Do more to modernize MergeFunctions. Refactor in response to Chris' code review.
[llvm.git] / lib / Transforms / IPO / PartialSpecialization.cpp
blob17245c7acd3b59e6465ccdac4277ec27a56b8dc4
1 //===-- PartialSpecialization.cpp - Specialize for common constants--------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass finds function arguments that are often a common constant and
11 // specializes a version of the called function for that constant.
13 // This pass simply does the cloning for functions it specializes. It depends
14 // on IPSCCP and DAE to clean up the results.
16 // The initial heuristic favors constant arguments that are used in control
17 // flow.
19 //===----------------------------------------------------------------------===//
21 #define DEBUG_TYPE "partialspecialization"
22 #include "llvm/Transforms/IPO.h"
23 #include "llvm/Constant.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/Module.h"
26 #include "llvm/Pass.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Transforms/Utils/Cloning.h"
29 #include "llvm/Support/CallSite.h"
30 #include "llvm/ADT/DenseSet.h"
31 #include <map>
32 using namespace llvm;
34 STATISTIC(numSpecialized, "Number of specialized functions created");
35 STATISTIC(numReplaced, "Number of callers replaced by specialization");
37 // Maximum number of arguments markable interested
38 static const int MaxInterests = 6;
40 // Call must be used at least occasionally
41 static const int CallsMin = 5;
43 // Must have 10% of calls having the same constant to specialize on
44 static const double ConstValPercent = .1;
46 namespace {
47 typedef SmallVector<int, MaxInterests> InterestingArgVector;
48 class PartSpec : public ModulePass {
49 void scanForInterest(Function&, InterestingArgVector&);
50 int scanDistribution(Function&, int, std::map<Constant*, int>&);
51 public :
52 static char ID; // Pass identification, replacement for typeid
53 PartSpec() : ModulePass(ID) {}
54 bool runOnModule(Module &M);
58 char PartSpec::ID = 0;
59 INITIALIZE_PASS(PartSpec, "partialspecialization",
60 "Partial Specialization", false, false);
62 // Specialize F by replacing the arguments (keys) in replacements with the
63 // constants (values). Replace all calls to F with those constants with
64 // a call to the specialized function. Returns the specialized function
65 static Function*
66 SpecializeFunction(Function* F,
67 ValueMap<const Value*, Value*>& replacements) {
68 // arg numbers of deleted arguments
69 DenseMap<unsigned, const Argument*> deleted;
70 for (ValueMap<const Value*, Value*>::iterator
71 repb = replacements.begin(), repe = replacements.end();
72 repb != repe; ++repb) {
73 Argument const *arg = cast<const Argument>(repb->first);
74 deleted[arg->getArgNo()] = arg;
77 Function* NF = CloneFunction(F, replacements);
78 NF->setLinkage(GlobalValue::InternalLinkage);
79 F->getParent()->getFunctionList().push_back(NF);
81 for (Value::use_iterator ii = F->use_begin(), ee = F->use_end();
82 ii != ee; ) {
83 Value::use_iterator i = ii;
84 ++ii;
85 User *U = *i;
86 CallSite CS(U);
87 if (CS) {
88 if (CS.getCalledFunction() == F) {
89 SmallVector<Value*, 6> args;
90 // Assemble the non-specialized arguments for the updated callsite.
91 // In the process, make sure that the specialized arguments are
92 // constant and match the specialization. If that's not the case,
93 // this callsite needs to call the original or some other
94 // specialization; don't change it here.
95 CallSite::arg_iterator as = CS.arg_begin(), ae = CS.arg_end();
96 for (CallSite::arg_iterator ai = as; ai != ae; ++ai) {
97 DenseMap<unsigned, const Argument*>::iterator delit = deleted.find(
98 std::distance(as, ai));
99 if (delit == deleted.end())
100 args.push_back(cast<Value>(ai));
101 else {
102 Constant *ci = dyn_cast<Constant>(ai);
103 if (!(ci && ci == replacements[delit->second]))
104 goto next_use;
107 Value* NCall;
108 if (CallInst *CI = dyn_cast<CallInst>(U)) {
109 NCall = CallInst::Create(NF, args.begin(), args.end(),
110 CI->getName(), CI);
111 cast<CallInst>(NCall)->setTailCall(CI->isTailCall());
112 cast<CallInst>(NCall)->setCallingConv(CI->getCallingConv());
113 } else {
114 InvokeInst *II = cast<InvokeInst>(U);
115 NCall = InvokeInst::Create(NF, II->getNormalDest(),
116 II->getUnwindDest(),
117 args.begin(), args.end(),
118 II->getName(), II);
119 cast<InvokeInst>(NCall)->setCallingConv(II->getCallingConv());
121 CS.getInstruction()->replaceAllUsesWith(NCall);
122 CS.getInstruction()->eraseFromParent();
123 ++numReplaced;
126 next_use:;
128 return NF;
132 bool PartSpec::runOnModule(Module &M) {
133 bool Changed = false;
134 for (Module::iterator I = M.begin(); I != M.end(); ++I) {
135 Function &F = *I;
136 if (F.isDeclaration() || F.mayBeOverridden()) continue;
137 InterestingArgVector interestingArgs;
138 scanForInterest(F, interestingArgs);
140 // Find the first interesting Argument that we can specialize on
141 // If there are multiple interesting Arguments, then those will be found
142 // when processing the cloned function.
143 bool breakOuter = false;
144 for (unsigned int x = 0; !breakOuter && x < interestingArgs.size(); ++x) {
145 std::map<Constant*, int> distribution;
146 int total = scanDistribution(F, interestingArgs[x], distribution);
147 if (total > CallsMin)
148 for (std::map<Constant*, int>::iterator ii = distribution.begin(),
149 ee = distribution.end(); ii != ee; ++ii)
150 if (total > ii->second && ii->first &&
151 ii->second > total * ConstValPercent) {
152 ValueMap<const Value*, Value*> m;
153 Function::arg_iterator arg = F.arg_begin();
154 for (int y = 0; y < interestingArgs[x]; ++y)
155 ++arg;
156 m[&*arg] = ii->first;
157 SpecializeFunction(&F, m);
158 ++numSpecialized;
159 breakOuter = true;
160 Changed = true;
164 return Changed;
167 /// scanForInterest - This function decides which arguments would be worth
168 /// specializing on.
169 void PartSpec::scanForInterest(Function& F, InterestingArgVector& args) {
170 for(Function::arg_iterator ii = F.arg_begin(), ee = F.arg_end();
171 ii != ee; ++ii) {
172 for(Value::use_iterator ui = ii->use_begin(), ue = ii->use_end();
173 ui != ue; ++ui) {
175 bool interesting = false;
176 User *U = *ui;
177 if (isa<CmpInst>(U)) interesting = true;
178 else if (isa<CallInst>(U))
179 interesting = ui->getOperand(0) == ii;
180 else if (isa<InvokeInst>(U))
181 interesting = ui->getOperand(0) == ii;
182 else if (isa<SwitchInst>(U)) interesting = true;
183 else if (isa<BranchInst>(U)) interesting = true;
185 if (interesting) {
186 args.push_back(std::distance(F.arg_begin(), ii));
187 break;
193 /// scanDistribution - Construct a histogram of constants for arg of F at arg.
194 int PartSpec::scanDistribution(Function& F, int arg,
195 std::map<Constant*, int>& dist) {
196 bool hasIndirect = false;
197 int total = 0;
198 for (Value::use_iterator ii = F.use_begin(), ee = F.use_end();
199 ii != ee; ++ii) {
200 User *U = *ii;
201 CallSite CS(U);
202 if (CS && CS.getCalledFunction() == &F) {
203 ++dist[dyn_cast<Constant>(CS.getArgument(arg))];
204 ++total;
205 } else
206 hasIndirect = true;
209 // Preserve the original address taken function even if all other uses
210 // will be specialized.
211 if (hasIndirect) ++total;
212 return total;
215 ModulePass* llvm::createPartialSpecializationPass() { return new PartSpec(); }