1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LLVM module linker.
12 // Specifically, this:
13 // * Merges global variables between the two modules
14 // * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if !=
15 // * Merges functions between two modules
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Linker.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Module.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Assembly/Writer.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/System/Path.h"
32 #include "llvm/ADT/DenseMap.h"
35 // Error - Simple wrapper function to conditionally assign to E and return true.
36 // This just makes error return conditions a little bit simpler...
37 static inline bool Error(std::string
*E
, const Twine
&Message
) {
38 if (E
) *E
= Message
.str();
42 // Function: ResolveTypes()
45 // Attempt to link the two specified types together.
48 // DestTy - The type to which we wish to resolve.
49 // SrcTy - The original type which we want to resolve.
52 // DestST - The symbol table in which the new type should be placed.
55 // true - There is an error and the types cannot yet be linked.
58 static bool ResolveTypes(const Type
*DestTy
, const Type
*SrcTy
) {
59 if (DestTy
== SrcTy
) return false; // If already equal, noop
60 assert(DestTy
&& SrcTy
&& "Can't handle null types");
62 if (const OpaqueType
*OT
= dyn_cast
<OpaqueType
>(DestTy
)) {
63 // Type _is_ in module, just opaque...
64 const_cast<OpaqueType
*>(OT
)->refineAbstractTypeTo(SrcTy
);
65 } else if (const OpaqueType
*OT
= dyn_cast
<OpaqueType
>(SrcTy
)) {
66 const_cast<OpaqueType
*>(OT
)->refineAbstractTypeTo(DestTy
);
68 return true; // Cannot link types... not-equal and neither is opaque.
73 /// LinkerTypeMap - This implements a map of types that is stable
74 /// even if types are resolved/refined to other types. This is not a general
75 /// purpose map, it is specific to the linker's use.
77 class LinkerTypeMap
: public AbstractTypeUser
{
78 typedef DenseMap
<const Type
*, PATypeHolder
> TheMapTy
;
81 LinkerTypeMap(const LinkerTypeMap
&); // DO NOT IMPLEMENT
82 void operator=(const LinkerTypeMap
&); // DO NOT IMPLEMENT
86 for (DenseMap
<const Type
*, PATypeHolder
>::iterator I
= TheMap
.begin(),
87 E
= TheMap
.end(); I
!= E
; ++I
)
88 I
->first
->removeAbstractTypeUser(this);
91 /// lookup - Return the value for the specified type or null if it doesn't
93 const Type
*lookup(const Type
*Ty
) const {
94 TheMapTy::const_iterator I
= TheMap
.find(Ty
);
95 if (I
!= TheMap
.end()) return I
->second
;
99 /// erase - Remove the specified type, returning true if it was in the set.
100 bool erase(const Type
*Ty
) {
101 if (!TheMap
.erase(Ty
))
103 if (Ty
->isAbstract())
104 Ty
->removeAbstractTypeUser(this);
108 /// insert - This returns true if the pointer was new to the set, false if it
109 /// was already in the set.
110 bool insert(const Type
*Src
, const Type
*Dst
) {
111 if (!TheMap
.insert(std::make_pair(Src
, PATypeHolder(Dst
))).second
)
112 return false; // Already in map.
113 if (Src
->isAbstract())
114 Src
->addAbstractTypeUser(this);
119 /// refineAbstractType - The callback method invoked when an abstract type is
120 /// resolved to another type. An object must override this method to update
121 /// its internal state to reference NewType instead of OldType.
123 virtual void refineAbstractType(const DerivedType
*OldTy
,
125 TheMapTy::iterator I
= TheMap
.find(OldTy
);
126 const Type
*DstTy
= I
->second
;
129 if (OldTy
->isAbstract())
130 OldTy
->removeAbstractTypeUser(this);
132 // Don't reinsert into the map if the key is concrete now.
133 if (NewTy
->isAbstract())
134 insert(NewTy
, DstTy
);
137 /// The other case which AbstractTypeUsers must be aware of is when a type
138 /// makes the transition from being abstract (where it has clients on it's
139 /// AbstractTypeUsers list) to concrete (where it does not). This method
140 /// notifies ATU's when this occurs for a type.
141 virtual void typeBecameConcrete(const DerivedType
*AbsTy
) {
143 AbsTy
->removeAbstractTypeUser(this);
147 virtual void dump() const {
148 dbgs() << "AbstractTypeSet!\n";
154 // RecursiveResolveTypes - This is just like ResolveTypes, except that it
155 // recurses down into derived types, merging the used types if the parent types
157 static bool RecursiveResolveTypesI(const Type
*DstTy
, const Type
*SrcTy
,
158 LinkerTypeMap
&Pointers
) {
159 if (DstTy
== SrcTy
) return false; // If already equal, noop
161 // If we found our opaque type, resolve it now!
162 if (DstTy
->isOpaqueTy() || SrcTy
->isOpaqueTy())
163 return ResolveTypes(DstTy
, SrcTy
);
165 // Two types cannot be resolved together if they are of different primitive
166 // type. For example, we cannot resolve an int to a float.
167 if (DstTy
->getTypeID() != SrcTy
->getTypeID()) return true;
169 // If neither type is abstract, then they really are just different types.
170 if (!DstTy
->isAbstract() && !SrcTy
->isAbstract())
173 // Otherwise, resolve the used type used by this derived type...
174 switch (DstTy
->getTypeID()) {
177 case Type::FunctionTyID
: {
178 const FunctionType
*DstFT
= cast
<FunctionType
>(DstTy
);
179 const FunctionType
*SrcFT
= cast
<FunctionType
>(SrcTy
);
180 if (DstFT
->isVarArg() != SrcFT
->isVarArg() ||
181 DstFT
->getNumContainedTypes() != SrcFT
->getNumContainedTypes())
184 // Use TypeHolder's so recursive resolution won't break us.
185 PATypeHolder
ST(SrcFT
), DT(DstFT
);
186 for (unsigned i
= 0, e
= DstFT
->getNumContainedTypes(); i
!= e
; ++i
) {
187 const Type
*SE
= ST
->getContainedType(i
), *DE
= DT
->getContainedType(i
);
188 if (SE
!= DE
&& RecursiveResolveTypesI(DE
, SE
, Pointers
))
193 case Type::StructTyID
: {
194 const StructType
*DstST
= cast
<StructType
>(DstTy
);
195 const StructType
*SrcST
= cast
<StructType
>(SrcTy
);
196 if (DstST
->getNumContainedTypes() != SrcST
->getNumContainedTypes())
199 PATypeHolder
ST(SrcST
), DT(DstST
);
200 for (unsigned i
= 0, e
= DstST
->getNumContainedTypes(); i
!= e
; ++i
) {
201 const Type
*SE
= ST
->getContainedType(i
), *DE
= DT
->getContainedType(i
);
202 if (SE
!= DE
&& RecursiveResolveTypesI(DE
, SE
, Pointers
))
207 case Type::ArrayTyID
: {
208 const ArrayType
*DAT
= cast
<ArrayType
>(DstTy
);
209 const ArrayType
*SAT
= cast
<ArrayType
>(SrcTy
);
210 if (DAT
->getNumElements() != SAT
->getNumElements()) return true;
211 return RecursiveResolveTypesI(DAT
->getElementType(), SAT
->getElementType(),
214 case Type::VectorTyID
: {
215 const VectorType
*DVT
= cast
<VectorType
>(DstTy
);
216 const VectorType
*SVT
= cast
<VectorType
>(SrcTy
);
217 if (DVT
->getNumElements() != SVT
->getNumElements()) return true;
218 return RecursiveResolveTypesI(DVT
->getElementType(), SVT
->getElementType(),
221 case Type::PointerTyID
: {
222 const PointerType
*DstPT
= cast
<PointerType
>(DstTy
);
223 const PointerType
*SrcPT
= cast
<PointerType
>(SrcTy
);
225 if (DstPT
->getAddressSpace() != SrcPT
->getAddressSpace())
228 // If this is a pointer type, check to see if we have already seen it. If
229 // so, we are in a recursive branch. Cut off the search now. We cannot use
230 // an associative container for this search, because the type pointers (keys
231 // in the container) change whenever types get resolved.
232 if (SrcPT
->isAbstract())
233 if (const Type
*ExistingDestTy
= Pointers
.lookup(SrcPT
))
234 return ExistingDestTy
!= DstPT
;
236 if (DstPT
->isAbstract())
237 if (const Type
*ExistingSrcTy
= Pointers
.lookup(DstPT
))
238 return ExistingSrcTy
!= SrcPT
;
239 // Otherwise, add the current pointers to the vector to stop recursion on
241 if (DstPT
->isAbstract())
242 Pointers
.insert(DstPT
, SrcPT
);
243 if (SrcPT
->isAbstract())
244 Pointers
.insert(SrcPT
, DstPT
);
246 return RecursiveResolveTypesI(DstPT
->getElementType(),
247 SrcPT
->getElementType(), Pointers
);
252 static bool RecursiveResolveTypes(const Type
*DestTy
, const Type
*SrcTy
) {
253 LinkerTypeMap PointerTypes
;
254 return RecursiveResolveTypesI(DestTy
, SrcTy
, PointerTypes
);
258 // LinkTypes - Go through the symbol table of the Src module and see if any
259 // types are named in the src module that are not named in the Dst module.
260 // Make sure there are no type name conflicts.
261 static bool LinkTypes(Module
*Dest
, const Module
*Src
, std::string
*Err
) {
262 TypeSymbolTable
*DestST
= &Dest
->getTypeSymbolTable();
263 const TypeSymbolTable
*SrcST
= &Src
->getTypeSymbolTable();
265 // Look for a type plane for Type's...
266 TypeSymbolTable::const_iterator TI
= SrcST
->begin();
267 TypeSymbolTable::const_iterator TE
= SrcST
->end();
268 if (TI
== TE
) return false; // No named types, do nothing.
270 // Some types cannot be resolved immediately because they depend on other
271 // types being resolved to each other first. This contains a list of types we
272 // are waiting to recheck.
273 std::vector
<std::string
> DelayedTypesToResolve
;
275 for ( ; TI
!= TE
; ++TI
) {
276 const std::string
&Name
= TI
->first
;
277 const Type
*RHS
= TI
->second
;
279 // Check to see if this type name is already in the dest module.
280 Type
*Entry
= DestST
->lookup(Name
);
282 // If the name is just in the source module, bring it over to the dest.
285 DestST
->insert(Name
, const_cast<Type
*>(RHS
));
286 } else if (ResolveTypes(Entry
, RHS
)) {
287 // They look different, save the types 'till later to resolve.
288 DelayedTypesToResolve
.push_back(Name
);
292 // Iteratively resolve types while we can...
293 while (!DelayedTypesToResolve
.empty()) {
294 // Loop over all of the types, attempting to resolve them if possible...
295 unsigned OldSize
= DelayedTypesToResolve
.size();
297 // Try direct resolution by name...
298 for (unsigned i
= 0; i
!= DelayedTypesToResolve
.size(); ++i
) {
299 const std::string
&Name
= DelayedTypesToResolve
[i
];
300 Type
*T1
= SrcST
->lookup(Name
);
301 Type
*T2
= DestST
->lookup(Name
);
302 if (!ResolveTypes(T2
, T1
)) {
303 // We are making progress!
304 DelayedTypesToResolve
.erase(DelayedTypesToResolve
.begin()+i
);
309 // Did we not eliminate any types?
310 if (DelayedTypesToResolve
.size() == OldSize
) {
311 // Attempt to resolve subelements of types. This allows us to merge these
312 // two types: { int* } and { opaque* }
313 for (unsigned i
= 0, e
= DelayedTypesToResolve
.size(); i
!= e
; ++i
) {
314 const std::string
&Name
= DelayedTypesToResolve
[i
];
315 if (!RecursiveResolveTypes(SrcST
->lookup(Name
), DestST
->lookup(Name
))) {
316 // We are making progress!
317 DelayedTypesToResolve
.erase(DelayedTypesToResolve
.begin()+i
);
319 // Go back to the main loop, perhaps we can resolve directly by name
325 // If we STILL cannot resolve the types, then there is something wrong.
326 if (DelayedTypesToResolve
.size() == OldSize
) {
327 // Remove the symbol name from the destination.
328 DelayedTypesToResolve
.pop_back();
338 static void PrintMap(const std::map
<const Value
*, Value
*> &M
) {
339 for (std::map
<const Value
*, Value
*>::const_iterator I
= M
.begin(), E
=M
.end();
341 dbgs() << " Fr: " << (void*)I
->first
<< " ";
343 dbgs() << " To: " << (void*)I
->second
<< " ";
351 // RemapOperand - Use ValueMap to convert constants from one module to another.
352 static Value
*RemapOperand(const Value
*In
,
353 std::map
<const Value
*, Value
*> &ValueMap
) {
354 std::map
<const Value
*,Value
*>::const_iterator I
= ValueMap
.find(In
);
355 if (I
!= ValueMap
.end())
358 // Check to see if it's a constant that we are interested in transforming.
360 if (const Constant
*CPV
= dyn_cast
<Constant
>(In
)) {
361 if ((!isa
<DerivedType
>(CPV
->getType()) && !isa
<ConstantExpr
>(CPV
)) ||
362 isa
<ConstantInt
>(CPV
) || isa
<ConstantAggregateZero
>(CPV
))
363 return const_cast<Constant
*>(CPV
); // Simple constants stay identical.
365 if (const ConstantArray
*CPA
= dyn_cast
<ConstantArray
>(CPV
)) {
366 std::vector
<Constant
*> Operands(CPA
->getNumOperands());
367 for (unsigned i
= 0, e
= CPA
->getNumOperands(); i
!= e
; ++i
)
368 Operands
[i
] =cast
<Constant
>(RemapOperand(CPA
->getOperand(i
), ValueMap
));
369 Result
= ConstantArray::get(cast
<ArrayType
>(CPA
->getType()), Operands
);
370 } else if (const ConstantStruct
*CPS
= dyn_cast
<ConstantStruct
>(CPV
)) {
371 std::vector
<Constant
*> Operands(CPS
->getNumOperands());
372 for (unsigned i
= 0, e
= CPS
->getNumOperands(); i
!= e
; ++i
)
373 Operands
[i
] =cast
<Constant
>(RemapOperand(CPS
->getOperand(i
), ValueMap
));
374 Result
= ConstantStruct::get(cast
<StructType
>(CPS
->getType()), Operands
);
375 } else if (isa
<ConstantPointerNull
>(CPV
) || isa
<UndefValue
>(CPV
)) {
376 Result
= const_cast<Constant
*>(CPV
);
377 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CPV
)) {
378 std::vector
<Constant
*> Operands(CP
->getNumOperands());
379 for (unsigned i
= 0, e
= CP
->getNumOperands(); i
!= e
; ++i
)
380 Operands
[i
] = cast
<Constant
>(RemapOperand(CP
->getOperand(i
), ValueMap
));
381 Result
= ConstantVector::get(Operands
);
382 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CPV
)) {
383 std::vector
<Constant
*> Ops
;
384 for (unsigned i
= 0, e
= CE
->getNumOperands(); i
!= e
; ++i
)
385 Ops
.push_back(cast
<Constant
>(RemapOperand(CE
->getOperand(i
),ValueMap
)));
386 Result
= CE
->getWithOperands(Ops
);
387 } else if (const BlockAddress
*CE
= dyn_cast
<BlockAddress
>(CPV
)) {
388 Result
= BlockAddress::get(
389 cast
<Function
>(RemapOperand(CE
->getFunction(), ValueMap
)),
390 CE
->getBasicBlock());
392 assert(!isa
<GlobalValue
>(CPV
) && "Unmapped global?");
393 llvm_unreachable("Unknown type of derived type constant value!");
395 } else if (const MDNode
*MD
= dyn_cast
<MDNode
>(In
)) {
396 if (MD
->isFunctionLocal()) {
397 SmallVector
<Value
*, 4> Elts
;
398 for (unsigned i
= 0, e
= MD
->getNumOperands(); i
!= e
; ++i
) {
399 if (MD
->getOperand(i
))
400 Elts
.push_back(RemapOperand(MD
->getOperand(i
), ValueMap
));
402 Elts
.push_back(NULL
);
404 Result
= MDNode::get(In
->getContext(), Elts
.data(), MD
->getNumOperands());
406 Result
= const_cast<Value
*>(In
);
408 } else if (isa
<MDString
>(In
) || isa
<InlineAsm
>(In
) || isa
<Instruction
>(In
)) {
409 Result
= const_cast<Value
*>(In
);
412 // Cache the mapping in our local map structure
414 ValueMap
[In
] = Result
;
419 dbgs() << "LinkModules ValueMap: \n";
422 dbgs() << "Couldn't remap value: " << (void*)In
<< " " << *In
<< "\n";
423 llvm_unreachable("Couldn't remap value!");
428 /// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict
429 /// in the symbol table. This is good for all clients except for us. Go
430 /// through the trouble to force this back.
431 static void ForceRenaming(GlobalValue
*GV
, const std::string
&Name
) {
432 assert(GV
->getName() != Name
&& "Can't force rename to self");
433 ValueSymbolTable
&ST
= GV
->getParent()->getValueSymbolTable();
435 // If there is a conflict, rename the conflict.
436 if (GlobalValue
*ConflictGV
= cast_or_null
<GlobalValue
>(ST
.lookup(Name
))) {
437 assert(ConflictGV
->hasLocalLinkage() &&
438 "Not conflicting with a static global, should link instead!");
439 GV
->takeName(ConflictGV
);
440 ConflictGV
->setName(Name
); // This will cause ConflictGV to get renamed
441 assert(ConflictGV
->getName() != Name
&& "ForceRenaming didn't work");
443 GV
->setName(Name
); // Force the name back
447 /// CopyGVAttributes - copy additional attributes (those not needed to construct
448 /// a GlobalValue) from the SrcGV to the DestGV.
449 static void CopyGVAttributes(GlobalValue
*DestGV
, const GlobalValue
*SrcGV
) {
450 // Use the maximum alignment, rather than just copying the alignment of SrcGV.
451 unsigned Alignment
= std::max(DestGV
->getAlignment(), SrcGV
->getAlignment());
452 DestGV
->copyAttributesFrom(SrcGV
);
453 DestGV
->setAlignment(Alignment
);
456 /// GetLinkageResult - This analyzes the two global values and determines what
457 /// the result will look like in the destination module. In particular, it
458 /// computes the resultant linkage type, computes whether the global in the
459 /// source should be copied over to the destination (replacing the existing
460 /// one), and computes whether this linkage is an error or not. It also performs
461 /// visibility checks: we cannot link together two symbols with different
463 static bool GetLinkageResult(GlobalValue
*Dest
, const GlobalValue
*Src
,
464 GlobalValue::LinkageTypes
<
, bool &LinkFromSrc
,
466 assert((!Dest
|| !Src
->hasLocalLinkage()) &&
467 "If Src has internal linkage, Dest shouldn't be set!");
469 // Linking something to nothing.
471 LT
= Src
->getLinkage();
472 } else if (Src
->isDeclaration()) {
473 // If Src is external or if both Src & Dest are external.. Just link the
474 // external globals, we aren't adding anything.
475 if (Src
->hasDLLImportLinkage()) {
476 // If one of GVs has DLLImport linkage, result should be dllimport'ed.
477 if (Dest
->isDeclaration()) {
479 LT
= Src
->getLinkage();
481 } else if (Dest
->hasExternalWeakLinkage()) {
482 // If the Dest is weak, use the source linkage.
484 LT
= Src
->getLinkage();
487 LT
= Dest
->getLinkage();
489 } else if (Dest
->isDeclaration() && !Dest
->hasDLLImportLinkage()) {
490 // If Dest is external but Src is not:
492 LT
= Src
->getLinkage();
493 } else if (Src
->hasAppendingLinkage() || Dest
->hasAppendingLinkage()) {
494 if (Src
->getLinkage() != Dest
->getLinkage())
495 return Error(Err
, "Linking globals named '" + Src
->getName() +
496 "': can only link appending global with another appending global!");
497 LinkFromSrc
= true; // Special cased.
498 LT
= Src
->getLinkage();
499 } else if (Src
->isWeakForLinker()) {
500 // At this point we know that Dest has LinkOnce, External*, Weak, Common,
502 if (Dest
->hasExternalWeakLinkage() ||
503 Dest
->hasAvailableExternallyLinkage() ||
504 (Dest
->hasLinkOnceLinkage() &&
505 (Src
->hasWeakLinkage() || Src
->hasCommonLinkage()))) {
507 LT
= Src
->getLinkage();
510 LT
= Dest
->getLinkage();
512 } else if (Dest
->isWeakForLinker()) {
513 // At this point we know that Src has External* or DLL* linkage.
514 if (Src
->hasExternalWeakLinkage()) {
516 LT
= Dest
->getLinkage();
519 LT
= GlobalValue::ExternalLinkage
;
522 assert((Dest
->hasExternalLinkage() ||
523 Dest
->hasDLLImportLinkage() ||
524 Dest
->hasDLLExportLinkage() ||
525 Dest
->hasExternalWeakLinkage()) &&
526 (Src
->hasExternalLinkage() ||
527 Src
->hasDLLImportLinkage() ||
528 Src
->hasDLLExportLinkage() ||
529 Src
->hasExternalWeakLinkage()) &&
530 "Unexpected linkage type!");
531 return Error(Err
, "Linking globals named '" + Src
->getName() +
532 "': symbol multiply defined!");
536 if (Dest
&& Src
->getVisibility() != Dest
->getVisibility())
537 if (!Src
->isDeclaration() && !Dest
->isDeclaration())
538 return Error(Err
, "Linking globals named '" + Src
->getName() +
539 "': symbols have different visibilities!");
543 // Insert all of the named mdnoes in Src into the Dest module.
544 static void LinkNamedMDNodes(Module
*Dest
, Module
*Src
) {
545 for (Module::const_named_metadata_iterator I
= Src
->named_metadata_begin(),
546 E
= Src
->named_metadata_end(); I
!= E
; ++I
) {
547 const NamedMDNode
*SrcNMD
= I
;
548 NamedMDNode
*DestNMD
= Dest
->getOrInsertNamedMetadata(SrcNMD
->getName());
549 // Add Src elements into Dest node.
550 for (unsigned i
= 0, e
= SrcNMD
->getNumOperands(); i
!= e
; ++i
)
551 DestNMD
->addOperand(SrcNMD
->getOperand(i
));
555 // LinkGlobals - Loop through the global variables in the src module and merge
556 // them into the dest module.
557 static bool LinkGlobals(Module
*Dest
, const Module
*Src
,
558 std::map
<const Value
*, Value
*> &ValueMap
,
559 std::multimap
<std::string
, GlobalVariable
*> &AppendingVars
,
561 ValueSymbolTable
&DestSymTab
= Dest
->getValueSymbolTable();
563 // Loop over all of the globals in the src module, mapping them over as we go
564 for (Module::const_global_iterator I
= Src
->global_begin(),
565 E
= Src
->global_end(); I
!= E
; ++I
) {
566 const GlobalVariable
*SGV
= I
;
567 GlobalValue
*DGV
= 0;
569 // Check to see if may have to link the global with the global, alias or
571 if (SGV
->hasName() && !SGV
->hasLocalLinkage())
572 DGV
= cast_or_null
<GlobalValue
>(DestSymTab
.lookup(SGV
->getName()));
574 // If we found a global with the same name in the dest module, but it has
575 // internal linkage, we are really not doing any linkage here.
576 if (DGV
&& DGV
->hasLocalLinkage())
579 // If types don't agree due to opaque types, try to resolve them.
580 if (DGV
&& DGV
->getType() != SGV
->getType())
581 RecursiveResolveTypes(SGV
->getType(), DGV
->getType());
583 assert((SGV
->hasInitializer() || SGV
->hasExternalWeakLinkage() ||
584 SGV
->hasExternalLinkage() || SGV
->hasDLLImportLinkage()) &&
585 "Global must either be external or have an initializer!");
587 GlobalValue::LinkageTypes NewLinkage
= GlobalValue::InternalLinkage
;
588 bool LinkFromSrc
= false;
589 if (GetLinkageResult(DGV
, SGV
, NewLinkage
, LinkFromSrc
, Err
))
593 // No linking to be performed, simply create an identical version of the
594 // symbol over in the dest module... the initializer will be filled in
595 // later by LinkGlobalInits.
596 GlobalVariable
*NewDGV
=
597 new GlobalVariable(*Dest
, SGV
->getType()->getElementType(),
598 SGV
->isConstant(), SGV
->getLinkage(), /*init*/0,
599 SGV
->getName(), 0, false,
600 SGV
->getType()->getAddressSpace());
601 // Propagate alignment, visibility and section info.
602 CopyGVAttributes(NewDGV
, SGV
);
604 // If the LLVM runtime renamed the global, but it is an externally visible
605 // symbol, DGV must be an existing global with internal linkage. Rename
607 if (!NewDGV
->hasLocalLinkage() && NewDGV
->getName() != SGV
->getName())
608 ForceRenaming(NewDGV
, SGV
->getName());
610 // Make sure to remember this mapping.
611 ValueMap
[SGV
] = NewDGV
;
613 // Keep track that this is an appending variable.
614 if (SGV
->hasAppendingLinkage())
615 AppendingVars
.insert(std::make_pair(SGV
->getName(), NewDGV
));
619 // If the visibilities of the symbols disagree and the destination is a
620 // prototype, take the visibility of its input.
621 if (DGV
->isDeclaration())
622 DGV
->setVisibility(SGV
->getVisibility());
624 if (DGV
->hasAppendingLinkage()) {
625 // No linking is performed yet. Just insert a new copy of the global, and
626 // keep track of the fact that it is an appending variable in the
627 // AppendingVars map. The name is cleared out so that no linkage is
629 GlobalVariable
*NewDGV
=
630 new GlobalVariable(*Dest
, SGV
->getType()->getElementType(),
631 SGV
->isConstant(), SGV
->getLinkage(), /*init*/0,
633 SGV
->getType()->getAddressSpace());
635 // Set alignment allowing CopyGVAttributes merge it with alignment of SGV.
636 NewDGV
->setAlignment(DGV
->getAlignment());
637 // Propagate alignment, section and visibility info.
638 CopyGVAttributes(NewDGV
, SGV
);
640 // Make sure to remember this mapping...
641 ValueMap
[SGV
] = NewDGV
;
643 // Keep track that this is an appending variable...
644 AppendingVars
.insert(std::make_pair(SGV
->getName(), NewDGV
));
649 if (isa
<GlobalAlias
>(DGV
))
650 return Error(Err
, "Global-Alias Collision on '" + SGV
->getName() +
651 "': symbol multiple defined");
653 // If the types don't match, and if we are to link from the source, nuke
654 // DGV and create a new one of the appropriate type. Note that the thing
655 // we are replacing may be a function (if a prototype, weak, etc) or a
657 GlobalVariable
*NewDGV
=
658 new GlobalVariable(*Dest
, SGV
->getType()->getElementType(),
659 SGV
->isConstant(), NewLinkage
, /*init*/0,
660 DGV
->getName(), 0, false,
661 SGV
->getType()->getAddressSpace());
663 // Propagate alignment, section, and visibility info.
664 CopyGVAttributes(NewDGV
, SGV
);
665 DGV
->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV
,
668 // DGV will conflict with NewDGV because they both had the same
669 // name. We must erase this now so ForceRenaming doesn't assert
670 // because DGV might not have internal linkage.
671 if (GlobalVariable
*Var
= dyn_cast
<GlobalVariable
>(DGV
))
672 Var
->eraseFromParent();
674 cast
<Function
>(DGV
)->eraseFromParent();
676 // If the symbol table renamed the global, but it is an externally visible
677 // symbol, DGV must be an existing global with internal linkage. Rename.
678 if (NewDGV
->getName() != SGV
->getName() && !NewDGV
->hasLocalLinkage())
679 ForceRenaming(NewDGV
, SGV
->getName());
681 // Inherit const as appropriate.
682 NewDGV
->setConstant(SGV
->isConstant());
684 // Make sure to remember this mapping.
685 ValueMap
[SGV
] = NewDGV
;
689 // Not "link from source", keep the one in the DestModule and remap the
692 // Special case for const propagation.
693 if (GlobalVariable
*DGVar
= dyn_cast
<GlobalVariable
>(DGV
))
694 if (DGVar
->isDeclaration() && SGV
->isConstant() && !DGVar
->isConstant())
695 DGVar
->setConstant(true);
697 // SGV is global, but DGV is alias.
698 if (isa
<GlobalAlias
>(DGV
)) {
699 // The only valid mappings are:
700 // - SGV is external declaration, which is effectively a no-op.
701 // - SGV is weak, when we just need to throw SGV out.
702 if (!SGV
->isDeclaration() && !SGV
->isWeakForLinker())
703 return Error(Err
, "Global-Alias Collision on '" + SGV
->getName() +
704 "': symbol multiple defined");
707 // Set calculated linkage
708 DGV
->setLinkage(NewLinkage
);
710 // Make sure to remember this mapping...
711 ValueMap
[SGV
] = ConstantExpr::getBitCast(DGV
, SGV
->getType());
716 static GlobalValue::LinkageTypes
717 CalculateAliasLinkage(const GlobalValue
*SGV
, const GlobalValue
*DGV
) {
718 GlobalValue::LinkageTypes SL
= SGV
->getLinkage();
719 GlobalValue::LinkageTypes DL
= DGV
->getLinkage();
720 if (SL
== GlobalValue::ExternalLinkage
|| DL
== GlobalValue::ExternalLinkage
)
721 return GlobalValue::ExternalLinkage
;
722 else if (SL
== GlobalValue::WeakAnyLinkage
||
723 DL
== GlobalValue::WeakAnyLinkage
)
724 return GlobalValue::WeakAnyLinkage
;
725 else if (SL
== GlobalValue::WeakODRLinkage
||
726 DL
== GlobalValue::WeakODRLinkage
)
727 return GlobalValue::WeakODRLinkage
;
728 else if (SL
== GlobalValue::InternalLinkage
&&
729 DL
== GlobalValue::InternalLinkage
)
730 return GlobalValue::InternalLinkage
;
731 else if (SL
== GlobalValue::LinkerPrivateLinkage
&&
732 DL
== GlobalValue::LinkerPrivateLinkage
)
733 return GlobalValue::LinkerPrivateLinkage
;
735 assert (SL
== GlobalValue::PrivateLinkage
&&
736 DL
== GlobalValue::PrivateLinkage
&& "Unexpected linkage type");
737 return GlobalValue::PrivateLinkage
;
741 // LinkAlias - Loop through the alias in the src module and link them into the
742 // dest module. We're assuming, that all functions/global variables were already
744 static bool LinkAlias(Module
*Dest
, const Module
*Src
,
745 std::map
<const Value
*, Value
*> &ValueMap
,
747 // Loop over all alias in the src module
748 for (Module::const_alias_iterator I
= Src
->alias_begin(),
749 E
= Src
->alias_end(); I
!= E
; ++I
) {
750 const GlobalAlias
*SGA
= I
;
751 const GlobalValue
*SAliasee
= SGA
->getAliasedGlobal();
752 GlobalAlias
*NewGA
= NULL
;
754 // Globals were already linked, thus we can just query ValueMap for variant
755 // of SAliasee in Dest.
756 std::map
<const Value
*,Value
*>::const_iterator VMI
= ValueMap
.find(SAliasee
);
757 assert(VMI
!= ValueMap
.end() && "Aliasee not linked");
758 GlobalValue
* DAliasee
= cast
<GlobalValue
>(VMI
->second
);
759 GlobalValue
* DGV
= NULL
;
761 // Try to find something 'similar' to SGA in destination module.
762 if (!DGV
&& !SGA
->hasLocalLinkage()) {
763 DGV
= Dest
->getNamedAlias(SGA
->getName());
765 // If types don't agree due to opaque types, try to resolve them.
766 if (DGV
&& DGV
->getType() != SGA
->getType())
767 RecursiveResolveTypes(SGA
->getType(), DGV
->getType());
770 if (!DGV
&& !SGA
->hasLocalLinkage()) {
771 DGV
= Dest
->getGlobalVariable(SGA
->getName());
773 // If types don't agree due to opaque types, try to resolve them.
774 if (DGV
&& DGV
->getType() != SGA
->getType())
775 RecursiveResolveTypes(SGA
->getType(), DGV
->getType());
778 if (!DGV
&& !SGA
->hasLocalLinkage()) {
779 DGV
= Dest
->getFunction(SGA
->getName());
781 // If types don't agree due to opaque types, try to resolve them.
782 if (DGV
&& DGV
->getType() != SGA
->getType())
783 RecursiveResolveTypes(SGA
->getType(), DGV
->getType());
786 // No linking to be performed on internal stuff.
787 if (DGV
&& DGV
->hasLocalLinkage())
790 if (GlobalAlias
*DGA
= dyn_cast_or_null
<GlobalAlias
>(DGV
)) {
791 // Types are known to be the same, check whether aliasees equal. As
792 // globals are already linked we just need query ValueMap to find the
794 if (DAliasee
== DGA
->getAliasedGlobal()) {
795 // This is just two copies of the same alias. Propagate linkage, if
797 DGA
->setLinkage(CalculateAliasLinkage(SGA
, DGA
));
800 // Proceed to 'common' steps
802 return Error(Err
, "Alias Collision on '" + SGA
->getName()+
803 "': aliases have different aliasees");
804 } else if (GlobalVariable
*DGVar
= dyn_cast_or_null
<GlobalVariable
>(DGV
)) {
805 // The only allowed way is to link alias with external declaration or weak
807 if (DGVar
->isDeclaration() || DGVar
->isWeakForLinker()) {
808 // But only if aliasee is global too...
809 if (!isa
<GlobalVariable
>(DAliasee
))
810 return Error(Err
, "Global-Alias Collision on '" + SGA
->getName() +
811 "': aliasee is not global variable");
813 NewGA
= new GlobalAlias(SGA
->getType(), SGA
->getLinkage(),
814 SGA
->getName(), DAliasee
, Dest
);
815 CopyGVAttributes(NewGA
, SGA
);
817 // Any uses of DGV need to change to NewGA, with cast, if needed.
818 if (SGA
->getType() != DGVar
->getType())
819 DGVar
->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA
,
822 DGVar
->replaceAllUsesWith(NewGA
);
824 // DGVar will conflict with NewGA because they both had the same
825 // name. We must erase this now so ForceRenaming doesn't assert
826 // because DGV might not have internal linkage.
827 DGVar
->eraseFromParent();
829 // Proceed to 'common' steps
831 return Error(Err
, "Global-Alias Collision on '" + SGA
->getName() +
832 "': symbol multiple defined");
833 } else if (Function
*DF
= dyn_cast_or_null
<Function
>(DGV
)) {
834 // The only allowed way is to link alias with external declaration or weak
836 if (DF
->isDeclaration() || DF
->isWeakForLinker()) {
837 // But only if aliasee is function too...
838 if (!isa
<Function
>(DAliasee
))
839 return Error(Err
, "Function-Alias Collision on '" + SGA
->getName() +
840 "': aliasee is not function");
842 NewGA
= new GlobalAlias(SGA
->getType(), SGA
->getLinkage(),
843 SGA
->getName(), DAliasee
, Dest
);
844 CopyGVAttributes(NewGA
, SGA
);
846 // Any uses of DF need to change to NewGA, with cast, if needed.
847 if (SGA
->getType() != DF
->getType())
848 DF
->replaceAllUsesWith(ConstantExpr::getBitCast(NewGA
,
851 DF
->replaceAllUsesWith(NewGA
);
853 // DF will conflict with NewGA because they both had the same
854 // name. We must erase this now so ForceRenaming doesn't assert
855 // because DF might not have internal linkage.
856 DF
->eraseFromParent();
858 // Proceed to 'common' steps
860 return Error(Err
, "Function-Alias Collision on '" + SGA
->getName() +
861 "': symbol multiple defined");
863 // No linking to be performed, simply create an identical version of the
864 // alias over in the dest module...
865 Constant
*Aliasee
= DAliasee
;
866 // Fixup aliases to bitcasts. Note that aliases to GEPs are still broken
867 // by this, but aliases to GEPs are broken to a lot of other things, so
868 // it's less important.
869 if (SGA
->getType() != DAliasee
->getType())
870 Aliasee
= ConstantExpr::getBitCast(DAliasee
, SGA
->getType());
871 NewGA
= new GlobalAlias(SGA
->getType(), SGA
->getLinkage(),
872 SGA
->getName(), Aliasee
, Dest
);
873 CopyGVAttributes(NewGA
, SGA
);
875 // Proceed to 'common' steps
878 assert(NewGA
&& "No alias was created in destination module!");
880 // If the symbol table renamed the alias, but it is an externally visible
881 // symbol, DGA must be an global value with internal linkage. Rename it.
882 if (NewGA
->getName() != SGA
->getName() &&
883 !NewGA
->hasLocalLinkage())
884 ForceRenaming(NewGA
, SGA
->getName());
886 // Remember this mapping so uses in the source module get remapped
887 // later by RemapOperand.
888 ValueMap
[SGA
] = NewGA
;
895 // LinkGlobalInits - Update the initializers in the Dest module now that all
896 // globals that may be referenced are in Dest.
897 static bool LinkGlobalInits(Module
*Dest
, const Module
*Src
,
898 std::map
<const Value
*, Value
*> &ValueMap
,
900 // Loop over all of the globals in the src module, mapping them over as we go
901 for (Module::const_global_iterator I
= Src
->global_begin(),
902 E
= Src
->global_end(); I
!= E
; ++I
) {
903 const GlobalVariable
*SGV
= I
;
905 if (SGV
->hasInitializer()) { // Only process initialized GV's
906 // Figure out what the initializer looks like in the dest module...
908 cast
<Constant
>(RemapOperand(SGV
->getInitializer(), ValueMap
));
909 // Grab destination global variable or alias.
910 GlobalValue
*DGV
= cast
<GlobalValue
>(ValueMap
[SGV
]->stripPointerCasts());
912 // If dest if global variable, check that initializers match.
913 if (GlobalVariable
*DGVar
= dyn_cast
<GlobalVariable
>(DGV
)) {
914 if (DGVar
->hasInitializer()) {
915 if (SGV
->hasExternalLinkage()) {
916 if (DGVar
->getInitializer() != SInit
)
917 return Error(Err
, "Global Variable Collision on '" +
919 "': global variables have different initializers");
920 } else if (DGVar
->isWeakForLinker()) {
921 // Nothing is required, mapped values will take the new global
923 } else if (SGV
->isWeakForLinker()) {
924 // Nothing is required, mapped values will take the new global
926 } else if (DGVar
->hasAppendingLinkage()) {
927 llvm_unreachable("Appending linkage unimplemented!");
929 llvm_unreachable("Unknown linkage!");
932 // Copy the initializer over now...
933 DGVar
->setInitializer(SInit
);
936 // Destination is alias, the only valid situation is when source is
937 // weak. Also, note, that we already checked linkage in LinkGlobals(),
938 // thus we assert here.
939 // FIXME: Should we weaken this assumption, 'dereference' alias and
940 // check for initializer of aliasee?
941 assert(SGV
->isWeakForLinker());
948 // LinkFunctionProtos - Link the functions together between the two modules,
949 // without doing function bodies... this just adds external function prototypes
950 // to the Dest function...
952 static bool LinkFunctionProtos(Module
*Dest
, const Module
*Src
,
953 std::map
<const Value
*, Value
*> &ValueMap
,
955 ValueSymbolTable
&DestSymTab
= Dest
->getValueSymbolTable();
957 // Loop over all of the functions in the src module, mapping them over
958 for (Module::const_iterator I
= Src
->begin(), E
= Src
->end(); I
!= E
; ++I
) {
959 const Function
*SF
= I
; // SrcFunction
960 GlobalValue
*DGV
= 0;
962 // Check to see if may have to link the function with the global, alias or
964 if (SF
->hasName() && !SF
->hasLocalLinkage())
965 DGV
= cast_or_null
<GlobalValue
>(DestSymTab
.lookup(SF
->getName()));
967 // If we found a global with the same name in the dest module, but it has
968 // internal linkage, we are really not doing any linkage here.
969 if (DGV
&& DGV
->hasLocalLinkage())
972 // If types don't agree due to opaque types, try to resolve them.
973 if (DGV
&& DGV
->getType() != SF
->getType())
974 RecursiveResolveTypes(SF
->getType(), DGV
->getType());
976 GlobalValue::LinkageTypes NewLinkage
= GlobalValue::InternalLinkage
;
977 bool LinkFromSrc
= false;
978 if (GetLinkageResult(DGV
, SF
, NewLinkage
, LinkFromSrc
, Err
))
981 // If there is no linkage to be performed, just bring over SF without
984 // Function does not already exist, simply insert an function signature
985 // identical to SF into the dest module.
986 Function
*NewDF
= Function::Create(SF
->getFunctionType(),
988 SF
->getName(), Dest
);
989 CopyGVAttributes(NewDF
, SF
);
991 // If the LLVM runtime renamed the function, but it is an externally
992 // visible symbol, DF must be an existing function with internal linkage.
994 if (!NewDF
->hasLocalLinkage() && NewDF
->getName() != SF
->getName())
995 ForceRenaming(NewDF
, SF
->getName());
997 // ... and remember this mapping...
998 ValueMap
[SF
] = NewDF
;
1002 // If the visibilities of the symbols disagree and the destination is a
1003 // prototype, take the visibility of its input.
1004 if (DGV
->isDeclaration())
1005 DGV
->setVisibility(SF
->getVisibility());
1008 if (isa
<GlobalAlias
>(DGV
))
1009 return Error(Err
, "Function-Alias Collision on '" + SF
->getName() +
1010 "': symbol multiple defined");
1012 // We have a definition of the same name but different type in the
1013 // source module. Copy the prototype to the destination and replace
1014 // uses of the destination's prototype with the new prototype.
1015 Function
*NewDF
= Function::Create(SF
->getFunctionType(), NewLinkage
,
1016 SF
->getName(), Dest
);
1017 CopyGVAttributes(NewDF
, SF
);
1019 // Any uses of DF need to change to NewDF, with cast
1020 DGV
->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF
,
1023 // DF will conflict with NewDF because they both had the same. We must
1024 // erase this now so ForceRenaming doesn't assert because DF might
1025 // not have internal linkage.
1026 if (GlobalVariable
*Var
= dyn_cast
<GlobalVariable
>(DGV
))
1027 Var
->eraseFromParent();
1029 cast
<Function
>(DGV
)->eraseFromParent();
1031 // If the symbol table renamed the function, but it is an externally
1032 // visible symbol, DF must be an existing function with internal
1033 // linkage. Rename it.
1034 if (NewDF
->getName() != SF
->getName() && !NewDF
->hasLocalLinkage())
1035 ForceRenaming(NewDF
, SF
->getName());
1037 // Remember this mapping so uses in the source module get remapped
1038 // later by RemapOperand.
1039 ValueMap
[SF
] = NewDF
;
1043 // Not "link from source", keep the one in the DestModule and remap the
1046 if (isa
<GlobalAlias
>(DGV
)) {
1047 // The only valid mappings are:
1048 // - SF is external declaration, which is effectively a no-op.
1049 // - SF is weak, when we just need to throw SF out.
1050 if (!SF
->isDeclaration() && !SF
->isWeakForLinker())
1051 return Error(Err
, "Function-Alias Collision on '" + SF
->getName() +
1052 "': symbol multiple defined");
1055 // Set calculated linkage
1056 DGV
->setLinkage(NewLinkage
);
1058 // Make sure to remember this mapping.
1059 ValueMap
[SF
] = ConstantExpr::getBitCast(DGV
, SF
->getType());
1064 // LinkFunctionBody - Copy the source function over into the dest function and
1065 // fix up references to values. At this point we know that Dest is an external
1066 // function, and that Src is not.
1067 static bool LinkFunctionBody(Function
*Dest
, Function
*Src
,
1068 std::map
<const Value
*, Value
*> &ValueMap
,
1070 assert(Src
&& Dest
&& Dest
->isDeclaration() && !Src
->isDeclaration());
1072 // Go through and convert function arguments over, remembering the mapping.
1073 Function::arg_iterator DI
= Dest
->arg_begin();
1074 for (Function::arg_iterator I
= Src
->arg_begin(), E
= Src
->arg_end();
1075 I
!= E
; ++I
, ++DI
) {
1076 DI
->setName(I
->getName()); // Copy the name information over...
1078 // Add a mapping to our local map
1082 // Splice the body of the source function into the dest function.
1083 Dest
->getBasicBlockList().splice(Dest
->end(), Src
->getBasicBlockList());
1085 // At this point, all of the instructions and values of the function are now
1086 // copied over. The only problem is that they are still referencing values in
1087 // the Source function as operands. Loop through all of the operands of the
1088 // functions and patch them up to point to the local versions...
1090 for (Function::iterator BB
= Dest
->begin(), BE
= Dest
->end(); BB
!= BE
; ++BB
)
1091 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
1092 for (Instruction::op_iterator OI
= I
->op_begin(), OE
= I
->op_end();
1094 if (!isa
<Instruction
>(*OI
) && !isa
<BasicBlock
>(*OI
))
1095 *OI
= RemapOperand(*OI
, ValueMap
);
1097 // There is no need to map the arguments anymore.
1098 for (Function::arg_iterator I
= Src
->arg_begin(), E
= Src
->arg_end();
1106 // LinkFunctionBodies - Link in the function bodies that are defined in the
1107 // source module into the DestModule. This consists basically of copying the
1108 // function over and fixing up references to values.
1109 static bool LinkFunctionBodies(Module
*Dest
, Module
*Src
,
1110 std::map
<const Value
*, Value
*> &ValueMap
,
1113 // Loop over all of the functions in the src module, mapping them over as we
1115 for (Module::iterator SF
= Src
->begin(), E
= Src
->end(); SF
!= E
; ++SF
) {
1116 if (!SF
->isDeclaration()) { // No body if function is external
1117 Function
*DF
= dyn_cast
<Function
>(ValueMap
[SF
]); // Destination function
1119 // DF not external SF external?
1120 if (DF
&& DF
->isDeclaration())
1121 // Only provide the function body if there isn't one already.
1122 if (LinkFunctionBody(DF
, SF
, ValueMap
, Err
))
1129 // LinkAppendingVars - If there were any appending global variables, link them
1130 // together now. Return true on error.
1131 static bool LinkAppendingVars(Module
*M
,
1132 std::multimap
<std::string
, GlobalVariable
*> &AppendingVars
,
1133 std::string
*ErrorMsg
) {
1134 if (AppendingVars
.empty()) return false; // Nothing to do.
1136 // Loop over the multimap of appending vars, processing any variables with the
1137 // same name, forming a new appending global variable with both of the
1138 // initializers merged together, then rewrite references to the old variables
1140 std::vector
<Constant
*> Inits
;
1141 while (AppendingVars
.size() > 1) {
1142 // Get the first two elements in the map...
1143 std::multimap
<std::string
,
1144 GlobalVariable
*>::iterator Second
= AppendingVars
.begin(), First
=Second
++;
1146 // If the first two elements are for different names, there is no pair...
1147 // Otherwise there is a pair, so link them together...
1148 if (First
->first
== Second
->first
) {
1149 GlobalVariable
*G1
= First
->second
, *G2
= Second
->second
;
1150 const ArrayType
*T1
= cast
<ArrayType
>(G1
->getType()->getElementType());
1151 const ArrayType
*T2
= cast
<ArrayType
>(G2
->getType()->getElementType());
1153 // Check to see that they two arrays agree on type...
1154 if (T1
->getElementType() != T2
->getElementType())
1155 return Error(ErrorMsg
,
1156 "Appending variables with different element types need to be linked!");
1157 if (G1
->isConstant() != G2
->isConstant())
1158 return Error(ErrorMsg
,
1159 "Appending variables linked with different const'ness!");
1161 if (G1
->getAlignment() != G2
->getAlignment())
1162 return Error(ErrorMsg
,
1163 "Appending variables with different alignment need to be linked!");
1165 if (G1
->getVisibility() != G2
->getVisibility())
1166 return Error(ErrorMsg
,
1167 "Appending variables with different visibility need to be linked!");
1169 if (G1
->getSection() != G2
->getSection())
1170 return Error(ErrorMsg
,
1171 "Appending variables with different section name need to be linked!");
1173 unsigned NewSize
= T1
->getNumElements() + T2
->getNumElements();
1174 ArrayType
*NewType
= ArrayType::get(T1
->getElementType(),
1177 G1
->setName(""); // Clear G1's name in case of a conflict!
1179 // Create the new global variable...
1180 GlobalVariable
*NG
=
1181 new GlobalVariable(*M
, NewType
, G1
->isConstant(), G1
->getLinkage(),
1182 /*init*/0, First
->first
, 0, G1
->isThreadLocal(),
1183 G1
->getType()->getAddressSpace());
1185 // Propagate alignment, visibility and section info.
1186 CopyGVAttributes(NG
, G1
);
1188 // Merge the initializer...
1189 Inits
.reserve(NewSize
);
1190 if (ConstantArray
*I
= dyn_cast
<ConstantArray
>(G1
->getInitializer())) {
1191 for (unsigned i
= 0, e
= T1
->getNumElements(); i
!= e
; ++i
)
1192 Inits
.push_back(I
->getOperand(i
));
1194 assert(isa
<ConstantAggregateZero
>(G1
->getInitializer()));
1195 Constant
*CV
= Constant::getNullValue(T1
->getElementType());
1196 for (unsigned i
= 0, e
= T1
->getNumElements(); i
!= e
; ++i
)
1197 Inits
.push_back(CV
);
1199 if (ConstantArray
*I
= dyn_cast
<ConstantArray
>(G2
->getInitializer())) {
1200 for (unsigned i
= 0, e
= T2
->getNumElements(); i
!= e
; ++i
)
1201 Inits
.push_back(I
->getOperand(i
));
1203 assert(isa
<ConstantAggregateZero
>(G2
->getInitializer()));
1204 Constant
*CV
= Constant::getNullValue(T2
->getElementType());
1205 for (unsigned i
= 0, e
= T2
->getNumElements(); i
!= e
; ++i
)
1206 Inits
.push_back(CV
);
1208 NG
->setInitializer(ConstantArray::get(NewType
, Inits
));
1211 // Replace any uses of the two global variables with uses of the new
1214 // FIXME: This should rewrite simple/straight-forward uses such as
1215 // getelementptr instructions to not use the Cast!
1216 G1
->replaceAllUsesWith(ConstantExpr::getBitCast(NG
,
1218 G2
->replaceAllUsesWith(ConstantExpr::getBitCast(NG
,
1221 // Remove the two globals from the module now...
1222 M
->getGlobalList().erase(G1
);
1223 M
->getGlobalList().erase(G2
);
1225 // Put the new global into the AppendingVars map so that we can handle
1226 // linking of more than two vars...
1227 Second
->second
= NG
;
1229 AppendingVars
.erase(First
);
1235 static bool ResolveAliases(Module
*Dest
) {
1236 for (Module::alias_iterator I
= Dest
->alias_begin(), E
= Dest
->alias_end();
1238 // We can't sue resolveGlobalAlias here because we need to preserve
1239 // bitcasts and GEPs.
1240 if (const Constant
*C
= I
->getAliasee()) {
1241 while (dyn_cast
<GlobalAlias
>(C
))
1242 C
= cast
<GlobalAlias
>(C
)->getAliasee();
1243 const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
);
1244 if (C
!= I
&& !(GV
&& GV
->isDeclaration()))
1245 I
->replaceAllUsesWith(const_cast<Constant
*>(C
));
1251 // LinkModules - This function links two modules together, with the resulting
1252 // left module modified to be the composite of the two input modules. If an
1253 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1254 // the problem. Upon failure, the Dest module could be in a modified state, and
1255 // shouldn't be relied on to be consistent.
1257 Linker::LinkModules(Module
*Dest
, Module
*Src
, std::string
*ErrorMsg
) {
1258 assert(Dest
!= 0 && "Invalid Destination module");
1259 assert(Src
!= 0 && "Invalid Source Module");
1261 if (Dest
->getDataLayout().empty()) {
1262 if (!Src
->getDataLayout().empty()) {
1263 Dest
->setDataLayout(Src
->getDataLayout());
1265 std::string DataLayout
;
1267 if (Dest
->getEndianness() == Module::AnyEndianness
) {
1268 if (Src
->getEndianness() == Module::BigEndian
)
1269 DataLayout
.append("E");
1270 else if (Src
->getEndianness() == Module::LittleEndian
)
1271 DataLayout
.append("e");
1274 if (Dest
->getPointerSize() == Module::AnyPointerSize
) {
1275 if (Src
->getPointerSize() == Module::Pointer64
)
1276 DataLayout
.append(DataLayout
.length() == 0 ? "p:64:64" : "-p:64:64");
1277 else if (Src
->getPointerSize() == Module::Pointer32
)
1278 DataLayout
.append(DataLayout
.length() == 0 ? "p:32:32" : "-p:32:32");
1280 Dest
->setDataLayout(DataLayout
);
1284 // Copy the target triple from the source to dest if the dest's is empty.
1285 if (Dest
->getTargetTriple().empty() && !Src
->getTargetTriple().empty())
1286 Dest
->setTargetTriple(Src
->getTargetTriple());
1288 if (!Src
->getDataLayout().empty() && !Dest
->getDataLayout().empty() &&
1289 Src
->getDataLayout() != Dest
->getDataLayout())
1290 errs() << "WARNING: Linking two modules of different data layouts!\n";
1291 if (!Src
->getTargetTriple().empty() &&
1292 Dest
->getTargetTriple() != Src
->getTargetTriple())
1293 errs() << "WARNING: Linking two modules of different target triples!\n";
1295 // Append the module inline asm string.
1296 if (!Src
->getModuleInlineAsm().empty()) {
1297 if (Dest
->getModuleInlineAsm().empty())
1298 Dest
->setModuleInlineAsm(Src
->getModuleInlineAsm());
1300 Dest
->setModuleInlineAsm(Dest
->getModuleInlineAsm()+"\n"+
1301 Src
->getModuleInlineAsm());
1304 // Update the destination module's dependent libraries list with the libraries
1305 // from the source module. There's no opportunity for duplicates here as the
1306 // Module ensures that duplicate insertions are discarded.
1307 for (Module::lib_iterator SI
= Src
->lib_begin(), SE
= Src
->lib_end();
1309 Dest
->addLibrary(*SI
);
1311 // LinkTypes - Go through the symbol table of the Src module and see if any
1312 // types are named in the src module that are not named in the Dst module.
1313 // Make sure there are no type name conflicts.
1314 if (LinkTypes(Dest
, Src
, ErrorMsg
))
1317 // ValueMap - Mapping of values from what they used to be in Src, to what they
1319 std::map
<const Value
*, Value
*> ValueMap
;
1321 // AppendingVars - Keep track of global variables in the destination module
1322 // with appending linkage. After the module is linked together, they are
1323 // appended and the module is rewritten.
1324 std::multimap
<std::string
, GlobalVariable
*> AppendingVars
;
1325 for (Module::global_iterator I
= Dest
->global_begin(), E
= Dest
->global_end();
1327 // Add all of the appending globals already in the Dest module to
1329 if (I
->hasAppendingLinkage())
1330 AppendingVars
.insert(std::make_pair(I
->getName(), I
));
1333 // Insert all of the named mdnoes in Src into the Dest module.
1334 LinkNamedMDNodes(Dest
, Src
);
1336 // Insert all of the globals in src into the Dest module... without linking
1337 // initializers (which could refer to functions not yet mapped over).
1338 if (LinkGlobals(Dest
, Src
, ValueMap
, AppendingVars
, ErrorMsg
))
1341 // Link the functions together between the two modules, without doing function
1342 // bodies... this just adds external function prototypes to the Dest
1343 // function... We do this so that when we begin processing function bodies,
1344 // all of the global values that may be referenced are available in our
1346 if (LinkFunctionProtos(Dest
, Src
, ValueMap
, ErrorMsg
))
1349 // If there were any alias, link them now. We really need to do this now,
1350 // because all of the aliases that may be referenced need to be available in
1352 if (LinkAlias(Dest
, Src
, ValueMap
, ErrorMsg
)) return true;
1354 // Update the initializers in the Dest module now that all globals that may
1355 // be referenced are in Dest.
1356 if (LinkGlobalInits(Dest
, Src
, ValueMap
, ErrorMsg
)) return true;
1358 // Link in the function bodies that are defined in the source module into the
1359 // DestModule. This consists basically of copying the function over and
1360 // fixing up references to values.
1361 if (LinkFunctionBodies(Dest
, Src
, ValueMap
, ErrorMsg
)) return true;
1363 // If there were any appending global variables, link them together now.
1364 if (LinkAppendingVars(Dest
, AppendingVars
, ErrorMsg
)) return true;
1366 // Resolve all uses of aliases with aliasees
1367 if (ResolveAliases(Dest
)) return true;
1369 // If the source library's module id is in the dependent library list of the
1370 // destination library, remove it since that module is now linked in.
1372 modId
.set(Src
->getModuleIdentifier());
1373 if (!modId
.isEmpty())
1374 Dest
->removeLibrary(modId
.getBasename());