llc (et al): Add support for --show-encoding and --show-inst.
[llvm.git] / lib / VMCore / Instructions.cpp
blobf64b220c3fde3e733158d6abca458a22989158bd
1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
13 //===----------------------------------------------------------------------===//
15 #include "LLVMContextImpl.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/CallSite.h"
25 #include "llvm/Support/ConstantRange.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
29 //===----------------------------------------------------------------------===//
30 // CallSite Class
31 //===----------------------------------------------------------------------===//
33 User::op_iterator CallSite::getCallee() const {
34 Instruction *II(getInstruction());
35 return isCall()
36 ? cast<CallInst>(II)->op_begin()
37 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Function
40 //===----------------------------------------------------------------------===//
41 // TerminatorInst Class
42 //===----------------------------------------------------------------------===//
44 // Out of line virtual method, so the vtable, etc has a home.
45 TerminatorInst::~TerminatorInst() {
48 //===----------------------------------------------------------------------===//
49 // UnaryInstruction Class
50 //===----------------------------------------------------------------------===//
52 // Out of line virtual method, so the vtable, etc has a home.
53 UnaryInstruction::~UnaryInstruction() {
56 //===----------------------------------------------------------------------===//
57 // SelectInst Class
58 //===----------------------------------------------------------------------===//
60 /// areInvalidOperands - Return a string if the specified operands are invalid
61 /// for a select operation, otherwise return null.
62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63 if (Op1->getType() != Op2->getType())
64 return "both values to select must have same type";
66 if (const VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
67 // Vector select.
68 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
69 return "vector select condition element type must be i1";
70 const VectorType *ET = dyn_cast<VectorType>(Op1->getType());
71 if (ET == 0)
72 return "selected values for vector select must be vectors";
73 if (ET->getNumElements() != VT->getNumElements())
74 return "vector select requires selected vectors to have "
75 "the same vector length as select condition";
76 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
77 return "select condition must be i1 or <n x i1>";
79 return 0;
83 //===----------------------------------------------------------------------===//
84 // PHINode Class
85 //===----------------------------------------------------------------------===//
87 PHINode::PHINode(const PHINode &PN)
88 : Instruction(PN.getType(), Instruction::PHI,
89 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
90 ReservedSpace(PN.getNumOperands()) {
91 Use *OL = OperandList;
92 for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
93 OL[i] = PN.getOperand(i);
94 OL[i+1] = PN.getOperand(i+1);
96 SubclassOptionalData = PN.SubclassOptionalData;
99 PHINode::~PHINode() {
100 if (OperandList)
101 dropHungoffUses(OperandList);
104 // removeIncomingValue - Remove an incoming value. This is useful if a
105 // predecessor basic block is deleted.
106 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
107 unsigned NumOps = getNumOperands();
108 Use *OL = OperandList;
109 assert(Idx*2 < NumOps && "BB not in PHI node!");
110 Value *Removed = OL[Idx*2];
112 // Move everything after this operand down.
114 // FIXME: we could just swap with the end of the list, then erase. However,
115 // client might not expect this to happen. The code as it is thrashes the
116 // use/def lists, which is kinda lame.
117 for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
118 OL[i-2] = OL[i];
119 OL[i-2+1] = OL[i+1];
122 // Nuke the last value.
123 OL[NumOps-2].set(0);
124 OL[NumOps-2+1].set(0);
125 NumOperands = NumOps-2;
127 // If the PHI node is dead, because it has zero entries, nuke it now.
128 if (NumOps == 2 && DeletePHIIfEmpty) {
129 // If anyone is using this PHI, make them use a dummy value instead...
130 replaceAllUsesWith(UndefValue::get(getType()));
131 eraseFromParent();
133 return Removed;
136 /// resizeOperands - resize operands - This adjusts the length of the operands
137 /// list according to the following behavior:
138 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
139 /// of operation. This grows the number of ops by 1.5 times.
140 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
141 /// 3. If NumOps == NumOperands, trim the reserved space.
143 void PHINode::resizeOperands(unsigned NumOps) {
144 unsigned e = getNumOperands();
145 if (NumOps == 0) {
146 NumOps = e*3/2;
147 if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common.
148 } else if (NumOps*2 > NumOperands) {
149 // No resize needed.
150 if (ReservedSpace >= NumOps) return;
151 } else if (NumOps == NumOperands) {
152 if (ReservedSpace == NumOps) return;
153 } else {
154 return;
157 ReservedSpace = NumOps;
158 Use *OldOps = OperandList;
159 Use *NewOps = allocHungoffUses(NumOps);
160 std::copy(OldOps, OldOps + e, NewOps);
161 OperandList = NewOps;
162 if (OldOps) Use::zap(OldOps, OldOps + e, true);
165 /// hasConstantValue - If the specified PHI node always merges together the same
166 /// value, return the value, otherwise return null.
168 /// If the PHI has undef operands, but all the rest of the operands are
169 /// some unique value, return that value if it can be proved that the
170 /// value dominates the PHI. If DT is null, use a conservative check,
171 /// otherwise use DT to test for dominance.
173 Value *PHINode::hasConstantValue(DominatorTree *DT) const {
174 // If the PHI node only has one incoming value, eliminate the PHI node.
175 if (getNumIncomingValues() == 1) {
176 if (getIncomingValue(0) != this) // not X = phi X
177 return getIncomingValue(0);
178 return UndefValue::get(getType()); // Self cycle is dead.
181 // Otherwise if all of the incoming values are the same for the PHI, replace
182 // the PHI node with the incoming value.
184 Value *InVal = 0;
185 bool HasUndefInput = false;
186 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
187 if (isa<UndefValue>(getIncomingValue(i))) {
188 HasUndefInput = true;
189 } else if (getIncomingValue(i) != this) { // Not the PHI node itself...
190 if (InVal && getIncomingValue(i) != InVal)
191 return 0; // Not the same, bail out.
192 InVal = getIncomingValue(i);
195 // The only case that could cause InVal to be null is if we have a PHI node
196 // that only has entries for itself. In this case, there is no entry into the
197 // loop, so kill the PHI.
199 if (InVal == 0) InVal = UndefValue::get(getType());
201 // If we have a PHI node like phi(X, undef, X), where X is defined by some
202 // instruction, we cannot always return X as the result of the PHI node. Only
203 // do this if X is not an instruction (thus it must dominate the PHI block),
204 // or if the client is prepared to deal with this possibility.
205 if (!HasUndefInput || !isa<Instruction>(InVal))
206 return InVal;
208 Instruction *IV = cast<Instruction>(InVal);
209 if (DT) {
210 // We have a DominatorTree. Do a precise test.
211 if (!DT->dominates(IV, this))
212 return 0;
213 } else {
214 // If it is in the entry block, it obviously dominates everything.
215 if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
216 isa<InvokeInst>(IV))
217 return 0; // Cannot guarantee that InVal dominates this PHINode.
220 // All of the incoming values are the same, return the value now.
221 return InVal;
225 //===----------------------------------------------------------------------===//
226 // CallInst Implementation
227 //===----------------------------------------------------------------------===//
229 CallInst::~CallInst() {
232 void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
233 assert(NumOperands == NumParams+1 && "NumOperands not set up?");
234 Use *OL = OperandList;
235 OL[0] = Func;
237 const FunctionType *FTy =
238 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
239 FTy = FTy; // silence warning.
241 assert((NumParams == FTy->getNumParams() ||
242 (FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
243 "Calling a function with bad signature!");
244 for (unsigned i = 0; i != NumParams; ++i) {
245 assert((i >= FTy->getNumParams() ||
246 FTy->getParamType(i) == Params[i]->getType()) &&
247 "Calling a function with a bad signature!");
248 OL[i+1] = Params[i];
252 void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
253 assert(NumOperands == 3 && "NumOperands not set up?");
254 Use *OL = OperandList;
255 OL[0] = Func;
256 OL[1] = Actual1;
257 OL[2] = Actual2;
259 const FunctionType *FTy =
260 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
261 FTy = FTy; // silence warning.
263 assert((FTy->getNumParams() == 2 ||
264 (FTy->isVarArg() && FTy->getNumParams() < 2)) &&
265 "Calling a function with bad signature");
266 assert((0 >= FTy->getNumParams() ||
267 FTy->getParamType(0) == Actual1->getType()) &&
268 "Calling a function with a bad signature!");
269 assert((1 >= FTy->getNumParams() ||
270 FTy->getParamType(1) == Actual2->getType()) &&
271 "Calling a function with a bad signature!");
274 void CallInst::init(Value *Func, Value *Actual) {
275 assert(NumOperands == 2 && "NumOperands not set up?");
276 Use *OL = OperandList;
277 OL[0] = Func;
278 OL[1] = Actual;
280 const FunctionType *FTy =
281 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
282 FTy = FTy; // silence warning.
284 assert((FTy->getNumParams() == 1 ||
285 (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
286 "Calling a function with bad signature");
287 assert((0 == FTy->getNumParams() ||
288 FTy->getParamType(0) == Actual->getType()) &&
289 "Calling a function with a bad signature!");
292 void CallInst::init(Value *Func) {
293 assert(NumOperands == 1 && "NumOperands not set up?");
294 Use *OL = OperandList;
295 OL[0] = Func;
297 const FunctionType *FTy =
298 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
299 FTy = FTy; // silence warning.
301 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
304 CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
305 Instruction *InsertBefore)
306 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
307 ->getElementType())->getReturnType(),
308 Instruction::Call,
309 OperandTraits<CallInst>::op_end(this) - 2,
310 2, InsertBefore) {
311 init(Func, Actual);
312 setName(Name);
315 CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
316 BasicBlock *InsertAtEnd)
317 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
318 ->getElementType())->getReturnType(),
319 Instruction::Call,
320 OperandTraits<CallInst>::op_end(this) - 2,
321 2, InsertAtEnd) {
322 init(Func, Actual);
323 setName(Name);
325 CallInst::CallInst(Value *Func, const Twine &Name,
326 Instruction *InsertBefore)
327 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
328 ->getElementType())->getReturnType(),
329 Instruction::Call,
330 OperandTraits<CallInst>::op_end(this) - 1,
331 1, InsertBefore) {
332 init(Func);
333 setName(Name);
336 CallInst::CallInst(Value *Func, const Twine &Name,
337 BasicBlock *InsertAtEnd)
338 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
339 ->getElementType())->getReturnType(),
340 Instruction::Call,
341 OperandTraits<CallInst>::op_end(this) - 1,
342 1, InsertAtEnd) {
343 init(Func);
344 setName(Name);
347 CallInst::CallInst(const CallInst &CI)
348 : Instruction(CI.getType(), Instruction::Call,
349 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
350 CI.getNumOperands()) {
351 setAttributes(CI.getAttributes());
352 setTailCall(CI.isTailCall());
353 setCallingConv(CI.getCallingConv());
355 Use *OL = OperandList;
356 Use *InOL = CI.OperandList;
357 for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
358 OL[i] = InOL[i];
359 SubclassOptionalData = CI.SubclassOptionalData;
362 void CallInst::addAttribute(unsigned i, Attributes attr) {
363 AttrListPtr PAL = getAttributes();
364 PAL = PAL.addAttr(i, attr);
365 setAttributes(PAL);
368 void CallInst::removeAttribute(unsigned i, Attributes attr) {
369 AttrListPtr PAL = getAttributes();
370 PAL = PAL.removeAttr(i, attr);
371 setAttributes(PAL);
374 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
375 if (AttributeList.paramHasAttr(i, attr))
376 return true;
377 if (const Function *F = getCalledFunction())
378 return F->paramHasAttr(i, attr);
379 return false;
382 /// IsConstantOne - Return true only if val is constant int 1
383 static bool IsConstantOne(Value *val) {
384 assert(val && "IsConstantOne does not work with NULL val");
385 return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
388 static Instruction *createMalloc(Instruction *InsertBefore,
389 BasicBlock *InsertAtEnd, const Type *IntPtrTy,
390 const Type *AllocTy, Value *AllocSize,
391 Value *ArraySize, Function *MallocF,
392 const Twine &Name) {
393 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
394 "createMalloc needs either InsertBefore or InsertAtEnd");
396 // malloc(type) becomes:
397 // bitcast (i8* malloc(typeSize)) to type*
398 // malloc(type, arraySize) becomes:
399 // bitcast (i8 *malloc(typeSize*arraySize)) to type*
400 if (!ArraySize)
401 ArraySize = ConstantInt::get(IntPtrTy, 1);
402 else if (ArraySize->getType() != IntPtrTy) {
403 if (InsertBefore)
404 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
405 "", InsertBefore);
406 else
407 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
408 "", InsertAtEnd);
411 if (!IsConstantOne(ArraySize)) {
412 if (IsConstantOne(AllocSize)) {
413 AllocSize = ArraySize; // Operand * 1 = Operand
414 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
415 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
416 false /*ZExt*/);
417 // Malloc arg is constant product of type size and array size
418 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
419 } else {
420 // Multiply type size by the array size...
421 if (InsertBefore)
422 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
423 "mallocsize", InsertBefore);
424 else
425 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
426 "mallocsize", InsertAtEnd);
430 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
431 // Create the call to Malloc.
432 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
433 Module* M = BB->getParent()->getParent();
434 const Type *BPTy = Type::getInt8PtrTy(BB->getContext());
435 Value *MallocFunc = MallocF;
436 if (!MallocFunc)
437 // prototype malloc as "void *malloc(size_t)"
438 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
439 const PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
440 CallInst *MCall = NULL;
441 Instruction *Result = NULL;
442 if (InsertBefore) {
443 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
444 Result = MCall;
445 if (Result->getType() != AllocPtrType)
446 // Create a cast instruction to convert to the right type...
447 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
448 } else {
449 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
450 Result = MCall;
451 if (Result->getType() != AllocPtrType) {
452 InsertAtEnd->getInstList().push_back(MCall);
453 // Create a cast instruction to convert to the right type...
454 Result = new BitCastInst(MCall, AllocPtrType, Name);
457 MCall->setTailCall();
458 if (Function *F = dyn_cast<Function>(MallocFunc)) {
459 MCall->setCallingConv(F->getCallingConv());
460 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
462 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
464 return Result;
467 /// CreateMalloc - Generate the IR for a call to malloc:
468 /// 1. Compute the malloc call's argument as the specified type's size,
469 /// possibly multiplied by the array size if the array size is not
470 /// constant 1.
471 /// 2. Call malloc with that argument.
472 /// 3. Bitcast the result of the malloc call to the specified type.
473 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
474 const Type *IntPtrTy, const Type *AllocTy,
475 Value *AllocSize, Value *ArraySize,
476 const Twine &Name) {
477 return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
478 ArraySize, NULL, Name);
481 /// CreateMalloc - Generate the IR for a call to malloc:
482 /// 1. Compute the malloc call's argument as the specified type's size,
483 /// possibly multiplied by the array size if the array size is not
484 /// constant 1.
485 /// 2. Call malloc with that argument.
486 /// 3. Bitcast the result of the malloc call to the specified type.
487 /// Note: This function does not add the bitcast to the basic block, that is the
488 /// responsibility of the caller.
489 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
490 const Type *IntPtrTy, const Type *AllocTy,
491 Value *AllocSize, Value *ArraySize,
492 Function *MallocF, const Twine &Name) {
493 return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
494 ArraySize, MallocF, Name);
497 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
498 BasicBlock *InsertAtEnd) {
499 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
500 "createFree needs either InsertBefore or InsertAtEnd");
501 assert(Source->getType()->isPointerTy() &&
502 "Can not free something of nonpointer type!");
504 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
505 Module* M = BB->getParent()->getParent();
507 const Type *VoidTy = Type::getVoidTy(M->getContext());
508 const Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
509 // prototype free as "void free(void*)"
510 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
511 CallInst* Result = NULL;
512 Value *PtrCast = Source;
513 if (InsertBefore) {
514 if (Source->getType() != IntPtrTy)
515 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
516 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
517 } else {
518 if (Source->getType() != IntPtrTy)
519 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
520 Result = CallInst::Create(FreeFunc, PtrCast, "");
522 Result->setTailCall();
523 if (Function *F = dyn_cast<Function>(FreeFunc))
524 Result->setCallingConv(F->getCallingConv());
526 return Result;
529 /// CreateFree - Generate the IR for a call to the builtin free function.
530 void CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
531 createFree(Source, InsertBefore, NULL);
534 /// CreateFree - Generate the IR for a call to the builtin free function.
535 /// Note: This function does not add the call to the basic block, that is the
536 /// responsibility of the caller.
537 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
538 Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
539 assert(FreeCall && "CreateFree did not create a CallInst");
540 return FreeCall;
543 //===----------------------------------------------------------------------===//
544 // InvokeInst Implementation
545 //===----------------------------------------------------------------------===//
547 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
548 Value* const *Args, unsigned NumArgs) {
549 assert(NumOperands == 3+NumArgs && "NumOperands not set up?");
550 Op<-3>() = Fn;
551 Op<-2>() = IfNormal;
552 Op<-1>() = IfException;
553 const FunctionType *FTy =
554 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
555 FTy = FTy; // silence warning.
557 assert(((NumArgs == FTy->getNumParams()) ||
558 (FTy->isVarArg() && NumArgs > FTy->getNumParams())) &&
559 "Invoking a function with bad signature");
561 Use *OL = OperandList;
562 for (unsigned i = 0, e = NumArgs; i != e; i++) {
563 assert((i >= FTy->getNumParams() ||
564 FTy->getParamType(i) == Args[i]->getType()) &&
565 "Invoking a function with a bad signature!");
567 OL[i] = Args[i];
571 InvokeInst::InvokeInst(const InvokeInst &II)
572 : TerminatorInst(II.getType(), Instruction::Invoke,
573 OperandTraits<InvokeInst>::op_end(this)
574 - II.getNumOperands(),
575 II.getNumOperands()) {
576 setAttributes(II.getAttributes());
577 setCallingConv(II.getCallingConv());
578 Use *OL = OperandList, *InOL = II.OperandList;
579 for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
580 OL[i] = InOL[i];
581 SubclassOptionalData = II.SubclassOptionalData;
584 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
585 return getSuccessor(idx);
587 unsigned InvokeInst::getNumSuccessorsV() const {
588 return getNumSuccessors();
590 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
591 return setSuccessor(idx, B);
594 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
595 if (AttributeList.paramHasAttr(i, attr))
596 return true;
597 if (const Function *F = getCalledFunction())
598 return F->paramHasAttr(i, attr);
599 return false;
602 void InvokeInst::addAttribute(unsigned i, Attributes attr) {
603 AttrListPtr PAL = getAttributes();
604 PAL = PAL.addAttr(i, attr);
605 setAttributes(PAL);
608 void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
609 AttrListPtr PAL = getAttributes();
610 PAL = PAL.removeAttr(i, attr);
611 setAttributes(PAL);
615 //===----------------------------------------------------------------------===//
616 // ReturnInst Implementation
617 //===----------------------------------------------------------------------===//
619 ReturnInst::ReturnInst(const ReturnInst &RI)
620 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
621 OperandTraits<ReturnInst>::op_end(this) -
622 RI.getNumOperands(),
623 RI.getNumOperands()) {
624 if (RI.getNumOperands())
625 Op<0>() = RI.Op<0>();
626 SubclassOptionalData = RI.SubclassOptionalData;
629 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
630 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
631 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
632 InsertBefore) {
633 if (retVal)
634 Op<0>() = retVal;
636 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
637 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
638 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
639 InsertAtEnd) {
640 if (retVal)
641 Op<0>() = retVal;
643 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
644 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
645 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
648 unsigned ReturnInst::getNumSuccessorsV() const {
649 return getNumSuccessors();
652 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
653 /// emit the vtable for the class in this translation unit.
654 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
655 llvm_unreachable("ReturnInst has no successors!");
658 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
659 llvm_unreachable("ReturnInst has no successors!");
660 return 0;
663 ReturnInst::~ReturnInst() {
666 //===----------------------------------------------------------------------===//
667 // UnwindInst Implementation
668 //===----------------------------------------------------------------------===//
670 UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore)
671 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
672 0, 0, InsertBefore) {
674 UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
675 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
676 0, 0, InsertAtEnd) {
680 unsigned UnwindInst::getNumSuccessorsV() const {
681 return getNumSuccessors();
684 void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
685 llvm_unreachable("UnwindInst has no successors!");
688 BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
689 llvm_unreachable("UnwindInst has no successors!");
690 return 0;
693 //===----------------------------------------------------------------------===//
694 // UnreachableInst Implementation
695 //===----------------------------------------------------------------------===//
697 UnreachableInst::UnreachableInst(LLVMContext &Context,
698 Instruction *InsertBefore)
699 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
700 0, 0, InsertBefore) {
702 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
703 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
704 0, 0, InsertAtEnd) {
707 unsigned UnreachableInst::getNumSuccessorsV() const {
708 return getNumSuccessors();
711 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
712 llvm_unreachable("UnwindInst has no successors!");
715 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
716 llvm_unreachable("UnwindInst has no successors!");
717 return 0;
720 //===----------------------------------------------------------------------===//
721 // BranchInst Implementation
722 //===----------------------------------------------------------------------===//
724 void BranchInst::AssertOK() {
725 if (isConditional())
726 assert(getCondition()->getType()->isIntegerTy(1) &&
727 "May only branch on boolean predicates!");
730 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
731 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
732 OperandTraits<BranchInst>::op_end(this) - 1,
733 1, InsertBefore) {
734 assert(IfTrue != 0 && "Branch destination may not be null!");
735 Op<-1>() = IfTrue;
737 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
738 Instruction *InsertBefore)
739 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
740 OperandTraits<BranchInst>::op_end(this) - 3,
741 3, InsertBefore) {
742 Op<-1>() = IfTrue;
743 Op<-2>() = IfFalse;
744 Op<-3>() = Cond;
745 #ifndef NDEBUG
746 AssertOK();
747 #endif
750 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
751 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
752 OperandTraits<BranchInst>::op_end(this) - 1,
753 1, InsertAtEnd) {
754 assert(IfTrue != 0 && "Branch destination may not be null!");
755 Op<-1>() = IfTrue;
758 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
759 BasicBlock *InsertAtEnd)
760 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
761 OperandTraits<BranchInst>::op_end(this) - 3,
762 3, InsertAtEnd) {
763 Op<-1>() = IfTrue;
764 Op<-2>() = IfFalse;
765 Op<-3>() = Cond;
766 #ifndef NDEBUG
767 AssertOK();
768 #endif
772 BranchInst::BranchInst(const BranchInst &BI) :
773 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
774 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
775 BI.getNumOperands()) {
776 Op<-1>() = BI.Op<-1>();
777 if (BI.getNumOperands() != 1) {
778 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
779 Op<-3>() = BI.Op<-3>();
780 Op<-2>() = BI.Op<-2>();
782 SubclassOptionalData = BI.SubclassOptionalData;
786 Use* Use::getPrefix() {
787 PointerIntPair<Use**, 2, PrevPtrTag> &PotentialPrefix(this[-1].Prev);
788 if (PotentialPrefix.getOpaqueValue())
789 return 0;
791 return reinterpret_cast<Use*>((char*)&PotentialPrefix + 1);
794 BranchInst::~BranchInst() {
795 if (NumOperands == 1) {
796 if (Use *Prefix = OperandList->getPrefix()) {
797 Op<-1>() = 0;
799 // mark OperandList to have a special value for scrutiny
800 // by baseclass destructors and operator delete
801 OperandList = Prefix;
802 } else {
803 NumOperands = 3;
804 OperandList = op_begin();
810 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
811 return getSuccessor(idx);
813 unsigned BranchInst::getNumSuccessorsV() const {
814 return getNumSuccessors();
816 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
817 setSuccessor(idx, B);
821 //===----------------------------------------------------------------------===//
822 // AllocaInst Implementation
823 //===----------------------------------------------------------------------===//
825 static Value *getAISize(LLVMContext &Context, Value *Amt) {
826 if (!Amt)
827 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
828 else {
829 assert(!isa<BasicBlock>(Amt) &&
830 "Passed basic block into allocation size parameter! Use other ctor");
831 assert(Amt->getType()->isIntegerTy(32) &&
832 "Allocation array size is not a 32-bit integer!");
834 return Amt;
837 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
838 const Twine &Name, Instruction *InsertBefore)
839 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
840 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
841 setAlignment(0);
842 assert(!Ty->isVoidTy() && "Cannot allocate void!");
843 setName(Name);
846 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
847 const Twine &Name, BasicBlock *InsertAtEnd)
848 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
849 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
850 setAlignment(0);
851 assert(!Ty->isVoidTy() && "Cannot allocate void!");
852 setName(Name);
855 AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
856 Instruction *InsertBefore)
857 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
858 getAISize(Ty->getContext(), 0), InsertBefore) {
859 setAlignment(0);
860 assert(!Ty->isVoidTy() && "Cannot allocate void!");
861 setName(Name);
864 AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
865 BasicBlock *InsertAtEnd)
866 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
867 getAISize(Ty->getContext(), 0), InsertAtEnd) {
868 setAlignment(0);
869 assert(!Ty->isVoidTy() && "Cannot allocate void!");
870 setName(Name);
873 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
874 const Twine &Name, Instruction *InsertBefore)
875 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
876 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
877 setAlignment(Align);
878 assert(!Ty->isVoidTy() && "Cannot allocate void!");
879 setName(Name);
882 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
883 const Twine &Name, BasicBlock *InsertAtEnd)
884 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
885 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
886 setAlignment(Align);
887 assert(!Ty->isVoidTy() && "Cannot allocate void!");
888 setName(Name);
891 // Out of line virtual method, so the vtable, etc has a home.
892 AllocaInst::~AllocaInst() {
895 void AllocaInst::setAlignment(unsigned Align) {
896 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
897 setInstructionSubclassData(Log2_32(Align) + 1);
898 assert(getAlignment() == Align && "Alignment representation error!");
901 bool AllocaInst::isArrayAllocation() const {
902 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
903 return CI->getZExtValue() != 1;
904 return true;
907 const Type *AllocaInst::getAllocatedType() const {
908 return getType()->getElementType();
911 /// isStaticAlloca - Return true if this alloca is in the entry block of the
912 /// function and is a constant size. If so, the code generator will fold it
913 /// into the prolog/epilog code, so it is basically free.
914 bool AllocaInst::isStaticAlloca() const {
915 // Must be constant size.
916 if (!isa<ConstantInt>(getArraySize())) return false;
918 // Must be in the entry block.
919 const BasicBlock *Parent = getParent();
920 return Parent == &Parent->getParent()->front();
923 //===----------------------------------------------------------------------===//
924 // LoadInst Implementation
925 //===----------------------------------------------------------------------===//
927 void LoadInst::AssertOK() {
928 assert(getOperand(0)->getType()->isPointerTy() &&
929 "Ptr must have pointer type.");
932 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
933 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
934 Load, Ptr, InsertBef) {
935 setVolatile(false);
936 setAlignment(0);
937 AssertOK();
938 setName(Name);
941 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
942 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
943 Load, Ptr, InsertAE) {
944 setVolatile(false);
945 setAlignment(0);
946 AssertOK();
947 setName(Name);
950 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
951 Instruction *InsertBef)
952 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
953 Load, Ptr, InsertBef) {
954 setVolatile(isVolatile);
955 setAlignment(0);
956 AssertOK();
957 setName(Name);
960 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
961 unsigned Align, Instruction *InsertBef)
962 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
963 Load, Ptr, InsertBef) {
964 setVolatile(isVolatile);
965 setAlignment(Align);
966 AssertOK();
967 setName(Name);
970 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
971 unsigned Align, BasicBlock *InsertAE)
972 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
973 Load, Ptr, InsertAE) {
974 setVolatile(isVolatile);
975 setAlignment(Align);
976 AssertOK();
977 setName(Name);
980 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
981 BasicBlock *InsertAE)
982 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
983 Load, Ptr, InsertAE) {
984 setVolatile(isVolatile);
985 setAlignment(0);
986 AssertOK();
987 setName(Name);
992 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
993 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
994 Load, Ptr, InsertBef) {
995 setVolatile(false);
996 setAlignment(0);
997 AssertOK();
998 if (Name && Name[0]) setName(Name);
1001 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1002 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1003 Load, Ptr, InsertAE) {
1004 setVolatile(false);
1005 setAlignment(0);
1006 AssertOK();
1007 if (Name && Name[0]) setName(Name);
1010 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1011 Instruction *InsertBef)
1012 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1013 Load, Ptr, InsertBef) {
1014 setVolatile(isVolatile);
1015 setAlignment(0);
1016 AssertOK();
1017 if (Name && Name[0]) setName(Name);
1020 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1021 BasicBlock *InsertAE)
1022 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1023 Load, Ptr, InsertAE) {
1024 setVolatile(isVolatile);
1025 setAlignment(0);
1026 AssertOK();
1027 if (Name && Name[0]) setName(Name);
1030 void LoadInst::setAlignment(unsigned Align) {
1031 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1032 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
1033 ((Log2_32(Align)+1)<<1));
1036 //===----------------------------------------------------------------------===//
1037 // StoreInst Implementation
1038 //===----------------------------------------------------------------------===//
1040 void StoreInst::AssertOK() {
1041 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1042 assert(getOperand(1)->getType()->isPointerTy() &&
1043 "Ptr must have pointer type!");
1044 assert(getOperand(0)->getType() ==
1045 cast<PointerType>(getOperand(1)->getType())->getElementType()
1046 && "Ptr must be a pointer to Val type!");
1050 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1051 : Instruction(Type::getVoidTy(val->getContext()), Store,
1052 OperandTraits<StoreInst>::op_begin(this),
1053 OperandTraits<StoreInst>::operands(this),
1054 InsertBefore) {
1055 Op<0>() = val;
1056 Op<1>() = addr;
1057 setVolatile(false);
1058 setAlignment(0);
1059 AssertOK();
1062 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1063 : Instruction(Type::getVoidTy(val->getContext()), Store,
1064 OperandTraits<StoreInst>::op_begin(this),
1065 OperandTraits<StoreInst>::operands(this),
1066 InsertAtEnd) {
1067 Op<0>() = val;
1068 Op<1>() = addr;
1069 setVolatile(false);
1070 setAlignment(0);
1071 AssertOK();
1074 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1075 Instruction *InsertBefore)
1076 : Instruction(Type::getVoidTy(val->getContext()), Store,
1077 OperandTraits<StoreInst>::op_begin(this),
1078 OperandTraits<StoreInst>::operands(this),
1079 InsertBefore) {
1080 Op<0>() = val;
1081 Op<1>() = addr;
1082 setVolatile(isVolatile);
1083 setAlignment(0);
1084 AssertOK();
1087 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1088 unsigned Align, Instruction *InsertBefore)
1089 : Instruction(Type::getVoidTy(val->getContext()), Store,
1090 OperandTraits<StoreInst>::op_begin(this),
1091 OperandTraits<StoreInst>::operands(this),
1092 InsertBefore) {
1093 Op<0>() = val;
1094 Op<1>() = addr;
1095 setVolatile(isVolatile);
1096 setAlignment(Align);
1097 AssertOK();
1100 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1101 unsigned Align, BasicBlock *InsertAtEnd)
1102 : Instruction(Type::getVoidTy(val->getContext()), Store,
1103 OperandTraits<StoreInst>::op_begin(this),
1104 OperandTraits<StoreInst>::operands(this),
1105 InsertAtEnd) {
1106 Op<0>() = val;
1107 Op<1>() = addr;
1108 setVolatile(isVolatile);
1109 setAlignment(Align);
1110 AssertOK();
1113 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1114 BasicBlock *InsertAtEnd)
1115 : Instruction(Type::getVoidTy(val->getContext()), Store,
1116 OperandTraits<StoreInst>::op_begin(this),
1117 OperandTraits<StoreInst>::operands(this),
1118 InsertAtEnd) {
1119 Op<0>() = val;
1120 Op<1>() = addr;
1121 setVolatile(isVolatile);
1122 setAlignment(0);
1123 AssertOK();
1126 void StoreInst::setAlignment(unsigned Align) {
1127 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1128 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
1129 ((Log2_32(Align)+1) << 1));
1132 //===----------------------------------------------------------------------===//
1133 // GetElementPtrInst Implementation
1134 //===----------------------------------------------------------------------===//
1136 static unsigned retrieveAddrSpace(const Value *Val) {
1137 return cast<PointerType>(Val->getType())->getAddressSpace();
1140 void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
1141 const Twine &Name) {
1142 assert(NumOperands == 1+NumIdx && "NumOperands not initialized?");
1143 Use *OL = OperandList;
1144 OL[0] = Ptr;
1146 for (unsigned i = 0; i != NumIdx; ++i)
1147 OL[i+1] = Idx[i];
1149 setName(Name);
1152 void GetElementPtrInst::init(Value *Ptr, Value *Idx, const Twine &Name) {
1153 assert(NumOperands == 2 && "NumOperands not initialized?");
1154 Use *OL = OperandList;
1155 OL[0] = Ptr;
1156 OL[1] = Idx;
1158 setName(Name);
1161 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1162 : Instruction(GEPI.getType(), GetElementPtr,
1163 OperandTraits<GetElementPtrInst>::op_end(this)
1164 - GEPI.getNumOperands(),
1165 GEPI.getNumOperands()) {
1166 Use *OL = OperandList;
1167 Use *GEPIOL = GEPI.OperandList;
1168 for (unsigned i = 0, E = NumOperands; i != E; ++i)
1169 OL[i] = GEPIOL[i];
1170 SubclassOptionalData = GEPI.SubclassOptionalData;
1173 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1174 const Twine &Name, Instruction *InBe)
1175 : Instruction(PointerType::get(
1176 checkType(getIndexedType(Ptr->getType(),Idx)), retrieveAddrSpace(Ptr)),
1177 GetElementPtr,
1178 OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1179 2, InBe) {
1180 init(Ptr, Idx, Name);
1183 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1184 const Twine &Name, BasicBlock *IAE)
1185 : Instruction(PointerType::get(
1186 checkType(getIndexedType(Ptr->getType(),Idx)),
1187 retrieveAddrSpace(Ptr)),
1188 GetElementPtr,
1189 OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1190 2, IAE) {
1191 init(Ptr, Idx, Name);
1194 /// getIndexedType - Returns the type of the element that would be accessed with
1195 /// a gep instruction with the specified parameters.
1197 /// The Idxs pointer should point to a continuous piece of memory containing the
1198 /// indices, either as Value* or uint64_t.
1200 /// A null type is returned if the indices are invalid for the specified
1201 /// pointer type.
1203 template <typename IndexTy>
1204 static const Type* getIndexedTypeInternal(const Type *Ptr, IndexTy const *Idxs,
1205 unsigned NumIdx) {
1206 const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1207 if (!PTy) return 0; // Type isn't a pointer type!
1208 const Type *Agg = PTy->getElementType();
1210 // Handle the special case of the empty set index set, which is always valid.
1211 if (NumIdx == 0)
1212 return Agg;
1214 // If there is at least one index, the top level type must be sized, otherwise
1215 // it cannot be 'stepped over'. We explicitly allow abstract types (those
1216 // that contain opaque types) under the assumption that it will be resolved to
1217 // a sane type later.
1218 if (!Agg->isSized() && !Agg->isAbstract())
1219 return 0;
1221 unsigned CurIdx = 1;
1222 for (; CurIdx != NumIdx; ++CurIdx) {
1223 const CompositeType *CT = dyn_cast<CompositeType>(Agg);
1224 if (!CT || CT->isPointerTy()) return 0;
1225 IndexTy Index = Idxs[CurIdx];
1226 if (!CT->indexValid(Index)) return 0;
1227 Agg = CT->getTypeAtIndex(Index);
1229 // If the new type forwards to another type, then it is in the middle
1230 // of being refined to another type (and hence, may have dropped all
1231 // references to what it was using before). So, use the new forwarded
1232 // type.
1233 if (const Type *Ty = Agg->getForwardedType())
1234 Agg = Ty;
1236 return CurIdx == NumIdx ? Agg : 0;
1239 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1240 Value* const *Idxs,
1241 unsigned NumIdx) {
1242 return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1245 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1246 uint64_t const *Idxs,
1247 unsigned NumIdx) {
1248 return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1251 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
1252 const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1253 if (!PTy) return 0; // Type isn't a pointer type!
1255 // Check the pointer index.
1256 if (!PTy->indexValid(Idx)) return 0;
1258 return PTy->getElementType();
1262 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1263 /// zeros. If so, the result pointer and the first operand have the same
1264 /// value, just potentially different types.
1265 bool GetElementPtrInst::hasAllZeroIndices() const {
1266 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1267 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1268 if (!CI->isZero()) return false;
1269 } else {
1270 return false;
1273 return true;
1276 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1277 /// constant integers. If so, the result pointer and the first operand have
1278 /// a constant offset between them.
1279 bool GetElementPtrInst::hasAllConstantIndices() const {
1280 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1281 if (!isa<ConstantInt>(getOperand(i)))
1282 return false;
1284 return true;
1287 void GetElementPtrInst::setIsInBounds(bool B) {
1288 cast<GEPOperator>(this)->setIsInBounds(B);
1291 bool GetElementPtrInst::isInBounds() const {
1292 return cast<GEPOperator>(this)->isInBounds();
1295 //===----------------------------------------------------------------------===//
1296 // ExtractElementInst Implementation
1297 //===----------------------------------------------------------------------===//
1299 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1300 const Twine &Name,
1301 Instruction *InsertBef)
1302 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1303 ExtractElement,
1304 OperandTraits<ExtractElementInst>::op_begin(this),
1305 2, InsertBef) {
1306 assert(isValidOperands(Val, Index) &&
1307 "Invalid extractelement instruction operands!");
1308 Op<0>() = Val;
1309 Op<1>() = Index;
1310 setName(Name);
1313 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1314 const Twine &Name,
1315 BasicBlock *InsertAE)
1316 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1317 ExtractElement,
1318 OperandTraits<ExtractElementInst>::op_begin(this),
1319 2, InsertAE) {
1320 assert(isValidOperands(Val, Index) &&
1321 "Invalid extractelement instruction operands!");
1323 Op<0>() = Val;
1324 Op<1>() = Index;
1325 setName(Name);
1329 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1330 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
1331 return false;
1332 return true;
1336 //===----------------------------------------------------------------------===//
1337 // InsertElementInst Implementation
1338 //===----------------------------------------------------------------------===//
1340 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1341 const Twine &Name,
1342 Instruction *InsertBef)
1343 : Instruction(Vec->getType(), InsertElement,
1344 OperandTraits<InsertElementInst>::op_begin(this),
1345 3, InsertBef) {
1346 assert(isValidOperands(Vec, Elt, Index) &&
1347 "Invalid insertelement instruction operands!");
1348 Op<0>() = Vec;
1349 Op<1>() = Elt;
1350 Op<2>() = Index;
1351 setName(Name);
1354 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1355 const Twine &Name,
1356 BasicBlock *InsertAE)
1357 : Instruction(Vec->getType(), InsertElement,
1358 OperandTraits<InsertElementInst>::op_begin(this),
1359 3, InsertAE) {
1360 assert(isValidOperands(Vec, Elt, Index) &&
1361 "Invalid insertelement instruction operands!");
1363 Op<0>() = Vec;
1364 Op<1>() = Elt;
1365 Op<2>() = Index;
1366 setName(Name);
1369 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1370 const Value *Index) {
1371 if (!Vec->getType()->isVectorTy())
1372 return false; // First operand of insertelement must be vector type.
1374 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1375 return false;// Second operand of insertelement must be vector element type.
1377 if (!Index->getType()->isIntegerTy(32))
1378 return false; // Third operand of insertelement must be i32.
1379 return true;
1383 //===----------------------------------------------------------------------===//
1384 // ShuffleVectorInst Implementation
1385 //===----------------------------------------------------------------------===//
1387 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1388 const Twine &Name,
1389 Instruction *InsertBefore)
1390 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1391 cast<VectorType>(Mask->getType())->getNumElements()),
1392 ShuffleVector,
1393 OperandTraits<ShuffleVectorInst>::op_begin(this),
1394 OperandTraits<ShuffleVectorInst>::operands(this),
1395 InsertBefore) {
1396 assert(isValidOperands(V1, V2, Mask) &&
1397 "Invalid shuffle vector instruction operands!");
1398 Op<0>() = V1;
1399 Op<1>() = V2;
1400 Op<2>() = Mask;
1401 setName(Name);
1404 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1405 const Twine &Name,
1406 BasicBlock *InsertAtEnd)
1407 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1408 cast<VectorType>(Mask->getType())->getNumElements()),
1409 ShuffleVector,
1410 OperandTraits<ShuffleVectorInst>::op_begin(this),
1411 OperandTraits<ShuffleVectorInst>::operands(this),
1412 InsertAtEnd) {
1413 assert(isValidOperands(V1, V2, Mask) &&
1414 "Invalid shuffle vector instruction operands!");
1416 Op<0>() = V1;
1417 Op<1>() = V2;
1418 Op<2>() = Mask;
1419 setName(Name);
1422 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1423 const Value *Mask) {
1424 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1425 return false;
1427 const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1428 if (!isa<Constant>(Mask) || MaskTy == 0 ||
1429 !MaskTy->getElementType()->isIntegerTy(32))
1430 return false;
1431 return true;
1434 /// getMaskValue - Return the index from the shuffle mask for the specified
1435 /// output result. This is either -1 if the element is undef or a number less
1436 /// than 2*numelements.
1437 int ShuffleVectorInst::getMaskValue(unsigned i) const {
1438 const Constant *Mask = cast<Constant>(getOperand(2));
1439 if (isa<UndefValue>(Mask)) return -1;
1440 if (isa<ConstantAggregateZero>(Mask)) return 0;
1441 const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
1442 assert(i < MaskCV->getNumOperands() && "Index out of range");
1444 if (isa<UndefValue>(MaskCV->getOperand(i)))
1445 return -1;
1446 return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
1449 //===----------------------------------------------------------------------===//
1450 // InsertValueInst Class
1451 //===----------------------------------------------------------------------===//
1453 void InsertValueInst::init(Value *Agg, Value *Val, const unsigned *Idx,
1454 unsigned NumIdx, const Twine &Name) {
1455 assert(NumOperands == 2 && "NumOperands not initialized?");
1456 Op<0>() = Agg;
1457 Op<1>() = Val;
1459 Indices.insert(Indices.end(), Idx, Idx + NumIdx);
1460 setName(Name);
1463 void InsertValueInst::init(Value *Agg, Value *Val, unsigned Idx,
1464 const Twine &Name) {
1465 assert(NumOperands == 2 && "NumOperands not initialized?");
1466 Op<0>() = Agg;
1467 Op<1>() = Val;
1469 Indices.push_back(Idx);
1470 setName(Name);
1473 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1474 : Instruction(IVI.getType(), InsertValue,
1475 OperandTraits<InsertValueInst>::op_begin(this), 2),
1476 Indices(IVI.Indices) {
1477 Op<0>() = IVI.getOperand(0);
1478 Op<1>() = IVI.getOperand(1);
1479 SubclassOptionalData = IVI.SubclassOptionalData;
1482 InsertValueInst::InsertValueInst(Value *Agg,
1483 Value *Val,
1484 unsigned Idx,
1485 const Twine &Name,
1486 Instruction *InsertBefore)
1487 : Instruction(Agg->getType(), InsertValue,
1488 OperandTraits<InsertValueInst>::op_begin(this),
1489 2, InsertBefore) {
1490 init(Agg, Val, Idx, Name);
1493 InsertValueInst::InsertValueInst(Value *Agg,
1494 Value *Val,
1495 unsigned Idx,
1496 const Twine &Name,
1497 BasicBlock *InsertAtEnd)
1498 : Instruction(Agg->getType(), InsertValue,
1499 OperandTraits<InsertValueInst>::op_begin(this),
1500 2, InsertAtEnd) {
1501 init(Agg, Val, Idx, Name);
1504 //===----------------------------------------------------------------------===//
1505 // ExtractValueInst Class
1506 //===----------------------------------------------------------------------===//
1508 void ExtractValueInst::init(const unsigned *Idx, unsigned NumIdx,
1509 const Twine &Name) {
1510 assert(NumOperands == 1 && "NumOperands not initialized?");
1512 Indices.insert(Indices.end(), Idx, Idx + NumIdx);
1513 setName(Name);
1516 void ExtractValueInst::init(unsigned Idx, const Twine &Name) {
1517 assert(NumOperands == 1 && "NumOperands not initialized?");
1519 Indices.push_back(Idx);
1520 setName(Name);
1523 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1524 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1525 Indices(EVI.Indices) {
1526 SubclassOptionalData = EVI.SubclassOptionalData;
1529 // getIndexedType - Returns the type of the element that would be extracted
1530 // with an extractvalue instruction with the specified parameters.
1532 // A null type is returned if the indices are invalid for the specified
1533 // pointer type.
1535 const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1536 const unsigned *Idxs,
1537 unsigned NumIdx) {
1538 unsigned CurIdx = 0;
1539 for (; CurIdx != NumIdx; ++CurIdx) {
1540 const CompositeType *CT = dyn_cast<CompositeType>(Agg);
1541 if (!CT || CT->isPointerTy() || CT->isVectorTy()) return 0;
1542 unsigned Index = Idxs[CurIdx];
1543 if (!CT->indexValid(Index)) return 0;
1544 Agg = CT->getTypeAtIndex(Index);
1546 // If the new type forwards to another type, then it is in the middle
1547 // of being refined to another type (and hence, may have dropped all
1548 // references to what it was using before). So, use the new forwarded
1549 // type.
1550 if (const Type *Ty = Agg->getForwardedType())
1551 Agg = Ty;
1553 return CurIdx == NumIdx ? Agg : 0;
1556 const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1557 unsigned Idx) {
1558 return getIndexedType(Agg, &Idx, 1);
1561 //===----------------------------------------------------------------------===//
1562 // BinaryOperator Class
1563 //===----------------------------------------------------------------------===//
1565 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1566 const Type *Ty, const Twine &Name,
1567 Instruction *InsertBefore)
1568 : Instruction(Ty, iType,
1569 OperandTraits<BinaryOperator>::op_begin(this),
1570 OperandTraits<BinaryOperator>::operands(this),
1571 InsertBefore) {
1572 Op<0>() = S1;
1573 Op<1>() = S2;
1574 init(iType);
1575 setName(Name);
1578 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1579 const Type *Ty, const Twine &Name,
1580 BasicBlock *InsertAtEnd)
1581 : Instruction(Ty, iType,
1582 OperandTraits<BinaryOperator>::op_begin(this),
1583 OperandTraits<BinaryOperator>::operands(this),
1584 InsertAtEnd) {
1585 Op<0>() = S1;
1586 Op<1>() = S2;
1587 init(iType);
1588 setName(Name);
1592 void BinaryOperator::init(BinaryOps iType) {
1593 Value *LHS = getOperand(0), *RHS = getOperand(1);
1594 LHS = LHS; RHS = RHS; // Silence warnings.
1595 assert(LHS->getType() == RHS->getType() &&
1596 "Binary operator operand types must match!");
1597 #ifndef NDEBUG
1598 switch (iType) {
1599 case Add: case Sub:
1600 case Mul:
1601 assert(getType() == LHS->getType() &&
1602 "Arithmetic operation should return same type as operands!");
1603 assert(getType()->isIntOrIntVectorTy() &&
1604 "Tried to create an integer operation on a non-integer type!");
1605 break;
1606 case FAdd: case FSub:
1607 case FMul:
1608 assert(getType() == LHS->getType() &&
1609 "Arithmetic operation should return same type as operands!");
1610 assert(getType()->isFPOrFPVectorTy() &&
1611 "Tried to create a floating-point operation on a "
1612 "non-floating-point type!");
1613 break;
1614 case UDiv:
1615 case SDiv:
1616 assert(getType() == LHS->getType() &&
1617 "Arithmetic operation should return same type as operands!");
1618 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1619 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1620 "Incorrect operand type (not integer) for S/UDIV");
1621 break;
1622 case FDiv:
1623 assert(getType() == LHS->getType() &&
1624 "Arithmetic operation should return same type as operands!");
1625 assert(getType()->isFPOrFPVectorTy() &&
1626 "Incorrect operand type (not floating point) for FDIV");
1627 break;
1628 case URem:
1629 case SRem:
1630 assert(getType() == LHS->getType() &&
1631 "Arithmetic operation should return same type as operands!");
1632 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1633 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1634 "Incorrect operand type (not integer) for S/UREM");
1635 break;
1636 case FRem:
1637 assert(getType() == LHS->getType() &&
1638 "Arithmetic operation should return same type as operands!");
1639 assert(getType()->isFPOrFPVectorTy() &&
1640 "Incorrect operand type (not floating point) for FREM");
1641 break;
1642 case Shl:
1643 case LShr:
1644 case AShr:
1645 assert(getType() == LHS->getType() &&
1646 "Shift operation should return same type as operands!");
1647 assert((getType()->isIntegerTy() ||
1648 (getType()->isVectorTy() &&
1649 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1650 "Tried to create a shift operation on a non-integral type!");
1651 break;
1652 case And: case Or:
1653 case Xor:
1654 assert(getType() == LHS->getType() &&
1655 "Logical operation should return same type as operands!");
1656 assert((getType()->isIntegerTy() ||
1657 (getType()->isVectorTy() &&
1658 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1659 "Tried to create a logical operation on a non-integral type!");
1660 break;
1661 default:
1662 break;
1664 #endif
1667 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1668 const Twine &Name,
1669 Instruction *InsertBefore) {
1670 assert(S1->getType() == S2->getType() &&
1671 "Cannot create binary operator with two operands of differing type!");
1672 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1675 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1676 const Twine &Name,
1677 BasicBlock *InsertAtEnd) {
1678 BinaryOperator *Res = Create(Op, S1, S2, Name);
1679 InsertAtEnd->getInstList().push_back(Res);
1680 return Res;
1683 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1684 Instruction *InsertBefore) {
1685 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1686 return new BinaryOperator(Instruction::Sub,
1687 zero, Op,
1688 Op->getType(), Name, InsertBefore);
1691 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1692 BasicBlock *InsertAtEnd) {
1693 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1694 return new BinaryOperator(Instruction::Sub,
1695 zero, Op,
1696 Op->getType(), Name, InsertAtEnd);
1699 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1700 Instruction *InsertBefore) {
1701 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1702 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1705 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1706 BasicBlock *InsertAtEnd) {
1707 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1708 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1711 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1712 Instruction *InsertBefore) {
1713 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1714 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1717 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1718 BasicBlock *InsertAtEnd) {
1719 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1720 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1723 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1724 Instruction *InsertBefore) {
1725 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1726 return new BinaryOperator(Instruction::FSub,
1727 zero, Op,
1728 Op->getType(), Name, InsertBefore);
1731 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1732 BasicBlock *InsertAtEnd) {
1733 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1734 return new BinaryOperator(Instruction::FSub,
1735 zero, Op,
1736 Op->getType(), Name, InsertAtEnd);
1739 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1740 Instruction *InsertBefore) {
1741 Constant *C;
1742 if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1743 C = Constant::getAllOnesValue(PTy->getElementType());
1744 C = ConstantVector::get(
1745 std::vector<Constant*>(PTy->getNumElements(), C));
1746 } else {
1747 C = Constant::getAllOnesValue(Op->getType());
1750 return new BinaryOperator(Instruction::Xor, Op, C,
1751 Op->getType(), Name, InsertBefore);
1754 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1755 BasicBlock *InsertAtEnd) {
1756 Constant *AllOnes;
1757 if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1758 // Create a vector of all ones values.
1759 Constant *Elt = Constant::getAllOnesValue(PTy->getElementType());
1760 AllOnes = ConstantVector::get(
1761 std::vector<Constant*>(PTy->getNumElements(), Elt));
1762 } else {
1763 AllOnes = Constant::getAllOnesValue(Op->getType());
1766 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1767 Op->getType(), Name, InsertAtEnd);
1771 // isConstantAllOnes - Helper function for several functions below
1772 static inline bool isConstantAllOnes(const Value *V) {
1773 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
1774 return CI->isAllOnesValue();
1775 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
1776 return CV->isAllOnesValue();
1777 return false;
1780 bool BinaryOperator::isNeg(const Value *V) {
1781 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1782 if (Bop->getOpcode() == Instruction::Sub)
1783 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1784 return C->isNegativeZeroValue();
1785 return false;
1788 bool BinaryOperator::isFNeg(const Value *V) {
1789 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1790 if (Bop->getOpcode() == Instruction::FSub)
1791 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1792 return C->isNegativeZeroValue();
1793 return false;
1796 bool BinaryOperator::isNot(const Value *V) {
1797 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1798 return (Bop->getOpcode() == Instruction::Xor &&
1799 (isConstantAllOnes(Bop->getOperand(1)) ||
1800 isConstantAllOnes(Bop->getOperand(0))));
1801 return false;
1804 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1805 return cast<BinaryOperator>(BinOp)->getOperand(1);
1808 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1809 return getNegArgument(const_cast<Value*>(BinOp));
1812 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1813 return cast<BinaryOperator>(BinOp)->getOperand(1);
1816 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1817 return getFNegArgument(const_cast<Value*>(BinOp));
1820 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1821 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1822 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1823 Value *Op0 = BO->getOperand(0);
1824 Value *Op1 = BO->getOperand(1);
1825 if (isConstantAllOnes(Op0)) return Op1;
1827 assert(isConstantAllOnes(Op1));
1828 return Op0;
1831 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1832 return getNotArgument(const_cast<Value*>(BinOp));
1836 // swapOperands - Exchange the two operands to this instruction. This
1837 // instruction is safe to use on any binary instruction and does not
1838 // modify the semantics of the instruction. If the instruction is
1839 // order dependent (SetLT f.e.) the opcode is changed.
1841 bool BinaryOperator::swapOperands() {
1842 if (!isCommutative())
1843 return true; // Can't commute operands
1844 Op<0>().swap(Op<1>());
1845 return false;
1848 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1849 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1852 void BinaryOperator::setHasNoSignedWrap(bool b) {
1853 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
1856 void BinaryOperator::setIsExact(bool b) {
1857 cast<SDivOperator>(this)->setIsExact(b);
1860 bool BinaryOperator::hasNoUnsignedWrap() const {
1861 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
1864 bool BinaryOperator::hasNoSignedWrap() const {
1865 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
1868 bool BinaryOperator::isExact() const {
1869 return cast<SDivOperator>(this)->isExact();
1872 //===----------------------------------------------------------------------===//
1873 // CastInst Class
1874 //===----------------------------------------------------------------------===//
1876 // Just determine if this cast only deals with integral->integral conversion.
1877 bool CastInst::isIntegerCast() const {
1878 switch (getOpcode()) {
1879 default: return false;
1880 case Instruction::ZExt:
1881 case Instruction::SExt:
1882 case Instruction::Trunc:
1883 return true;
1884 case Instruction::BitCast:
1885 return getOperand(0)->getType()->isIntegerTy() &&
1886 getType()->isIntegerTy();
1890 bool CastInst::isLosslessCast() const {
1891 // Only BitCast can be lossless, exit fast if we're not BitCast
1892 if (getOpcode() != Instruction::BitCast)
1893 return false;
1895 // Identity cast is always lossless
1896 const Type* SrcTy = getOperand(0)->getType();
1897 const Type* DstTy = getType();
1898 if (SrcTy == DstTy)
1899 return true;
1901 // Pointer to pointer is always lossless.
1902 if (SrcTy->isPointerTy())
1903 return DstTy->isPointerTy();
1904 return false; // Other types have no identity values
1907 /// This function determines if the CastInst does not require any bits to be
1908 /// changed in order to effect the cast. Essentially, it identifies cases where
1909 /// no code gen is necessary for the cast, hence the name no-op cast. For
1910 /// example, the following are all no-op casts:
1911 /// # bitcast i32* %x to i8*
1912 /// # bitcast <2 x i32> %x to <4 x i16>
1913 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
1914 /// @brief Determine if a cast is a no-op.
1915 bool CastInst::isNoopCast(const Type *IntPtrTy) const {
1916 switch (getOpcode()) {
1917 default:
1918 assert(!"Invalid CastOp");
1919 case Instruction::Trunc:
1920 case Instruction::ZExt:
1921 case Instruction::SExt:
1922 case Instruction::FPTrunc:
1923 case Instruction::FPExt:
1924 case Instruction::UIToFP:
1925 case Instruction::SIToFP:
1926 case Instruction::FPToUI:
1927 case Instruction::FPToSI:
1928 return false; // These always modify bits
1929 case Instruction::BitCast:
1930 return true; // BitCast never modifies bits.
1931 case Instruction::PtrToInt:
1932 return IntPtrTy->getScalarSizeInBits() ==
1933 getType()->getScalarSizeInBits();
1934 case Instruction::IntToPtr:
1935 return IntPtrTy->getScalarSizeInBits() ==
1936 getOperand(0)->getType()->getScalarSizeInBits();
1940 /// This function determines if a pair of casts can be eliminated and what
1941 /// opcode should be used in the elimination. This assumes that there are two
1942 /// instructions like this:
1943 /// * %F = firstOpcode SrcTy %x to MidTy
1944 /// * %S = secondOpcode MidTy %F to DstTy
1945 /// The function returns a resultOpcode so these two casts can be replaced with:
1946 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
1947 /// If no such cast is permited, the function returns 0.
1948 unsigned CastInst::isEliminableCastPair(
1949 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
1950 const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
1952 // Define the 144 possibilities for these two cast instructions. The values
1953 // in this matrix determine what to do in a given situation and select the
1954 // case in the switch below. The rows correspond to firstOp, the columns
1955 // correspond to secondOp. In looking at the table below, keep in mind
1956 // the following cast properties:
1958 // Size Compare Source Destination
1959 // Operator Src ? Size Type Sign Type Sign
1960 // -------- ------------ ------------------- ---------------------
1961 // TRUNC > Integer Any Integral Any
1962 // ZEXT < Integral Unsigned Integer Any
1963 // SEXT < Integral Signed Integer Any
1964 // FPTOUI n/a FloatPt n/a Integral Unsigned
1965 // FPTOSI n/a FloatPt n/a Integral Signed
1966 // UITOFP n/a Integral Unsigned FloatPt n/a
1967 // SITOFP n/a Integral Signed FloatPt n/a
1968 // FPTRUNC > FloatPt n/a FloatPt n/a
1969 // FPEXT < FloatPt n/a FloatPt n/a
1970 // PTRTOINT n/a Pointer n/a Integral Unsigned
1971 // INTTOPTR n/a Integral Unsigned Pointer n/a
1972 // BITCAST = FirstClass n/a FirstClass n/a
1974 // NOTE: some transforms are safe, but we consider them to be non-profitable.
1975 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
1976 // into "fptoui double to i64", but this loses information about the range
1977 // of the produced value (we no longer know the top-part is all zeros).
1978 // Further this conversion is often much more expensive for typical hardware,
1979 // and causes issues when building libgcc. We disallow fptosi+sext for the
1980 // same reason.
1981 const unsigned numCastOps =
1982 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
1983 static const uint8_t CastResults[numCastOps][numCastOps] = {
1984 // T F F U S F F P I B -+
1985 // R Z S P P I I T P 2 N T |
1986 // U E E 2 2 2 2 R E I T C +- secondOp
1987 // N X X U S F F N X N 2 V |
1988 // C T T I I P P C T T P T -+
1989 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
1990 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
1991 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
1992 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
1993 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
1994 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
1995 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
1996 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
1997 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
1998 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
1999 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
2000 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
2003 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2004 [secondOp-Instruction::CastOpsBegin];
2005 switch (ElimCase) {
2006 case 0:
2007 // categorically disallowed
2008 return 0;
2009 case 1:
2010 // allowed, use first cast's opcode
2011 return firstOp;
2012 case 2:
2013 // allowed, use second cast's opcode
2014 return secondOp;
2015 case 3:
2016 // no-op cast in second op implies firstOp as long as the DestTy
2017 // is integer and we are not converting between a vector and a
2018 // non vector type.
2019 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2020 return firstOp;
2021 return 0;
2022 case 4:
2023 // no-op cast in second op implies firstOp as long as the DestTy
2024 // is floating point.
2025 if (DstTy->isFloatingPointTy())
2026 return firstOp;
2027 return 0;
2028 case 5:
2029 // no-op cast in first op implies secondOp as long as the SrcTy
2030 // is an integer.
2031 if (SrcTy->isIntegerTy())
2032 return secondOp;
2033 return 0;
2034 case 6:
2035 // no-op cast in first op implies secondOp as long as the SrcTy
2036 // is a floating point.
2037 if (SrcTy->isFloatingPointTy())
2038 return secondOp;
2039 return 0;
2040 case 7: {
2041 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
2042 if (!IntPtrTy)
2043 return 0;
2044 unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2045 unsigned MidSize = MidTy->getScalarSizeInBits();
2046 if (MidSize >= PtrSize)
2047 return Instruction::BitCast;
2048 return 0;
2050 case 8: {
2051 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2052 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2053 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2054 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2055 unsigned DstSize = DstTy->getScalarSizeInBits();
2056 if (SrcSize == DstSize)
2057 return Instruction::BitCast;
2058 else if (SrcSize < DstSize)
2059 return firstOp;
2060 return secondOp;
2062 case 9: // zext, sext -> zext, because sext can't sign extend after zext
2063 return Instruction::ZExt;
2064 case 10:
2065 // fpext followed by ftrunc is allowed if the bit size returned to is
2066 // the same as the original, in which case its just a bitcast
2067 if (SrcTy == DstTy)
2068 return Instruction::BitCast;
2069 return 0; // If the types are not the same we can't eliminate it.
2070 case 11:
2071 // bitcast followed by ptrtoint is allowed as long as the bitcast
2072 // is a pointer to pointer cast.
2073 if (SrcTy->isPointerTy() && MidTy->isPointerTy())
2074 return secondOp;
2075 return 0;
2076 case 12:
2077 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
2078 if (MidTy->isPointerTy() && DstTy->isPointerTy())
2079 return firstOp;
2080 return 0;
2081 case 13: {
2082 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2083 if (!IntPtrTy)
2084 return 0;
2085 unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2086 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2087 unsigned DstSize = DstTy->getScalarSizeInBits();
2088 if (SrcSize <= PtrSize && SrcSize == DstSize)
2089 return Instruction::BitCast;
2090 return 0;
2092 case 99:
2093 // cast combination can't happen (error in input). This is for all cases
2094 // where the MidTy is not the same for the two cast instructions.
2095 assert(!"Invalid Cast Combination");
2096 return 0;
2097 default:
2098 assert(!"Error in CastResults table!!!");
2099 return 0;
2101 return 0;
2104 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
2105 const Twine &Name, Instruction *InsertBefore) {
2106 // Construct and return the appropriate CastInst subclass
2107 switch (op) {
2108 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2109 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2110 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2111 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2112 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2113 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2114 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2115 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2116 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2117 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2118 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2119 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2120 default:
2121 assert(!"Invalid opcode provided");
2123 return 0;
2126 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
2127 const Twine &Name, BasicBlock *InsertAtEnd) {
2128 // Construct and return the appropriate CastInst subclass
2129 switch (op) {
2130 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2131 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2132 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2133 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2134 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2135 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2136 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2137 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2138 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2139 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2140 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2141 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2142 default:
2143 assert(!"Invalid opcode provided");
2145 return 0;
2148 CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2149 const Twine &Name,
2150 Instruction *InsertBefore) {
2151 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2152 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2153 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2156 CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2157 const Twine &Name,
2158 BasicBlock *InsertAtEnd) {
2159 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2160 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2161 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2164 CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2165 const Twine &Name,
2166 Instruction *InsertBefore) {
2167 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2168 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2169 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2172 CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2173 const Twine &Name,
2174 BasicBlock *InsertAtEnd) {
2175 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2176 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2177 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2180 CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2181 const Twine &Name,
2182 Instruction *InsertBefore) {
2183 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2184 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2185 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2188 CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2189 const Twine &Name,
2190 BasicBlock *InsertAtEnd) {
2191 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2192 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2193 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2196 CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2197 const Twine &Name,
2198 BasicBlock *InsertAtEnd) {
2199 assert(S->getType()->isPointerTy() && "Invalid cast");
2200 assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2201 "Invalid cast");
2203 if (Ty->isIntegerTy())
2204 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2205 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2208 /// @brief Create a BitCast or a PtrToInt cast instruction
2209 CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2210 const Twine &Name,
2211 Instruction *InsertBefore) {
2212 assert(S->getType()->isPointerTy() && "Invalid cast");
2213 assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2214 "Invalid cast");
2216 if (Ty->isIntegerTy())
2217 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2218 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2221 CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2222 bool isSigned, const Twine &Name,
2223 Instruction *InsertBefore) {
2224 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2225 "Invalid integer cast");
2226 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2227 unsigned DstBits = Ty->getScalarSizeInBits();
2228 Instruction::CastOps opcode =
2229 (SrcBits == DstBits ? Instruction::BitCast :
2230 (SrcBits > DstBits ? Instruction::Trunc :
2231 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2232 return Create(opcode, C, Ty, Name, InsertBefore);
2235 CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2236 bool isSigned, const Twine &Name,
2237 BasicBlock *InsertAtEnd) {
2238 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2239 "Invalid cast");
2240 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2241 unsigned DstBits = Ty->getScalarSizeInBits();
2242 Instruction::CastOps opcode =
2243 (SrcBits == DstBits ? Instruction::BitCast :
2244 (SrcBits > DstBits ? Instruction::Trunc :
2245 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2246 return Create(opcode, C, Ty, Name, InsertAtEnd);
2249 CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2250 const Twine &Name,
2251 Instruction *InsertBefore) {
2252 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2253 "Invalid cast");
2254 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2255 unsigned DstBits = Ty->getScalarSizeInBits();
2256 Instruction::CastOps opcode =
2257 (SrcBits == DstBits ? Instruction::BitCast :
2258 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2259 return Create(opcode, C, Ty, Name, InsertBefore);
2262 CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2263 const Twine &Name,
2264 BasicBlock *InsertAtEnd) {
2265 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2266 "Invalid cast");
2267 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2268 unsigned DstBits = Ty->getScalarSizeInBits();
2269 Instruction::CastOps opcode =
2270 (SrcBits == DstBits ? Instruction::BitCast :
2271 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2272 return Create(opcode, C, Ty, Name, InsertAtEnd);
2275 // Check whether it is valid to call getCastOpcode for these types.
2276 // This routine must be kept in sync with getCastOpcode.
2277 bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) {
2278 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2279 return false;
2281 if (SrcTy == DestTy)
2282 return true;
2284 // Get the bit sizes, we'll need these
2285 unsigned SrcBits = SrcTy->getScalarSizeInBits(); // 0 for ptr
2286 unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
2288 // Run through the possibilities ...
2289 if (DestTy->isIntegerTy()) { // Casting to integral
2290 if (SrcTy->isIntegerTy()) { // Casting from integral
2291 return true;
2292 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2293 return true;
2294 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2295 // Casting from vector
2296 return DestBits == PTy->getBitWidth();
2297 } else { // Casting from something else
2298 return SrcTy->isPointerTy();
2300 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2301 if (SrcTy->isIntegerTy()) { // Casting from integral
2302 return true;
2303 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2304 return true;
2305 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2306 // Casting from vector
2307 return DestBits == PTy->getBitWidth();
2308 } else { // Casting from something else
2309 return false;
2311 } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2312 // Casting to vector
2313 if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2314 // Casting from vector
2315 return DestPTy->getBitWidth() == SrcPTy->getBitWidth();
2316 } else { // Casting from something else
2317 return DestPTy->getBitWidth() == SrcBits;
2319 } else if (DestTy->isPointerTy()) { // Casting to pointer
2320 if (SrcTy->isPointerTy()) { // Casting from pointer
2321 return true;
2322 } else if (SrcTy->isIntegerTy()) { // Casting from integral
2323 return true;
2324 } else { // Casting from something else
2325 return false;
2327 } else { // Casting to something else
2328 return false;
2332 // Provide a way to get a "cast" where the cast opcode is inferred from the
2333 // types and size of the operand. This, basically, is a parallel of the
2334 // logic in the castIsValid function below. This axiom should hold:
2335 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2336 // should not assert in castIsValid. In other words, this produces a "correct"
2337 // casting opcode for the arguments passed to it.
2338 // This routine must be kept in sync with isCastable.
2339 Instruction::CastOps
2340 CastInst::getCastOpcode(
2341 const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
2342 // Get the bit sizes, we'll need these
2343 const Type *SrcTy = Src->getType();
2344 unsigned SrcBits = SrcTy->getScalarSizeInBits(); // 0 for ptr
2345 unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
2347 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2348 "Only first class types are castable!");
2350 // Run through the possibilities ...
2351 if (DestTy->isIntegerTy()) { // Casting to integral
2352 if (SrcTy->isIntegerTy()) { // Casting from integral
2353 if (DestBits < SrcBits)
2354 return Trunc; // int -> smaller int
2355 else if (DestBits > SrcBits) { // its an extension
2356 if (SrcIsSigned)
2357 return SExt; // signed -> SEXT
2358 else
2359 return ZExt; // unsigned -> ZEXT
2360 } else {
2361 return BitCast; // Same size, No-op cast
2363 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2364 if (DestIsSigned)
2365 return FPToSI; // FP -> sint
2366 else
2367 return FPToUI; // FP -> uint
2368 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2369 assert(DestBits == PTy->getBitWidth() &&
2370 "Casting vector to integer of different width");
2371 PTy = NULL;
2372 return BitCast; // Same size, no-op cast
2373 } else {
2374 assert(SrcTy->isPointerTy() &&
2375 "Casting from a value that is not first-class type");
2376 return PtrToInt; // ptr -> int
2378 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2379 if (SrcTy->isIntegerTy()) { // Casting from integral
2380 if (SrcIsSigned)
2381 return SIToFP; // sint -> FP
2382 else
2383 return UIToFP; // uint -> FP
2384 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2385 if (DestBits < SrcBits) {
2386 return FPTrunc; // FP -> smaller FP
2387 } else if (DestBits > SrcBits) {
2388 return FPExt; // FP -> larger FP
2389 } else {
2390 return BitCast; // same size, no-op cast
2392 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2393 assert(DestBits == PTy->getBitWidth() &&
2394 "Casting vector to floating point of different width");
2395 PTy = NULL;
2396 return BitCast; // same size, no-op cast
2397 } else {
2398 llvm_unreachable("Casting pointer or non-first class to float");
2400 } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2401 if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2402 assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
2403 "Casting vector to vector of different widths");
2404 SrcPTy = NULL;
2405 return BitCast; // vector -> vector
2406 } else if (DestPTy->getBitWidth() == SrcBits) {
2407 return BitCast; // float/int -> vector
2408 } else {
2409 assert(!"Illegal cast to vector (wrong type or size)");
2411 } else if (DestTy->isPointerTy()) {
2412 if (SrcTy->isPointerTy()) {
2413 return BitCast; // ptr -> ptr
2414 } else if (SrcTy->isIntegerTy()) {
2415 return IntToPtr; // int -> ptr
2416 } else {
2417 assert(!"Casting pointer to other than pointer or int");
2419 } else {
2420 assert(!"Casting to type that is not first-class");
2423 // If we fall through to here we probably hit an assertion cast above
2424 // and assertions are not turned on. Anything we return is an error, so
2425 // BitCast is as good a choice as any.
2426 return BitCast;
2429 //===----------------------------------------------------------------------===//
2430 // CastInst SubClass Constructors
2431 //===----------------------------------------------------------------------===//
2433 /// Check that the construction parameters for a CastInst are correct. This
2434 /// could be broken out into the separate constructors but it is useful to have
2435 /// it in one place and to eliminate the redundant code for getting the sizes
2436 /// of the types involved.
2437 bool
2438 CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
2440 // Check for type sanity on the arguments
2441 const Type *SrcTy = S->getType();
2442 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2443 SrcTy->isAggregateType() || DstTy->isAggregateType())
2444 return false;
2446 // Get the size of the types in bits, we'll need this later
2447 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2448 unsigned DstBitSize = DstTy->getScalarSizeInBits();
2450 // Switch on the opcode provided
2451 switch (op) {
2452 default: return false; // This is an input error
2453 case Instruction::Trunc:
2454 return SrcTy->isIntOrIntVectorTy() &&
2455 DstTy->isIntOrIntVectorTy()&& SrcBitSize > DstBitSize;
2456 case Instruction::ZExt:
2457 return SrcTy->isIntOrIntVectorTy() &&
2458 DstTy->isIntOrIntVectorTy()&& SrcBitSize < DstBitSize;
2459 case Instruction::SExt:
2460 return SrcTy->isIntOrIntVectorTy() &&
2461 DstTy->isIntOrIntVectorTy()&& SrcBitSize < DstBitSize;
2462 case Instruction::FPTrunc:
2463 return SrcTy->isFPOrFPVectorTy() &&
2464 DstTy->isFPOrFPVectorTy() &&
2465 SrcBitSize > DstBitSize;
2466 case Instruction::FPExt:
2467 return SrcTy->isFPOrFPVectorTy() &&
2468 DstTy->isFPOrFPVectorTy() &&
2469 SrcBitSize < DstBitSize;
2470 case Instruction::UIToFP:
2471 case Instruction::SIToFP:
2472 if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2473 if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2474 return SVTy->getElementType()->isIntOrIntVectorTy() &&
2475 DVTy->getElementType()->isFPOrFPVectorTy() &&
2476 SVTy->getNumElements() == DVTy->getNumElements();
2479 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy();
2480 case Instruction::FPToUI:
2481 case Instruction::FPToSI:
2482 if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2483 if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2484 return SVTy->getElementType()->isFPOrFPVectorTy() &&
2485 DVTy->getElementType()->isIntOrIntVectorTy() &&
2486 SVTy->getNumElements() == DVTy->getNumElements();
2489 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy();
2490 case Instruction::PtrToInt:
2491 return SrcTy->isPointerTy() && DstTy->isIntegerTy();
2492 case Instruction::IntToPtr:
2493 return SrcTy->isIntegerTy() && DstTy->isPointerTy();
2494 case Instruction::BitCast:
2495 // BitCast implies a no-op cast of type only. No bits change.
2496 // However, you can't cast pointers to anything but pointers.
2497 if (SrcTy->isPointerTy() != DstTy->isPointerTy())
2498 return false;
2500 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2501 // these cases, the cast is okay if the source and destination bit widths
2502 // are identical.
2503 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2507 TruncInst::TruncInst(
2508 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2509 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2510 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2513 TruncInst::TruncInst(
2514 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2515 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2516 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2519 ZExtInst::ZExtInst(
2520 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2521 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2522 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2525 ZExtInst::ZExtInst(
2526 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2527 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2528 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2530 SExtInst::SExtInst(
2531 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2532 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2533 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2536 SExtInst::SExtInst(
2537 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2538 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2539 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2542 FPTruncInst::FPTruncInst(
2543 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2544 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2545 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2548 FPTruncInst::FPTruncInst(
2549 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2550 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2551 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2554 FPExtInst::FPExtInst(
2555 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2556 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2557 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2560 FPExtInst::FPExtInst(
2561 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2562 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2563 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2566 UIToFPInst::UIToFPInst(
2567 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2568 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2569 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2572 UIToFPInst::UIToFPInst(
2573 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2574 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2575 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2578 SIToFPInst::SIToFPInst(
2579 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2580 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2581 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2584 SIToFPInst::SIToFPInst(
2585 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2586 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2587 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2590 FPToUIInst::FPToUIInst(
2591 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2592 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2593 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2596 FPToUIInst::FPToUIInst(
2597 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2598 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2599 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2602 FPToSIInst::FPToSIInst(
2603 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2604 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2605 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2608 FPToSIInst::FPToSIInst(
2609 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2610 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2611 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2614 PtrToIntInst::PtrToIntInst(
2615 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2616 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2617 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2620 PtrToIntInst::PtrToIntInst(
2621 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2622 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2623 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2626 IntToPtrInst::IntToPtrInst(
2627 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2628 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2629 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2632 IntToPtrInst::IntToPtrInst(
2633 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2634 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2635 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2638 BitCastInst::BitCastInst(
2639 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2640 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2641 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2644 BitCastInst::BitCastInst(
2645 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2646 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2647 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2650 //===----------------------------------------------------------------------===//
2651 // CmpInst Classes
2652 //===----------------------------------------------------------------------===//
2654 void CmpInst::Anchor() const {}
2656 CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2657 Value *LHS, Value *RHS, const Twine &Name,
2658 Instruction *InsertBefore)
2659 : Instruction(ty, op,
2660 OperandTraits<CmpInst>::op_begin(this),
2661 OperandTraits<CmpInst>::operands(this),
2662 InsertBefore) {
2663 Op<0>() = LHS;
2664 Op<1>() = RHS;
2665 setPredicate((Predicate)predicate);
2666 setName(Name);
2669 CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2670 Value *LHS, Value *RHS, const Twine &Name,
2671 BasicBlock *InsertAtEnd)
2672 : Instruction(ty, op,
2673 OperandTraits<CmpInst>::op_begin(this),
2674 OperandTraits<CmpInst>::operands(this),
2675 InsertAtEnd) {
2676 Op<0>() = LHS;
2677 Op<1>() = RHS;
2678 setPredicate((Predicate)predicate);
2679 setName(Name);
2682 CmpInst *
2683 CmpInst::Create(OtherOps Op, unsigned short predicate,
2684 Value *S1, Value *S2,
2685 const Twine &Name, Instruction *InsertBefore) {
2686 if (Op == Instruction::ICmp) {
2687 if (InsertBefore)
2688 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2689 S1, S2, Name);
2690 else
2691 return new ICmpInst(CmpInst::Predicate(predicate),
2692 S1, S2, Name);
2695 if (InsertBefore)
2696 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2697 S1, S2, Name);
2698 else
2699 return new FCmpInst(CmpInst::Predicate(predicate),
2700 S1, S2, Name);
2703 CmpInst *
2704 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2705 const Twine &Name, BasicBlock *InsertAtEnd) {
2706 if (Op == Instruction::ICmp) {
2707 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2708 S1, S2, Name);
2710 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2711 S1, S2, Name);
2714 void CmpInst::swapOperands() {
2715 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2716 IC->swapOperands();
2717 else
2718 cast<FCmpInst>(this)->swapOperands();
2721 bool CmpInst::isCommutative() {
2722 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2723 return IC->isCommutative();
2724 return cast<FCmpInst>(this)->isCommutative();
2727 bool CmpInst::isEquality() {
2728 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2729 return IC->isEquality();
2730 return cast<FCmpInst>(this)->isEquality();
2734 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2735 switch (pred) {
2736 default: assert(!"Unknown cmp predicate!");
2737 case ICMP_EQ: return ICMP_NE;
2738 case ICMP_NE: return ICMP_EQ;
2739 case ICMP_UGT: return ICMP_ULE;
2740 case ICMP_ULT: return ICMP_UGE;
2741 case ICMP_UGE: return ICMP_ULT;
2742 case ICMP_ULE: return ICMP_UGT;
2743 case ICMP_SGT: return ICMP_SLE;
2744 case ICMP_SLT: return ICMP_SGE;
2745 case ICMP_SGE: return ICMP_SLT;
2746 case ICMP_SLE: return ICMP_SGT;
2748 case FCMP_OEQ: return FCMP_UNE;
2749 case FCMP_ONE: return FCMP_UEQ;
2750 case FCMP_OGT: return FCMP_ULE;
2751 case FCMP_OLT: return FCMP_UGE;
2752 case FCMP_OGE: return FCMP_ULT;
2753 case FCMP_OLE: return FCMP_UGT;
2754 case FCMP_UEQ: return FCMP_ONE;
2755 case FCMP_UNE: return FCMP_OEQ;
2756 case FCMP_UGT: return FCMP_OLE;
2757 case FCMP_ULT: return FCMP_OGE;
2758 case FCMP_UGE: return FCMP_OLT;
2759 case FCMP_ULE: return FCMP_OGT;
2760 case FCMP_ORD: return FCMP_UNO;
2761 case FCMP_UNO: return FCMP_ORD;
2762 case FCMP_TRUE: return FCMP_FALSE;
2763 case FCMP_FALSE: return FCMP_TRUE;
2767 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2768 switch (pred) {
2769 default: assert(! "Unknown icmp predicate!");
2770 case ICMP_EQ: case ICMP_NE:
2771 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2772 return pred;
2773 case ICMP_UGT: return ICMP_SGT;
2774 case ICMP_ULT: return ICMP_SLT;
2775 case ICMP_UGE: return ICMP_SGE;
2776 case ICMP_ULE: return ICMP_SLE;
2780 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2781 switch (pred) {
2782 default: assert(! "Unknown icmp predicate!");
2783 case ICMP_EQ: case ICMP_NE:
2784 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
2785 return pred;
2786 case ICMP_SGT: return ICMP_UGT;
2787 case ICMP_SLT: return ICMP_ULT;
2788 case ICMP_SGE: return ICMP_UGE;
2789 case ICMP_SLE: return ICMP_ULE;
2793 /// Initialize a set of values that all satisfy the condition with C.
2795 ConstantRange
2796 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2797 APInt Lower(C);
2798 APInt Upper(C);
2799 uint32_t BitWidth = C.getBitWidth();
2800 switch (pred) {
2801 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
2802 case ICmpInst::ICMP_EQ: Upper++; break;
2803 case ICmpInst::ICMP_NE: Lower++; break;
2804 case ICmpInst::ICMP_ULT:
2805 Lower = APInt::getMinValue(BitWidth);
2806 // Check for an empty-set condition.
2807 if (Lower == Upper)
2808 return ConstantRange(BitWidth, /*isFullSet=*/false);
2809 break;
2810 case ICmpInst::ICMP_SLT:
2811 Lower = APInt::getSignedMinValue(BitWidth);
2812 // Check for an empty-set condition.
2813 if (Lower == Upper)
2814 return ConstantRange(BitWidth, /*isFullSet=*/false);
2815 break;
2816 case ICmpInst::ICMP_UGT:
2817 Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2818 // Check for an empty-set condition.
2819 if (Lower == Upper)
2820 return ConstantRange(BitWidth, /*isFullSet=*/false);
2821 break;
2822 case ICmpInst::ICMP_SGT:
2823 Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
2824 // Check for an empty-set condition.
2825 if (Lower == Upper)
2826 return ConstantRange(BitWidth, /*isFullSet=*/false);
2827 break;
2828 case ICmpInst::ICMP_ULE:
2829 Lower = APInt::getMinValue(BitWidth); Upper++;
2830 // Check for a full-set condition.
2831 if (Lower == Upper)
2832 return ConstantRange(BitWidth, /*isFullSet=*/true);
2833 break;
2834 case ICmpInst::ICMP_SLE:
2835 Lower = APInt::getSignedMinValue(BitWidth); Upper++;
2836 // Check for a full-set condition.
2837 if (Lower == Upper)
2838 return ConstantRange(BitWidth, /*isFullSet=*/true);
2839 break;
2840 case ICmpInst::ICMP_UGE:
2841 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2842 // Check for a full-set condition.
2843 if (Lower == Upper)
2844 return ConstantRange(BitWidth, /*isFullSet=*/true);
2845 break;
2846 case ICmpInst::ICMP_SGE:
2847 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
2848 // Check for a full-set condition.
2849 if (Lower == Upper)
2850 return ConstantRange(BitWidth, /*isFullSet=*/true);
2851 break;
2853 return ConstantRange(Lower, Upper);
2856 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
2857 switch (pred) {
2858 default: assert(!"Unknown cmp predicate!");
2859 case ICMP_EQ: case ICMP_NE:
2860 return pred;
2861 case ICMP_SGT: return ICMP_SLT;
2862 case ICMP_SLT: return ICMP_SGT;
2863 case ICMP_SGE: return ICMP_SLE;
2864 case ICMP_SLE: return ICMP_SGE;
2865 case ICMP_UGT: return ICMP_ULT;
2866 case ICMP_ULT: return ICMP_UGT;
2867 case ICMP_UGE: return ICMP_ULE;
2868 case ICMP_ULE: return ICMP_UGE;
2870 case FCMP_FALSE: case FCMP_TRUE:
2871 case FCMP_OEQ: case FCMP_ONE:
2872 case FCMP_UEQ: case FCMP_UNE:
2873 case FCMP_ORD: case FCMP_UNO:
2874 return pred;
2875 case FCMP_OGT: return FCMP_OLT;
2876 case FCMP_OLT: return FCMP_OGT;
2877 case FCMP_OGE: return FCMP_OLE;
2878 case FCMP_OLE: return FCMP_OGE;
2879 case FCMP_UGT: return FCMP_ULT;
2880 case FCMP_ULT: return FCMP_UGT;
2881 case FCMP_UGE: return FCMP_ULE;
2882 case FCMP_ULE: return FCMP_UGE;
2886 bool CmpInst::isUnsigned(unsigned short predicate) {
2887 switch (predicate) {
2888 default: return false;
2889 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
2890 case ICmpInst::ICMP_UGE: return true;
2894 bool CmpInst::isSigned(unsigned short predicate) {
2895 switch (predicate) {
2896 default: return false;
2897 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
2898 case ICmpInst::ICMP_SGE: return true;
2902 bool CmpInst::isOrdered(unsigned short predicate) {
2903 switch (predicate) {
2904 default: return false;
2905 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
2906 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
2907 case FCmpInst::FCMP_ORD: return true;
2911 bool CmpInst::isUnordered(unsigned short predicate) {
2912 switch (predicate) {
2913 default: return false;
2914 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
2915 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
2916 case FCmpInst::FCMP_UNO: return true;
2920 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
2921 switch(predicate) {
2922 default: return false;
2923 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
2924 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
2928 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
2929 switch(predicate) {
2930 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
2931 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
2932 default: return false;
2937 //===----------------------------------------------------------------------===//
2938 // SwitchInst Implementation
2939 //===----------------------------------------------------------------------===//
2941 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
2942 assert(Value && Default);
2943 ReservedSpace = 2+NumCases*2;
2944 NumOperands = 2;
2945 OperandList = allocHungoffUses(ReservedSpace);
2947 OperandList[0] = Value;
2948 OperandList[1] = Default;
2951 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2952 /// switch on and a default destination. The number of additional cases can
2953 /// be specified here to make memory allocation more efficient. This
2954 /// constructor can also autoinsert before another instruction.
2955 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2956 Instruction *InsertBefore)
2957 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
2958 0, 0, InsertBefore) {
2959 init(Value, Default, NumCases);
2962 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2963 /// switch on and a default destination. The number of additional cases can
2964 /// be specified here to make memory allocation more efficient. This
2965 /// constructor also autoinserts at the end of the specified BasicBlock.
2966 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2967 BasicBlock *InsertAtEnd)
2968 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
2969 0, 0, InsertAtEnd) {
2970 init(Value, Default, NumCases);
2973 SwitchInst::SwitchInst(const SwitchInst &SI)
2974 : TerminatorInst(Type::getVoidTy(SI.getContext()), Instruction::Switch,
2975 allocHungoffUses(SI.getNumOperands()), SI.getNumOperands()) {
2976 Use *OL = OperandList, *InOL = SI.OperandList;
2977 for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
2978 OL[i] = InOL[i];
2979 OL[i+1] = InOL[i+1];
2981 SubclassOptionalData = SI.SubclassOptionalData;
2984 SwitchInst::~SwitchInst() {
2985 dropHungoffUses(OperandList);
2989 /// addCase - Add an entry to the switch instruction...
2991 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
2992 unsigned OpNo = NumOperands;
2993 if (OpNo+2 > ReservedSpace)
2994 resizeOperands(0); // Get more space!
2995 // Initialize some new operands.
2996 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
2997 NumOperands = OpNo+2;
2998 OperandList[OpNo] = OnVal;
2999 OperandList[OpNo+1] = Dest;
3002 /// removeCase - This method removes the specified successor from the switch
3003 /// instruction. Note that this cannot be used to remove the default
3004 /// destination (successor #0).
3006 void SwitchInst::removeCase(unsigned idx) {
3007 assert(idx != 0 && "Cannot remove the default case!");
3008 assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
3010 unsigned NumOps = getNumOperands();
3011 Use *OL = OperandList;
3013 // Move everything after this operand down.
3015 // FIXME: we could just swap with the end of the list, then erase. However,
3016 // client might not expect this to happen. The code as it is thrashes the
3017 // use/def lists, which is kinda lame.
3018 for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
3019 OL[i-2] = OL[i];
3020 OL[i-2+1] = OL[i+1];
3023 // Nuke the last value.
3024 OL[NumOps-2].set(0);
3025 OL[NumOps-2+1].set(0);
3026 NumOperands = NumOps-2;
3029 /// resizeOperands - resize operands - This adjusts the length of the operands
3030 /// list according to the following behavior:
3031 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
3032 /// of operation. This grows the number of ops by 3 times.
3033 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
3034 /// 3. If NumOps == NumOperands, trim the reserved space.
3036 void SwitchInst::resizeOperands(unsigned NumOps) {
3037 unsigned e = getNumOperands();
3038 if (NumOps == 0) {
3039 NumOps = e*3;
3040 } else if (NumOps*2 > NumOperands) {
3041 // No resize needed.
3042 if (ReservedSpace >= NumOps) return;
3043 } else if (NumOps == NumOperands) {
3044 if (ReservedSpace == NumOps) return;
3045 } else {
3046 return;
3049 ReservedSpace = NumOps;
3050 Use *NewOps = allocHungoffUses(NumOps);
3051 Use *OldOps = OperandList;
3052 for (unsigned i = 0; i != e; ++i) {
3053 NewOps[i] = OldOps[i];
3055 OperandList = NewOps;
3056 if (OldOps) Use::zap(OldOps, OldOps + e, true);
3060 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3061 return getSuccessor(idx);
3063 unsigned SwitchInst::getNumSuccessorsV() const {
3064 return getNumSuccessors();
3066 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3067 setSuccessor(idx, B);
3070 //===----------------------------------------------------------------------===//
3071 // SwitchInst Implementation
3072 //===----------------------------------------------------------------------===//
3074 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3075 assert(Address && Address->getType()->isPointerTy() &&
3076 "Address of indirectbr must be a pointer");
3077 ReservedSpace = 1+NumDests;
3078 NumOperands = 1;
3079 OperandList = allocHungoffUses(ReservedSpace);
3081 OperandList[0] = Address;
3085 /// resizeOperands - resize operands - This adjusts the length of the operands
3086 /// list according to the following behavior:
3087 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
3088 /// of operation. This grows the number of ops by 2 times.
3089 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
3090 /// 3. If NumOps == NumOperands, trim the reserved space.
3092 void IndirectBrInst::resizeOperands(unsigned NumOps) {
3093 unsigned e = getNumOperands();
3094 if (NumOps == 0) {
3095 NumOps = e*2;
3096 } else if (NumOps*2 > NumOperands) {
3097 // No resize needed.
3098 if (ReservedSpace >= NumOps) return;
3099 } else if (NumOps == NumOperands) {
3100 if (ReservedSpace == NumOps) return;
3101 } else {
3102 return;
3105 ReservedSpace = NumOps;
3106 Use *NewOps = allocHungoffUses(NumOps);
3107 Use *OldOps = OperandList;
3108 for (unsigned i = 0; i != e; ++i)
3109 NewOps[i] = OldOps[i];
3110 OperandList = NewOps;
3111 if (OldOps) Use::zap(OldOps, OldOps + e, true);
3114 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3115 Instruction *InsertBefore)
3116 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3117 0, 0, InsertBefore) {
3118 init(Address, NumCases);
3121 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3122 BasicBlock *InsertAtEnd)
3123 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3124 0, 0, InsertAtEnd) {
3125 init(Address, NumCases);
3128 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3129 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3130 allocHungoffUses(IBI.getNumOperands()),
3131 IBI.getNumOperands()) {
3132 Use *OL = OperandList, *InOL = IBI.OperandList;
3133 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3134 OL[i] = InOL[i];
3135 SubclassOptionalData = IBI.SubclassOptionalData;
3138 IndirectBrInst::~IndirectBrInst() {
3139 dropHungoffUses(OperandList);
3142 /// addDestination - Add a destination.
3144 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3145 unsigned OpNo = NumOperands;
3146 if (OpNo+1 > ReservedSpace)
3147 resizeOperands(0); // Get more space!
3148 // Initialize some new operands.
3149 assert(OpNo < ReservedSpace && "Growing didn't work!");
3150 NumOperands = OpNo+1;
3151 OperandList[OpNo] = DestBB;
3154 /// removeDestination - This method removes the specified successor from the
3155 /// indirectbr instruction.
3156 void IndirectBrInst::removeDestination(unsigned idx) {
3157 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3159 unsigned NumOps = getNumOperands();
3160 Use *OL = OperandList;
3162 // Replace this value with the last one.
3163 OL[idx+1] = OL[NumOps-1];
3165 // Nuke the last value.
3166 OL[NumOps-1].set(0);
3167 NumOperands = NumOps-1;
3170 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3171 return getSuccessor(idx);
3173 unsigned IndirectBrInst::getNumSuccessorsV() const {
3174 return getNumSuccessors();
3176 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3177 setSuccessor(idx, B);
3180 //===----------------------------------------------------------------------===//
3181 // clone_impl() implementations
3182 //===----------------------------------------------------------------------===//
3184 // Define these methods here so vtables don't get emitted into every translation
3185 // unit that uses these classes.
3187 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3188 return new (getNumOperands()) GetElementPtrInst(*this);
3191 BinaryOperator *BinaryOperator::clone_impl() const {
3192 return Create(getOpcode(), Op<0>(), Op<1>());
3195 FCmpInst* FCmpInst::clone_impl() const {
3196 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3199 ICmpInst* ICmpInst::clone_impl() const {
3200 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3203 ExtractValueInst *ExtractValueInst::clone_impl() const {
3204 return new ExtractValueInst(*this);
3207 InsertValueInst *InsertValueInst::clone_impl() const {
3208 return new InsertValueInst(*this);
3211 AllocaInst *AllocaInst::clone_impl() const {
3212 return new AllocaInst(getAllocatedType(),
3213 (Value*)getOperand(0),
3214 getAlignment());
3217 LoadInst *LoadInst::clone_impl() const {
3218 return new LoadInst(getOperand(0),
3219 Twine(), isVolatile(),
3220 getAlignment());
3223 StoreInst *StoreInst::clone_impl() const {
3224 return new StoreInst(getOperand(0), getOperand(1),
3225 isVolatile(), getAlignment());
3228 TruncInst *TruncInst::clone_impl() const {
3229 return new TruncInst(getOperand(0), getType());
3232 ZExtInst *ZExtInst::clone_impl() const {
3233 return new ZExtInst(getOperand(0), getType());
3236 SExtInst *SExtInst::clone_impl() const {
3237 return new SExtInst(getOperand(0), getType());
3240 FPTruncInst *FPTruncInst::clone_impl() const {
3241 return new FPTruncInst(getOperand(0), getType());
3244 FPExtInst *FPExtInst::clone_impl() const {
3245 return new FPExtInst(getOperand(0), getType());
3248 UIToFPInst *UIToFPInst::clone_impl() const {
3249 return new UIToFPInst(getOperand(0), getType());
3252 SIToFPInst *SIToFPInst::clone_impl() const {
3253 return new SIToFPInst(getOperand(0), getType());
3256 FPToUIInst *FPToUIInst::clone_impl() const {
3257 return new FPToUIInst(getOperand(0), getType());
3260 FPToSIInst *FPToSIInst::clone_impl() const {
3261 return new FPToSIInst(getOperand(0), getType());
3264 PtrToIntInst *PtrToIntInst::clone_impl() const {
3265 return new PtrToIntInst(getOperand(0), getType());
3268 IntToPtrInst *IntToPtrInst::clone_impl() const {
3269 return new IntToPtrInst(getOperand(0), getType());
3272 BitCastInst *BitCastInst::clone_impl() const {
3273 return new BitCastInst(getOperand(0), getType());
3276 CallInst *CallInst::clone_impl() const {
3277 return new(getNumOperands()) CallInst(*this);
3280 SelectInst *SelectInst::clone_impl() const {
3281 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3284 VAArgInst *VAArgInst::clone_impl() const {
3285 return new VAArgInst(getOperand(0), getType());
3288 ExtractElementInst *ExtractElementInst::clone_impl() const {
3289 return ExtractElementInst::Create(getOperand(0), getOperand(1));
3292 InsertElementInst *InsertElementInst::clone_impl() const {
3293 return InsertElementInst::Create(getOperand(0),
3294 getOperand(1),
3295 getOperand(2));
3298 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3299 return new ShuffleVectorInst(getOperand(0),
3300 getOperand(1),
3301 getOperand(2));
3304 PHINode *PHINode::clone_impl() const {
3305 return new PHINode(*this);
3308 ReturnInst *ReturnInst::clone_impl() const {
3309 return new(getNumOperands()) ReturnInst(*this);
3312 BranchInst *BranchInst::clone_impl() const {
3313 unsigned Ops(getNumOperands());
3314 return new(Ops, Ops == 1) BranchInst(*this);
3317 SwitchInst *SwitchInst::clone_impl() const {
3318 return new SwitchInst(*this);
3321 IndirectBrInst *IndirectBrInst::clone_impl() const {
3322 return new IndirectBrInst(*this);
3326 InvokeInst *InvokeInst::clone_impl() const {
3327 return new(getNumOperands()) InvokeInst(*this);
3330 UnwindInst *UnwindInst::clone_impl() const {
3331 LLVMContext &Context = getContext();
3332 return new UnwindInst(Context);
3335 UnreachableInst *UnreachableInst::clone_impl() const {
3336 LLVMContext &Context = getContext();
3337 return new UnreachableInst(Context);