llc (et al): Add support for --show-encoding and --show-inst.
[llvm.git] / lib / VMCore / Value.cpp
blob645dd5a21c7451850cb68aec4b68fbda2ec111c6
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
12 //===----------------------------------------------------------------------===//
14 #include "LLVMContextImpl.h"
15 #include "llvm/Constant.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InstrTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Operator.h"
21 #include "llvm/Module.h"
22 #include "llvm/ValueSymbolTable.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/LeakDetector.h"
27 #include "llvm/Support/ManagedStatic.h"
28 #include "llvm/Support/ValueHandle.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include <algorithm>
31 using namespace llvm;
33 //===----------------------------------------------------------------------===//
34 // Value Class
35 //===----------------------------------------------------------------------===//
37 static inline const Type *checkType(const Type *Ty) {
38 assert(Ty && "Value defined with a null type: Error!");
39 return Ty;
42 Value::Value(const Type *ty, unsigned scid)
43 : SubclassID(scid), HasValueHandle(0),
44 SubclassOptionalData(0), SubclassData(0), VTy(checkType(ty)),
45 UseList(0), Name(0) {
46 if (isa<CallInst>(this) || isa<InvokeInst>(this))
47 assert((VTy->isFirstClassType() || VTy->isVoidTy() ||
48 ty->isOpaqueTy() || VTy->isStructTy()) &&
49 "invalid CallInst type!");
50 else if (!isa<Constant>(this) && !isa<BasicBlock>(this))
51 assert((VTy->isFirstClassType() || VTy->isVoidTy() ||
52 ty->isOpaqueTy()) &&
53 "Cannot create non-first-class values except for constants!");
56 Value::~Value() {
57 // Notify all ValueHandles (if present) that this value is going away.
58 if (HasValueHandle)
59 ValueHandleBase::ValueIsDeleted(this);
61 #ifndef NDEBUG // Only in -g mode...
62 // Check to make sure that there are no uses of this value that are still
63 // around when the value is destroyed. If there are, then we have a dangling
64 // reference and something is wrong. This code is here to print out what is
65 // still being referenced. The value in question should be printed as
66 // a <badref>
68 if (!use_empty()) {
69 dbgs() << "While deleting: " << *VTy << " %" << getNameStr() << "\n";
70 for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
71 dbgs() << "Use still stuck around after Def is destroyed:"
72 << **I << "\n";
74 #endif
75 assert(use_empty() && "Uses remain when a value is destroyed!");
77 // If this value is named, destroy the name. This should not be in a symtab
78 // at this point.
79 if (Name)
80 Name->Destroy();
82 // There should be no uses of this object anymore, remove it.
83 LeakDetector::removeGarbageObject(this);
86 /// hasNUses - Return true if this Value has exactly N users.
87 ///
88 bool Value::hasNUses(unsigned N) const {
89 const_use_iterator UI = use_begin(), E = use_end();
91 for (; N; --N, ++UI)
92 if (UI == E) return false; // Too few.
93 return UI == E;
96 /// hasNUsesOrMore - Return true if this value has N users or more. This is
97 /// logically equivalent to getNumUses() >= N.
98 ///
99 bool Value::hasNUsesOrMore(unsigned N) const {
100 const_use_iterator UI = use_begin(), E = use_end();
102 for (; N; --N, ++UI)
103 if (UI == E) return false; // Too few.
105 return true;
108 /// isUsedInBasicBlock - Return true if this value is used in the specified
109 /// basic block.
110 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
111 for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) {
112 const Instruction *User = dyn_cast<Instruction>(*I);
113 if (User && User->getParent() == BB)
114 return true;
116 return false;
120 /// getNumUses - This method computes the number of uses of this Value. This
121 /// is a linear time operation. Use hasOneUse or hasNUses to check for specific
122 /// values.
123 unsigned Value::getNumUses() const {
124 return (unsigned)std::distance(use_begin(), use_end());
127 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
128 ST = 0;
129 if (Instruction *I = dyn_cast<Instruction>(V)) {
130 if (BasicBlock *P = I->getParent())
131 if (Function *PP = P->getParent())
132 ST = &PP->getValueSymbolTable();
133 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
134 if (Function *P = BB->getParent())
135 ST = &P->getValueSymbolTable();
136 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
137 if (Module *P = GV->getParent())
138 ST = &P->getValueSymbolTable();
139 } else if (Argument *A = dyn_cast<Argument>(V)) {
140 if (Function *P = A->getParent())
141 ST = &P->getValueSymbolTable();
142 } else if (NamedMDNode *N = dyn_cast<NamedMDNode>(V)) {
143 if (Module *P = N->getParent()) {
144 ST = &P->getValueSymbolTable();
146 } else if (isa<MDString>(V))
147 return true;
148 else {
149 assert(isa<Constant>(V) && "Unknown value type!");
150 return true; // no name is setable for this.
152 return false;
155 StringRef Value::getName() const {
156 // Make sure the empty string is still a C string. For historical reasons,
157 // some clients want to call .data() on the result and expect it to be null
158 // terminated.
159 if (!Name) return StringRef("", 0);
160 return Name->getKey();
163 std::string Value::getNameStr() const {
164 return getName().str();
167 void Value::setName(const Twine &NewName) {
168 // Fast path for common IRBuilder case of setName("") when there is no name.
169 if (NewName.isTriviallyEmpty() && !hasName())
170 return;
172 SmallString<256> NameData;
173 StringRef NameRef = NewName.toStringRef(NameData);
175 // Name isn't changing?
176 if (getName() == NameRef)
177 return;
179 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
181 // Get the symbol table to update for this object.
182 ValueSymbolTable *ST;
183 if (getSymTab(this, ST))
184 return; // Cannot set a name on this value (e.g. constant).
186 if (!ST) { // No symbol table to update? Just do the change.
187 if (NameRef.empty()) {
188 // Free the name for this value.
189 Name->Destroy();
190 Name = 0;
191 return;
194 if (Name)
195 Name->Destroy();
197 // NOTE: Could optimize for the case the name is shrinking to not deallocate
198 // then reallocated.
200 // Create the new name.
201 Name = ValueName::Create(NameRef.begin(), NameRef.end());
202 Name->setValue(this);
203 return;
206 // NOTE: Could optimize for the case the name is shrinking to not deallocate
207 // then reallocated.
208 if (hasName()) {
209 // Remove old name.
210 ST->removeValueName(Name);
211 Name->Destroy();
212 Name = 0;
214 if (NameRef.empty())
215 return;
218 // Name is changing to something new.
219 Name = ST->createValueName(NameRef, this);
223 /// takeName - transfer the name from V to this value, setting V's name to
224 /// empty. It is an error to call V->takeName(V).
225 void Value::takeName(Value *V) {
226 ValueSymbolTable *ST = 0;
227 // If this value has a name, drop it.
228 if (hasName()) {
229 // Get the symtab this is in.
230 if (getSymTab(this, ST)) {
231 // We can't set a name on this value, but we need to clear V's name if
232 // it has one.
233 if (V->hasName()) V->setName("");
234 return; // Cannot set a name on this value (e.g. constant).
237 // Remove old name.
238 if (ST)
239 ST->removeValueName(Name);
240 Name->Destroy();
241 Name = 0;
244 // Now we know that this has no name.
246 // If V has no name either, we're done.
247 if (!V->hasName()) return;
249 // Get this's symtab if we didn't before.
250 if (!ST) {
251 if (getSymTab(this, ST)) {
252 // Clear V's name.
253 V->setName("");
254 return; // Cannot set a name on this value (e.g. constant).
258 // Get V's ST, this should always succed, because V has a name.
259 ValueSymbolTable *VST;
260 bool Failure = getSymTab(V, VST);
261 assert(!Failure && "V has a name, so it should have a ST!"); Failure=Failure;
263 // If these values are both in the same symtab, we can do this very fast.
264 // This works even if both values have no symtab yet.
265 if (ST == VST) {
266 // Take the name!
267 Name = V->Name;
268 V->Name = 0;
269 Name->setValue(this);
270 return;
273 // Otherwise, things are slightly more complex. Remove V's name from VST and
274 // then reinsert it into ST.
276 if (VST)
277 VST->removeValueName(V->Name);
278 Name = V->Name;
279 V->Name = 0;
280 Name->setValue(this);
282 if (ST)
283 ST->reinsertValue(this);
287 // uncheckedReplaceAllUsesWith - This is exactly the same as replaceAllUsesWith,
288 // except that it doesn't have all of the asserts. The asserts fail because we
289 // are half-way done resolving types, which causes some types to exist as two
290 // different Type*'s at the same time. This is a sledgehammer to work around
291 // this problem.
293 void Value::uncheckedReplaceAllUsesWith(Value *New) {
294 // Notify all ValueHandles (if present) that this value is going away.
295 if (HasValueHandle)
296 ValueHandleBase::ValueIsRAUWd(this, New);
298 while (!use_empty()) {
299 Use &U = *UseList;
300 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
301 // constant because they are uniqued.
302 if (Constant *C = dyn_cast<Constant>(U.getUser())) {
303 if (!isa<GlobalValue>(C)) {
304 C->replaceUsesOfWithOnConstant(this, New, &U);
305 continue;
309 U.set(New);
313 void Value::replaceAllUsesWith(Value *New) {
314 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
315 assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
316 assert(New->getType() == getType() &&
317 "replaceAllUses of value with new value of different type!");
319 uncheckedReplaceAllUsesWith(New);
322 Value *Value::stripPointerCasts() {
323 if (!getType()->isPointerTy())
324 return this;
325 Value *V = this;
326 do {
327 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
328 if (!GEP->hasAllZeroIndices())
329 return V;
330 V = GEP->getPointerOperand();
331 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
332 V = cast<Operator>(V)->getOperand(0);
333 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
334 if (GA->mayBeOverridden())
335 return V;
336 V = GA->getAliasee();
337 } else {
338 return V;
340 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
341 } while (1);
344 Value *Value::getUnderlyingObject(unsigned MaxLookup) {
345 if (!getType()->isPointerTy())
346 return this;
347 Value *V = this;
348 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
349 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
350 V = GEP->getPointerOperand();
351 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
352 V = cast<Operator>(V)->getOperand(0);
353 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
354 if (GA->mayBeOverridden())
355 return V;
356 V = GA->getAliasee();
357 } else {
358 return V;
360 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
362 return V;
365 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
366 /// return the value in the PHI node corresponding to PredBB. If not, return
367 /// ourself. This is useful if you want to know the value something has in a
368 /// predecessor block.
369 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
370 const BasicBlock *PredBB) {
371 PHINode *PN = dyn_cast<PHINode>(this);
372 if (PN && PN->getParent() == CurBB)
373 return PN->getIncomingValueForBlock(PredBB);
374 return this;
377 LLVMContext &Value::getContext() const { return VTy->getContext(); }
379 //===----------------------------------------------------------------------===//
380 // ValueHandleBase Class
381 //===----------------------------------------------------------------------===//
383 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
384 /// List is known to point into the existing use list.
385 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
386 assert(List && "Handle list is null?");
388 // Splice ourselves into the list.
389 Next = *List;
390 *List = this;
391 setPrevPtr(List);
392 if (Next) {
393 Next->setPrevPtr(&Next);
394 assert(VP == Next->VP && "Added to wrong list?");
398 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
399 assert(List && "Must insert after existing node");
401 Next = List->Next;
402 setPrevPtr(&List->Next);
403 List->Next = this;
404 if (Next)
405 Next->setPrevPtr(&Next);
408 /// AddToUseList - Add this ValueHandle to the use list for VP.
409 void ValueHandleBase::AddToUseList() {
410 assert(VP && "Null pointer doesn't have a use list!");
412 LLVMContextImpl *pImpl = VP->getContext().pImpl;
414 if (VP->HasValueHandle) {
415 // If this value already has a ValueHandle, then it must be in the
416 // ValueHandles map already.
417 ValueHandleBase *&Entry = pImpl->ValueHandles[VP];
418 assert(Entry != 0 && "Value doesn't have any handles?");
419 AddToExistingUseList(&Entry);
420 return;
423 // Ok, it doesn't have any handles yet, so we must insert it into the
424 // DenseMap. However, doing this insertion could cause the DenseMap to
425 // reallocate itself, which would invalidate all of the PrevP pointers that
426 // point into the old table. Handle this by checking for reallocation and
427 // updating the stale pointers only if needed.
428 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
429 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
431 ValueHandleBase *&Entry = Handles[VP];
432 assert(Entry == 0 && "Value really did already have handles?");
433 AddToExistingUseList(&Entry);
434 VP->HasValueHandle = true;
436 // If reallocation didn't happen or if this was the first insertion, don't
437 // walk the table.
438 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
439 Handles.size() == 1) {
440 return;
443 // Okay, reallocation did happen. Fix the Prev Pointers.
444 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
445 E = Handles.end(); I != E; ++I) {
446 assert(I->second && I->first == I->second->VP && "List invariant broken!");
447 I->second->setPrevPtr(&I->second);
451 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
452 void ValueHandleBase::RemoveFromUseList() {
453 assert(VP && VP->HasValueHandle && "Pointer doesn't have a use list!");
455 // Unlink this from its use list.
456 ValueHandleBase **PrevPtr = getPrevPtr();
457 assert(*PrevPtr == this && "List invariant broken");
459 *PrevPtr = Next;
460 if (Next) {
461 assert(Next->getPrevPtr() == &Next && "List invariant broken");
462 Next->setPrevPtr(PrevPtr);
463 return;
466 // If the Next pointer was null, then it is possible that this was the last
467 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
468 // map.
469 LLVMContextImpl *pImpl = VP->getContext().pImpl;
470 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
471 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
472 Handles.erase(VP);
473 VP->HasValueHandle = false;
478 void ValueHandleBase::ValueIsDeleted(Value *V) {
479 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
481 // Get the linked list base, which is guaranteed to exist since the
482 // HasValueHandle flag is set.
483 LLVMContextImpl *pImpl = V->getContext().pImpl;
484 ValueHandleBase *Entry = pImpl->ValueHandles[V];
485 assert(Entry && "Value bit set but no entries exist");
487 // We use a local ValueHandleBase as an iterator so that
488 // ValueHandles can add and remove themselves from the list without
489 // breaking our iteration. This is not really an AssertingVH; we
490 // just have to give ValueHandleBase some kind.
491 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
492 Iterator.RemoveFromUseList();
493 Iterator.AddToExistingUseListAfter(Entry);
494 assert(Entry->Next == &Iterator && "Loop invariant broken.");
496 switch (Entry->getKind()) {
497 case Assert:
498 break;
499 case Tracking:
500 // Mark that this value has been deleted by setting it to an invalid Value
501 // pointer.
502 Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
503 break;
504 case Weak:
505 // Weak just goes to null, which will unlink it from the list.
506 Entry->operator=(0);
507 break;
508 case Callback:
509 // Forward to the subclass's implementation.
510 static_cast<CallbackVH*>(Entry)->deleted();
511 break;
515 // All callbacks, weak references, and assertingVHs should be dropped by now.
516 if (V->HasValueHandle) {
517 #ifndef NDEBUG // Only in +Asserts mode...
518 dbgs() << "While deleting: " << *V->getType() << " %" << V->getNameStr()
519 << "\n";
520 if (pImpl->ValueHandles[V]->getKind() == Assert)
521 llvm_unreachable("An asserting value handle still pointed to this"
522 " value!");
524 #endif
525 llvm_unreachable("All references to V were not removed?");
530 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
531 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
532 assert(Old != New && "Changing value into itself!");
534 // Get the linked list base, which is guaranteed to exist since the
535 // HasValueHandle flag is set.
536 LLVMContextImpl *pImpl = Old->getContext().pImpl;
537 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
539 assert(Entry && "Value bit set but no entries exist");
541 // We use a local ValueHandleBase as an iterator so that
542 // ValueHandles can add and remove themselves from the list without
543 // breaking our iteration. This is not really an AssertingVH; we
544 // just have to give ValueHandleBase some kind.
545 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
546 Iterator.RemoveFromUseList();
547 Iterator.AddToExistingUseListAfter(Entry);
548 assert(Entry->Next == &Iterator && "Loop invariant broken.");
550 switch (Entry->getKind()) {
551 case Assert:
552 // Asserting handle does not follow RAUW implicitly.
553 break;
554 case Tracking:
555 // Tracking goes to new value like a WeakVH. Note that this may make it
556 // something incompatible with its templated type. We don't want to have a
557 // virtual (or inline) interface to handle this though, so instead we make
558 // the TrackingVH accessors guarantee that a client never sees this value.
560 // FALLTHROUGH
561 case Weak:
562 // Weak goes to the new value, which will unlink it from Old's list.
563 Entry->operator=(New);
564 break;
565 case Callback:
566 // Forward to the subclass's implementation.
567 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
568 break;
573 /// ~CallbackVH. Empty, but defined here to avoid emitting the vtable
574 /// more than once.
575 CallbackVH::~CallbackVH() {}
578 //===----------------------------------------------------------------------===//
579 // User Class
580 //===----------------------------------------------------------------------===//
582 // replaceUsesOfWith - Replaces all references to the "From" definition with
583 // references to the "To" definition.
585 void User::replaceUsesOfWith(Value *From, Value *To) {
586 if (From == To) return; // Duh what?
588 assert((!isa<Constant>(this) || isa<GlobalValue>(this)) &&
589 "Cannot call User::replaceUsesOfWith on a constant!");
591 for (unsigned i = 0, E = getNumOperands(); i != E; ++i)
592 if (getOperand(i) == From) { // Is This operand is pointing to oldval?
593 // The side effects of this setOperand call include linking to
594 // "To", adding "this" to the uses list of To, and
595 // most importantly, removing "this" from the use list of "From".
596 setOperand(i, To); // Fix it now...