Do more to modernize MergeFunctions. Refactor in response to Chris' code review.
[llvm.git] / lib / Transforms / IPO / DeadArgumentElimination.cpp
blob47df235424e2fc18af75d74be3dd814f29f762c8
1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass deletes dead arguments from internal functions. Dead argument
11 // elimination removes arguments which are directly dead, as well as arguments
12 // only passed into function calls as dead arguments of other functions. This
13 // pass also deletes dead return values in a similar way.
15 // This pass is often useful as a cleanup pass to run after aggressive
16 // interprocedural passes, which add possibly-dead arguments or return values.
18 //===----------------------------------------------------------------------===//
20 #define DEBUG_TYPE "deadargelim"
21 #include "llvm/Transforms/IPO.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/Constant.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/Module.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CallSite.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include <map>
37 #include <set>
38 using namespace llvm;
40 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
41 STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
43 namespace {
44 /// DAE - The dead argument elimination pass.
45 ///
46 class DAE : public ModulePass {
47 public:
49 /// Struct that represents (part of) either a return value or a function
50 /// argument. Used so that arguments and return values can be used
51 /// interchangably.
52 struct RetOrArg {
53 RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
54 IsArg(IsArg) {}
55 const Function *F;
56 unsigned Idx;
57 bool IsArg;
59 /// Make RetOrArg comparable, so we can put it into a map.
60 bool operator<(const RetOrArg &O) const {
61 if (F != O.F)
62 return F < O.F;
63 else if (Idx != O.Idx)
64 return Idx < O.Idx;
65 else
66 return IsArg < O.IsArg;
69 /// Make RetOrArg comparable, so we can easily iterate the multimap.
70 bool operator==(const RetOrArg &O) const {
71 return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
74 std::string getDescription() const {
75 return std::string((IsArg ? "Argument #" : "Return value #"))
76 + utostr(Idx) + " of function " + F->getNameStr();
80 /// Liveness enum - During our initial pass over the program, we determine
81 /// that things are either alive or maybe alive. We don't mark anything
82 /// explicitly dead (even if we know they are), since anything not alive
83 /// with no registered uses (in Uses) will never be marked alive and will
84 /// thus become dead in the end.
85 enum Liveness { Live, MaybeLive };
87 /// Convenience wrapper
88 RetOrArg CreateRet(const Function *F, unsigned Idx) {
89 return RetOrArg(F, Idx, false);
91 /// Convenience wrapper
92 RetOrArg CreateArg(const Function *F, unsigned Idx) {
93 return RetOrArg(F, Idx, true);
96 typedef std::multimap<RetOrArg, RetOrArg> UseMap;
97 /// This maps a return value or argument to any MaybeLive return values or
98 /// arguments it uses. This allows the MaybeLive values to be marked live
99 /// when any of its users is marked live.
100 /// For example (indices are left out for clarity):
101 /// - Uses[ret F] = ret G
102 /// This means that F calls G, and F returns the value returned by G.
103 /// - Uses[arg F] = ret G
104 /// This means that some function calls G and passes its result as an
105 /// argument to F.
106 /// - Uses[ret F] = arg F
107 /// This means that F returns one of its own arguments.
108 /// - Uses[arg F] = arg G
109 /// This means that G calls F and passes one of its own (G's) arguments
110 /// directly to F.
111 UseMap Uses;
113 typedef std::set<RetOrArg> LiveSet;
114 typedef std::set<const Function*> LiveFuncSet;
116 /// This set contains all values that have been determined to be live.
117 LiveSet LiveValues;
118 /// This set contains all values that are cannot be changed in any way.
119 LiveFuncSet LiveFunctions;
121 typedef SmallVector<RetOrArg, 5> UseVector;
123 protected:
124 // DAH uses this to specify a different ID.
125 explicit DAE(char &ID) : ModulePass(ID) {}
127 public:
128 static char ID; // Pass identification, replacement for typeid
129 DAE() : ModulePass(ID) {}
131 bool runOnModule(Module &M);
133 virtual bool ShouldHackArguments() const { return false; }
135 private:
136 Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
137 Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
138 unsigned RetValNum = 0);
139 Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
141 void SurveyFunction(const Function &F);
142 void MarkValue(const RetOrArg &RA, Liveness L,
143 const UseVector &MaybeLiveUses);
144 void MarkLive(const RetOrArg &RA);
145 void MarkLive(const Function &F);
146 void PropagateLiveness(const RetOrArg &RA);
147 bool RemoveDeadStuffFromFunction(Function *F);
148 bool DeleteDeadVarargs(Function &Fn);
153 char DAE::ID = 0;
154 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false);
156 namespace {
157 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
158 /// deletes arguments to functions which are external. This is only for use
159 /// by bugpoint.
160 struct DAH : public DAE {
161 static char ID;
162 DAH() : DAE(ID) {}
164 virtual bool ShouldHackArguments() const { return true; }
168 char DAH::ID = 0;
169 INITIALIZE_PASS(DAH, "deadarghaX0r",
170 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
171 false, false);
173 /// createDeadArgEliminationPass - This pass removes arguments from functions
174 /// which are not used by the body of the function.
176 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
177 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
179 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
180 /// llvm.vastart is never called, the varargs list is dead for the function.
181 bool DAE::DeleteDeadVarargs(Function &Fn) {
182 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
183 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
185 // Ensure that the function is only directly called.
186 if (Fn.hasAddressTaken())
187 return false;
189 // Okay, we know we can transform this function if safe. Scan its body
190 // looking for calls to llvm.vastart.
191 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
192 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
193 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
194 if (II->getIntrinsicID() == Intrinsic::vastart)
195 return false;
200 // If we get here, there are no calls to llvm.vastart in the function body,
201 // remove the "..." and adjust all the calls.
203 // Start by computing a new prototype for the function, which is the same as
204 // the old function, but doesn't have isVarArg set.
205 const FunctionType *FTy = Fn.getFunctionType();
207 std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
208 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
209 Params, false);
210 unsigned NumArgs = Params.size();
212 // Create the new function body and insert it into the module...
213 Function *NF = Function::Create(NFTy, Fn.getLinkage());
214 NF->copyAttributesFrom(&Fn);
215 Fn.getParent()->getFunctionList().insert(&Fn, NF);
216 NF->takeName(&Fn);
218 // Loop over all of the callers of the function, transforming the call sites
219 // to pass in a smaller number of arguments into the new function.
221 std::vector<Value*> Args;
222 while (!Fn.use_empty()) {
223 CallSite CS(Fn.use_back());
224 Instruction *Call = CS.getInstruction();
226 // Pass all the same arguments.
227 Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
229 // Drop any attributes that were on the vararg arguments.
230 AttrListPtr PAL = CS.getAttributes();
231 if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
232 SmallVector<AttributeWithIndex, 8> AttributesVec;
233 for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
234 AttributesVec.push_back(PAL.getSlot(i));
235 if (Attributes FnAttrs = PAL.getFnAttributes())
236 AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
237 PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
240 Instruction *New;
241 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
242 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
243 Args.begin(), Args.end(), "", Call);
244 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
245 cast<InvokeInst>(New)->setAttributes(PAL);
246 } else {
247 New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
248 cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
249 cast<CallInst>(New)->setAttributes(PAL);
250 if (cast<CallInst>(Call)->isTailCall())
251 cast<CallInst>(New)->setTailCall();
253 New->setDebugLoc(Call->getDebugLoc());
255 Args.clear();
257 if (!Call->use_empty())
258 Call->replaceAllUsesWith(New);
260 New->takeName(Call);
262 // Finally, remove the old call from the program, reducing the use-count of
263 // F.
264 Call->eraseFromParent();
267 // Since we have now created the new function, splice the body of the old
268 // function right into the new function, leaving the old rotting hulk of the
269 // function empty.
270 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
272 // Loop over the argument list, transfering uses of the old arguments over to
273 // the new arguments, also transfering over the names as well. While we're at
274 // it, remove the dead arguments from the DeadArguments list.
276 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
277 I2 = NF->arg_begin(); I != E; ++I, ++I2) {
278 // Move the name and users over to the new version.
279 I->replaceAllUsesWith(I2);
280 I2->takeName(I);
283 // Finally, nuke the old function.
284 Fn.eraseFromParent();
285 return true;
288 /// Convenience function that returns the number of return values. It returns 0
289 /// for void functions and 1 for functions not returning a struct. It returns
290 /// the number of struct elements for functions returning a struct.
291 static unsigned NumRetVals(const Function *F) {
292 if (F->getReturnType()->isVoidTy())
293 return 0;
294 else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
295 return STy->getNumElements();
296 else
297 return 1;
300 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
301 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
302 /// liveness of Use.
303 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
304 // We're live if our use or its Function is already marked as live.
305 if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
306 return Live;
308 // We're maybe live otherwise, but remember that we must become live if
309 // Use becomes live.
310 MaybeLiveUses.push_back(Use);
311 return MaybeLive;
315 /// SurveyUse - This looks at a single use of an argument or return value
316 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
317 /// if it causes the used value to become MaybeLive.
319 /// RetValNum is the return value number to use when this use is used in a
320 /// return instruction. This is used in the recursion, you should always leave
321 /// it at 0.
322 DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
323 UseVector &MaybeLiveUses, unsigned RetValNum) {
324 const User *V = *U;
325 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
326 // The value is returned from a function. It's only live when the
327 // function's return value is live. We use RetValNum here, for the case
328 // that U is really a use of an insertvalue instruction that uses the
329 // orginal Use.
330 RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
331 // We might be live, depending on the liveness of Use.
332 return MarkIfNotLive(Use, MaybeLiveUses);
334 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
335 if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
336 && IV->hasIndices())
337 // The use we are examining is inserted into an aggregate. Our liveness
338 // depends on all uses of that aggregate, but if it is used as a return
339 // value, only index at which we were inserted counts.
340 RetValNum = *IV->idx_begin();
342 // Note that if we are used as the aggregate operand to the insertvalue,
343 // we don't change RetValNum, but do survey all our uses.
345 Liveness Result = MaybeLive;
346 for (Value::const_use_iterator I = IV->use_begin(),
347 E = V->use_end(); I != E; ++I) {
348 Result = SurveyUse(I, MaybeLiveUses, RetValNum);
349 if (Result == Live)
350 break;
352 return Result;
355 if (ImmutableCallSite CS = V) {
356 const Function *F = CS.getCalledFunction();
357 if (F) {
358 // Used in a direct call.
360 // Find the argument number. We know for sure that this use is an
361 // argument, since if it was the function argument this would be an
362 // indirect call and the we know can't be looking at a value of the
363 // label type (for the invoke instruction).
364 unsigned ArgNo = CS.getArgumentNo(U);
366 if (ArgNo >= F->getFunctionType()->getNumParams())
367 // The value is passed in through a vararg! Must be live.
368 return Live;
370 assert(CS.getArgument(ArgNo)
371 == CS->getOperand(U.getOperandNo())
372 && "Argument is not where we expected it");
374 // Value passed to a normal call. It's only live when the corresponding
375 // argument to the called function turns out live.
376 RetOrArg Use = CreateArg(F, ArgNo);
377 return MarkIfNotLive(Use, MaybeLiveUses);
380 // Used in any other way? Value must be live.
381 return Live;
384 /// SurveyUses - This looks at all the uses of the given value
385 /// Returns the Liveness deduced from the uses of this value.
387 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
388 /// the result is Live, MaybeLiveUses might be modified but its content should
389 /// be ignored (since it might not be complete).
390 DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
391 // Assume it's dead (which will only hold if there are no uses at all..).
392 Liveness Result = MaybeLive;
393 // Check each use.
394 for (Value::const_use_iterator I = V->use_begin(),
395 E = V->use_end(); I != E; ++I) {
396 Result = SurveyUse(I, MaybeLiveUses);
397 if (Result == Live)
398 break;
400 return Result;
403 // SurveyFunction - This performs the initial survey of the specified function,
404 // checking out whether or not it uses any of its incoming arguments or whether
405 // any callers use the return value. This fills in the LiveValues set and Uses
406 // map.
408 // We consider arguments of non-internal functions to be intrinsically alive as
409 // well as arguments to functions which have their "address taken".
411 void DAE::SurveyFunction(const Function &F) {
412 unsigned RetCount = NumRetVals(&F);
413 // Assume all return values are dead
414 typedef SmallVector<Liveness, 5> RetVals;
415 RetVals RetValLiveness(RetCount, MaybeLive);
417 typedef SmallVector<UseVector, 5> RetUses;
418 // These vectors map each return value to the uses that make it MaybeLive, so
419 // we can add those to the Uses map if the return value really turns out to be
420 // MaybeLive. Initialized to a list of RetCount empty lists.
421 RetUses MaybeLiveRetUses(RetCount);
423 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
424 if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
425 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
426 != F.getFunctionType()->getReturnType()) {
427 // We don't support old style multiple return values.
428 MarkLive(F);
429 return;
432 if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
433 MarkLive(F);
434 return;
437 DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
438 // Keep track of the number of live retvals, so we can skip checks once all
439 // of them turn out to be live.
440 unsigned NumLiveRetVals = 0;
441 const Type *STy = dyn_cast<StructType>(F.getReturnType());
442 // Loop all uses of the function.
443 for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
444 I != E; ++I) {
445 // If the function is PASSED IN as an argument, its address has been
446 // taken.
447 ImmutableCallSite CS(*I);
448 if (!CS || !CS.isCallee(I)) {
449 MarkLive(F);
450 return;
453 // If this use is anything other than a call site, the function is alive.
454 const Instruction *TheCall = CS.getInstruction();
455 if (!TheCall) { // Not a direct call site?
456 MarkLive(F);
457 return;
460 // If we end up here, we are looking at a direct call to our function.
462 // Now, check how our return value(s) is/are used in this caller. Don't
463 // bother checking return values if all of them are live already.
464 if (NumLiveRetVals != RetCount) {
465 if (STy) {
466 // Check all uses of the return value.
467 for (Value::const_use_iterator I = TheCall->use_begin(),
468 E = TheCall->use_end(); I != E; ++I) {
469 const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
470 if (Ext && Ext->hasIndices()) {
471 // This use uses a part of our return value, survey the uses of
472 // that part and store the results for this index only.
473 unsigned Idx = *Ext->idx_begin();
474 if (RetValLiveness[Idx] != Live) {
475 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
476 if (RetValLiveness[Idx] == Live)
477 NumLiveRetVals++;
479 } else {
480 // Used by something else than extractvalue. Mark all return
481 // values as live.
482 for (unsigned i = 0; i != RetCount; ++i )
483 RetValLiveness[i] = Live;
484 NumLiveRetVals = RetCount;
485 break;
488 } else {
489 // Single return value
490 RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
491 if (RetValLiveness[0] == Live)
492 NumLiveRetVals = RetCount;
497 // Now we've inspected all callers, record the liveness of our return values.
498 for (unsigned i = 0; i != RetCount; ++i)
499 MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
501 DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
503 // Now, check all of our arguments.
504 unsigned i = 0;
505 UseVector MaybeLiveArgUses;
506 for (Function::const_arg_iterator AI = F.arg_begin(),
507 E = F.arg_end(); AI != E; ++AI, ++i) {
508 // See what the effect of this use is (recording any uses that cause
509 // MaybeLive in MaybeLiveArgUses).
510 Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
511 // Mark the result.
512 MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
513 // Clear the vector again for the next iteration.
514 MaybeLiveArgUses.clear();
518 /// MarkValue - This function marks the liveness of RA depending on L. If L is
519 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
520 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
521 /// live later on.
522 void DAE::MarkValue(const RetOrArg &RA, Liveness L,
523 const UseVector &MaybeLiveUses) {
524 switch (L) {
525 case Live: MarkLive(RA); break;
526 case MaybeLive:
528 // Note any uses of this value, so this return value can be
529 // marked live whenever one of the uses becomes live.
530 for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
531 UE = MaybeLiveUses.end(); UI != UE; ++UI)
532 Uses.insert(std::make_pair(*UI, RA));
533 break;
538 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
539 /// changed in any way. Additionally,
540 /// mark any values that are used as this function's parameters or by its return
541 /// values (according to Uses) live as well.
542 void DAE::MarkLive(const Function &F) {
543 DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
544 // Mark the function as live.
545 LiveFunctions.insert(&F);
546 // Mark all arguments as live.
547 for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
548 PropagateLiveness(CreateArg(&F, i));
549 // Mark all return values as live.
550 for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
551 PropagateLiveness(CreateRet(&F, i));
554 /// MarkLive - Mark the given return value or argument as live. Additionally,
555 /// mark any values that are used by this value (according to Uses) live as
556 /// well.
557 void DAE::MarkLive(const RetOrArg &RA) {
558 if (LiveFunctions.count(RA.F))
559 return; // Function was already marked Live.
561 if (!LiveValues.insert(RA).second)
562 return; // We were already marked Live.
564 DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
565 PropagateLiveness(RA);
568 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
569 /// to any other values it uses (according to Uses).
570 void DAE::PropagateLiveness(const RetOrArg &RA) {
571 // We don't use upper_bound (or equal_range) here, because our recursive call
572 // to ourselves is likely to cause the upper_bound (which is the first value
573 // not belonging to RA) to become erased and the iterator invalidated.
574 UseMap::iterator Begin = Uses.lower_bound(RA);
575 UseMap::iterator E = Uses.end();
576 UseMap::iterator I;
577 for (I = Begin; I != E && I->first == RA; ++I)
578 MarkLive(I->second);
580 // Erase RA from the Uses map (from the lower bound to wherever we ended up
581 // after the loop).
582 Uses.erase(Begin, I);
585 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
586 // that are not in LiveValues. Transform the function and all of the callees of
587 // the function to not have these arguments and return values.
589 bool DAE::RemoveDeadStuffFromFunction(Function *F) {
590 // Don't modify fully live functions
591 if (LiveFunctions.count(F))
592 return false;
594 // Start by computing a new prototype for the function, which is the same as
595 // the old function, but has fewer arguments and a different return type.
596 const FunctionType *FTy = F->getFunctionType();
597 std::vector<const Type*> Params;
599 // Set up to build a new list of parameter attributes.
600 SmallVector<AttributeWithIndex, 8> AttributesVec;
601 const AttrListPtr &PAL = F->getAttributes();
603 // The existing function return attributes.
604 Attributes RAttrs = PAL.getRetAttributes();
605 Attributes FnAttrs = PAL.getFnAttributes();
607 // Find out the new return value.
609 const Type *RetTy = FTy->getReturnType();
610 const Type *NRetTy = NULL;
611 unsigned RetCount = NumRetVals(F);
613 // -1 means unused, other numbers are the new index
614 SmallVector<int, 5> NewRetIdxs(RetCount, -1);
615 std::vector<const Type*> RetTypes;
616 if (RetTy->isVoidTy()) {
617 NRetTy = RetTy;
618 } else {
619 const StructType *STy = dyn_cast<StructType>(RetTy);
620 if (STy)
621 // Look at each of the original return values individually.
622 for (unsigned i = 0; i != RetCount; ++i) {
623 RetOrArg Ret = CreateRet(F, i);
624 if (LiveValues.erase(Ret)) {
625 RetTypes.push_back(STy->getElementType(i));
626 NewRetIdxs[i] = RetTypes.size() - 1;
627 } else {
628 ++NumRetValsEliminated;
629 DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
630 << F->getName() << "\n");
633 else
634 // We used to return a single value.
635 if (LiveValues.erase(CreateRet(F, 0))) {
636 RetTypes.push_back(RetTy);
637 NewRetIdxs[0] = 0;
638 } else {
639 DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
640 << "\n");
641 ++NumRetValsEliminated;
643 if (RetTypes.size() > 1)
644 // More than one return type? Return a struct with them. Also, if we used
645 // to return a struct and didn't change the number of return values,
646 // return a struct again. This prevents changing {something} into
647 // something and {} into void.
648 // Make the new struct packed if we used to return a packed struct
649 // already.
650 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
651 else if (RetTypes.size() == 1)
652 // One return type? Just a simple value then, but only if we didn't use to
653 // return a struct with that simple value before.
654 NRetTy = RetTypes.front();
655 else if (RetTypes.size() == 0)
656 // No return types? Make it void, but only if we didn't use to return {}.
657 NRetTy = Type::getVoidTy(F->getContext());
660 assert(NRetTy && "No new return type found?");
662 // Remove any incompatible attributes, but only if we removed all return
663 // values. Otherwise, ensure that we don't have any conflicting attributes
664 // here. Currently, this should not be possible, but special handling might be
665 // required when new return value attributes are added.
666 if (NRetTy->isVoidTy())
667 RAttrs &= ~Attribute::typeIncompatible(NRetTy);
668 else
669 assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
670 && "Return attributes no longer compatible?");
672 if (RAttrs)
673 AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
675 // Remember which arguments are still alive.
676 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
677 // Construct the new parameter list from non-dead arguments. Also construct
678 // a new set of parameter attributes to correspond. Skip the first parameter
679 // attribute, since that belongs to the return value.
680 unsigned i = 0;
681 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
682 I != E; ++I, ++i) {
683 RetOrArg Arg = CreateArg(F, i);
684 if (LiveValues.erase(Arg)) {
685 Params.push_back(I->getType());
686 ArgAlive[i] = true;
688 // Get the original parameter attributes (skipping the first one, that is
689 // for the return value.
690 if (Attributes Attrs = PAL.getParamAttributes(i + 1))
691 AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
692 } else {
693 ++NumArgumentsEliminated;
694 DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
695 << ") from " << F->getName() << "\n");
699 if (FnAttrs != Attribute::None)
700 AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
702 // Reconstruct the AttributesList based on the vector we constructed.
703 AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(),
704 AttributesVec.end());
706 // Create the new function type based on the recomputed parameters.
707 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
709 // No change?
710 if (NFTy == FTy)
711 return false;
713 // Create the new function body and insert it into the module...
714 Function *NF = Function::Create(NFTy, F->getLinkage());
715 NF->copyAttributesFrom(F);
716 NF->setAttributes(NewPAL);
717 // Insert the new function before the old function, so we won't be processing
718 // it again.
719 F->getParent()->getFunctionList().insert(F, NF);
720 NF->takeName(F);
722 // Loop over all of the callers of the function, transforming the call sites
723 // to pass in a smaller number of arguments into the new function.
725 std::vector<Value*> Args;
726 while (!F->use_empty()) {
727 CallSite CS(F->use_back());
728 Instruction *Call = CS.getInstruction();
730 AttributesVec.clear();
731 const AttrListPtr &CallPAL = CS.getAttributes();
733 // The call return attributes.
734 Attributes RAttrs = CallPAL.getRetAttributes();
735 Attributes FnAttrs = CallPAL.getFnAttributes();
736 // Adjust in case the function was changed to return void.
737 RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
738 if (RAttrs)
739 AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
741 // Declare these outside of the loops, so we can reuse them for the second
742 // loop, which loops the varargs.
743 CallSite::arg_iterator I = CS.arg_begin();
744 unsigned i = 0;
745 // Loop over those operands, corresponding to the normal arguments to the
746 // original function, and add those that are still alive.
747 for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
748 if (ArgAlive[i]) {
749 Args.push_back(*I);
750 // Get original parameter attributes, but skip return attributes.
751 if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
752 AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
755 // Push any varargs arguments on the list. Don't forget their attributes.
756 for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
757 Args.push_back(*I);
758 if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
759 AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
762 if (FnAttrs != Attribute::None)
763 AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
765 // Reconstruct the AttributesList based on the vector we constructed.
766 AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
767 AttributesVec.end());
769 Instruction *New;
770 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
771 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
772 Args.begin(), Args.end(), "", Call);
773 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
774 cast<InvokeInst>(New)->setAttributes(NewCallPAL);
775 } else {
776 New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
777 cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
778 cast<CallInst>(New)->setAttributes(NewCallPAL);
779 if (cast<CallInst>(Call)->isTailCall())
780 cast<CallInst>(New)->setTailCall();
782 New->setDebugLoc(Call->getDebugLoc());
784 Args.clear();
786 if (!Call->use_empty()) {
787 if (New->getType() == Call->getType()) {
788 // Return type not changed? Just replace users then.
789 Call->replaceAllUsesWith(New);
790 New->takeName(Call);
791 } else if (New->getType()->isVoidTy()) {
792 // Our return value has uses, but they will get removed later on.
793 // Replace by null for now.
794 Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
795 } else {
796 assert(RetTy->isStructTy() &&
797 "Return type changed, but not into a void. The old return type"
798 " must have been a struct!");
799 Instruction *InsertPt = Call;
800 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
801 BasicBlock::iterator IP = II->getNormalDest()->begin();
802 while (isa<PHINode>(IP)) ++IP;
803 InsertPt = IP;
806 // We used to return a struct. Instead of doing smart stuff with all the
807 // uses of this struct, we will just rebuild it using
808 // extract/insertvalue chaining and let instcombine clean that up.
810 // Start out building up our return value from undef
811 Value *RetVal = UndefValue::get(RetTy);
812 for (unsigned i = 0; i != RetCount; ++i)
813 if (NewRetIdxs[i] != -1) {
814 Value *V;
815 if (RetTypes.size() > 1)
816 // We are still returning a struct, so extract the value from our
817 // return value
818 V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
819 InsertPt);
820 else
821 // We are now returning a single element, so just insert that
822 V = New;
823 // Insert the value at the old position
824 RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
826 // Now, replace all uses of the old call instruction with the return
827 // struct we built
828 Call->replaceAllUsesWith(RetVal);
829 New->takeName(Call);
833 // Finally, remove the old call from the program, reducing the use-count of
834 // F.
835 Call->eraseFromParent();
838 // Since we have now created the new function, splice the body of the old
839 // function right into the new function, leaving the old rotting hulk of the
840 // function empty.
841 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
843 // Loop over the argument list, transfering uses of the old arguments over to
844 // the new arguments, also transfering over the names as well.
845 i = 0;
846 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
847 I2 = NF->arg_begin(); I != E; ++I, ++i)
848 if (ArgAlive[i]) {
849 // If this is a live argument, move the name and users over to the new
850 // version.
851 I->replaceAllUsesWith(I2);
852 I2->takeName(I);
853 ++I2;
854 } else {
855 // If this argument is dead, replace any uses of it with null constants
856 // (these are guaranteed to become unused later on).
857 I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
860 // If we change the return value of the function we must rewrite any return
861 // instructions. Check this now.
862 if (F->getReturnType() != NF->getReturnType())
863 for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
864 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
865 Value *RetVal;
867 if (NFTy->getReturnType()->isVoidTy()) {
868 RetVal = 0;
869 } else {
870 assert (RetTy->isStructTy());
871 // The original return value was a struct, insert
872 // extractvalue/insertvalue chains to extract only the values we need
873 // to return and insert them into our new result.
874 // This does generate messy code, but we'll let it to instcombine to
875 // clean that up.
876 Value *OldRet = RI->getOperand(0);
877 // Start out building up our return value from undef
878 RetVal = UndefValue::get(NRetTy);
879 for (unsigned i = 0; i != RetCount; ++i)
880 if (NewRetIdxs[i] != -1) {
881 ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
882 "oldret", RI);
883 if (RetTypes.size() > 1) {
884 // We're still returning a struct, so reinsert the value into
885 // our new return value at the new index
887 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
888 "newret", RI);
889 } else {
890 // We are now only returning a simple value, so just return the
891 // extracted value.
892 RetVal = EV;
896 // Replace the return instruction with one returning the new return
897 // value (possibly 0 if we became void).
898 ReturnInst::Create(F->getContext(), RetVal, RI);
899 BB->getInstList().erase(RI);
902 // Now that the old function is dead, delete it.
903 F->eraseFromParent();
905 return true;
908 bool DAE::runOnModule(Module &M) {
909 bool Changed = false;
911 // First pass: Do a simple check to see if any functions can have their "..."
912 // removed. We can do this if they never call va_start. This loop cannot be
913 // fused with the next loop, because deleting a function invalidates
914 // information computed while surveying other functions.
915 DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
916 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
917 Function &F = *I++;
918 if (F.getFunctionType()->isVarArg())
919 Changed |= DeleteDeadVarargs(F);
922 // Second phase:loop through the module, determining which arguments are live.
923 // We assume all arguments are dead unless proven otherwise (allowing us to
924 // determine that dead arguments passed into recursive functions are dead).
926 DEBUG(dbgs() << "DAE - Determining liveness\n");
927 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
928 SurveyFunction(*I);
930 // Now, remove all dead arguments and return values from each function in
931 // turn.
932 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
933 // Increment now, because the function will probably get removed (ie.
934 // replaced by a new one).
935 Function *F = I++;
936 Changed |= RemoveDeadStuffFromFunction(F);
938 return Changed;