(i
, NewOptionsToMatch
[i
]);
507 Matcher
*llvm::OptimizeMatcher(Matcher
*TheMatcher
,
508 const CodeGenDAGPatterns
&CGP
) {
509 OwningPtr
<Matcher
> MatcherPtr(TheMatcher
);
510 ContractNodes(MatcherPtr
, CGP
);
511 SinkPatternPredicates(MatcherPtr
);
512 FactorNodes(MatcherPtr
);
513 return MatcherPtr
.take();