llc (et al): Add support for --show-encoding and --show-inst.
[llvm.git] / lib / CodeGen / RegAllocPBQP.cpp
blob4fafd2818a1249adf60ab975960be451011327f3
1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 // architectures. In Proceedings of the Joint Conference on Languages,
27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28 // NY, USA, 139-148.
30 //===----------------------------------------------------------------------===//
32 #define DEBUG_TYPE "regalloc"
34 #include "PBQP/HeuristicSolver.h"
35 #include "PBQP/Graph.h"
36 #include "PBQP/Heuristics/Briggs.h"
37 #include "VirtRegMap.h"
38 #include "VirtRegRewriter.h"
39 #include "llvm/CodeGen/CalcSpillWeights.h"
40 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
41 #include "llvm/CodeGen/LiveStackAnalysis.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RegAllocRegistry.h"
46 #include "llvm/CodeGen/RegisterCoalescer.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetMachine.h"
51 #include <limits>
52 #include <map>
53 #include <memory>
54 #include <set>
55 #include <vector>
57 using namespace llvm;
59 static RegisterRegAlloc
60 registerPBQPRepAlloc("pbqp", "PBQP register allocator",
61 llvm::createPBQPRegisterAllocator);
63 static cl::opt<bool>
64 pbqpCoalescing("pbqp-coalescing",
65 cl::desc("Attempt coalescing during PBQP register allocation."),
66 cl::init(false), cl::Hidden);
68 namespace {
70 ///
71 /// PBQP based allocators solve the register allocation problem by mapping
72 /// register allocation problems to Partitioned Boolean Quadratic
73 /// Programming problems.
74 class PBQPRegAlloc : public MachineFunctionPass {
75 public:
77 static char ID;
79 /// Construct a PBQP register allocator.
80 PBQPRegAlloc() : MachineFunctionPass(&ID) {}
82 /// Return the pass name.
83 virtual const char* getPassName() const {
84 return "PBQP Register Allocator";
87 /// PBQP analysis usage.
88 virtual void getAnalysisUsage(AnalysisUsage &au) const {
89 au.addRequired<SlotIndexes>();
90 au.addPreserved<SlotIndexes>();
91 au.addRequired<LiveIntervals>();
92 //au.addRequiredID(SplitCriticalEdgesID);
93 au.addRequired<RegisterCoalescer>();
94 au.addRequired<CalculateSpillWeights>();
95 au.addRequired<LiveStacks>();
96 au.addPreserved<LiveStacks>();
97 au.addRequired<MachineLoopInfo>();
98 au.addPreserved<MachineLoopInfo>();
99 au.addRequired<VirtRegMap>();
100 MachineFunctionPass::getAnalysisUsage(au);
103 /// Perform register allocation
104 virtual bool runOnMachineFunction(MachineFunction &MF);
106 private:
107 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
108 typedef std::vector<const LiveInterval*> Node2LIMap;
109 typedef std::vector<unsigned> AllowedSet;
110 typedef std::vector<AllowedSet> AllowedSetMap;
111 typedef std::set<unsigned> RegSet;
112 typedef std::pair<unsigned, unsigned> RegPair;
113 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
115 typedef std::set<LiveInterval*> LiveIntervalSet;
117 typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
119 MachineFunction *mf;
120 const TargetMachine *tm;
121 const TargetRegisterInfo *tri;
122 const TargetInstrInfo *tii;
123 const MachineLoopInfo *loopInfo;
124 MachineRegisterInfo *mri;
126 LiveIntervals *lis;
127 LiveStacks *lss;
128 VirtRegMap *vrm;
130 LI2NodeMap li2Node;
131 Node2LIMap node2LI;
132 AllowedSetMap allowedSets;
133 LiveIntervalSet vregIntervalsToAlloc,
134 emptyVRegIntervals;
135 NodeVector problemNodes;
138 /// Builds a PBQP cost vector.
139 template <typename RegContainer>
140 PBQP::Vector buildCostVector(unsigned vReg,
141 const RegContainer &allowed,
142 const CoalesceMap &cealesces,
143 PBQP::PBQPNum spillCost) const;
145 /// \brief Builds a PBQP interference matrix.
147 /// @return Either a pointer to a non-zero PBQP matrix representing the
148 /// allocation option costs, or a null pointer for a zero matrix.
150 /// Expects allowed sets for two interfering LiveIntervals. These allowed
151 /// sets should contain only allocable registers from the LiveInterval's
152 /// register class, with any interfering pre-colored registers removed.
153 template <typename RegContainer>
154 PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
155 const RegContainer &allowed2) const;
158 /// Expects allowed sets for two potentially coalescable LiveIntervals,
159 /// and an estimated benefit due to coalescing. The allowed sets should
160 /// contain only allocable registers from the LiveInterval's register
161 /// classes, with any interfering pre-colored registers removed.
162 template <typename RegContainer>
163 PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
164 const RegContainer &allowed2,
165 PBQP::PBQPNum cBenefit) const;
167 /// \brief Finds coalescing opportunities and returns them as a map.
169 /// Any entries in the map are guaranteed coalescable, even if their
170 /// corresponding live intervals overlap.
171 CoalesceMap findCoalesces();
173 /// \brief Finds the initial set of vreg intervals to allocate.
174 void findVRegIntervalsToAlloc();
176 /// \brief Constructs a PBQP problem representation of the register
177 /// allocation problem for this function.
179 /// @return a PBQP solver object for the register allocation problem.
180 PBQP::Graph constructPBQPProblem();
182 /// \brief Adds a stack interval if the given live interval has been
183 /// spilled. Used to support stack slot coloring.
184 void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
186 /// \brief Given a solved PBQP problem maps this solution back to a register
187 /// assignment.
188 bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
190 /// \brief Postprocessing before final spilling. Sets basic block "live in"
191 /// variables.
192 void finalizeAlloc() const;
196 char PBQPRegAlloc::ID = 0;
200 template <typename RegContainer>
201 PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
202 const RegContainer &allowed,
203 const CoalesceMap &coalesces,
204 PBQP::PBQPNum spillCost) const {
206 typedef typename RegContainer::const_iterator AllowedItr;
208 // Allocate vector. Additional element (0th) used for spill option
209 PBQP::Vector v(allowed.size() + 1, 0);
211 v[0] = spillCost;
213 // Iterate over the allowed registers inserting coalesce benefits if there
214 // are any.
215 unsigned ai = 0;
216 for (AllowedItr itr = allowed.begin(), end = allowed.end();
217 itr != end; ++itr, ++ai) {
219 unsigned pReg = *itr;
221 CoalesceMap::const_iterator cmItr =
222 coalesces.find(RegPair(vReg, pReg));
224 // No coalesce - on to the next preg.
225 if (cmItr == coalesces.end())
226 continue;
228 // We have a coalesce - insert the benefit.
229 v[ai + 1] = -cmItr->second;
232 return v;
235 template <typename RegContainer>
236 PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
237 const RegContainer &allowed1, const RegContainer &allowed2) const {
239 typedef typename RegContainer::const_iterator RegContainerIterator;
241 // Construct a PBQP matrix representing the cost of allocation options. The
242 // rows and columns correspond to the allocation options for the two live
243 // intervals. Elements will be infinite where corresponding registers alias,
244 // since we cannot allocate aliasing registers to interfering live intervals.
245 // All other elements (non-aliasing combinations) will have zero cost. Note
246 // that the spill option (element 0,0) has zero cost, since we can allocate
247 // both intervals to memory safely (the cost for each individual allocation
248 // to memory is accounted for by the cost vectors for each live interval).
249 PBQP::Matrix *m =
250 new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
252 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
253 // between interfering live ranges with non-overlapping register sets (e.g.
254 // non-overlapping reg classes, or disjoint sets of allowed regs within the
255 // same class). The term "overlapping" is used advisedly: sets which do not
256 // intersect, but contain registers which alias, will have non-zero matrices.
257 // We optimize zero matrices away to improve solver speed.
258 bool isZeroMatrix = true;
261 // Row index. Starts at 1, since the 0th row is for the spill option, which
262 // is always zero.
263 unsigned ri = 1;
265 // Iterate over allowed sets, insert infinities where required.
266 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
267 a1Itr != a1End; ++a1Itr) {
269 // Column index, starts at 1 as for row index.
270 unsigned ci = 1;
271 unsigned reg1 = *a1Itr;
273 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
274 a2Itr != a2End; ++a2Itr) {
276 unsigned reg2 = *a2Itr;
278 // If the row/column regs are identical or alias insert an infinity.
279 if (tri->regsOverlap(reg1, reg2)) {
280 (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
281 isZeroMatrix = false;
284 ++ci;
287 ++ri;
290 // If this turns out to be a zero matrix...
291 if (isZeroMatrix) {
292 // free it and return null.
293 delete m;
294 return 0;
297 // ...otherwise return the cost matrix.
298 return m;
301 template <typename RegContainer>
302 PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
303 const RegContainer &allowed1, const RegContainer &allowed2,
304 PBQP::PBQPNum cBenefit) const {
306 typedef typename RegContainer::const_iterator RegContainerIterator;
308 // Construct a PBQP Matrix representing the benefits of coalescing. As with
309 // interference matrices the rows and columns represent allowed registers
310 // for the LiveIntervals which are (potentially) to be coalesced. The amount
311 // -cBenefit will be placed in any element representing the same register
312 // for both intervals.
313 PBQP::Matrix *m =
314 new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
316 // Reset costs to zero.
317 m->reset(0);
319 // Assume the matrix is zero till proven otherwise. Zero matrices will be
320 // optimized away as in the interference case.
321 bool isZeroMatrix = true;
323 // Row index. Starts at 1, since the 0th row is for the spill option, which
324 // is always zero.
325 unsigned ri = 1;
327 // Iterate over the allowed sets, insert coalescing benefits where
328 // appropriate.
329 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
330 a1Itr != a1End; ++a1Itr) {
332 // Column index, starts at 1 as for row index.
333 unsigned ci = 1;
334 unsigned reg1 = *a1Itr;
336 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
337 a2Itr != a2End; ++a2Itr) {
339 // If the row and column represent the same register insert a beneficial
340 // cost to preference this allocation - it would allow us to eliminate a
341 // move instruction.
342 if (reg1 == *a2Itr) {
343 (*m)[ri][ci] = -cBenefit;
344 isZeroMatrix = false;
347 ++ci;
350 ++ri;
353 // If this turns out to be a zero matrix...
354 if (isZeroMatrix) {
355 // ...free it and return null.
356 delete m;
357 return 0;
360 return m;
363 PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
365 typedef MachineFunction::const_iterator MFIterator;
366 typedef MachineBasicBlock::const_iterator MBBIterator;
367 typedef LiveInterval::const_vni_iterator VNIIterator;
369 CoalesceMap coalescesFound;
371 // To find coalesces we need to iterate over the function looking for
372 // copy instructions.
373 for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
374 bbItr != bbEnd; ++bbItr) {
376 const MachineBasicBlock *mbb = &*bbItr;
378 for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
379 iItr != iEnd; ++iItr) {
381 const MachineInstr *instr = &*iItr;
382 unsigned srcReg, dstReg, srcSubReg, dstSubReg;
384 // If this isn't a copy then continue to the next instruction.
385 if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg))
386 continue;
388 // If the registers are already the same our job is nice and easy.
389 if (dstReg == srcReg)
390 continue;
392 bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
393 dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
395 // If both registers are physical then we can't coalesce.
396 if (srcRegIsPhysical && dstRegIsPhysical)
397 continue;
399 // If it's a copy that includes a virtual register but the source and
400 // destination classes differ then we can't coalesce, so continue with
401 // the next instruction.
402 const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
403 tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
405 const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
406 tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
408 if (srcRegClass != dstRegClass)
409 continue;
411 // We also need any physical regs to be allocable, coalescing with
412 // a non-allocable register is invalid.
413 if (srcRegIsPhysical) {
414 if (std::find(dstRegClass->allocation_order_begin(*mf),
415 dstRegClass->allocation_order_end(*mf), srcReg) ==
416 dstRegClass->allocation_order_end(*mf))
417 continue;
420 if (dstRegIsPhysical) {
421 if (std::find(srcRegClass->allocation_order_begin(*mf),
422 srcRegClass->allocation_order_end(*mf), dstReg) ==
423 srcRegClass->allocation_order_end(*mf))
424 continue;
427 // If we've made it here we have a copy with compatible register classes.
428 // We can probably coalesce, but we need to consider overlap.
429 const LiveInterval *srcLI = &lis->getInterval(srcReg),
430 *dstLI = &lis->getInterval(dstReg);
432 if (srcLI->overlaps(*dstLI)) {
433 // Even in the case of an overlap we might still be able to coalesce,
434 // but we need to make sure that no definition of either range occurs
435 // while the other range is live.
437 // Otherwise start by assuming we're ok.
438 bool badDef = false;
440 // Test all defs of the source range.
441 for (VNIIterator
442 vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
443 vniItr != vniEnd; ++vniItr) {
445 // If we find a poorly defined def we err on the side of caution.
446 if (!(*vniItr)->def.isValid()) {
447 badDef = true;
448 break;
451 // If we find a def that kills the coalescing opportunity then
452 // record it and break from the loop.
453 if (dstLI->liveAt((*vniItr)->def)) {
454 badDef = true;
455 break;
459 // If we have a bad def give up, continue to the next instruction.
460 if (badDef)
461 continue;
463 // Otherwise test definitions of the destination range.
464 for (VNIIterator
465 vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
466 vniItr != vniEnd; ++vniItr) {
468 // We want to make sure we skip the copy instruction itself.
469 if ((*vniItr)->getCopy() == instr)
470 continue;
472 if (!(*vniItr)->def.isValid()) {
473 badDef = true;
474 break;
477 if (srcLI->liveAt((*vniItr)->def)) {
478 badDef = true;
479 break;
483 // As before a bad def we give up and continue to the next instr.
484 if (badDef)
485 continue;
488 // If we make it to here then either the ranges didn't overlap, or they
489 // did, but none of their definitions would prevent us from coalescing.
490 // We're good to go with the coalesce.
492 float cBenefit = std::pow(10.0f, (float)loopInfo->getLoopDepth(mbb)) / 5.0;
494 coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
495 coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
500 return coalescesFound;
503 void PBQPRegAlloc::findVRegIntervalsToAlloc() {
505 // Iterate over all live ranges.
506 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
507 itr != end; ++itr) {
509 // Ignore physical ones.
510 if (TargetRegisterInfo::isPhysicalRegister(itr->first))
511 continue;
513 LiveInterval *li = itr->second;
515 // If this live interval is non-empty we will use pbqp to allocate it.
516 // Empty intervals we allocate in a simple post-processing stage in
517 // finalizeAlloc.
518 if (!li->empty()) {
519 vregIntervalsToAlloc.insert(li);
521 else {
522 emptyVRegIntervals.insert(li);
527 PBQP::Graph PBQPRegAlloc::constructPBQPProblem() {
529 typedef std::vector<const LiveInterval*> LIVector;
530 typedef std::vector<unsigned> RegVector;
532 // This will store the physical intervals for easy reference.
533 LIVector physIntervals;
535 // Start by clearing the old node <-> live interval mappings & allowed sets
536 li2Node.clear();
537 node2LI.clear();
538 allowedSets.clear();
540 // Populate physIntervals, update preg use:
541 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
542 itr != end; ++itr) {
544 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
545 physIntervals.push_back(itr->second);
546 mri->setPhysRegUsed(itr->second->reg);
550 // Iterate over vreg intervals, construct live interval <-> node number
551 // mappings.
552 for (LiveIntervalSet::const_iterator
553 itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
554 itr != end; ++itr) {
555 const LiveInterval *li = *itr;
557 li2Node[li] = node2LI.size();
558 node2LI.push_back(li);
561 // Get the set of potential coalesces.
562 CoalesceMap coalesces;
564 if (pbqpCoalescing) {
565 coalesces = findCoalesces();
568 // Construct a PBQP solver for this problem
569 PBQP::Graph problem;
570 problemNodes.resize(vregIntervalsToAlloc.size());
572 // Resize allowedSets container appropriately.
573 allowedSets.resize(vregIntervalsToAlloc.size());
575 // Iterate over virtual register intervals to compute allowed sets...
576 for (unsigned node = 0; node < node2LI.size(); ++node) {
578 // Grab pointers to the interval and its register class.
579 const LiveInterval *li = node2LI[node];
580 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
582 // Start by assuming all allocable registers in the class are allowed...
583 RegVector liAllowed(liRC->allocation_order_begin(*mf),
584 liRC->allocation_order_end(*mf));
586 // Eliminate the physical registers which overlap with this range, along
587 // with all their aliases.
588 for (LIVector::iterator pItr = physIntervals.begin(),
589 pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
591 if (!li->overlaps(**pItr))
592 continue;
594 unsigned pReg = (*pItr)->reg;
596 // If we get here then the live intervals overlap, but we're still ok
597 // if they're coalescable.
598 if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
599 continue;
601 // If we get here then we have a genuine exclusion.
603 // Remove the overlapping reg...
604 RegVector::iterator eraseItr =
605 std::find(liAllowed.begin(), liAllowed.end(), pReg);
607 if (eraseItr != liAllowed.end())
608 liAllowed.erase(eraseItr);
610 const unsigned *aliasItr = tri->getAliasSet(pReg);
612 if (aliasItr != 0) {
613 // ...and its aliases.
614 for (; *aliasItr != 0; ++aliasItr) {
615 RegVector::iterator eraseItr =
616 std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
618 if (eraseItr != liAllowed.end()) {
619 liAllowed.erase(eraseItr);
625 // Copy the allowed set into a member vector for use when constructing cost
626 // vectors & matrices, and mapping PBQP solutions back to assignments.
627 allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
629 // Set the spill cost to the interval weight, or epsilon if the
630 // interval weight is zero
631 PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
632 li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
634 // Build a cost vector for this interval.
635 problemNodes[node] =
636 problem.addNode(
637 buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
642 // Now add the cost matrices...
643 for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
644 const LiveInterval *li = node2LI[node1];
646 // Test for live range overlaps and insert interference matrices.
647 for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
648 const LiveInterval *li2 = node2LI[node2];
650 CoalesceMap::const_iterator cmItr =
651 coalesces.find(RegPair(li->reg, li2->reg));
653 PBQP::Matrix *m = 0;
655 if (cmItr != coalesces.end()) {
656 m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
657 cmItr->second);
659 else if (li->overlaps(*li2)) {
660 m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
663 if (m != 0) {
664 problem.addEdge(problemNodes[node1],
665 problemNodes[node2],
666 *m);
668 delete m;
673 assert(problem.getNumNodes() == allowedSets.size());
675 std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
676 << problem.getNumEdges() << " edges.\n";
678 problem.printDot(std::cerr);
680 // We're done, PBQP problem constructed - return it.
681 return problem;
684 void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
685 MachineRegisterInfo* mri) {
686 int stackSlot = vrm->getStackSlot(spilled->reg);
688 if (stackSlot == VirtRegMap::NO_STACK_SLOT)
689 return;
691 const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
692 LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
694 VNInfo *vni;
695 if (stackInterval.getNumValNums() != 0)
696 vni = stackInterval.getValNumInfo(0);
697 else
698 vni = stackInterval.getNextValue(
699 SlotIndex(), 0, false, lss->getVNInfoAllocator());
701 LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
702 stackInterval.MergeRangesInAsValue(rhsInterval, vni);
705 bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
707 // Set to true if we have any spills
708 bool anotherRoundNeeded = false;
710 // Clear the existing allocation.
711 vrm->clearAllVirt();
713 // Iterate over the nodes mapping the PBQP solution to a register assignment.
714 for (unsigned node = 0; node < node2LI.size(); ++node) {
715 unsigned virtReg = node2LI[node]->reg,
716 allocSelection = solution.getSelection(problemNodes[node]);
719 // If the PBQP solution is non-zero it's a physical register...
720 if (allocSelection != 0) {
721 // Get the physical reg, subtracting 1 to account for the spill option.
722 unsigned physReg = allowedSets[node][allocSelection - 1];
724 DEBUG(dbgs() << "VREG " << virtReg << " -> "
725 << tri->getName(physReg) << "\n");
727 assert(physReg != 0);
729 // Add to the virt reg map and update the used phys regs.
730 vrm->assignVirt2Phys(virtReg, physReg);
732 // ...Otherwise it's a spill.
733 else {
735 // Make sure we ignore this virtual reg on the next round
736 // of allocation
737 vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
739 // Insert spill ranges for this live range
740 const LiveInterval *spillInterval = node2LI[node];
741 double oldSpillWeight = spillInterval->weight;
742 SmallVector<LiveInterval*, 8> spillIs;
743 std::vector<LiveInterval*> newSpills =
744 lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
745 addStackInterval(spillInterval, mri);
747 (void) oldSpillWeight;
748 DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: "
749 << oldSpillWeight << ", New vregs: ");
751 // Copy any newly inserted live intervals into the list of regs to
752 // allocate.
753 for (std::vector<LiveInterval*>::const_iterator
754 itr = newSpills.begin(), end = newSpills.end();
755 itr != end; ++itr) {
757 assert(!(*itr)->empty() && "Empty spill range.");
759 DEBUG(dbgs() << (*itr)->reg << " ");
761 vregIntervalsToAlloc.insert(*itr);
764 DEBUG(dbgs() << ")\n");
766 // We need another round if spill intervals were added.
767 anotherRoundNeeded |= !newSpills.empty();
771 return !anotherRoundNeeded;
774 void PBQPRegAlloc::finalizeAlloc() const {
775 typedef LiveIntervals::iterator LIIterator;
776 typedef LiveInterval::Ranges::const_iterator LRIterator;
778 // First allocate registers for the empty intervals.
779 for (LiveIntervalSet::const_iterator
780 itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
781 itr != end; ++itr) {
782 LiveInterval *li = *itr;
784 unsigned physReg = vrm->getRegAllocPref(li->reg);
786 if (physReg == 0) {
787 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
788 physReg = *liRC->allocation_order_begin(*mf);
791 vrm->assignVirt2Phys(li->reg, physReg);
794 // Finally iterate over the basic blocks to compute and set the live-in sets.
795 SmallVector<MachineBasicBlock*, 8> liveInMBBs;
796 MachineBasicBlock *entryMBB = &*mf->begin();
798 for (LIIterator liItr = lis->begin(), liEnd = lis->end();
799 liItr != liEnd; ++liItr) {
801 const LiveInterval *li = liItr->second;
802 unsigned reg = 0;
804 // Get the physical register for this interval
805 if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
806 reg = li->reg;
808 else if (vrm->isAssignedReg(li->reg)) {
809 reg = vrm->getPhys(li->reg);
811 else {
812 // Ranges which are assigned a stack slot only are ignored.
813 continue;
816 if (reg == 0) {
817 // Filter out zero regs - they're for intervals that were spilled.
818 continue;
821 // Iterate over the ranges of the current interval...
822 for (LRIterator lrItr = li->begin(), lrEnd = li->end();
823 lrItr != lrEnd; ++lrItr) {
825 // Find the set of basic blocks which this range is live into...
826 if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
827 // And add the physreg for this interval to their live-in sets.
828 for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
829 if (liveInMBBs[i] != entryMBB) {
830 if (!liveInMBBs[i]->isLiveIn(reg)) {
831 liveInMBBs[i]->addLiveIn(reg);
835 liveInMBBs.clear();
842 bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
844 mf = &MF;
845 tm = &mf->getTarget();
846 tri = tm->getRegisterInfo();
847 tii = tm->getInstrInfo();
848 mri = &mf->getRegInfo();
850 lis = &getAnalysis<LiveIntervals>();
851 lss = &getAnalysis<LiveStacks>();
852 loopInfo = &getAnalysis<MachineLoopInfo>();
854 vrm = &getAnalysis<VirtRegMap>();
856 DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");
858 // Allocator main loop:
860 // * Map current regalloc problem to a PBQP problem
861 // * Solve the PBQP problem
862 // * Map the solution back to a register allocation
863 // * Spill if necessary
865 // This process is continued till no more spills are generated.
867 // Find the vreg intervals in need of allocation.
868 findVRegIntervalsToAlloc();
870 // If there are non-empty intervals allocate them using pbqp.
871 if (!vregIntervalsToAlloc.empty()) {
873 bool pbqpAllocComplete = false;
874 unsigned round = 0;
876 while (!pbqpAllocComplete) {
877 DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
879 PBQP::Graph problem = constructPBQPProblem();
880 PBQP::Solution solution =
881 PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem);
883 pbqpAllocComplete = mapPBQPToRegAlloc(solution);
885 ++round;
889 // Finalise allocation, allocate empty ranges.
890 finalizeAlloc();
892 vregIntervalsToAlloc.clear();
893 emptyVRegIntervals.clear();
894 li2Node.clear();
895 node2LI.clear();
896 allowedSets.clear();
897 problemNodes.clear();
899 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
901 // Run rewriter
902 std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
904 rewriter->runOnMachineFunction(*mf, *vrm, lis);
906 return true;
909 FunctionPass* llvm::createPBQPRegisterAllocator() {
910 return new PBQPRegAlloc();
914 #undef DEBUG_TYPE