1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "sched-instrs"
16 #include "ScheduleDAGInstrs.h"
17 #include "llvm/Operator.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/PseudoSourceValue.h"
23 #include "llvm/Target/TargetMachine.h"
24 #include "llvm/Target/TargetInstrInfo.h"
25 #include "llvm/Target/TargetRegisterInfo.h"
26 #include "llvm/Target/TargetSubtarget.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/ADT/SmallSet.h"
32 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction
&mf
,
33 const MachineLoopInfo
&mli
,
34 const MachineDominatorTree
&mdt
)
35 : ScheduleDAG(mf
), MLI(mli
), MDT(mdt
), LoopRegs(MLI
, MDT
) {
36 MFI
= mf
.getFrameInfo();
40 /// Run - perform scheduling.
42 void ScheduleDAGInstrs::Run(MachineBasicBlock
*bb
,
43 MachineBasicBlock::iterator begin
,
44 MachineBasicBlock::iterator end
,
48 InsertPosIndex
= endcount
;
50 ScheduleDAG::Run(bb
, end
);
53 /// getUnderlyingObjectFromInt - This is the function that does the work of
54 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
55 static const Value
*getUnderlyingObjectFromInt(const Value
*V
) {
57 if (const Operator
*U
= dyn_cast
<Operator
>(V
)) {
58 // If we find a ptrtoint, we can transfer control back to the
59 // regular getUnderlyingObjectFromInt.
60 if (U
->getOpcode() == Instruction::PtrToInt
)
61 return U
->getOperand(0);
62 // If we find an add of a constant or a multiplied value, it's
63 // likely that the other operand will lead us to the base
64 // object. We don't have to worry about the case where the
65 // object address is somehow being computed by the multiply,
66 // because our callers only care when the result is an
67 // identifibale object.
68 if (U
->getOpcode() != Instruction::Add
||
69 (!isa
<ConstantInt
>(U
->getOperand(1)) &&
70 Operator::getOpcode(U
->getOperand(1)) != Instruction::Mul
))
76 assert(V
->getType()->isIntegerTy() && "Unexpected operand type!");
80 /// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
81 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
82 static const Value
*getUnderlyingObject(const Value
*V
) {
83 // First just call Value::getUnderlyingObject to let it do what it does.
85 V
= V
->getUnderlyingObject();
86 // If it found an inttoptr, use special code to continue climing.
87 if (Operator::getOpcode(V
) != Instruction::IntToPtr
)
89 const Value
*O
= getUnderlyingObjectFromInt(cast
<User
>(V
)->getOperand(0));
90 // If that succeeded in finding a pointer, continue the search.
91 if (!O
->getType()->isPointerTy())
98 /// getUnderlyingObjectForInstr - If this machine instr has memory reference
99 /// information and it can be tracked to a normal reference to a known
100 /// object, return the Value for that object. Otherwise return null.
101 static const Value
*getUnderlyingObjectForInstr(const MachineInstr
*MI
,
102 const MachineFrameInfo
*MFI
,
105 if (!MI
->hasOneMemOperand() ||
106 !(*MI
->memoperands_begin())->getValue() ||
107 (*MI
->memoperands_begin())->isVolatile())
110 const Value
*V
= (*MI
->memoperands_begin())->getValue();
114 V
= getUnderlyingObject(V
);
115 if (const PseudoSourceValue
*PSV
= dyn_cast
<PseudoSourceValue
>(V
)) {
116 // For now, ignore PseudoSourceValues which may alias LLVM IR values
117 // because the code that uses this function has no way to cope with
119 if (PSV
->isAliased(MFI
))
122 MayAlias
= PSV
->mayAlias(MFI
);
126 if (isIdentifiedObject(V
))
132 void ScheduleDAGInstrs::StartBlock(MachineBasicBlock
*BB
) {
133 if (MachineLoop
*ML
= MLI
.getLoopFor(BB
))
134 if (BB
== ML
->getLoopLatch()) {
135 MachineBasicBlock
*Header
= ML
->getHeader();
136 for (MachineBasicBlock::livein_iterator I
= Header
->livein_begin(),
137 E
= Header
->livein_end(); I
!= E
; ++I
)
138 LoopLiveInRegs
.insert(*I
);
139 LoopRegs
.VisitLoop(ML
);
143 void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis
*AA
) {
144 // We'll be allocating one SUnit for each instruction, plus one for
145 // the region exit node.
146 SUnits
.reserve(BB
->size());
148 // We build scheduling units by walking a block's instruction list from bottom
151 // Remember where a generic side-effecting instruction is as we procede.
152 SUnit
*BarrierChain
= 0, *AliasChain
= 0;
154 // Memory references to specific known memory locations are tracked
155 // so that they can be given more precise dependencies. We track
156 // separately the known memory locations that may alias and those
157 // that are known not to alias
158 std::map
<const Value
*, SUnit
*> AliasMemDefs
, NonAliasMemDefs
;
159 std::map
<const Value
*, std::vector
<SUnit
*> > AliasMemUses
, NonAliasMemUses
;
161 // Keep track of dangling debug references to registers.
162 std::pair
<MachineInstr
*, unsigned>
163 DanglingDebugValue
[TargetRegisterInfo::FirstVirtualRegister
];
165 // Check to see if the scheduler cares about latencies.
166 bool UnitLatencies
= ForceUnitLatencies();
168 // Ask the target if address-backscheduling is desirable, and if so how much.
169 const TargetSubtarget
&ST
= TM
.getSubtarget
<TargetSubtarget
>();
170 unsigned SpecialAddressLatency
= ST
.getSpecialAddressLatency();
172 // Remove any stale debug info; sometimes BuildSchedGraph is called again
173 // without emitting the info from the previous call.
175 std::memset(DanglingDebugValue
, 0, sizeof(DanglingDebugValue
));
177 // Walk the list of instructions, from bottom moving up.
178 for (MachineBasicBlock::iterator MII
= InsertPos
, MIE
= Begin
;
180 MachineInstr
*MI
= prior(MII
);
181 // DBG_VALUE does not have SUnit's built, so just remember these for later
183 if (MI
->isDebugValue()) {
184 if (MI
->getNumOperands()==3 && MI
->getOperand(0).isReg() &&
185 MI
->getOperand(0).getReg())
186 DanglingDebugValue
[MI
->getOperand(0).getReg()] =
187 std::make_pair(MI
, DbgValueVec
.size());
188 DbgValueVec
.push_back(MI
);
191 const TargetInstrDesc
&TID
= MI
->getDesc();
192 assert(!TID
.isTerminator() && !MI
->isLabel() &&
193 "Cannot schedule terminators or labels!");
194 // Create the SUnit for this MI.
195 SUnit
*SU
= NewSUnit(MI
);
197 // Assign the Latency field of SU using target-provided information.
203 // Add register-based dependencies (data, anti, and output).
204 for (unsigned j
= 0, n
= MI
->getNumOperands(); j
!= n
; ++j
) {
205 const MachineOperand
&MO
= MI
->getOperand(j
);
206 if (!MO
.isReg()) continue;
207 unsigned Reg
= MO
.getReg();
208 if (Reg
== 0) continue;
210 assert(TRI
->isPhysicalRegister(Reg
) && "Virtual register encountered!");
212 if (MO
.isDef() && DanglingDebugValue
[Reg
].first
!=0) {
213 SU
->setDbgInstr(DanglingDebugValue
[Reg
].first
);
214 DbgValueVec
[DanglingDebugValue
[Reg
].second
] = 0;
215 DanglingDebugValue
[Reg
] = std::make_pair((MachineInstr
*)0, 0);
218 std::vector
<SUnit
*> &UseList
= Uses
[Reg
];
219 std::vector
<SUnit
*> &DefList
= Defs
[Reg
];
220 // Optionally add output and anti dependencies. For anti
221 // dependencies we use a latency of 0 because for a multi-issue
222 // target we want to allow the defining instruction to issue
223 // in the same cycle as the using instruction.
224 // TODO: Using a latency of 1 here for output dependencies assumes
225 // there's no cost for reusing registers.
226 SDep::Kind Kind
= MO
.isUse() ? SDep::Anti
: SDep::Output
;
227 unsigned AOLatency
= (Kind
== SDep::Anti
) ? 0 : 1;
228 for (unsigned i
= 0, e
= DefList
.size(); i
!= e
; ++i
) {
229 SUnit
*DefSU
= DefList
[i
];
231 (Kind
!= SDep::Output
|| !MO
.isDead() ||
232 !DefSU
->getInstr()->registerDefIsDead(Reg
)))
233 DefSU
->addPred(SDep(SU
, Kind
, AOLatency
, /*Reg=*/Reg
));
235 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
) {
236 std::vector
<SUnit
*> &DefList
= Defs
[*Alias
];
237 for (unsigned i
= 0, e
= DefList
.size(); i
!= e
; ++i
) {
238 SUnit
*DefSU
= DefList
[i
];
240 (Kind
!= SDep::Output
|| !MO
.isDead() ||
241 !DefSU
->getInstr()->registerDefIsDead(*Alias
)))
242 DefSU
->addPred(SDep(SU
, Kind
, AOLatency
, /*Reg=*/ *Alias
));
247 // Add any data dependencies.
248 unsigned DataLatency
= SU
->Latency
;
249 for (unsigned i
= 0, e
= UseList
.size(); i
!= e
; ++i
) {
250 SUnit
*UseSU
= UseList
[i
];
253 unsigned LDataLatency
= DataLatency
;
254 // Optionally add in a special extra latency for nodes that
256 // TODO: Do this for register aliases too.
257 // TODO: Perhaps we should get rid of
258 // SpecialAddressLatency and just move this into
259 // adjustSchedDependency for the targets that care about it.
260 if (SpecialAddressLatency
!= 0 && !UnitLatencies
) {
261 MachineInstr
*UseMI
= UseSU
->getInstr();
262 const TargetInstrDesc
&UseTID
= UseMI
->getDesc();
263 int RegUseIndex
= UseMI
->findRegisterUseOperandIdx(Reg
);
264 assert(RegUseIndex
>= 0 && "UseMI doesn's use register!");
265 if ((UseTID
.mayLoad() || UseTID
.mayStore()) &&
266 (unsigned)RegUseIndex
< UseTID
.getNumOperands() &&
267 UseTID
.OpInfo
[RegUseIndex
].isLookupPtrRegClass())
268 LDataLatency
+= SpecialAddressLatency
;
270 // Adjust the dependence latency using operand def/use
271 // information (if any), and then allow the target to
272 // perform its own adjustments.
273 const SDep
& dep
= SDep(SU
, SDep::Data
, LDataLatency
, Reg
);
274 if (!UnitLatencies
) {
275 ComputeOperandLatency(SU
, UseSU
, (SDep
&)dep
);
276 ST
.adjustSchedDependency(SU
, UseSU
, (SDep
&)dep
);
280 for (const unsigned *Alias
= TRI
->getAliasSet(Reg
); *Alias
; ++Alias
) {
281 std::vector
<SUnit
*> &UseList
= Uses
[*Alias
];
282 for (unsigned i
= 0, e
= UseList
.size(); i
!= e
; ++i
) {
283 SUnit
*UseSU
= UseList
[i
];
286 const SDep
& dep
= SDep(SU
, SDep::Data
, DataLatency
, *Alias
);
287 if (!UnitLatencies
) {
288 ComputeOperandLatency(SU
, UseSU
, (SDep
&)dep
);
289 ST
.adjustSchedDependency(SU
, UseSU
, (SDep
&)dep
);
295 // If a def is going to wrap back around to the top of the loop,
297 if (!UnitLatencies
&& DefList
.empty()) {
298 LoopDependencies::LoopDeps::iterator I
= LoopRegs
.Deps
.find(Reg
);
299 if (I
!= LoopRegs
.Deps
.end()) {
300 const MachineOperand
*UseMO
= I
->second
.first
;
301 unsigned Count
= I
->second
.second
;
302 const MachineInstr
*UseMI
= UseMO
->getParent();
303 unsigned UseMOIdx
= UseMO
- &UseMI
->getOperand(0);
304 const TargetInstrDesc
&UseTID
= UseMI
->getDesc();
305 // TODO: If we knew the total depth of the region here, we could
306 // handle the case where the whole loop is inside the region but
307 // is large enough that the isScheduleHigh trick isn't needed.
308 if (UseMOIdx
< UseTID
.getNumOperands()) {
309 // Currently, we only support scheduling regions consisting of
310 // single basic blocks. Check to see if the instruction is in
311 // the same region by checking to see if it has the same parent.
312 if (UseMI
->getParent() != MI
->getParent()) {
313 unsigned Latency
= SU
->Latency
;
314 if (UseTID
.OpInfo
[UseMOIdx
].isLookupPtrRegClass())
315 Latency
+= SpecialAddressLatency
;
316 // This is a wild guess as to the portion of the latency which
317 // will be overlapped by work done outside the current
318 // scheduling region.
319 Latency
-= std::min(Latency
, Count
);
320 // Add the artifical edge.
321 ExitSU
.addPred(SDep(SU
, SDep::Order
, Latency
,
322 /*Reg=*/0, /*isNormalMemory=*/false,
323 /*isMustAlias=*/false,
324 /*isArtificial=*/true));
325 } else if (SpecialAddressLatency
> 0 &&
326 UseTID
.OpInfo
[UseMOIdx
].isLookupPtrRegClass()) {
327 // The entire loop body is within the current scheduling region
328 // and the latency of this operation is assumed to be greater
329 // than the latency of the loop.
330 // TODO: Recursively mark data-edge predecessors as
331 // isScheduleHigh too.
332 SU
->isScheduleHigh
= true;
335 LoopRegs
.Deps
.erase(I
);
342 DefList
.push_back(SU
);
344 UseList
.push_back(SU
);
348 // Add chain dependencies.
349 // Chain dependencies used to enforce memory order should have
350 // latency of 0 (except for true dependency of Store followed by
351 // aliased Load... we estimate that with a single cycle of latency
352 // assuming the hardware will bypass)
353 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
354 // after stack slots are lowered to actual addresses.
355 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
356 // produce more precise dependence information.
357 #define STORE_LOAD_LATENCY 1
358 unsigned TrueMemOrderLatency
= 0;
359 if (TID
.isCall() || TID
.hasUnmodeledSideEffects() ||
360 (MI
->hasVolatileMemoryRef() &&
361 (!TID
.mayLoad() || !MI
->isInvariantLoad(AA
)))) {
362 // Be conservative with these and add dependencies on all memory
363 // references, even those that are known to not alias.
364 for (std::map
<const Value
*, SUnit
*>::iterator I
=
365 NonAliasMemDefs
.begin(), E
= NonAliasMemDefs
.end(); I
!= E
; ++I
) {
366 I
->second
->addPred(SDep(SU
, SDep::Order
, /*Latency=*/0));
368 for (std::map
<const Value
*, std::vector
<SUnit
*> >::iterator I
=
369 NonAliasMemUses
.begin(), E
= NonAliasMemUses
.end(); I
!= E
; ++I
) {
370 for (unsigned i
= 0, e
= I
->second
.size(); i
!= e
; ++i
)
371 I
->second
[i
]->addPred(SDep(SU
, SDep::Order
, TrueMemOrderLatency
));
373 NonAliasMemDefs
.clear();
374 NonAliasMemUses
.clear();
375 // Add SU to the barrier chain.
377 BarrierChain
->addPred(SDep(SU
, SDep::Order
, /*Latency=*/0));
382 // Chain all possibly aliasing memory references though SU.
384 AliasChain
->addPred(SDep(SU
, SDep::Order
, /*Latency=*/0));
386 for (unsigned k
= 0, m
= PendingLoads
.size(); k
!= m
; ++k
)
387 PendingLoads
[k
]->addPred(SDep(SU
, SDep::Order
, TrueMemOrderLatency
));
388 for (std::map
<const Value
*, SUnit
*>::iterator I
= AliasMemDefs
.begin(),
389 E
= AliasMemDefs
.end(); I
!= E
; ++I
) {
390 I
->second
->addPred(SDep(SU
, SDep::Order
, /*Latency=*/0));
392 for (std::map
<const Value
*, std::vector
<SUnit
*> >::iterator I
=
393 AliasMemUses
.begin(), E
= AliasMemUses
.end(); I
!= E
; ++I
) {
394 for (unsigned i
= 0, e
= I
->second
.size(); i
!= e
; ++i
)
395 I
->second
[i
]->addPred(SDep(SU
, SDep::Order
, TrueMemOrderLatency
));
397 PendingLoads
.clear();
398 AliasMemDefs
.clear();
399 AliasMemUses
.clear();
400 } else if (TID
.mayStore()) {
401 bool MayAlias
= true;
402 TrueMemOrderLatency
= STORE_LOAD_LATENCY
;
403 if (const Value
*V
= getUnderlyingObjectForInstr(MI
, MFI
, MayAlias
)) {
404 // A store to a specific PseudoSourceValue. Add precise dependencies.
405 // Record the def in MemDefs, first adding a dep if there is
407 std::map
<const Value
*, SUnit
*>::iterator I
=
408 ((MayAlias
) ? AliasMemDefs
.find(V
) : NonAliasMemDefs
.find(V
));
409 std::map
<const Value
*, SUnit
*>::iterator IE
=
410 ((MayAlias
) ? AliasMemDefs
.end() : NonAliasMemDefs
.end());
412 I
->second
->addPred(SDep(SU
, SDep::Order
, /*Latency=*/0, /*Reg=*/0,
413 /*isNormalMemory=*/true));
417 AliasMemDefs
[V
] = SU
;
419 NonAliasMemDefs
[V
] = SU
;
421 // Handle the uses in MemUses, if there are any.
422 std::map
<const Value
*, std::vector
<SUnit
*> >::iterator J
=
423 ((MayAlias
) ? AliasMemUses
.find(V
) : NonAliasMemUses
.find(V
));
424 std::map
<const Value
*, std::vector
<SUnit
*> >::iterator JE
=
425 ((MayAlias
) ? AliasMemUses
.end() : NonAliasMemUses
.end());
427 for (unsigned i
= 0, e
= J
->second
.size(); i
!= e
; ++i
)
428 J
->second
[i
]->addPred(SDep(SU
, SDep::Order
, TrueMemOrderLatency
,
429 /*Reg=*/0, /*isNormalMemory=*/true));
433 // Add dependencies from all the PendingLoads, i.e. loads
434 // with no underlying object.
435 for (unsigned k
= 0, m
= PendingLoads
.size(); k
!= m
; ++k
)
436 PendingLoads
[k
]->addPred(SDep(SU
, SDep::Order
, TrueMemOrderLatency
));
437 // Add dependence on alias chain, if needed.
439 AliasChain
->addPred(SDep(SU
, SDep::Order
, /*Latency=*/0));
441 // Add dependence on barrier chain, if needed.
443 BarrierChain
->addPred(SDep(SU
, SDep::Order
, /*Latency=*/0));
445 // Treat all other stores conservatively.
446 goto new_alias_chain
;
448 } else if (TID
.mayLoad()) {
449 bool MayAlias
= true;
450 TrueMemOrderLatency
= 0;
451 if (MI
->isInvariantLoad(AA
)) {
452 // Invariant load, no chain dependencies needed!
455 getUnderlyingObjectForInstr(MI
, MFI
, MayAlias
)) {
456 // A load from a specific PseudoSourceValue. Add precise dependencies.
457 std::map
<const Value
*, SUnit
*>::iterator I
=
458 ((MayAlias
) ? AliasMemDefs
.find(V
) : NonAliasMemDefs
.find(V
));
459 std::map
<const Value
*, SUnit
*>::iterator IE
=
460 ((MayAlias
) ? AliasMemDefs
.end() : NonAliasMemDefs
.end());
462 I
->second
->addPred(SDep(SU
, SDep::Order
, /*Latency=*/0, /*Reg=*/0,
463 /*isNormalMemory=*/true));
465 AliasMemUses
[V
].push_back(SU
);
467 NonAliasMemUses
[V
].push_back(SU
);
469 // A load with no underlying object. Depend on all
470 // potentially aliasing stores.
471 for (std::map
<const Value
*, SUnit
*>::iterator I
=
472 AliasMemDefs
.begin(), E
= AliasMemDefs
.end(); I
!= E
; ++I
)
473 I
->second
->addPred(SDep(SU
, SDep::Order
, /*Latency=*/0));
475 PendingLoads
.push_back(SU
);
479 // Add dependencies on alias and barrier chains, if needed.
480 if (MayAlias
&& AliasChain
)
481 AliasChain
->addPred(SDep(SU
, SDep::Order
, /*Latency=*/0));
483 BarrierChain
->addPred(SDep(SU
, SDep::Order
, /*Latency=*/0));
488 for (int i
= 0, e
= TRI
->getNumRegs(); i
!= e
; ++i
) {
492 PendingLoads
.clear();
495 void ScheduleDAGInstrs::FinishBlock() {
499 void ScheduleDAGInstrs::ComputeLatency(SUnit
*SU
) {
500 const InstrItineraryData
&InstrItins
= TM
.getInstrItineraryData();
502 // Compute the latency for the node.
504 InstrItins
.getStageLatency(SU
->getInstr()->getDesc().getSchedClass());
506 // Simplistic target-independent heuristic: assume that loads take
508 if (InstrItins
.isEmpty())
509 if (SU
->getInstr()->getDesc().mayLoad())
513 void ScheduleDAGInstrs::ComputeOperandLatency(SUnit
*Def
, SUnit
*Use
,
515 const InstrItineraryData
&InstrItins
= TM
.getInstrItineraryData();
516 if (InstrItins
.isEmpty())
519 // For a data dependency with a known register...
520 if ((dep
.getKind() != SDep::Data
) || (dep
.getReg() == 0))
523 const unsigned Reg
= dep
.getReg();
525 // ... find the definition of the register in the defining
527 MachineInstr
*DefMI
= Def
->getInstr();
528 int DefIdx
= DefMI
->findRegisterDefOperandIdx(Reg
);
530 int DefCycle
= InstrItins
.getOperandCycle(DefMI
->getDesc().getSchedClass(),
533 MachineInstr
*UseMI
= Use
->getInstr();
534 const unsigned UseClass
= UseMI
->getDesc().getSchedClass();
536 // For all uses of the register, calculate the maxmimum latency
538 for (unsigned i
= 0, e
= UseMI
->getNumOperands(); i
!= e
; ++i
) {
539 const MachineOperand
&MO
= UseMI
->getOperand(i
);
540 if (!MO
.isReg() || !MO
.isUse())
542 unsigned MOReg
= MO
.getReg();
546 int UseCycle
= InstrItins
.getOperandCycle(UseClass
, i
);
548 Latency
= std::max(Latency
, DefCycle
- UseCycle
+ 1);
551 // If we found a latency, then replace the existing dependence latency.
553 dep
.setLatency(Latency
);
558 void ScheduleDAGInstrs::dumpNode(const SUnit
*SU
) const {
559 SU
->getInstr()->dump();
562 std::string
ScheduleDAGInstrs::getGraphNodeLabel(const SUnit
*SU
) const {
564 raw_string_ostream
oss(s
);
567 else if (SU
== &ExitSU
)
570 SU
->getInstr()->print(oss
);
574 // EmitSchedule - Emit the machine code in scheduled order.
575 MachineBasicBlock
*ScheduleDAGInstrs::
576 EmitSchedule(DenseMap
<MachineBasicBlock
*, MachineBasicBlock
*> *EM
) {
577 // For MachineInstr-based scheduling, we're rescheduling the instructions in
578 // the block, so start by removing them from the block.
579 while (Begin
!= InsertPos
) {
580 MachineBasicBlock::iterator I
= Begin
;
585 // First reinsert any remaining debug_values; these are either constants,
586 // or refer to live-in registers. The beginning of the block is the right
587 // place for the latter. The former might reasonably be placed elsewhere
588 // using some kind of ordering algorithm, but right now it doesn't matter.
589 for (int i
= DbgValueVec
.size()-1; i
>=0; --i
)
591 BB
->insert(InsertPos
, DbgValueVec
[i
]);
593 // Then re-insert them according to the given schedule.
594 for (unsigned i
= 0, e
= Sequence
.size(); i
!= e
; i
++) {
595 SUnit
*SU
= Sequence
[i
];
597 // Null SUnit* is a noop.
602 BB
->insert(InsertPos
, SU
->getInstr());
603 if (SU
->getDbgInstr())
604 BB
->insert(InsertPos
, SU
->getDbgInstr());
607 // Update the Begin iterator, as the first instruction in the block
608 // may have been scheduled later.
609 if (!DbgValueVec
.empty()) {
610 for (int i
= DbgValueVec
.size()-1; i
>=0; --i
)
611 if (DbgValueVec
[i
]!=0) {
612 Begin
= DbgValueVec
[DbgValueVec
.size()-1];
615 } else if (!Sequence
.empty())
616 Begin
= Sequence
[0]->getInstr();