Do more to modernize MergeFunctions. Refactor in response to Chris' code review.
[llvm.git] / lib / Transforms / IPO / MergeFunctions.cpp
blob0b36204fc57cb641bfe642153d0bba88f7c6a046
1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
12 // A hash is computed from the function, based on its type and number of
13 // basic blocks.
15 // Once all hashes are computed, we perform an expensive equality comparison
16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's
17 // important that the hash function be high quality. The equality comparison
18 // iterates through each instruction in each basic block.
20 // When a match is found the functions are folded. If both functions are
21 // overridable, we move the functionality into a new internal function and
22 // leave two overridable thunks to it.
24 //===----------------------------------------------------------------------===//
26 // Future work:
28 // * virtual functions.
30 // Many functions have their address taken by the virtual function table for
31 // the object they belong to. However, as long as it's only used for a lookup
32 // and call, this is irrelevant, and we'd like to fold such functions.
34 // * switch from n^2 pair-wise comparisons to an n-way comparison for each
35 // bucket.
37 // * be smarter about bitcasts.
39 // In order to fold functions, we will sometimes add either bitcast instructions
40 // or bitcast constant expressions. Unfortunately, this can confound further
41 // analysis since the two functions differ where one has a bitcast and the
42 // other doesn't. We should learn to look through bitcasts.
44 //===----------------------------------------------------------------------===//
46 #define DEBUG_TYPE "mergefunc"
47 #include "llvm/Transforms/IPO.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/FoldingSet.h"
50 #include "llvm/ADT/SmallSet.h"
51 #include "llvm/ADT/Statistic.h"
52 #include "llvm/Constants.h"
53 #include "llvm/InlineAsm.h"
54 #include "llvm/Instructions.h"
55 #include "llvm/LLVMContext.h"
56 #include "llvm/Module.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/CallSite.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/IRBuilder.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetData.h"
64 #include <map>
65 #include <vector>
66 using namespace llvm;
68 STATISTIC(NumFunctionsMerged, "Number of functions merged");
70 namespace {
71 /// MergeFunctions finds functions which will generate identical machine code,
72 /// by considering all pointer types to be equivalent. Once identified,
73 /// MergeFunctions will fold them by replacing a call to one to a call to a
74 /// bitcast of the other.
75 ///
76 class MergeFunctions : public ModulePass {
77 public:
78 static char ID;
79 MergeFunctions() : ModulePass(ID) {}
81 bool runOnModule(Module &M);
83 private:
84 /// PairwiseCompareAndMerge - Given a list of functions, compare each pair
85 /// and merge the pairs of equivalent functions.
86 bool PairwiseCompareAndMerge(std::vector<Function *> &FnVec);
88 /// MergeTwoFunctions - Merge two equivalent functions. Upon completion,
89 /// FnVec[j] should never be visited again.
90 void MergeTwoFunctions(std::vector<Function *> &FnVec,
91 unsigned i, unsigned j) const;
93 /// WriteThunk - Replace G with a simple tail call to bitcast(F). Also
94 /// replace direct uses of G with bitcast(F).
95 void WriteThunk(Function *F, Function *G) const;
97 TargetData *TD;
101 char MergeFunctions::ID = 0;
102 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false);
104 ModulePass *llvm::createMergeFunctionsPass() {
105 return new MergeFunctions();
108 namespace {
109 /// FunctionComparator - Compares two functions to determine whether or not
110 /// they will generate machine code with the same behaviour. TargetData is
111 /// used if available. The comparator always fails conservatively (erring on the
112 /// side of claiming that two functions are different).
113 class FunctionComparator {
114 public:
115 FunctionComparator(TargetData *TD, Function *F1, Function *F2)
116 : F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {}
118 /// Compare - test whether the two functions have equivalent behaviour.
119 bool Compare();
121 private:
122 /// Compare - test whether two basic blocks have equivalent behaviour.
123 bool Compare(const BasicBlock *BB1, const BasicBlock *BB2);
125 /// Enumerate - Assign or look up previously assigned numbers for the two
126 /// values, and return whether the numbers are equal. Numbers are assigned in
127 /// the order visited.
128 bool Enumerate(const Value *V1, const Value *V2);
130 /// isEquivalentOperation - Compare two Instructions for equivalence, similar
131 /// to Instruction::isSameOperationAs but with modifications to the type
132 /// comparison.
133 bool isEquivalentOperation(const Instruction *I1,
134 const Instruction *I2) const;
136 /// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic.
137 bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
138 bool isEquivalentGEP(const GetElementPtrInst *GEP1,
139 const GetElementPtrInst *GEP2) {
140 return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
143 /// isEquivalentType - Compare two Types, treating all pointer types as equal.
144 bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
146 // The two functions undergoing comparison.
147 Function *F1, *F2;
149 TargetData *TD;
151 typedef DenseMap<const Value *, unsigned long> IDMap;
152 IDMap Map1, Map2;
153 unsigned long IDMap1Count, IDMap2Count;
157 /// Compute a hash guaranteed to be equal for two equivalent functions, but
158 /// very likely to be different for different functions.
159 static unsigned long ProfileFunction(const Function *F) {
160 const FunctionType *FTy = F->getFunctionType();
162 FoldingSetNodeID ID;
163 ID.AddInteger(F->size());
164 ID.AddInteger(F->getCallingConv());
165 ID.AddBoolean(F->hasGC());
166 ID.AddBoolean(FTy->isVarArg());
167 ID.AddInteger(FTy->getReturnType()->getTypeID());
168 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
169 ID.AddInteger(FTy->getParamType(i)->getTypeID());
170 return ID.ComputeHash();
173 /// isEquivalentType - any two pointers in the same address space are
174 /// equivalent. Otherwise, standard type equivalence rules apply.
175 bool FunctionComparator::isEquivalentType(const Type *Ty1,
176 const Type *Ty2) const {
177 if (Ty1 == Ty2)
178 return true;
179 if (Ty1->getTypeID() != Ty2->getTypeID())
180 return false;
182 switch(Ty1->getTypeID()) {
183 default:
184 llvm_unreachable("Unknown type!");
185 // Fall through in Release mode.
186 case Type::IntegerTyID:
187 case Type::OpaqueTyID:
188 // Ty1 == Ty2 would have returned true earlier.
189 return false;
191 case Type::VoidTyID:
192 case Type::FloatTyID:
193 case Type::DoubleTyID:
194 case Type::X86_FP80TyID:
195 case Type::FP128TyID:
196 case Type::PPC_FP128TyID:
197 case Type::LabelTyID:
198 case Type::MetadataTyID:
199 return true;
201 case Type::PointerTyID: {
202 const PointerType *PTy1 = cast<PointerType>(Ty1);
203 const PointerType *PTy2 = cast<PointerType>(Ty2);
204 return PTy1->getAddressSpace() == PTy2->getAddressSpace();
207 case Type::StructTyID: {
208 const StructType *STy1 = cast<StructType>(Ty1);
209 const StructType *STy2 = cast<StructType>(Ty2);
210 if (STy1->getNumElements() != STy2->getNumElements())
211 return false;
213 if (STy1->isPacked() != STy2->isPacked())
214 return false;
216 for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
217 if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
218 return false;
220 return true;
223 case Type::UnionTyID: {
224 const UnionType *UTy1 = cast<UnionType>(Ty1);
225 const UnionType *UTy2 = cast<UnionType>(Ty2);
227 if (UTy1->getNumElements() != UTy2->getNumElements())
228 return false;
230 for (unsigned i = 0, e = UTy1->getNumElements(); i != e; ++i) {
231 if (!isEquivalentType(UTy1->getElementType(i), UTy2->getElementType(i)))
232 return false;
234 return true;
237 case Type::FunctionTyID: {
238 const FunctionType *FTy1 = cast<FunctionType>(Ty1);
239 const FunctionType *FTy2 = cast<FunctionType>(Ty2);
240 if (FTy1->getNumParams() != FTy2->getNumParams() ||
241 FTy1->isVarArg() != FTy2->isVarArg())
242 return false;
244 if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
245 return false;
247 for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
248 if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
249 return false;
251 return true;
254 case Type::ArrayTyID: {
255 const ArrayType *ATy1 = cast<ArrayType>(Ty1);
256 const ArrayType *ATy2 = cast<ArrayType>(Ty2);
257 return ATy1->getNumElements() == ATy2->getNumElements() &&
258 isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
261 case Type::VectorTyID: {
262 const VectorType *VTy1 = cast<VectorType>(Ty1);
263 const VectorType *VTy2 = cast<VectorType>(Ty2);
264 return VTy1->getNumElements() == VTy2->getNumElements() &&
265 isEquivalentType(VTy1->getElementType(), VTy2->getElementType());
270 /// isEquivalentOperation - determine whether the two operations are the same
271 /// except that pointer-to-A and pointer-to-B are equivalent. This should be
272 /// kept in sync with Instruction::isSameOperationAs.
273 bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
274 const Instruction *I2) const {
275 if (I1->getOpcode() != I2->getOpcode() ||
276 I1->getNumOperands() != I2->getNumOperands() ||
277 !isEquivalentType(I1->getType(), I2->getType()) ||
278 !I1->hasSameSubclassOptionalData(I2))
279 return false;
281 // We have two instructions of identical opcode and #operands. Check to see
282 // if all operands are the same type
283 for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
284 if (!isEquivalentType(I1->getOperand(i)->getType(),
285 I2->getOperand(i)->getType()))
286 return false;
288 // Check special state that is a part of some instructions.
289 if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
290 return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
291 LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
292 if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
293 return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
294 SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
295 if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
296 return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
297 if (const CallInst *CI = dyn_cast<CallInst>(I1))
298 return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
299 CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
300 CI->getAttributes().getRawPointer() ==
301 cast<CallInst>(I2)->getAttributes().getRawPointer();
302 if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
303 return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
304 CI->getAttributes().getRawPointer() ==
305 cast<InvokeInst>(I2)->getAttributes().getRawPointer();
306 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
307 if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
308 return false;
309 for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
310 if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
311 return false;
312 return true;
314 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
315 if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
316 return false;
317 for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
318 if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
319 return false;
320 return true;
323 return true;
326 /// isEquivalentGEP - determine whether two GEP operations perform the same
327 /// underlying arithmetic.
328 bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
329 const GEPOperator *GEP2) {
330 // When we have target data, we can reduce the GEP down to the value in bytes
331 // added to the address.
332 if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
333 SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
334 SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
335 uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
336 Indices1.data(), Indices1.size());
337 uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
338 Indices2.data(), Indices2.size());
339 return Offset1 == Offset2;
342 if (GEP1->getPointerOperand()->getType() !=
343 GEP2->getPointerOperand()->getType())
344 return false;
346 if (GEP1->getNumOperands() != GEP2->getNumOperands())
347 return false;
349 for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
350 if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
351 return false;
354 return true;
357 /// Enumerate - Compare two values used by the two functions under pair-wise
358 /// comparison. If this is the first time the values are seen, they're added to
359 /// the mapping so that we will detect mismatches on next use.
360 bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) {
361 // Check for function @f1 referring to itself and function @f2 referring to
362 // itself, or referring to each other, or both referring to either of them.
363 // They're all equivalent if the two functions are otherwise equivalent.
364 if (V1 == F1 && V2 == F2)
365 return true;
366 if (V1 == F2 && V2 == F1)
367 return true;
369 // TODO: constant expressions with GEP or references to F1 or F2.
370 if (isa<Constant>(V1))
371 return V1 == V2;
373 if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) {
374 const InlineAsm *IA1 = cast<InlineAsm>(V1);
375 const InlineAsm *IA2 = cast<InlineAsm>(V2);
376 return IA1->getAsmString() == IA2->getAsmString() &&
377 IA1->getConstraintString() == IA2->getConstraintString();
380 unsigned long &ID1 = Map1[V1];
381 if (!ID1)
382 ID1 = ++IDMap1Count;
384 unsigned long &ID2 = Map2[V2];
385 if (!ID2)
386 ID2 = ++IDMap2Count;
388 return ID1 == ID2;
391 /// Compare - test whether two basic blocks have equivalent behaviour.
392 bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
393 BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
394 BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
396 do {
397 if (!Enumerate(F1I, F2I))
398 return false;
400 if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
401 const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
402 if (!GEP2)
403 return false;
405 if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
406 return false;
408 if (!isEquivalentGEP(GEP1, GEP2))
409 return false;
410 } else {
411 if (!isEquivalentOperation(F1I, F2I))
412 return false;
414 assert(F1I->getNumOperands() == F2I->getNumOperands());
415 for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
416 Value *OpF1 = F1I->getOperand(i);
417 Value *OpF2 = F2I->getOperand(i);
419 if (!Enumerate(OpF1, OpF2))
420 return false;
422 if (OpF1->getValueID() != OpF2->getValueID() ||
423 !isEquivalentType(OpF1->getType(), OpF2->getType()))
424 return false;
428 ++F1I, ++F2I;
429 } while (F1I != F1E && F2I != F2E);
431 return F1I == F1E && F2I == F2E;
434 /// Compare - test whether the two functions have equivalent behaviour.
435 bool FunctionComparator::Compare() {
436 // We need to recheck everything, but check the things that weren't included
437 // in the hash first.
439 if (F1->getAttributes() != F2->getAttributes())
440 return false;
442 if (F1->hasGC() != F2->hasGC())
443 return false;
445 if (F1->hasGC() && F1->getGC() != F2->getGC())
446 return false;
448 if (F1->hasSection() != F2->hasSection())
449 return false;
451 if (F1->hasSection() && F1->getSection() != F2->getSection())
452 return false;
454 if (F1->isVarArg() != F2->isVarArg())
455 return false;
457 // TODO: if it's internal and only used in direct calls, we could handle this
458 // case too.
459 if (F1->getCallingConv() != F2->getCallingConv())
460 return false;
462 if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
463 return false;
465 assert(F1->arg_size() == F2->arg_size() &&
466 "Identical functions have a different number of args.");
468 // Visit the arguments so that they get enumerated in the order they're
469 // passed in.
470 for (Function::const_arg_iterator f1i = F1->arg_begin(),
471 f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
472 if (!Enumerate(f1i, f2i))
473 llvm_unreachable("Arguments repeat");
476 // We do a CFG-ordered walk since the actual ordering of the blocks in the
477 // linked list is immaterial. Our walk starts at the entry block for both
478 // functions, then takes each block from each terminator in order. As an
479 // artifact, this also means that unreachable blocks are ignored.
480 SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
481 SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
483 F1BBs.push_back(&F1->getEntryBlock());
484 F2BBs.push_back(&F2->getEntryBlock());
486 VisitedBBs.insert(F1BBs[0]);
487 while (!F1BBs.empty()) {
488 const BasicBlock *F1BB = F1BBs.pop_back_val();
489 const BasicBlock *F2BB = F2BBs.pop_back_val();
491 if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB))
492 return false;
494 const TerminatorInst *F1TI = F1BB->getTerminator();
495 const TerminatorInst *F2TI = F2BB->getTerminator();
497 assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
498 for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
499 if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
500 continue;
502 F1BBs.push_back(F1TI->getSuccessor(i));
503 F2BBs.push_back(F2TI->getSuccessor(i));
506 return true;
509 /// WriteThunk - Replace G with a simple tail call to bitcast(F). Also replace
510 /// direct uses of G with bitcast(F).
511 void MergeFunctions::WriteThunk(Function *F, Function *G) const {
512 if (!G->mayBeOverridden()) {
513 // Redirect direct callers of G to F.
514 Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
515 for (Value::use_iterator UI = G->use_begin(), UE = G->use_end();
516 UI != UE;) {
517 Value::use_iterator TheIter = UI;
518 ++UI;
519 CallSite CS(*TheIter);
520 if (CS && CS.isCallee(TheIter))
521 TheIter.getUse().set(BitcastF);
525 // If G was internal then we may have replaced all uses if G with F. If so,
526 // stop here and delete G. There's no need for a thunk.
527 if (G->hasLocalLinkage() && G->use_empty()) {
528 G->eraseFromParent();
529 return;
532 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
533 G->getParent());
534 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
535 IRBuilder<false> Builder(BB);
537 SmallVector<Value *, 16> Args;
538 unsigned i = 0;
539 const FunctionType *FFTy = F->getFunctionType();
540 for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
541 AI != AE; ++AI) {
542 Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
543 ++i;
546 CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end());
547 CI->setTailCall();
548 CI->setCallingConv(F->getCallingConv());
549 if (NewG->getReturnType()->isVoidTy()) {
550 Builder.CreateRetVoid();
551 } else {
552 Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
555 NewG->copyAttributesFrom(G);
556 NewG->takeName(G);
557 G->replaceAllUsesWith(NewG);
558 G->eraseFromParent();
561 /// MergeTwoFunctions - Merge two equivalent functions. Upon completion,
562 /// FnVec[j] should never be visited again.
563 void MergeFunctions::MergeTwoFunctions(std::vector<Function *> &FnVec,
564 unsigned i, unsigned j) const {
565 Function *F = FnVec[i];
566 Function *G = FnVec[j];
568 if (F->isWeakForLinker() && !G->isWeakForLinker()) {
569 std::swap(FnVec[i], FnVec[j]);
570 std::swap(F, G);
573 if (F->isWeakForLinker()) {
574 assert(G->isWeakForLinker());
576 // Make them both thunks to the same internal function.
577 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
578 F->getParent());
579 H->copyAttributesFrom(F);
580 H->takeName(F);
581 F->replaceAllUsesWith(H);
583 WriteThunk(F, G);
584 WriteThunk(F, H);
586 F->setAlignment(std::max(G->getAlignment(), H->getAlignment()));
587 F->setLinkage(GlobalValue::InternalLinkage);
588 } else {
589 WriteThunk(F, G);
592 ++NumFunctionsMerged;
595 /// PairwiseCompareAndMerge - Given a list of functions, compare each pair and
596 /// merge the pairs of equivalent functions.
597 bool MergeFunctions::PairwiseCompareAndMerge(std::vector<Function *> &FnVec) {
598 bool Changed = false;
599 for (int i = 0, e = FnVec.size(); i != e; ++i) {
600 for (int j = i + 1; j != e; ++j) {
601 bool isEqual = FunctionComparator(TD, FnVec[i], FnVec[j]).Compare();
603 DEBUG(dbgs() << " " << FnVec[i]->getName()
604 << (isEqual ? " == " : " != ") << FnVec[j]->getName() << "\n");
606 if (isEqual) {
607 MergeTwoFunctions(FnVec, i, j);
608 Changed = true;
609 FnVec.erase(FnVec.begin() + j);
610 --j, --e;
614 return Changed;
617 bool MergeFunctions::runOnModule(Module &M) {
618 bool Changed = false;
620 std::map<unsigned long, std::vector<Function *> > FnMap;
622 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
623 if (F->isDeclaration() || F->hasAvailableExternallyLinkage())
624 continue;
626 FnMap[ProfileFunction(F)].push_back(F);
629 TD = getAnalysisIfAvailable<TargetData>();
631 bool LocalChanged;
632 do {
633 LocalChanged = false;
634 DEBUG(dbgs() << "size: " << FnMap.size() << "\n");
635 for (std::map<unsigned long, std::vector<Function *> >::iterator
636 I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
637 std::vector<Function *> &FnVec = I->second;
638 DEBUG(dbgs() << "hash (" << I->first << "): " << FnVec.size() << "\n");
639 LocalChanged |= PairwiseCompareAndMerge(FnVec);
641 Changed |= LocalChanged;
642 } while (LocalChanged);
644 return Changed;