Stop the JIT from refusing to work just because the program it was compiled into
[llvm.git] / include / llvm / Value.h
blob633063523fcd0ec6a158910f15e872e80a305012
1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the Value class.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_VALUE_H
15 #define LLVM_VALUE_H
17 #include "llvm/AbstractTypeUser.h"
18 #include "llvm/Use.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Support/Casting.h"
21 #include <string>
23 namespace llvm {
25 class Constant;
26 class Argument;
27 class Instruction;
28 class BasicBlock;
29 class GlobalValue;
30 class Function;
31 class GlobalVariable;
32 class GlobalAlias;
33 class InlineAsm;
34 class ValueSymbolTable;
35 class TypeSymbolTable;
36 template<typename ValueTy> class StringMapEntry;
37 template <typename ValueTy = Value>
38 class AssertingVH;
39 typedef StringMapEntry<Value*> ValueName;
40 class raw_ostream;
41 class AssemblyAnnotationWriter;
42 class ValueHandleBase;
43 class LLVMContext;
44 class Twine;
45 class MDNode;
47 //===----------------------------------------------------------------------===//
48 // Value Class
49 //===----------------------------------------------------------------------===//
51 /// This is a very important LLVM class. It is the base class of all values
52 /// computed by a program that may be used as operands to other values. Value is
53 /// the super class of other important classes such as Instruction and Function.
54 /// All Values have a Type. Type is not a subclass of Value. All types can have
55 /// a name and they should belong to some Module. Setting the name on the Value
56 /// automatically updates the module's symbol table.
57 ///
58 /// Every value has a "use list" that keeps track of which other Values are
59 /// using this Value. A Value can also have an arbitrary number of ValueHandle
60 /// objects that watch it and listen to RAUW and Destroy events. See
61 /// llvm/Support/ValueHandle.h for details.
62 ///
63 /// @brief LLVM Value Representation
64 class Value {
65 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
66 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
67 protected:
68 /// SubclassOptionalData - This member is similar to SubclassData, however it
69 /// is for holding information which may be used to aid optimization, but
70 /// which may be cleared to zero without affecting conservative
71 /// interpretation.
72 unsigned char SubclassOptionalData : 7;
74 private:
75 /// SubclassData - This member is defined by this class, but is not used for
76 /// anything. Subclasses can use it to hold whatever state they find useful.
77 /// This field is initialized to zero by the ctor.
78 unsigned short SubclassData;
80 PATypeHolder VTy;
81 Use *UseList;
83 friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
84 friend class ValueHandleBase;
85 friend class AbstractTypeUser;
86 ValueName *Name;
88 void operator=(const Value &); // Do not implement
89 Value(const Value &); // Do not implement
91 protected:
92 /// printCustom - Value subclasses can override this to implement custom
93 /// printing behavior.
94 virtual void printCustom(raw_ostream &O) const;
96 Value(const Type *Ty, unsigned scid);
97 public:
98 virtual ~Value();
100 /// dump - Support for debugging, callable in GDB: V->dump()
102 void dump() const;
104 /// print - Implement operator<< on Value.
106 void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const;
108 /// All values are typed, get the type of this value.
110 inline const Type *getType() const { return VTy; }
112 /// All values hold a context through their type.
113 LLVMContext &getContext() const;
115 // All values can potentially be named...
116 inline bool hasName() const { return Name != 0; }
117 ValueName *getValueName() const { return Name; }
119 /// getName() - Return a constant reference to the value's name. This is cheap
120 /// and guaranteed to return the same reference as long as the value is not
121 /// modified.
123 /// This is currently guaranteed to return a StringRef for which data() points
124 /// to a valid null terminated string. The use of StringRef.data() is
125 /// deprecated here, however, and clients should not rely on it. If such
126 /// behavior is needed, clients should use expensive getNameStr(), or switch
127 /// to an interface that does not depend on null termination.
128 StringRef getName() const;
130 /// getNameStr() - Return the name of the specified value, *constructing a
131 /// string* to hold it. This is guaranteed to construct a string and is very
132 /// expensive, clients should use getName() unless necessary.
133 std::string getNameStr() const;
135 /// setName() - Change the name of the value, choosing a new unique name if
136 /// the provided name is taken.
138 /// \arg Name - The new name; or "" if the value's name should be removed.
139 void setName(const Twine &Name);
142 /// takeName - transfer the name from V to this value, setting V's name to
143 /// empty. It is an error to call V->takeName(V).
144 void takeName(Value *V);
146 /// replaceAllUsesWith - Go through the uses list for this definition and make
147 /// each use point to "V" instead of "this". After this completes, 'this's
148 /// use list is guaranteed to be empty.
150 void replaceAllUsesWith(Value *V);
152 // uncheckedReplaceAllUsesWith - Just like replaceAllUsesWith but dangerous.
153 // Only use when in type resolution situations!
154 void uncheckedReplaceAllUsesWith(Value *V);
156 //----------------------------------------------------------------------
157 // Methods for handling the chain of uses of this Value.
159 typedef value_use_iterator<User> use_iterator;
160 typedef value_use_iterator<const User> const_use_iterator;
162 bool use_empty() const { return UseList == 0; }
163 use_iterator use_begin() { return use_iterator(UseList); }
164 const_use_iterator use_begin() const { return const_use_iterator(UseList); }
165 use_iterator use_end() { return use_iterator(0); }
166 const_use_iterator use_end() const { return const_use_iterator(0); }
167 User *use_back() { return *use_begin(); }
168 const User *use_back() const { return *use_begin(); }
170 /// hasOneUse - Return true if there is exactly one user of this value. This
171 /// is specialized because it is a common request and does not require
172 /// traversing the whole use list.
174 bool hasOneUse() const {
175 const_use_iterator I = use_begin(), E = use_end();
176 if (I == E) return false;
177 return ++I == E;
180 /// hasNUses - Return true if this Value has exactly N users.
182 bool hasNUses(unsigned N) const;
184 /// hasNUsesOrMore - Return true if this value has N users or more. This is
185 /// logically equivalent to getNumUses() >= N.
187 bool hasNUsesOrMore(unsigned N) const;
189 bool isUsedInBasicBlock(const BasicBlock *BB) const;
191 /// getNumUses - This method computes the number of uses of this Value. This
192 /// is a linear time operation. Use hasOneUse, hasNUses, or hasMoreThanNUses
193 /// to check for specific values.
194 unsigned getNumUses() const;
196 /// addUse - This method should only be used by the Use class.
198 void addUse(Use &U) { U.addToList(&UseList); }
200 /// An enumeration for keeping track of the concrete subclass of Value that
201 /// is actually instantiated. Values of this enumeration are kept in the
202 /// Value classes SubclassID field. They are used for concrete type
203 /// identification.
204 enum ValueTy {
205 ArgumentVal, // This is an instance of Argument
206 BasicBlockVal, // This is an instance of BasicBlock
207 FunctionVal, // This is an instance of Function
208 GlobalAliasVal, // This is an instance of GlobalAlias
209 GlobalVariableVal, // This is an instance of GlobalVariable
210 UndefValueVal, // This is an instance of UndefValue
211 BlockAddressVal, // This is an instance of BlockAddress
212 ConstantExprVal, // This is an instance of ConstantExpr
213 ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
214 ConstantIntVal, // This is an instance of ConstantInt
215 ConstantFPVal, // This is an instance of ConstantFP
216 ConstantArrayVal, // This is an instance of ConstantArray
217 ConstantStructVal, // This is an instance of ConstantStruct
218 ConstantUnionVal, // This is an instance of ConstantUnion
219 ConstantVectorVal, // This is an instance of ConstantVector
220 ConstantPointerNullVal, // This is an instance of ConstantPointerNull
221 MDNodeVal, // This is an instance of MDNode
222 MDStringVal, // This is an instance of MDString
223 InlineAsmVal, // This is an instance of InlineAsm
224 PseudoSourceValueVal, // This is an instance of PseudoSourceValue
225 FixedStackPseudoSourceValueVal, // This is an instance of
226 // FixedStackPseudoSourceValue
227 InstructionVal, // This is an instance of Instruction
228 // Enum values starting at InstructionVal are used for Instructions;
229 // don't add new values here!
231 // Markers:
232 ConstantFirstVal = FunctionVal,
233 ConstantLastVal = ConstantPointerNullVal
236 /// getValueID - Return an ID for the concrete type of this object. This is
237 /// used to implement the classof checks. This should not be used for any
238 /// other purpose, as the values may change as LLVM evolves. Also, note that
239 /// for instructions, the Instruction's opcode is added to InstructionVal. So
240 /// this means three things:
241 /// # there is no value with code InstructionVal (no opcode==0).
242 /// # there are more possible values for the value type than in ValueTy enum.
243 /// # the InstructionVal enumerator must be the highest valued enumerator in
244 /// the ValueTy enum.
245 unsigned getValueID() const {
246 return SubclassID;
249 /// getRawSubclassOptionalData - Return the raw optional flags value
250 /// contained in this value. This should only be used when testing two
251 /// Values for equivalence.
252 unsigned getRawSubclassOptionalData() const {
253 return SubclassOptionalData;
256 /// hasSameSubclassOptionalData - Test whether the optional flags contained
257 /// in this value are equal to the optional flags in the given value.
258 bool hasSameSubclassOptionalData(const Value *V) const {
259 return SubclassOptionalData == V->SubclassOptionalData;
262 /// intersectOptionalDataWith - Clear any optional flags in this value
263 /// that are not also set in the given value.
264 void intersectOptionalDataWith(const Value *V) {
265 SubclassOptionalData &= V->SubclassOptionalData;
268 /// hasValueHandle - Return true if there is a value handle associated with
269 /// this value.
270 bool hasValueHandle() const { return HasValueHandle; }
272 // Methods for support type inquiry through isa, cast, and dyn_cast:
273 static inline bool classof(const Value *) {
274 return true; // Values are always values.
277 /// getRawType - This should only be used to implement the vmcore library.
279 const Type *getRawType() const { return VTy.getRawType(); }
281 /// stripPointerCasts - This method strips off any unneeded pointer
282 /// casts from the specified value, returning the original uncasted value.
283 /// Note that the returned value has pointer type if the specified value does.
284 Value *stripPointerCasts();
285 const Value *stripPointerCasts() const {
286 return const_cast<Value*>(this)->stripPointerCasts();
289 /// getUnderlyingObject - This method strips off any GEP address adjustments
290 /// and pointer casts from the specified value, returning the original object
291 /// being addressed. Note that the returned value has pointer type if the
292 /// specified value does. If the MaxLookup value is non-zero, it limits the
293 /// number of instructions to be stripped off.
294 Value *getUnderlyingObject(unsigned MaxLookup = 6);
295 const Value *getUnderlyingObject(unsigned MaxLookup = 6) const {
296 return const_cast<Value*>(this)->getUnderlyingObject(MaxLookup);
299 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
300 /// return the value in the PHI node corresponding to PredBB. If not, return
301 /// ourself. This is useful if you want to know the value something has in a
302 /// predecessor block.
303 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
305 const Value *DoPHITranslation(const BasicBlock *CurBB,
306 const BasicBlock *PredBB) const{
307 return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
310 /// MaximumAlignment - This is the greatest alignment value supported by
311 /// load, store, and alloca instructions, and global values.
312 static const unsigned MaximumAlignment = 1u << 29;
314 protected:
315 unsigned short getSubclassDataFromValue() const { return SubclassData; }
316 void setValueSubclassData(unsigned short D) { SubclassData = D; }
319 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
320 V.print(OS);
321 return OS;
324 void Use::set(Value *V) {
325 if (Val) removeFromList();
326 Val = V;
327 if (V) V->addUse(*this);
331 // isa - Provide some specializations of isa so that we don't have to include
332 // the subtype header files to test to see if the value is a subclass...
334 template <> struct isa_impl<Constant, Value> {
335 static inline bool doit(const Value &Val) {
336 return Val.getValueID() >= Value::ConstantFirstVal &&
337 Val.getValueID() <= Value::ConstantLastVal;
341 template <> struct isa_impl<Argument, Value> {
342 static inline bool doit (const Value &Val) {
343 return Val.getValueID() == Value::ArgumentVal;
347 template <> struct isa_impl<InlineAsm, Value> {
348 static inline bool doit(const Value &Val) {
349 return Val.getValueID() == Value::InlineAsmVal;
353 template <> struct isa_impl<Instruction, Value> {
354 static inline bool doit(const Value &Val) {
355 return Val.getValueID() >= Value::InstructionVal;
359 template <> struct isa_impl<BasicBlock, Value> {
360 static inline bool doit(const Value &Val) {
361 return Val.getValueID() == Value::BasicBlockVal;
365 template <> struct isa_impl<Function, Value> {
366 static inline bool doit(const Value &Val) {
367 return Val.getValueID() == Value::FunctionVal;
371 template <> struct isa_impl<GlobalVariable, Value> {
372 static inline bool doit(const Value &Val) {
373 return Val.getValueID() == Value::GlobalVariableVal;
377 template <> struct isa_impl<GlobalAlias, Value> {
378 static inline bool doit(const Value &Val) {
379 return Val.getValueID() == Value::GlobalAliasVal;
383 template <> struct isa_impl<GlobalValue, Value> {
384 static inline bool doit(const Value &Val) {
385 return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
386 isa<GlobalAlias>(Val);
390 template <> struct isa_impl<MDNode, Value> {
391 static inline bool doit(const Value &Val) {
392 return Val.getValueID() == Value::MDNodeVal;
396 // Value* is only 4-byte aligned.
397 template<>
398 class PointerLikeTypeTraits<Value*> {
399 typedef Value* PT;
400 public:
401 static inline void *getAsVoidPointer(PT P) { return P; }
402 static inline PT getFromVoidPointer(void *P) {
403 return static_cast<PT>(P);
405 enum { NumLowBitsAvailable = 2 };
408 } // End llvm namespace
410 #endif