Merge VEX enums with other x86 enum forms. Also fix all checks of which VEX
[llvm.git] / lib / Target / X86 / X86InstrInfo.h
blobf0174b9f355846a4cc997ef49a3c3a4e8cbb3b42
1 //===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #ifndef X86INSTRUCTIONINFO_H
15 #define X86INSTRUCTIONINFO_H
17 #include "llvm/Target/TargetInstrInfo.h"
18 #include "X86.h"
19 #include "X86RegisterInfo.h"
20 #include "llvm/ADT/DenseMap.h"
22 namespace llvm {
23 class X86RegisterInfo;
24 class X86TargetMachine;
26 namespace X86 {
27 // Enums for memory operand decoding. Each memory operand is represented with
28 // a 5 operand sequence in the form:
29 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30 // These enums help decode this.
31 enum {
32 AddrBaseReg = 0,
33 AddrScaleAmt = 1,
34 AddrIndexReg = 2,
35 AddrDisp = 3,
37 /// AddrSegmentReg - The operand # of the segment in the memory operand.
38 AddrSegmentReg = 4,
40 /// AddrNumOperands - Total number of operands in a memory reference.
41 AddrNumOperands = 5
45 // X86 specific condition code. These correspond to X86_*_COND in
46 // X86InstrInfo.td. They must be kept in synch.
47 enum CondCode {
48 COND_A = 0,
49 COND_AE = 1,
50 COND_B = 2,
51 COND_BE = 3,
52 COND_E = 4,
53 COND_G = 5,
54 COND_GE = 6,
55 COND_L = 7,
56 COND_LE = 8,
57 COND_NE = 9,
58 COND_NO = 10,
59 COND_NP = 11,
60 COND_NS = 12,
61 COND_O = 13,
62 COND_P = 14,
63 COND_S = 15,
65 // Artificial condition codes. These are used by AnalyzeBranch
66 // to indicate a block terminated with two conditional branches to
67 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
68 // which can't be represented on x86 with a single condition. These
69 // are never used in MachineInstrs.
70 COND_NE_OR_P,
71 COND_NP_OR_E,
73 COND_INVALID
76 // Turn condition code into conditional branch opcode.
77 unsigned GetCondBranchFromCond(CondCode CC);
79 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
80 /// e.g. turning COND_E to COND_NE.
81 CondCode GetOppositeBranchCondition(X86::CondCode CC);
85 /// X86II - This namespace holds all of the target specific flags that
86 /// instruction info tracks.
87 ///
88 namespace X86II {
89 /// Target Operand Flag enum.
90 enum TOF {
91 //===------------------------------------------------------------------===//
92 // X86 Specific MachineOperand flags.
94 MO_NO_FLAG,
96 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
97 /// relocation of:
98 /// SYMBOL_LABEL + [. - PICBASELABEL]
99 MO_GOT_ABSOLUTE_ADDRESS,
101 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
102 /// immediate should get the value of the symbol minus the PIC base label:
103 /// SYMBOL_LABEL - PICBASELABEL
104 MO_PIC_BASE_OFFSET,
106 /// MO_GOT - On a symbol operand this indicates that the immediate is the
107 /// offset to the GOT entry for the symbol name from the base of the GOT.
109 /// See the X86-64 ELF ABI supplement for more details.
110 /// SYMBOL_LABEL @GOT
111 MO_GOT,
113 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
114 /// the offset to the location of the symbol name from the base of the GOT.
116 /// See the X86-64 ELF ABI supplement for more details.
117 /// SYMBOL_LABEL @GOTOFF
118 MO_GOTOFF,
120 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
121 /// offset to the GOT entry for the symbol name from the current code
122 /// location.
124 /// See the X86-64 ELF ABI supplement for more details.
125 /// SYMBOL_LABEL @GOTPCREL
126 MO_GOTPCREL,
128 /// MO_PLT - On a symbol operand this indicates that the immediate is
129 /// offset to the PLT entry of symbol name from the current code location.
131 /// See the X86-64 ELF ABI supplement for more details.
132 /// SYMBOL_LABEL @PLT
133 MO_PLT,
135 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
136 /// some TLS offset.
138 /// See 'ELF Handling for Thread-Local Storage' for more details.
139 /// SYMBOL_LABEL @TLSGD
140 MO_TLSGD,
142 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
143 /// some TLS offset.
145 /// See 'ELF Handling for Thread-Local Storage' for more details.
146 /// SYMBOL_LABEL @GOTTPOFF
147 MO_GOTTPOFF,
149 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
150 /// some TLS offset.
152 /// See 'ELF Handling for Thread-Local Storage' for more details.
153 /// SYMBOL_LABEL @INDNTPOFF
154 MO_INDNTPOFF,
156 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
157 /// some TLS offset.
159 /// See 'ELF Handling for Thread-Local Storage' for more details.
160 /// SYMBOL_LABEL @TPOFF
161 MO_TPOFF,
163 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
164 /// some TLS offset.
166 /// See 'ELF Handling for Thread-Local Storage' for more details.
167 /// SYMBOL_LABEL @NTPOFF
168 MO_NTPOFF,
170 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
171 /// reference is actually to the "__imp_FOO" symbol. This is used for
172 /// dllimport linkage on windows.
173 MO_DLLIMPORT,
175 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
176 /// reference is actually to the "FOO$stub" symbol. This is used for calls
177 /// and jumps to external functions on Tiger and before.
178 MO_DARWIN_STUB,
180 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
181 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
182 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
183 MO_DARWIN_NONLAZY,
185 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
186 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
187 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
188 MO_DARWIN_NONLAZY_PIC_BASE,
190 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
191 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
192 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
193 /// stub.
194 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
196 /// MO_TLVP - On a symbol operand this indicates that the immediate is
197 /// some TLS offset.
199 /// This is the TLS offset for the Darwin TLS mechanism.
200 MO_TLVP,
202 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
203 /// is some TLS offset from the picbase.
205 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
206 MO_TLVP_PIC_BASE
210 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
211 /// a reference to a stub for a global, not the global itself.
212 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
213 switch (TargetFlag) {
214 case X86II::MO_DLLIMPORT: // dllimport stub.
215 case X86II::MO_GOTPCREL: // rip-relative GOT reference.
216 case X86II::MO_GOT: // normal GOT reference.
217 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
218 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
219 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
220 return true;
221 default:
222 return false;
226 /// isGlobalRelativeToPICBase - Return true if the specified global value
227 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
228 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
229 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
230 switch (TargetFlag) {
231 case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
232 case X86II::MO_GOT: // isPICStyleGOT: other global.
233 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
234 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
235 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
236 case X86II::MO_TLVP: // ??? Pretty sure..
237 return true;
238 default:
239 return false;
243 /// X86II - This namespace holds all of the target specific flags that
244 /// instruction info tracks.
246 namespace X86II {
247 enum {
248 //===------------------------------------------------------------------===//
249 // Instruction encodings. These are the standard/most common forms for X86
250 // instructions.
253 // PseudoFrm - This represents an instruction that is a pseudo instruction
254 // or one that has not been implemented yet. It is illegal to code generate
255 // it, but tolerated for intermediate implementation stages.
256 Pseudo = 0,
258 /// Raw - This form is for instructions that don't have any operands, so
259 /// they are just a fixed opcode value, like 'leave'.
260 RawFrm = 1,
262 /// AddRegFrm - This form is used for instructions like 'push r32' that have
263 /// their one register operand added to their opcode.
264 AddRegFrm = 2,
266 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
267 /// to specify a destination, which in this case is a register.
269 MRMDestReg = 3,
271 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
272 /// to specify a destination, which in this case is memory.
274 MRMDestMem = 4,
276 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
277 /// to specify a source, which in this case is a register.
279 MRMSrcReg = 5,
281 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
282 /// to specify a source, which in this case is memory.
284 MRMSrcMem = 6,
286 /// MRM[0-7][rm] - These forms are used to represent instructions that use
287 /// a Mod/RM byte, and use the middle field to hold extended opcode
288 /// information. In the intel manual these are represented as /0, /1, ...
291 // First, instructions that operate on a register r/m operand...
292 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
293 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
295 // Next, instructions that operate on a memory r/m operand...
296 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
297 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
299 // MRMInitReg - This form is used for instructions whose source and
300 // destinations are the same register.
301 MRMInitReg = 32,
303 //// MRM_C1 - A mod/rm byte of exactly 0xC1.
304 MRM_C1 = 33,
305 MRM_C2 = 34,
306 MRM_C3 = 35,
307 MRM_C4 = 36,
308 MRM_C8 = 37,
309 MRM_C9 = 38,
310 MRM_E8 = 39,
311 MRM_F0 = 40,
312 MRM_F8 = 41,
313 MRM_F9 = 42,
315 FormMask = 63,
317 //===------------------------------------------------------------------===//
318 // Actual flags...
320 // OpSize - Set if this instruction requires an operand size prefix (0x66),
321 // which most often indicates that the instruction operates on 16 bit data
322 // instead of 32 bit data.
323 OpSize = 1 << 6,
325 // AsSize - Set if this instruction requires an operand size prefix (0x67),
326 // which most often indicates that the instruction address 16 bit address
327 // instead of 32 bit address (or 32 bit address in 64 bit mode).
328 AdSize = 1 << 7,
330 //===------------------------------------------------------------------===//
331 // Op0Mask - There are several prefix bytes that are used to form two byte
332 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
333 // used to obtain the setting of this field. If no bits in this field is
334 // set, there is no prefix byte for obtaining a multibyte opcode.
336 Op0Shift = 8,
337 Op0Mask = 0xF << Op0Shift,
339 // TB - TwoByte - Set if this instruction has a two byte opcode, which
340 // starts with a 0x0F byte before the real opcode.
341 TB = 1 << Op0Shift,
343 // REP - The 0xF3 prefix byte indicating repetition of the following
344 // instruction.
345 REP = 2 << Op0Shift,
347 // D8-DF - These escape opcodes are used by the floating point unit. These
348 // values must remain sequential.
349 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
350 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
351 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
352 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
354 // XS, XD - These prefix codes are for single and double precision scalar
355 // floating point operations performed in the SSE registers.
356 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
358 // T8, TA - Prefix after the 0x0F prefix.
359 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
361 // TF - Prefix before and after 0x0F
362 TF = 15 << Op0Shift,
364 //===------------------------------------------------------------------===//
365 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
366 // They are used to specify GPRs and SSE registers, 64-bit operand size,
367 // etc. We only cares about REX.W and REX.R bits and only the former is
368 // statically determined.
370 REXShift = 12,
371 REX_W = 1 << REXShift,
373 //===------------------------------------------------------------------===//
374 // This three-bit field describes the size of an immediate operand. Zero is
375 // unused so that we can tell if we forgot to set a value.
376 ImmShift = 13,
377 ImmMask = 7 << ImmShift,
378 Imm8 = 1 << ImmShift,
379 Imm8PCRel = 2 << ImmShift,
380 Imm16 = 3 << ImmShift,
381 Imm16PCRel = 4 << ImmShift,
382 Imm32 = 5 << ImmShift,
383 Imm32PCRel = 6 << ImmShift,
384 Imm64 = 7 << ImmShift,
386 //===------------------------------------------------------------------===//
387 // FP Instruction Classification... Zero is non-fp instruction.
389 // FPTypeMask - Mask for all of the FP types...
390 FPTypeShift = 16,
391 FPTypeMask = 7 << FPTypeShift,
393 // NotFP - The default, set for instructions that do not use FP registers.
394 NotFP = 0 << FPTypeShift,
396 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
397 ZeroArgFP = 1 << FPTypeShift,
399 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
400 OneArgFP = 2 << FPTypeShift,
402 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
403 // result back to ST(0). For example, fcos, fsqrt, etc.
405 OneArgFPRW = 3 << FPTypeShift,
407 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
408 // explicit argument, storing the result to either ST(0) or the implicit
409 // argument. For example: fadd, fsub, fmul, etc...
410 TwoArgFP = 4 << FPTypeShift,
412 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
413 // explicit argument, but have no destination. Example: fucom, fucomi, ...
414 CompareFP = 5 << FPTypeShift,
416 // CondMovFP - "2 operand" floating point conditional move instructions.
417 CondMovFP = 6 << FPTypeShift,
419 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
420 SpecialFP = 7 << FPTypeShift,
422 // Lock prefix
423 LOCKShift = 19,
424 LOCK = 1 << LOCKShift,
426 // Segment override prefixes. Currently we just need ability to address
427 // stuff in gs and fs segments.
428 SegOvrShift = 20,
429 SegOvrMask = 3 << SegOvrShift,
430 FS = 1 << SegOvrShift,
431 GS = 2 << SegOvrShift,
433 // Execution domain for SSE instructions in bits 22, 23.
434 // 0 in bits 22-23 means normal, non-SSE instruction.
435 SSEDomainShift = 22,
437 OpcodeShift = 24,
438 OpcodeMask = 0xFF << OpcodeShift,
440 //===------------------------------------------------------------------===//
441 // VEX - The opcode prefix used by AVX instructions
442 VEX = 1ULL << 32,
444 // VEX_W - Has a opcode specific functionality, but is used in the same
445 // way as REX_W is for regular SSE instructions.
446 VEX_W = 1ULL << 33,
448 // VEX_4V - Used to specify an additional AVX/SSE register. Several 2
449 // address instructions in SSE are represented as 3 address ones in AVX
450 // and the additional register is encoded in VEX_VVVV prefix.
451 VEX_4V = 1ULL << 34,
453 // VEX_I8IMM - Specifies that the last register used in a AVX instruction,
454 // must be encoded in the i8 immediate field. This usually happens in
455 // instructions with 4 operands.
456 VEX_I8IMM = 1ULL << 35
459 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
460 // specified machine instruction.
462 static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
463 return TSFlags >> X86II::OpcodeShift;
466 static inline bool hasImm(uint64_t TSFlags) {
467 return (TSFlags & X86II::ImmMask) != 0;
470 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
471 /// of the specified instruction.
472 static inline unsigned getSizeOfImm(uint64_t TSFlags) {
473 switch (TSFlags & X86II::ImmMask) {
474 default: assert(0 && "Unknown immediate size");
475 case X86II::Imm8:
476 case X86II::Imm8PCRel: return 1;
477 case X86II::Imm16:
478 case X86II::Imm16PCRel: return 2;
479 case X86II::Imm32:
480 case X86II::Imm32PCRel: return 4;
481 case X86II::Imm64: return 8;
485 /// isImmPCRel - Return true if the immediate of the specified instruction's
486 /// TSFlags indicates that it is pc relative.
487 static inline unsigned isImmPCRel(uint64_t TSFlags) {
488 switch (TSFlags & X86II::ImmMask) {
489 default: assert(0 && "Unknown immediate size");
490 case X86II::Imm8PCRel:
491 case X86II::Imm16PCRel:
492 case X86II::Imm32PCRel:
493 return true;
494 case X86II::Imm8:
495 case X86II::Imm16:
496 case X86II::Imm32:
497 case X86II::Imm64:
498 return false;
502 /// getMemoryOperandNo - The function returns the MCInst operand # for the
503 /// first field of the memory operand. If the instruction doesn't have a
504 /// memory operand, this returns -1.
506 /// Note that this ignores tied operands. If there is a tied register which
507 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
508 /// counted as one operand.
510 static inline int getMemoryOperandNo(uint64_t TSFlags) {
511 switch (TSFlags & X86II::FormMask) {
512 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this form");
513 default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
514 case X86II::Pseudo:
515 case X86II::RawFrm:
516 case X86II::AddRegFrm:
517 case X86II::MRMDestReg:
518 case X86II::MRMSrcReg:
519 return -1;
520 case X86II::MRMDestMem:
521 return 0;
522 case X86II::MRMSrcMem: {
523 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
524 unsigned FirstMemOp = 1;
525 if (HasVEX_4V)
526 ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
528 // FIXME: Maybe lea should have its own form? This is a horrible hack.
529 //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
530 // Opcode == X86::LEA16r || Opcode == X86::LEA32r)
531 return FirstMemOp;
533 case X86II::MRM0r: case X86II::MRM1r:
534 case X86II::MRM2r: case X86II::MRM3r:
535 case X86II::MRM4r: case X86II::MRM5r:
536 case X86II::MRM6r: case X86II::MRM7r:
537 return -1;
538 case X86II::MRM0m: case X86II::MRM1m:
539 case X86II::MRM2m: case X86II::MRM3m:
540 case X86II::MRM4m: case X86II::MRM5m:
541 case X86II::MRM6m: case X86II::MRM7m:
542 return 0;
543 case X86II::MRM_C1:
544 case X86II::MRM_C2:
545 case X86II::MRM_C3:
546 case X86II::MRM_C4:
547 case X86II::MRM_C8:
548 case X86II::MRM_C9:
549 case X86II::MRM_E8:
550 case X86II::MRM_F0:
551 case X86II::MRM_F8:
552 case X86II::MRM_F9:
553 return -1;
558 inline static bool isScale(const MachineOperand &MO) {
559 return MO.isImm() &&
560 (MO.getImm() == 1 || MO.getImm() == 2 ||
561 MO.getImm() == 4 || MO.getImm() == 8);
564 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
565 if (MI->getOperand(Op).isFI()) return true;
566 return Op+4 <= MI->getNumOperands() &&
567 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
568 MI->getOperand(Op+2).isReg() &&
569 (MI->getOperand(Op+3).isImm() ||
570 MI->getOperand(Op+3).isGlobal() ||
571 MI->getOperand(Op+3).isCPI() ||
572 MI->getOperand(Op+3).isJTI());
575 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
576 if (MI->getOperand(Op).isFI()) return true;
577 return Op+5 <= MI->getNumOperands() &&
578 MI->getOperand(Op+4).isReg() &&
579 isLeaMem(MI, Op);
582 class X86InstrInfo : public TargetInstrInfoImpl {
583 X86TargetMachine &TM;
584 const X86RegisterInfo RI;
586 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
587 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
589 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
590 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
591 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
592 DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
594 /// MemOp2RegOpTable - Load / store unfolding opcode map.
596 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
598 public:
599 explicit X86InstrInfo(X86TargetMachine &tm);
601 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
602 /// such, whenever a client has an instance of instruction info, it should
603 /// always be able to get register info as well (through this method).
605 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
607 /// Return true if the instruction is a register to register move and return
608 /// the source and dest operands and their sub-register indices by reference.
609 virtual bool isMoveInstr(const MachineInstr &MI,
610 unsigned &SrcReg, unsigned &DstReg,
611 unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
613 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
614 /// extension instruction. That is, it's like a copy where it's legal for the
615 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
616 /// true, then it's expected the pre-extension value is available as a subreg
617 /// of the result register. This also returns the sub-register index in
618 /// SubIdx.
619 virtual bool isCoalescableExtInstr(const MachineInstr &MI,
620 unsigned &SrcReg, unsigned &DstReg,
621 unsigned &SubIdx) const;
623 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
624 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
625 /// stack locations as well. This uses a heuristic so it isn't
626 /// reliable for correctness.
627 unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
628 int &FrameIndex) const;
630 /// hasLoadFromStackSlot - If the specified machine instruction has
631 /// a load from a stack slot, return true along with the FrameIndex
632 /// of the loaded stack slot and the machine mem operand containing
633 /// the reference. If not, return false. Unlike
634 /// isLoadFromStackSlot, this returns true for any instructions that
635 /// loads from the stack. This is a hint only and may not catch all
636 /// cases.
637 bool hasLoadFromStackSlot(const MachineInstr *MI,
638 const MachineMemOperand *&MMO,
639 int &FrameIndex) const;
641 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
642 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
643 /// stack locations as well. This uses a heuristic so it isn't
644 /// reliable for correctness.
645 unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
646 int &FrameIndex) const;
648 /// hasStoreToStackSlot - If the specified machine instruction has a
649 /// store to a stack slot, return true along with the FrameIndex of
650 /// the loaded stack slot and the machine mem operand containing the
651 /// reference. If not, return false. Unlike isStoreToStackSlot,
652 /// this returns true for any instructions that loads from the
653 /// stack. This is a hint only and may not catch all cases.
654 bool hasStoreToStackSlot(const MachineInstr *MI,
655 const MachineMemOperand *&MMO,
656 int &FrameIndex) const;
658 bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
659 AliasAnalysis *AA) const;
660 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
661 unsigned DestReg, unsigned SubIdx,
662 const MachineInstr *Orig,
663 const TargetRegisterInfo &TRI) const;
665 /// convertToThreeAddress - This method must be implemented by targets that
666 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
667 /// may be able to convert a two-address instruction into a true
668 /// three-address instruction on demand. This allows the X86 target (for
669 /// example) to convert ADD and SHL instructions into LEA instructions if they
670 /// would require register copies due to two-addressness.
672 /// This method returns a null pointer if the transformation cannot be
673 /// performed, otherwise it returns the new instruction.
675 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
676 MachineBasicBlock::iterator &MBBI,
677 LiveVariables *LV) const;
679 /// commuteInstruction - We have a few instructions that must be hacked on to
680 /// commute them.
682 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
684 // Branch analysis.
685 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
686 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
687 MachineBasicBlock *&FBB,
688 SmallVectorImpl<MachineOperand> &Cond,
689 bool AllowModify) const;
690 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
691 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
692 MachineBasicBlock *FBB,
693 const SmallVectorImpl<MachineOperand> &Cond,
694 DebugLoc DL) const;
695 virtual bool copyRegToReg(MachineBasicBlock &MBB,
696 MachineBasicBlock::iterator MI,
697 unsigned DestReg, unsigned SrcReg,
698 const TargetRegisterClass *DestRC,
699 const TargetRegisterClass *SrcRC,
700 DebugLoc DL) const;
701 virtual void copyPhysReg(MachineBasicBlock &MBB,
702 MachineBasicBlock::iterator MI, DebugLoc DL,
703 unsigned DestReg, unsigned SrcReg,
704 bool KillSrc) const;
705 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
706 MachineBasicBlock::iterator MI,
707 unsigned SrcReg, bool isKill, int FrameIndex,
708 const TargetRegisterClass *RC,
709 const TargetRegisterInfo *TRI) const;
711 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
712 SmallVectorImpl<MachineOperand> &Addr,
713 const TargetRegisterClass *RC,
714 MachineInstr::mmo_iterator MMOBegin,
715 MachineInstr::mmo_iterator MMOEnd,
716 SmallVectorImpl<MachineInstr*> &NewMIs) const;
718 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
719 MachineBasicBlock::iterator MI,
720 unsigned DestReg, int FrameIndex,
721 const TargetRegisterClass *RC,
722 const TargetRegisterInfo *TRI) const;
724 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
725 SmallVectorImpl<MachineOperand> &Addr,
726 const TargetRegisterClass *RC,
727 MachineInstr::mmo_iterator MMOBegin,
728 MachineInstr::mmo_iterator MMOEnd,
729 SmallVectorImpl<MachineInstr*> &NewMIs) const;
731 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
732 MachineBasicBlock::iterator MI,
733 const std::vector<CalleeSavedInfo> &CSI,
734 const TargetRegisterInfo *TRI) const;
736 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
737 MachineBasicBlock::iterator MI,
738 const std::vector<CalleeSavedInfo> &CSI,
739 const TargetRegisterInfo *TRI) const;
741 virtual
742 MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
743 int FrameIx, uint64_t Offset,
744 const MDNode *MDPtr,
745 DebugLoc DL) const;
747 /// foldMemoryOperand - If this target supports it, fold a load or store of
748 /// the specified stack slot into the specified machine instruction for the
749 /// specified operand(s). If this is possible, the target should perform the
750 /// folding and return true, otherwise it should return false. If it folds
751 /// the instruction, it is likely that the MachineInstruction the iterator
752 /// references has been changed.
753 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
754 MachineInstr* MI,
755 const SmallVectorImpl<unsigned> &Ops,
756 int FrameIndex) const;
758 /// foldMemoryOperand - Same as the previous version except it allows folding
759 /// of any load and store from / to any address, not just from a specific
760 /// stack slot.
761 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
762 MachineInstr* MI,
763 const SmallVectorImpl<unsigned> &Ops,
764 MachineInstr* LoadMI) const;
766 /// canFoldMemoryOperand - Returns true if the specified load / store is
767 /// folding is possible.
768 virtual bool canFoldMemoryOperand(const MachineInstr*,
769 const SmallVectorImpl<unsigned> &) const;
771 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
772 /// a store or a load and a store into two or more instruction. If this is
773 /// possible, returns true as well as the new instructions by reference.
774 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
775 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
776 SmallVectorImpl<MachineInstr*> &NewMIs) const;
778 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
779 SmallVectorImpl<SDNode*> &NewNodes) const;
781 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
782 /// instruction after load / store are unfolded from an instruction of the
783 /// specified opcode. It returns zero if the specified unfolding is not
784 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
785 /// index of the operand which will hold the register holding the loaded
786 /// value.
787 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
788 bool UnfoldLoad, bool UnfoldStore,
789 unsigned *LoadRegIndex = 0) const;
791 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
792 /// to determine if two loads are loading from the same base address. It
793 /// should only return true if the base pointers are the same and the
794 /// only differences between the two addresses are the offset. It also returns
795 /// the offsets by reference.
796 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
797 int64_t &Offset1, int64_t &Offset2) const;
799 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
800 /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
801 /// be scheduled togther. On some targets if two loads are loading from
802 /// addresses in the same cache line, it's better if they are scheduled
803 /// together. This function takes two integers that represent the load offsets
804 /// from the common base address. It returns true if it decides it's desirable
805 /// to schedule the two loads together. "NumLoads" is the number of loads that
806 /// have already been scheduled after Load1.
807 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
808 int64_t Offset1, int64_t Offset2,
809 unsigned NumLoads) const;
811 virtual void getNoopForMachoTarget(MCInst &NopInst) const;
813 virtual
814 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
816 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
817 /// instruction that defines the specified register class.
818 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
820 static bool isX86_64NonExtLowByteReg(unsigned reg) {
821 return (reg == X86::SPL || reg == X86::BPL ||
822 reg == X86::SIL || reg == X86::DIL);
825 static bool isX86_64ExtendedReg(const MachineOperand &MO) {
826 if (!MO.isReg()) return false;
827 return isX86_64ExtendedReg(MO.getReg());
829 static unsigned determineREX(const MachineInstr &MI);
831 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
832 /// higher) register? e.g. r8, xmm8, xmm13, etc.
833 static bool isX86_64ExtendedReg(unsigned RegNo);
835 /// GetInstSize - Returns the size of the specified MachineInstr.
837 virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
839 /// getGlobalBaseReg - Return a virtual register initialized with the
840 /// the global base register value. Output instructions required to
841 /// initialize the register in the function entry block, if necessary.
843 unsigned getGlobalBaseReg(MachineFunction *MF) const;
845 /// GetSSEDomain - Return the SSE execution domain of MI as the first element,
846 /// and a bitmask of possible arguments to SetSSEDomain ase the second.
847 std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const;
849 /// SetSSEDomain - Set the SSEDomain of MI.
850 void SetSSEDomain(MachineInstr *MI, unsigned Domain) const;
852 private:
853 MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
854 MachineFunction::iterator &MFI,
855 MachineBasicBlock::iterator &MBBI,
856 LiveVariables *LV) const;
858 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
859 MachineInstr* MI,
860 unsigned OpNum,
861 const SmallVectorImpl<MachineOperand> &MOs,
862 unsigned Size, unsigned Alignment) const;
864 /// isFrameOperand - Return true and the FrameIndex if the specified
865 /// operand and follow operands form a reference to the stack frame.
866 bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
867 int &FrameIndex) const;
870 } // End llvm namespace
872 #endif