Similarly, analyze truncate through multiply.
[llvm.git] / lib / Analysis / ScalarEvolution.cpp
blob424f74427be48949250f36ad6711b0e7f5d9d4c2
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression. These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
38 //===----------------------------------------------------------------------===//
40 // There are several good references for the techniques used in this analysis.
42 // Chains of recurrences -- a method to expedite the evaluation
43 // of closed-form functions
44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46 // On computational properties of chains of recurrences
47 // Eugene V. Zima
49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 // Robert A. van Engelen
52 // Efficient Symbolic Analysis for Optimizing Compilers
53 // Robert A. van Engelen
55 // Using the chains of recurrences algebra for data dependence testing and
56 // induction variable substitution
57 // MS Thesis, Johnie Birch
59 //===----------------------------------------------------------------------===//
61 #define DEBUG_TYPE "scalar-evolution"
62 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
63 #include "llvm/Constants.h"
64 #include "llvm/DerivedTypes.h"
65 #include "llvm/GlobalVariable.h"
66 #include "llvm/GlobalAlias.h"
67 #include "llvm/Instructions.h"
68 #include "llvm/LLVMContext.h"
69 #include "llvm/Operator.h"
70 #include "llvm/Analysis/ConstantFolding.h"
71 #include "llvm/Analysis/Dominators.h"
72 #include "llvm/Analysis/InstructionSimplify.h"
73 #include "llvm/Analysis/LoopInfo.h"
74 #include "llvm/Analysis/ValueTracking.h"
75 #include "llvm/Assembly/Writer.h"
76 #include "llvm/Target/TargetData.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/ConstantRange.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/GetElementPtrTypeIterator.h"
82 #include "llvm/Support/InstIterator.h"
83 #include "llvm/Support/MathExtras.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/ADT/Statistic.h"
86 #include "llvm/ADT/STLExtras.h"
87 #include "llvm/ADT/SmallPtrSet.h"
88 #include <algorithm>
89 using namespace llvm;
91 STATISTIC(NumArrayLenItCounts,
92 "Number of trip counts computed with array length");
93 STATISTIC(NumTripCountsComputed,
94 "Number of loops with predictable loop counts");
95 STATISTIC(NumTripCountsNotComputed,
96 "Number of loops without predictable loop counts");
97 STATISTIC(NumBruteForceTripCountsComputed,
98 "Number of loops with trip counts computed by force");
100 static cl::opt<unsigned>
101 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
102 cl::desc("Maximum number of iterations SCEV will "
103 "symbolically execute a constant "
104 "derived loop"),
105 cl::init(100));
107 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
108 "Scalar Evolution Analysis", false, true)
109 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
110 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
111 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
112 "Scalar Evolution Analysis", false, true)
113 char ScalarEvolution::ID = 0;
115 //===----------------------------------------------------------------------===//
116 // SCEV class definitions
117 //===----------------------------------------------------------------------===//
119 //===----------------------------------------------------------------------===//
120 // Implementation of the SCEV class.
123 void SCEV::dump() const {
124 print(dbgs());
125 dbgs() << '\n';
128 void SCEV::print(raw_ostream &OS) const {
129 switch (getSCEVType()) {
130 case scConstant:
131 WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
132 return;
133 case scTruncate: {
134 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
135 const SCEV *Op = Trunc->getOperand();
136 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
137 << *Trunc->getType() << ")";
138 return;
140 case scZeroExtend: {
141 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
142 const SCEV *Op = ZExt->getOperand();
143 OS << "(zext " << *Op->getType() << " " << *Op << " to "
144 << *ZExt->getType() << ")";
145 return;
147 case scSignExtend: {
148 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
149 const SCEV *Op = SExt->getOperand();
150 OS << "(sext " << *Op->getType() << " " << *Op << " to "
151 << *SExt->getType() << ")";
152 return;
154 case scAddRecExpr: {
155 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
156 OS << "{" << *AR->getOperand(0);
157 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
158 OS << ",+," << *AR->getOperand(i);
159 OS << "}<";
160 if (AR->hasNoUnsignedWrap())
161 OS << "nuw><";
162 if (AR->hasNoSignedWrap())
163 OS << "nsw><";
164 WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
165 OS << ">";
166 return;
168 case scAddExpr:
169 case scMulExpr:
170 case scUMaxExpr:
171 case scSMaxExpr: {
172 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
173 const char *OpStr = 0;
174 switch (NAry->getSCEVType()) {
175 case scAddExpr: OpStr = " + "; break;
176 case scMulExpr: OpStr = " * "; break;
177 case scUMaxExpr: OpStr = " umax "; break;
178 case scSMaxExpr: OpStr = " smax "; break;
180 OS << "(";
181 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
182 I != E; ++I) {
183 OS << **I;
184 if (llvm::next(I) != E)
185 OS << OpStr;
187 OS << ")";
188 return;
190 case scUDivExpr: {
191 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
192 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
193 return;
195 case scUnknown: {
196 const SCEVUnknown *U = cast<SCEVUnknown>(this);
197 const Type *AllocTy;
198 if (U->isSizeOf(AllocTy)) {
199 OS << "sizeof(" << *AllocTy << ")";
200 return;
202 if (U->isAlignOf(AllocTy)) {
203 OS << "alignof(" << *AllocTy << ")";
204 return;
207 const Type *CTy;
208 Constant *FieldNo;
209 if (U->isOffsetOf(CTy, FieldNo)) {
210 OS << "offsetof(" << *CTy << ", ";
211 WriteAsOperand(OS, FieldNo, false);
212 OS << ")";
213 return;
216 // Otherwise just print it normally.
217 WriteAsOperand(OS, U->getValue(), false);
218 return;
220 case scCouldNotCompute:
221 OS << "***COULDNOTCOMPUTE***";
222 return;
223 default: break;
225 llvm_unreachable("Unknown SCEV kind!");
228 const Type *SCEV::getType() const {
229 switch (getSCEVType()) {
230 case scConstant:
231 return cast<SCEVConstant>(this)->getType();
232 case scTruncate:
233 case scZeroExtend:
234 case scSignExtend:
235 return cast<SCEVCastExpr>(this)->getType();
236 case scAddRecExpr:
237 case scMulExpr:
238 case scUMaxExpr:
239 case scSMaxExpr:
240 return cast<SCEVNAryExpr>(this)->getType();
241 case scAddExpr:
242 return cast<SCEVAddExpr>(this)->getType();
243 case scUDivExpr:
244 return cast<SCEVUDivExpr>(this)->getType();
245 case scUnknown:
246 return cast<SCEVUnknown>(this)->getType();
247 case scCouldNotCompute:
248 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
249 return 0;
250 default: break;
252 llvm_unreachable("Unknown SCEV kind!");
253 return 0;
256 bool SCEV::isZero() const {
257 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
258 return SC->getValue()->isZero();
259 return false;
262 bool SCEV::isOne() const {
263 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
264 return SC->getValue()->isOne();
265 return false;
268 bool SCEV::isAllOnesValue() const {
269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
270 return SC->getValue()->isAllOnesValue();
271 return false;
274 SCEVCouldNotCompute::SCEVCouldNotCompute() :
275 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
277 bool SCEVCouldNotCompute::classof(const SCEV *S) {
278 return S->getSCEVType() == scCouldNotCompute;
281 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
282 FoldingSetNodeID ID;
283 ID.AddInteger(scConstant);
284 ID.AddPointer(V);
285 void *IP = 0;
286 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
287 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
288 UniqueSCEVs.InsertNode(S, IP);
289 return S;
292 const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
293 return getConstant(ConstantInt::get(getContext(), Val));
296 const SCEV *
297 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
298 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
299 return getConstant(ConstantInt::get(ITy, V, isSigned));
302 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
303 unsigned SCEVTy, const SCEV *op, const Type *ty)
304 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
306 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
307 const SCEV *op, const Type *ty)
308 : SCEVCastExpr(ID, scTruncate, op, ty) {
309 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
310 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
311 "Cannot truncate non-integer value!");
314 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
315 const SCEV *op, const Type *ty)
316 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
317 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
318 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
319 "Cannot zero extend non-integer value!");
322 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
323 const SCEV *op, const Type *ty)
324 : SCEVCastExpr(ID, scSignExtend, op, ty) {
325 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
326 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
327 "Cannot sign extend non-integer value!");
330 void SCEVUnknown::deleted() {
331 // Clear this SCEVUnknown from various maps.
332 SE->forgetMemoizedResults(this);
334 // Remove this SCEVUnknown from the uniquing map.
335 SE->UniqueSCEVs.RemoveNode(this);
337 // Release the value.
338 setValPtr(0);
341 void SCEVUnknown::allUsesReplacedWith(Value *New) {
342 // Clear this SCEVUnknown from various maps.
343 SE->forgetMemoizedResults(this);
345 // Remove this SCEVUnknown from the uniquing map.
346 SE->UniqueSCEVs.RemoveNode(this);
348 // Update this SCEVUnknown to point to the new value. This is needed
349 // because there may still be outstanding SCEVs which still point to
350 // this SCEVUnknown.
351 setValPtr(New);
354 bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
355 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
356 if (VCE->getOpcode() == Instruction::PtrToInt)
357 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
358 if (CE->getOpcode() == Instruction::GetElementPtr &&
359 CE->getOperand(0)->isNullValue() &&
360 CE->getNumOperands() == 2)
361 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
362 if (CI->isOne()) {
363 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
364 ->getElementType();
365 return true;
368 return false;
371 bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
372 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
373 if (VCE->getOpcode() == Instruction::PtrToInt)
374 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
375 if (CE->getOpcode() == Instruction::GetElementPtr &&
376 CE->getOperand(0)->isNullValue()) {
377 const Type *Ty =
378 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
379 if (const StructType *STy = dyn_cast<StructType>(Ty))
380 if (!STy->isPacked() &&
381 CE->getNumOperands() == 3 &&
382 CE->getOperand(1)->isNullValue()) {
383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
384 if (CI->isOne() &&
385 STy->getNumElements() == 2 &&
386 STy->getElementType(0)->isIntegerTy(1)) {
387 AllocTy = STy->getElementType(1);
388 return true;
393 return false;
396 bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
397 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
398 if (VCE->getOpcode() == Instruction::PtrToInt)
399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
400 if (CE->getOpcode() == Instruction::GetElementPtr &&
401 CE->getNumOperands() == 3 &&
402 CE->getOperand(0)->isNullValue() &&
403 CE->getOperand(1)->isNullValue()) {
404 const Type *Ty =
405 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406 // Ignore vector types here so that ScalarEvolutionExpander doesn't
407 // emit getelementptrs that index into vectors.
408 if (Ty->isStructTy() || Ty->isArrayTy()) {
409 CTy = Ty;
410 FieldNo = CE->getOperand(2);
411 return true;
415 return false;
418 //===----------------------------------------------------------------------===//
419 // SCEV Utilities
420 //===----------------------------------------------------------------------===//
422 namespace {
423 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
424 /// than the complexity of the RHS. This comparator is used to canonicalize
425 /// expressions.
426 class SCEVComplexityCompare {
427 const LoopInfo *const LI;
428 public:
429 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
431 // Return true or false if LHS is less than, or at least RHS, respectively.
432 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
433 return compare(LHS, RHS) < 0;
436 // Return negative, zero, or positive, if LHS is less than, equal to, or
437 // greater than RHS, respectively. A three-way result allows recursive
438 // comparisons to be more efficient.
439 int compare(const SCEV *LHS, const SCEV *RHS) const {
440 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
441 if (LHS == RHS)
442 return 0;
444 // Primarily, sort the SCEVs by their getSCEVType().
445 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
446 if (LType != RType)
447 return (int)LType - (int)RType;
449 // Aside from the getSCEVType() ordering, the particular ordering
450 // isn't very important except that it's beneficial to be consistent,
451 // so that (a + b) and (b + a) don't end up as different expressions.
452 switch (LType) {
453 case scUnknown: {
454 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
455 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
457 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
458 // not as complete as it could be.
459 const Value *LV = LU->getValue(), *RV = RU->getValue();
461 // Order pointer values after integer values. This helps SCEVExpander
462 // form GEPs.
463 bool LIsPointer = LV->getType()->isPointerTy(),
464 RIsPointer = RV->getType()->isPointerTy();
465 if (LIsPointer != RIsPointer)
466 return (int)LIsPointer - (int)RIsPointer;
468 // Compare getValueID values.
469 unsigned LID = LV->getValueID(),
470 RID = RV->getValueID();
471 if (LID != RID)
472 return (int)LID - (int)RID;
474 // Sort arguments by their position.
475 if (const Argument *LA = dyn_cast<Argument>(LV)) {
476 const Argument *RA = cast<Argument>(RV);
477 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
478 return (int)LArgNo - (int)RArgNo;
481 // For instructions, compare their loop depth, and their operand
482 // count. This is pretty loose.
483 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
484 const Instruction *RInst = cast<Instruction>(RV);
486 // Compare loop depths.
487 const BasicBlock *LParent = LInst->getParent(),
488 *RParent = RInst->getParent();
489 if (LParent != RParent) {
490 unsigned LDepth = LI->getLoopDepth(LParent),
491 RDepth = LI->getLoopDepth(RParent);
492 if (LDepth != RDepth)
493 return (int)LDepth - (int)RDepth;
496 // Compare the number of operands.
497 unsigned LNumOps = LInst->getNumOperands(),
498 RNumOps = RInst->getNumOperands();
499 return (int)LNumOps - (int)RNumOps;
502 return 0;
505 case scConstant: {
506 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
507 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
509 // Compare constant values.
510 const APInt &LA = LC->getValue()->getValue();
511 const APInt &RA = RC->getValue()->getValue();
512 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
513 if (LBitWidth != RBitWidth)
514 return (int)LBitWidth - (int)RBitWidth;
515 return LA.ult(RA) ? -1 : 1;
518 case scAddRecExpr: {
519 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
520 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
522 // Compare addrec loop depths.
523 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
524 if (LLoop != RLoop) {
525 unsigned LDepth = LLoop->getLoopDepth(),
526 RDepth = RLoop->getLoopDepth();
527 if (LDepth != RDepth)
528 return (int)LDepth - (int)RDepth;
531 // Addrec complexity grows with operand count.
532 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
533 if (LNumOps != RNumOps)
534 return (int)LNumOps - (int)RNumOps;
536 // Lexicographically compare.
537 for (unsigned i = 0; i != LNumOps; ++i) {
538 long X = compare(LA->getOperand(i), RA->getOperand(i));
539 if (X != 0)
540 return X;
543 return 0;
546 case scAddExpr:
547 case scMulExpr:
548 case scSMaxExpr:
549 case scUMaxExpr: {
550 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
551 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
553 // Lexicographically compare n-ary expressions.
554 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
555 for (unsigned i = 0; i != LNumOps; ++i) {
556 if (i >= RNumOps)
557 return 1;
558 long X = compare(LC->getOperand(i), RC->getOperand(i));
559 if (X != 0)
560 return X;
562 return (int)LNumOps - (int)RNumOps;
565 case scUDivExpr: {
566 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
567 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
569 // Lexicographically compare udiv expressions.
570 long X = compare(LC->getLHS(), RC->getLHS());
571 if (X != 0)
572 return X;
573 return compare(LC->getRHS(), RC->getRHS());
576 case scTruncate:
577 case scZeroExtend:
578 case scSignExtend: {
579 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
580 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
582 // Compare cast expressions by operand.
583 return compare(LC->getOperand(), RC->getOperand());
586 default:
587 break;
590 llvm_unreachable("Unknown SCEV kind!");
591 return 0;
596 /// GroupByComplexity - Given a list of SCEV objects, order them by their
597 /// complexity, and group objects of the same complexity together by value.
598 /// When this routine is finished, we know that any duplicates in the vector are
599 /// consecutive and that complexity is monotonically increasing.
601 /// Note that we go take special precautions to ensure that we get deterministic
602 /// results from this routine. In other words, we don't want the results of
603 /// this to depend on where the addresses of various SCEV objects happened to
604 /// land in memory.
606 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
607 LoopInfo *LI) {
608 if (Ops.size() < 2) return; // Noop
609 if (Ops.size() == 2) {
610 // This is the common case, which also happens to be trivially simple.
611 // Special case it.
612 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
613 if (SCEVComplexityCompare(LI)(RHS, LHS))
614 std::swap(LHS, RHS);
615 return;
618 // Do the rough sort by complexity.
619 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
621 // Now that we are sorted by complexity, group elements of the same
622 // complexity. Note that this is, at worst, N^2, but the vector is likely to
623 // be extremely short in practice. Note that we take this approach because we
624 // do not want to depend on the addresses of the objects we are grouping.
625 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
626 const SCEV *S = Ops[i];
627 unsigned Complexity = S->getSCEVType();
629 // If there are any objects of the same complexity and same value as this
630 // one, group them.
631 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
632 if (Ops[j] == S) { // Found a duplicate.
633 // Move it to immediately after i'th element.
634 std::swap(Ops[i+1], Ops[j]);
635 ++i; // no need to rescan it.
636 if (i == e-2) return; // Done!
644 //===----------------------------------------------------------------------===//
645 // Simple SCEV method implementations
646 //===----------------------------------------------------------------------===//
648 /// BinomialCoefficient - Compute BC(It, K). The result has width W.
649 /// Assume, K > 0.
650 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
651 ScalarEvolution &SE,
652 const Type* ResultTy) {
653 // Handle the simplest case efficiently.
654 if (K == 1)
655 return SE.getTruncateOrZeroExtend(It, ResultTy);
657 // We are using the following formula for BC(It, K):
659 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
661 // Suppose, W is the bitwidth of the return value. We must be prepared for
662 // overflow. Hence, we must assure that the result of our computation is
663 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
664 // safe in modular arithmetic.
666 // However, this code doesn't use exactly that formula; the formula it uses
667 // is something like the following, where T is the number of factors of 2 in
668 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
669 // exponentiation:
671 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
673 // This formula is trivially equivalent to the previous formula. However,
674 // this formula can be implemented much more efficiently. The trick is that
675 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
676 // arithmetic. To do exact division in modular arithmetic, all we have
677 // to do is multiply by the inverse. Therefore, this step can be done at
678 // width W.
680 // The next issue is how to safely do the division by 2^T. The way this
681 // is done is by doing the multiplication step at a width of at least W + T
682 // bits. This way, the bottom W+T bits of the product are accurate. Then,
683 // when we perform the division by 2^T (which is equivalent to a right shift
684 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
685 // truncated out after the division by 2^T.
687 // In comparison to just directly using the first formula, this technique
688 // is much more efficient; using the first formula requires W * K bits,
689 // but this formula less than W + K bits. Also, the first formula requires
690 // a division step, whereas this formula only requires multiplies and shifts.
692 // It doesn't matter whether the subtraction step is done in the calculation
693 // width or the input iteration count's width; if the subtraction overflows,
694 // the result must be zero anyway. We prefer here to do it in the width of
695 // the induction variable because it helps a lot for certain cases; CodeGen
696 // isn't smart enough to ignore the overflow, which leads to much less
697 // efficient code if the width of the subtraction is wider than the native
698 // register width.
700 // (It's possible to not widen at all by pulling out factors of 2 before
701 // the multiplication; for example, K=2 can be calculated as
702 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
703 // extra arithmetic, so it's not an obvious win, and it gets
704 // much more complicated for K > 3.)
706 // Protection from insane SCEVs; this bound is conservative,
707 // but it probably doesn't matter.
708 if (K > 1000)
709 return SE.getCouldNotCompute();
711 unsigned W = SE.getTypeSizeInBits(ResultTy);
713 // Calculate K! / 2^T and T; we divide out the factors of two before
714 // multiplying for calculating K! / 2^T to avoid overflow.
715 // Other overflow doesn't matter because we only care about the bottom
716 // W bits of the result.
717 APInt OddFactorial(W, 1);
718 unsigned T = 1;
719 for (unsigned i = 3; i <= K; ++i) {
720 APInt Mult(W, i);
721 unsigned TwoFactors = Mult.countTrailingZeros();
722 T += TwoFactors;
723 Mult = Mult.lshr(TwoFactors);
724 OddFactorial *= Mult;
727 // We need at least W + T bits for the multiplication step
728 unsigned CalculationBits = W + T;
730 // Calculate 2^T, at width T+W.
731 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
733 // Calculate the multiplicative inverse of K! / 2^T;
734 // this multiplication factor will perform the exact division by
735 // K! / 2^T.
736 APInt Mod = APInt::getSignedMinValue(W+1);
737 APInt MultiplyFactor = OddFactorial.zext(W+1);
738 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
739 MultiplyFactor = MultiplyFactor.trunc(W);
741 // Calculate the product, at width T+W
742 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
743 CalculationBits);
744 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
745 for (unsigned i = 1; i != K; ++i) {
746 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
747 Dividend = SE.getMulExpr(Dividend,
748 SE.getTruncateOrZeroExtend(S, CalculationTy));
751 // Divide by 2^T
752 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
754 // Truncate the result, and divide by K! / 2^T.
756 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
757 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
760 /// evaluateAtIteration - Return the value of this chain of recurrences at
761 /// the specified iteration number. We can evaluate this recurrence by
762 /// multiplying each element in the chain by the binomial coefficient
763 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
765 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
767 /// where BC(It, k) stands for binomial coefficient.
769 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
770 ScalarEvolution &SE) const {
771 const SCEV *Result = getStart();
772 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
773 // The computation is correct in the face of overflow provided that the
774 // multiplication is performed _after_ the evaluation of the binomial
775 // coefficient.
776 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
777 if (isa<SCEVCouldNotCompute>(Coeff))
778 return Coeff;
780 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
782 return Result;
785 //===----------------------------------------------------------------------===//
786 // SCEV Expression folder implementations
787 //===----------------------------------------------------------------------===//
789 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
790 const Type *Ty) {
791 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
792 "This is not a truncating conversion!");
793 assert(isSCEVable(Ty) &&
794 "This is not a conversion to a SCEVable type!");
795 Ty = getEffectiveSCEVType(Ty);
797 FoldingSetNodeID ID;
798 ID.AddInteger(scTruncate);
799 ID.AddPointer(Op);
800 ID.AddPointer(Ty);
801 void *IP = 0;
802 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
804 // Fold if the operand is constant.
805 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
806 return getConstant(
807 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
808 getEffectiveSCEVType(Ty))));
810 // trunc(trunc(x)) --> trunc(x)
811 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
812 return getTruncateExpr(ST->getOperand(), Ty);
814 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
815 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
816 return getTruncateOrSignExtend(SS->getOperand(), Ty);
818 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
819 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
820 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
822 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
823 // eliminate all the truncates.
824 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
825 SmallVector<const SCEV *, 4> Operands;
826 bool hasTrunc = false;
827 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
828 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
829 hasTrunc = isa<SCEVTruncateExpr>(S);
830 Operands.push_back(S);
832 if (!hasTrunc)
833 return getAddExpr(Operands, false, false);
836 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
837 // eliminate all the truncates.
838 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
839 SmallVector<const SCEV *, 4> Operands;
840 bool hasTrunc = false;
841 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
842 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
843 hasTrunc = isa<SCEVTruncateExpr>(S);
844 Operands.push_back(S);
846 if (!hasTrunc)
847 return getMulExpr(Operands, false, false);
850 // If the input value is a chrec scev, truncate the chrec's operands.
851 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
852 SmallVector<const SCEV *, 4> Operands;
853 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
854 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
855 return getAddRecExpr(Operands, AddRec->getLoop());
858 // As a special case, fold trunc(undef) to undef. We don't want to
859 // know too much about SCEVUnknowns, but this special case is handy
860 // and harmless.
861 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
862 if (isa<UndefValue>(U->getValue()))
863 return getSCEV(UndefValue::get(Ty));
865 // The cast wasn't folded; create an explicit cast node. We can reuse
866 // the existing insert position since if we get here, we won't have
867 // made any changes which would invalidate it.
868 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
869 Op, Ty);
870 UniqueSCEVs.InsertNode(S, IP);
871 return S;
874 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
875 const Type *Ty) {
876 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
877 "This is not an extending conversion!");
878 assert(isSCEVable(Ty) &&
879 "This is not a conversion to a SCEVable type!");
880 Ty = getEffectiveSCEVType(Ty);
882 // Fold if the operand is constant.
883 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
884 return getConstant(
885 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
886 getEffectiveSCEVType(Ty))));
888 // zext(zext(x)) --> zext(x)
889 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
890 return getZeroExtendExpr(SZ->getOperand(), Ty);
892 // Before doing any expensive analysis, check to see if we've already
893 // computed a SCEV for this Op and Ty.
894 FoldingSetNodeID ID;
895 ID.AddInteger(scZeroExtend);
896 ID.AddPointer(Op);
897 ID.AddPointer(Ty);
898 void *IP = 0;
899 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
901 // If the input value is a chrec scev, and we can prove that the value
902 // did not overflow the old, smaller, value, we can zero extend all of the
903 // operands (often constants). This allows analysis of something like
904 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
905 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
906 if (AR->isAffine()) {
907 const SCEV *Start = AR->getStart();
908 const SCEV *Step = AR->getStepRecurrence(*this);
909 unsigned BitWidth = getTypeSizeInBits(AR->getType());
910 const Loop *L = AR->getLoop();
912 // If we have special knowledge that this addrec won't overflow,
913 // we don't need to do any further analysis.
914 if (AR->hasNoUnsignedWrap())
915 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
916 getZeroExtendExpr(Step, Ty),
919 // Check whether the backedge-taken count is SCEVCouldNotCompute.
920 // Note that this serves two purposes: It filters out loops that are
921 // simply not analyzable, and it covers the case where this code is
922 // being called from within backedge-taken count analysis, such that
923 // attempting to ask for the backedge-taken count would likely result
924 // in infinite recursion. In the later case, the analysis code will
925 // cope with a conservative value, and it will take care to purge
926 // that value once it has finished.
927 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
928 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
929 // Manually compute the final value for AR, checking for
930 // overflow.
932 // Check whether the backedge-taken count can be losslessly casted to
933 // the addrec's type. The count is always unsigned.
934 const SCEV *CastedMaxBECount =
935 getTruncateOrZeroExtend(MaxBECount, Start->getType());
936 const SCEV *RecastedMaxBECount =
937 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
938 if (MaxBECount == RecastedMaxBECount) {
939 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
940 // Check whether Start+Step*MaxBECount has no unsigned overflow.
941 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
942 const SCEV *Add = getAddExpr(Start, ZMul);
943 const SCEV *OperandExtendedAdd =
944 getAddExpr(getZeroExtendExpr(Start, WideTy),
945 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
946 getZeroExtendExpr(Step, WideTy)));
947 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
948 // Return the expression with the addrec on the outside.
949 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
950 getZeroExtendExpr(Step, Ty),
953 // Similar to above, only this time treat the step value as signed.
954 // This covers loops that count down.
955 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
956 Add = getAddExpr(Start, SMul);
957 OperandExtendedAdd =
958 getAddExpr(getZeroExtendExpr(Start, WideTy),
959 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
960 getSignExtendExpr(Step, WideTy)));
961 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
962 // Return the expression with the addrec on the outside.
963 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
964 getSignExtendExpr(Step, Ty),
968 // If the backedge is guarded by a comparison with the pre-inc value
969 // the addrec is safe. Also, if the entry is guarded by a comparison
970 // with the start value and the backedge is guarded by a comparison
971 // with the post-inc value, the addrec is safe.
972 if (isKnownPositive(Step)) {
973 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
974 getUnsignedRange(Step).getUnsignedMax());
975 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
976 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
977 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
978 AR->getPostIncExpr(*this), N)))
979 // Return the expression with the addrec on the outside.
980 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
981 getZeroExtendExpr(Step, Ty),
983 } else if (isKnownNegative(Step)) {
984 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
985 getSignedRange(Step).getSignedMin());
986 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
987 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
988 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
989 AR->getPostIncExpr(*this), N)))
990 // Return the expression with the addrec on the outside.
991 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
992 getSignExtendExpr(Step, Ty),
998 // The cast wasn't folded; create an explicit cast node.
999 // Recompute the insert position, as it may have been invalidated.
1000 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1001 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1002 Op, Ty);
1003 UniqueSCEVs.InsertNode(S, IP);
1004 return S;
1007 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1008 const Type *Ty) {
1009 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1010 "This is not an extending conversion!");
1011 assert(isSCEVable(Ty) &&
1012 "This is not a conversion to a SCEVable type!");
1013 Ty = getEffectiveSCEVType(Ty);
1015 // Fold if the operand is constant.
1016 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1017 return getConstant(
1018 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1019 getEffectiveSCEVType(Ty))));
1021 // sext(sext(x)) --> sext(x)
1022 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1023 return getSignExtendExpr(SS->getOperand(), Ty);
1025 // sext(zext(x)) --> zext(x)
1026 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1027 return getZeroExtendExpr(SZ->getOperand(), Ty);
1029 // Before doing any expensive analysis, check to see if we've already
1030 // computed a SCEV for this Op and Ty.
1031 FoldingSetNodeID ID;
1032 ID.AddInteger(scSignExtend);
1033 ID.AddPointer(Op);
1034 ID.AddPointer(Ty);
1035 void *IP = 0;
1036 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1038 // If the input value is a chrec scev, and we can prove that the value
1039 // did not overflow the old, smaller, value, we can sign extend all of the
1040 // operands (often constants). This allows analysis of something like
1041 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1042 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1043 if (AR->isAffine()) {
1044 const SCEV *Start = AR->getStart();
1045 const SCEV *Step = AR->getStepRecurrence(*this);
1046 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1047 const Loop *L = AR->getLoop();
1049 // If we have special knowledge that this addrec won't overflow,
1050 // we don't need to do any further analysis.
1051 if (AR->hasNoSignedWrap())
1052 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1053 getSignExtendExpr(Step, Ty),
1056 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1057 // Note that this serves two purposes: It filters out loops that are
1058 // simply not analyzable, and it covers the case where this code is
1059 // being called from within backedge-taken count analysis, such that
1060 // attempting to ask for the backedge-taken count would likely result
1061 // in infinite recursion. In the later case, the analysis code will
1062 // cope with a conservative value, and it will take care to purge
1063 // that value once it has finished.
1064 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1065 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1066 // Manually compute the final value for AR, checking for
1067 // overflow.
1069 // Check whether the backedge-taken count can be losslessly casted to
1070 // the addrec's type. The count is always unsigned.
1071 const SCEV *CastedMaxBECount =
1072 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1073 const SCEV *RecastedMaxBECount =
1074 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1075 if (MaxBECount == RecastedMaxBECount) {
1076 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1077 // Check whether Start+Step*MaxBECount has no signed overflow.
1078 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1079 const SCEV *Add = getAddExpr(Start, SMul);
1080 const SCEV *OperandExtendedAdd =
1081 getAddExpr(getSignExtendExpr(Start, WideTy),
1082 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1083 getSignExtendExpr(Step, WideTy)));
1084 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1085 // Return the expression with the addrec on the outside.
1086 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1087 getSignExtendExpr(Step, Ty),
1090 // Similar to above, only this time treat the step value as unsigned.
1091 // This covers loops that count up with an unsigned step.
1092 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
1093 Add = getAddExpr(Start, UMul);
1094 OperandExtendedAdd =
1095 getAddExpr(getSignExtendExpr(Start, WideTy),
1096 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1097 getZeroExtendExpr(Step, WideTy)));
1098 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
1099 // Return the expression with the addrec on the outside.
1100 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1101 getZeroExtendExpr(Step, Ty),
1105 // If the backedge is guarded by a comparison with the pre-inc value
1106 // the addrec is safe. Also, if the entry is guarded by a comparison
1107 // with the start value and the backedge is guarded by a comparison
1108 // with the post-inc value, the addrec is safe.
1109 if (isKnownPositive(Step)) {
1110 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1111 getSignedRange(Step).getSignedMax());
1112 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
1113 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
1114 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1115 AR->getPostIncExpr(*this), N)))
1116 // Return the expression with the addrec on the outside.
1117 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1118 getSignExtendExpr(Step, Ty),
1120 } else if (isKnownNegative(Step)) {
1121 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1122 getSignedRange(Step).getSignedMin());
1123 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1124 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1125 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1126 AR->getPostIncExpr(*this), N)))
1127 // Return the expression with the addrec on the outside.
1128 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1129 getSignExtendExpr(Step, Ty),
1135 // The cast wasn't folded; create an explicit cast node.
1136 // Recompute the insert position, as it may have been invalidated.
1137 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1138 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1139 Op, Ty);
1140 UniqueSCEVs.InsertNode(S, IP);
1141 return S;
1144 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1145 /// unspecified bits out to the given type.
1147 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1148 const Type *Ty) {
1149 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1150 "This is not an extending conversion!");
1151 assert(isSCEVable(Ty) &&
1152 "This is not a conversion to a SCEVable type!");
1153 Ty = getEffectiveSCEVType(Ty);
1155 // Sign-extend negative constants.
1156 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1157 if (SC->getValue()->getValue().isNegative())
1158 return getSignExtendExpr(Op, Ty);
1160 // Peel off a truncate cast.
1161 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1162 const SCEV *NewOp = T->getOperand();
1163 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1164 return getAnyExtendExpr(NewOp, Ty);
1165 return getTruncateOrNoop(NewOp, Ty);
1168 // Next try a zext cast. If the cast is folded, use it.
1169 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1170 if (!isa<SCEVZeroExtendExpr>(ZExt))
1171 return ZExt;
1173 // Next try a sext cast. If the cast is folded, use it.
1174 const SCEV *SExt = getSignExtendExpr(Op, Ty);
1175 if (!isa<SCEVSignExtendExpr>(SExt))
1176 return SExt;
1178 // Force the cast to be folded into the operands of an addrec.
1179 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1180 SmallVector<const SCEV *, 4> Ops;
1181 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1182 I != E; ++I)
1183 Ops.push_back(getAnyExtendExpr(*I, Ty));
1184 return getAddRecExpr(Ops, AR->getLoop());
1187 // As a special case, fold anyext(undef) to undef. We don't want to
1188 // know too much about SCEVUnknowns, but this special case is handy
1189 // and harmless.
1190 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1191 if (isa<UndefValue>(U->getValue()))
1192 return getSCEV(UndefValue::get(Ty));
1194 // If the expression is obviously signed, use the sext cast value.
1195 if (isa<SCEVSMaxExpr>(Op))
1196 return SExt;
1198 // Absent any other information, use the zext cast value.
1199 return ZExt;
1202 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1203 /// a list of operands to be added under the given scale, update the given
1204 /// map. This is a helper function for getAddRecExpr. As an example of
1205 /// what it does, given a sequence of operands that would form an add
1206 /// expression like this:
1208 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1210 /// where A and B are constants, update the map with these values:
1212 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1214 /// and add 13 + A*B*29 to AccumulatedConstant.
1215 /// This will allow getAddRecExpr to produce this:
1217 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1219 /// This form often exposes folding opportunities that are hidden in
1220 /// the original operand list.
1222 /// Return true iff it appears that any interesting folding opportunities
1223 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1224 /// the common case where no interesting opportunities are present, and
1225 /// is also used as a check to avoid infinite recursion.
1227 static bool
1228 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1229 SmallVector<const SCEV *, 8> &NewOps,
1230 APInt &AccumulatedConstant,
1231 const SCEV *const *Ops, size_t NumOperands,
1232 const APInt &Scale,
1233 ScalarEvolution &SE) {
1234 bool Interesting = false;
1236 // Iterate over the add operands. They are sorted, with constants first.
1237 unsigned i = 0;
1238 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1239 ++i;
1240 // Pull a buried constant out to the outside.
1241 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1242 Interesting = true;
1243 AccumulatedConstant += Scale * C->getValue()->getValue();
1246 // Next comes everything else. We're especially interested in multiplies
1247 // here, but they're in the middle, so just visit the rest with one loop.
1248 for (; i != NumOperands; ++i) {
1249 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1250 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1251 APInt NewScale =
1252 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1253 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1254 // A multiplication of a constant with another add; recurse.
1255 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1256 Interesting |=
1257 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1258 Add->op_begin(), Add->getNumOperands(),
1259 NewScale, SE);
1260 } else {
1261 // A multiplication of a constant with some other value. Update
1262 // the map.
1263 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1264 const SCEV *Key = SE.getMulExpr(MulOps);
1265 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1266 M.insert(std::make_pair(Key, NewScale));
1267 if (Pair.second) {
1268 NewOps.push_back(Pair.first->first);
1269 } else {
1270 Pair.first->second += NewScale;
1271 // The map already had an entry for this value, which may indicate
1272 // a folding opportunity.
1273 Interesting = true;
1276 } else {
1277 // An ordinary operand. Update the map.
1278 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1279 M.insert(std::make_pair(Ops[i], Scale));
1280 if (Pair.second) {
1281 NewOps.push_back(Pair.first->first);
1282 } else {
1283 Pair.first->second += Scale;
1284 // The map already had an entry for this value, which may indicate
1285 // a folding opportunity.
1286 Interesting = true;
1291 return Interesting;
1294 namespace {
1295 struct APIntCompare {
1296 bool operator()(const APInt &LHS, const APInt &RHS) const {
1297 return LHS.ult(RHS);
1302 /// getAddExpr - Get a canonical add expression, or something simpler if
1303 /// possible.
1304 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1305 bool HasNUW, bool HasNSW) {
1306 assert(!Ops.empty() && "Cannot get empty add!");
1307 if (Ops.size() == 1) return Ops[0];
1308 #ifndef NDEBUG
1309 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1310 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1311 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1312 "SCEVAddExpr operand types don't match!");
1313 #endif
1315 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1316 if (!HasNUW && HasNSW) {
1317 bool All = true;
1318 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1319 E = Ops.end(); I != E; ++I)
1320 if (!isKnownNonNegative(*I)) {
1321 All = false;
1322 break;
1324 if (All) HasNUW = true;
1327 // Sort by complexity, this groups all similar expression types together.
1328 GroupByComplexity(Ops, LI);
1330 // If there are any constants, fold them together.
1331 unsigned Idx = 0;
1332 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1333 ++Idx;
1334 assert(Idx < Ops.size());
1335 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1336 // We found two constants, fold them together!
1337 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1338 RHSC->getValue()->getValue());
1339 if (Ops.size() == 2) return Ops[0];
1340 Ops.erase(Ops.begin()+1); // Erase the folded element
1341 LHSC = cast<SCEVConstant>(Ops[0]);
1344 // If we are left with a constant zero being added, strip it off.
1345 if (LHSC->getValue()->isZero()) {
1346 Ops.erase(Ops.begin());
1347 --Idx;
1350 if (Ops.size() == 1) return Ops[0];
1353 // Okay, check to see if the same value occurs in the operand list more than
1354 // once. If so, merge them together into an multiply expression. Since we
1355 // sorted the list, these values are required to be adjacent.
1356 const Type *Ty = Ops[0]->getType();
1357 bool FoundMatch = false;
1358 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1359 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1360 // Scan ahead to count how many equal operands there are.
1361 unsigned Count = 2;
1362 while (i+Count != e && Ops[i+Count] == Ops[i])
1363 ++Count;
1364 // Merge the values into a multiply.
1365 const SCEV *Scale = getConstant(Ty, Count);
1366 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1367 if (Ops.size() == Count)
1368 return Mul;
1369 Ops[i] = Mul;
1370 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1371 --i; e -= Count - 1;
1372 FoundMatch = true;
1374 if (FoundMatch)
1375 return getAddExpr(Ops, HasNUW, HasNSW);
1377 // Check for truncates. If all the operands are truncated from the same
1378 // type, see if factoring out the truncate would permit the result to be
1379 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1380 // if the contents of the resulting outer trunc fold to something simple.
1381 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1382 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1383 const Type *DstType = Trunc->getType();
1384 const Type *SrcType = Trunc->getOperand()->getType();
1385 SmallVector<const SCEV *, 8> LargeOps;
1386 bool Ok = true;
1387 // Check all the operands to see if they can be represented in the
1388 // source type of the truncate.
1389 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1390 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1391 if (T->getOperand()->getType() != SrcType) {
1392 Ok = false;
1393 break;
1395 LargeOps.push_back(T->getOperand());
1396 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1397 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1398 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1399 SmallVector<const SCEV *, 8> LargeMulOps;
1400 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1401 if (const SCEVTruncateExpr *T =
1402 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1403 if (T->getOperand()->getType() != SrcType) {
1404 Ok = false;
1405 break;
1407 LargeMulOps.push_back(T->getOperand());
1408 } else if (const SCEVConstant *C =
1409 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1410 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1411 } else {
1412 Ok = false;
1413 break;
1416 if (Ok)
1417 LargeOps.push_back(getMulExpr(LargeMulOps));
1418 } else {
1419 Ok = false;
1420 break;
1423 if (Ok) {
1424 // Evaluate the expression in the larger type.
1425 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
1426 // If it folds to something simple, use it. Otherwise, don't.
1427 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1428 return getTruncateExpr(Fold, DstType);
1432 // Skip past any other cast SCEVs.
1433 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1434 ++Idx;
1436 // If there are add operands they would be next.
1437 if (Idx < Ops.size()) {
1438 bool DeletedAdd = false;
1439 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1440 // If we have an add, expand the add operands onto the end of the operands
1441 // list.
1442 Ops.erase(Ops.begin()+Idx);
1443 Ops.append(Add->op_begin(), Add->op_end());
1444 DeletedAdd = true;
1447 // If we deleted at least one add, we added operands to the end of the list,
1448 // and they are not necessarily sorted. Recurse to resort and resimplify
1449 // any operands we just acquired.
1450 if (DeletedAdd)
1451 return getAddExpr(Ops);
1454 // Skip over the add expression until we get to a multiply.
1455 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1456 ++Idx;
1458 // Check to see if there are any folding opportunities present with
1459 // operands multiplied by constant values.
1460 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1461 uint64_t BitWidth = getTypeSizeInBits(Ty);
1462 DenseMap<const SCEV *, APInt> M;
1463 SmallVector<const SCEV *, 8> NewOps;
1464 APInt AccumulatedConstant(BitWidth, 0);
1465 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1466 Ops.data(), Ops.size(),
1467 APInt(BitWidth, 1), *this)) {
1468 // Some interesting folding opportunity is present, so its worthwhile to
1469 // re-generate the operands list. Group the operands by constant scale,
1470 // to avoid multiplying by the same constant scale multiple times.
1471 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1472 for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1473 E = NewOps.end(); I != E; ++I)
1474 MulOpLists[M.find(*I)->second].push_back(*I);
1475 // Re-generate the operands list.
1476 Ops.clear();
1477 if (AccumulatedConstant != 0)
1478 Ops.push_back(getConstant(AccumulatedConstant));
1479 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1480 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1481 if (I->first != 0)
1482 Ops.push_back(getMulExpr(getConstant(I->first),
1483 getAddExpr(I->second)));
1484 if (Ops.empty())
1485 return getConstant(Ty, 0);
1486 if (Ops.size() == 1)
1487 return Ops[0];
1488 return getAddExpr(Ops);
1492 // If we are adding something to a multiply expression, make sure the
1493 // something is not already an operand of the multiply. If so, merge it into
1494 // the multiply.
1495 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1496 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1497 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1498 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1499 if (isa<SCEVConstant>(MulOpSCEV))
1500 continue;
1501 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1502 if (MulOpSCEV == Ops[AddOp]) {
1503 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1504 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1505 if (Mul->getNumOperands() != 2) {
1506 // If the multiply has more than two operands, we must get the
1507 // Y*Z term.
1508 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1509 Mul->op_begin()+MulOp);
1510 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1511 InnerMul = getMulExpr(MulOps);
1513 const SCEV *One = getConstant(Ty, 1);
1514 const SCEV *AddOne = getAddExpr(One, InnerMul);
1515 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1516 if (Ops.size() == 2) return OuterMul;
1517 if (AddOp < Idx) {
1518 Ops.erase(Ops.begin()+AddOp);
1519 Ops.erase(Ops.begin()+Idx-1);
1520 } else {
1521 Ops.erase(Ops.begin()+Idx);
1522 Ops.erase(Ops.begin()+AddOp-1);
1524 Ops.push_back(OuterMul);
1525 return getAddExpr(Ops);
1528 // Check this multiply against other multiplies being added together.
1529 for (unsigned OtherMulIdx = Idx+1;
1530 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1531 ++OtherMulIdx) {
1532 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1533 // If MulOp occurs in OtherMul, we can fold the two multiplies
1534 // together.
1535 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1536 OMulOp != e; ++OMulOp)
1537 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1538 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1539 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1540 if (Mul->getNumOperands() != 2) {
1541 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1542 Mul->op_begin()+MulOp);
1543 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1544 InnerMul1 = getMulExpr(MulOps);
1546 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1547 if (OtherMul->getNumOperands() != 2) {
1548 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1549 OtherMul->op_begin()+OMulOp);
1550 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1551 InnerMul2 = getMulExpr(MulOps);
1553 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1554 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1555 if (Ops.size() == 2) return OuterMul;
1556 Ops.erase(Ops.begin()+Idx);
1557 Ops.erase(Ops.begin()+OtherMulIdx-1);
1558 Ops.push_back(OuterMul);
1559 return getAddExpr(Ops);
1565 // If there are any add recurrences in the operands list, see if any other
1566 // added values are loop invariant. If so, we can fold them into the
1567 // recurrence.
1568 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1569 ++Idx;
1571 // Scan over all recurrences, trying to fold loop invariants into them.
1572 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1573 // Scan all of the other operands to this add and add them to the vector if
1574 // they are loop invariant w.r.t. the recurrence.
1575 SmallVector<const SCEV *, 8> LIOps;
1576 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1577 const Loop *AddRecLoop = AddRec->getLoop();
1578 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1579 if (isLoopInvariant(Ops[i], AddRecLoop)) {
1580 LIOps.push_back(Ops[i]);
1581 Ops.erase(Ops.begin()+i);
1582 --i; --e;
1585 // If we found some loop invariants, fold them into the recurrence.
1586 if (!LIOps.empty()) {
1587 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1588 LIOps.push_back(AddRec->getStart());
1590 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1591 AddRec->op_end());
1592 AddRecOps[0] = getAddExpr(LIOps);
1594 // Build the new addrec. Propagate the NUW and NSW flags if both the
1595 // outer add and the inner addrec are guaranteed to have no overflow.
1596 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1597 HasNUW && AddRec->hasNoUnsignedWrap(),
1598 HasNSW && AddRec->hasNoSignedWrap());
1600 // If all of the other operands were loop invariant, we are done.
1601 if (Ops.size() == 1) return NewRec;
1603 // Otherwise, add the folded AddRec by the non-liv parts.
1604 for (unsigned i = 0;; ++i)
1605 if (Ops[i] == AddRec) {
1606 Ops[i] = NewRec;
1607 break;
1609 return getAddExpr(Ops);
1612 // Okay, if there weren't any loop invariants to be folded, check to see if
1613 // there are multiple AddRec's with the same loop induction variable being
1614 // added together. If so, we can fold them.
1615 for (unsigned OtherIdx = Idx+1;
1616 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1617 ++OtherIdx)
1618 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1619 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1620 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1621 AddRec->op_end());
1622 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1623 ++OtherIdx)
1624 if (const SCEVAddRecExpr *OtherAddRec =
1625 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1626 if (OtherAddRec->getLoop() == AddRecLoop) {
1627 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1628 i != e; ++i) {
1629 if (i >= AddRecOps.size()) {
1630 AddRecOps.append(OtherAddRec->op_begin()+i,
1631 OtherAddRec->op_end());
1632 break;
1634 AddRecOps[i] = getAddExpr(AddRecOps[i],
1635 OtherAddRec->getOperand(i));
1637 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1639 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop);
1640 return getAddExpr(Ops);
1643 // Otherwise couldn't fold anything into this recurrence. Move onto the
1644 // next one.
1647 // Okay, it looks like we really DO need an add expr. Check to see if we
1648 // already have one, otherwise create a new one.
1649 FoldingSetNodeID ID;
1650 ID.AddInteger(scAddExpr);
1651 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1652 ID.AddPointer(Ops[i]);
1653 void *IP = 0;
1654 SCEVAddExpr *S =
1655 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1656 if (!S) {
1657 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1658 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1659 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1660 O, Ops.size());
1661 UniqueSCEVs.InsertNode(S, IP);
1663 if (HasNUW) S->setHasNoUnsignedWrap(true);
1664 if (HasNSW) S->setHasNoSignedWrap(true);
1665 return S;
1668 /// getMulExpr - Get a canonical multiply expression, or something simpler if
1669 /// possible.
1670 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1671 bool HasNUW, bool HasNSW) {
1672 assert(!Ops.empty() && "Cannot get empty mul!");
1673 if (Ops.size() == 1) return Ops[0];
1674 #ifndef NDEBUG
1675 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1676 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1677 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1678 "SCEVMulExpr operand types don't match!");
1679 #endif
1681 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1682 if (!HasNUW && HasNSW) {
1683 bool All = true;
1684 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1685 E = Ops.end(); I != E; ++I)
1686 if (!isKnownNonNegative(*I)) {
1687 All = false;
1688 break;
1690 if (All) HasNUW = true;
1693 // Sort by complexity, this groups all similar expression types together.
1694 GroupByComplexity(Ops, LI);
1696 // If there are any constants, fold them together.
1697 unsigned Idx = 0;
1698 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1700 // C1*(C2+V) -> C1*C2 + C1*V
1701 if (Ops.size() == 2)
1702 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1703 if (Add->getNumOperands() == 2 &&
1704 isa<SCEVConstant>(Add->getOperand(0)))
1705 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1706 getMulExpr(LHSC, Add->getOperand(1)));
1708 ++Idx;
1709 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1710 // We found two constants, fold them together!
1711 ConstantInt *Fold = ConstantInt::get(getContext(),
1712 LHSC->getValue()->getValue() *
1713 RHSC->getValue()->getValue());
1714 Ops[0] = getConstant(Fold);
1715 Ops.erase(Ops.begin()+1); // Erase the folded element
1716 if (Ops.size() == 1) return Ops[0];
1717 LHSC = cast<SCEVConstant>(Ops[0]);
1720 // If we are left with a constant one being multiplied, strip it off.
1721 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1722 Ops.erase(Ops.begin());
1723 --Idx;
1724 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1725 // If we have a multiply of zero, it will always be zero.
1726 return Ops[0];
1727 } else if (Ops[0]->isAllOnesValue()) {
1728 // If we have a mul by -1 of an add, try distributing the -1 among the
1729 // add operands.
1730 if (Ops.size() == 2)
1731 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1732 SmallVector<const SCEV *, 4> NewOps;
1733 bool AnyFolded = false;
1734 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1735 I != E; ++I) {
1736 const SCEV *Mul = getMulExpr(Ops[0], *I);
1737 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1738 NewOps.push_back(Mul);
1740 if (AnyFolded)
1741 return getAddExpr(NewOps);
1745 if (Ops.size() == 1)
1746 return Ops[0];
1749 // Skip over the add expression until we get to a multiply.
1750 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1751 ++Idx;
1753 // If there are mul operands inline them all into this expression.
1754 if (Idx < Ops.size()) {
1755 bool DeletedMul = false;
1756 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1757 // If we have an mul, expand the mul operands onto the end of the operands
1758 // list.
1759 Ops.erase(Ops.begin()+Idx);
1760 Ops.append(Mul->op_begin(), Mul->op_end());
1761 DeletedMul = true;
1764 // If we deleted at least one mul, we added operands to the end of the list,
1765 // and they are not necessarily sorted. Recurse to resort and resimplify
1766 // any operands we just acquired.
1767 if (DeletedMul)
1768 return getMulExpr(Ops);
1771 // If there are any add recurrences in the operands list, see if any other
1772 // added values are loop invariant. If so, we can fold them into the
1773 // recurrence.
1774 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1775 ++Idx;
1777 // Scan over all recurrences, trying to fold loop invariants into them.
1778 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1779 // Scan all of the other operands to this mul and add them to the vector if
1780 // they are loop invariant w.r.t. the recurrence.
1781 SmallVector<const SCEV *, 8> LIOps;
1782 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1783 const Loop *AddRecLoop = AddRec->getLoop();
1784 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1785 if (isLoopInvariant(Ops[i], AddRecLoop)) {
1786 LIOps.push_back(Ops[i]);
1787 Ops.erase(Ops.begin()+i);
1788 --i; --e;
1791 // If we found some loop invariants, fold them into the recurrence.
1792 if (!LIOps.empty()) {
1793 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
1794 SmallVector<const SCEV *, 4> NewOps;
1795 NewOps.reserve(AddRec->getNumOperands());
1796 const SCEV *Scale = getMulExpr(LIOps);
1797 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1798 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1800 // Build the new addrec. Propagate the NUW and NSW flags if both the
1801 // outer mul and the inner addrec are guaranteed to have no overflow.
1802 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop,
1803 HasNUW && AddRec->hasNoUnsignedWrap(),
1804 HasNSW && AddRec->hasNoSignedWrap());
1806 // If all of the other operands were loop invariant, we are done.
1807 if (Ops.size() == 1) return NewRec;
1809 // Otherwise, multiply the folded AddRec by the non-liv parts.
1810 for (unsigned i = 0;; ++i)
1811 if (Ops[i] == AddRec) {
1812 Ops[i] = NewRec;
1813 break;
1815 return getMulExpr(Ops);
1818 // Okay, if there weren't any loop invariants to be folded, check to see if
1819 // there are multiple AddRec's with the same loop induction variable being
1820 // multiplied together. If so, we can fold them.
1821 for (unsigned OtherIdx = Idx+1;
1822 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1823 ++OtherIdx)
1824 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1825 // F * G, where F = {A,+,B}<L> and G = {C,+,D}<L> -->
1826 // {A*C,+,F*D + G*B + B*D}<L>
1827 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1828 ++OtherIdx)
1829 if (const SCEVAddRecExpr *OtherAddRec =
1830 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1831 if (OtherAddRec->getLoop() == AddRecLoop) {
1832 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1833 const SCEV *NewStart = getMulExpr(F->getStart(), G->getStart());
1834 const SCEV *B = F->getStepRecurrence(*this);
1835 const SCEV *D = G->getStepRecurrence(*this);
1836 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1837 getMulExpr(G, B),
1838 getMulExpr(B, D));
1839 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1840 F->getLoop());
1841 if (Ops.size() == 2) return NewAddRec;
1842 Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
1843 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1845 return getMulExpr(Ops);
1848 // Otherwise couldn't fold anything into this recurrence. Move onto the
1849 // next one.
1852 // Okay, it looks like we really DO need an mul expr. Check to see if we
1853 // already have one, otherwise create a new one.
1854 FoldingSetNodeID ID;
1855 ID.AddInteger(scMulExpr);
1856 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1857 ID.AddPointer(Ops[i]);
1858 void *IP = 0;
1859 SCEVMulExpr *S =
1860 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1861 if (!S) {
1862 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1863 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1864 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1865 O, Ops.size());
1866 UniqueSCEVs.InsertNode(S, IP);
1868 if (HasNUW) S->setHasNoUnsignedWrap(true);
1869 if (HasNSW) S->setHasNoSignedWrap(true);
1870 return S;
1873 /// getUDivExpr - Get a canonical unsigned division expression, or something
1874 /// simpler if possible.
1875 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1876 const SCEV *RHS) {
1877 assert(getEffectiveSCEVType(LHS->getType()) ==
1878 getEffectiveSCEVType(RHS->getType()) &&
1879 "SCEVUDivExpr operand types don't match!");
1881 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1882 if (RHSC->getValue()->equalsInt(1))
1883 return LHS; // X udiv 1 --> x
1884 // If the denominator is zero, the result of the udiv is undefined. Don't
1885 // try to analyze it, because the resolution chosen here may differ from
1886 // the resolution chosen in other parts of the compiler.
1887 if (!RHSC->getValue()->isZero()) {
1888 // Determine if the division can be folded into the operands of
1889 // its operands.
1890 // TODO: Generalize this to non-constants by using known-bits information.
1891 const Type *Ty = LHS->getType();
1892 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1893 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
1894 // For non-power-of-two values, effectively round the value up to the
1895 // nearest power of two.
1896 if (!RHSC->getValue()->getValue().isPowerOf2())
1897 ++MaxShiftAmt;
1898 const IntegerType *ExtTy =
1899 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1900 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1901 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1902 if (const SCEVConstant *Step =
1903 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1904 if (!Step->getValue()->getValue()
1905 .urem(RHSC->getValue()->getValue()) &&
1906 getZeroExtendExpr(AR, ExtTy) ==
1907 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1908 getZeroExtendExpr(Step, ExtTy),
1909 AR->getLoop())) {
1910 SmallVector<const SCEV *, 4> Operands;
1911 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1912 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1913 return getAddRecExpr(Operands, AR->getLoop());
1915 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1916 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1917 SmallVector<const SCEV *, 4> Operands;
1918 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1919 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1920 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1921 // Find an operand that's safely divisible.
1922 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1923 const SCEV *Op = M->getOperand(i);
1924 const SCEV *Div = getUDivExpr(Op, RHSC);
1925 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1926 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1927 M->op_end());
1928 Operands[i] = Div;
1929 return getMulExpr(Operands);
1933 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1934 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1935 SmallVector<const SCEV *, 4> Operands;
1936 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1937 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1938 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1939 Operands.clear();
1940 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1941 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1942 if (isa<SCEVUDivExpr>(Op) ||
1943 getMulExpr(Op, RHS) != A->getOperand(i))
1944 break;
1945 Operands.push_back(Op);
1947 if (Operands.size() == A->getNumOperands())
1948 return getAddExpr(Operands);
1952 // Fold if both operands are constant.
1953 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1954 Constant *LHSCV = LHSC->getValue();
1955 Constant *RHSCV = RHSC->getValue();
1956 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1957 RHSCV)));
1962 FoldingSetNodeID ID;
1963 ID.AddInteger(scUDivExpr);
1964 ID.AddPointer(LHS);
1965 ID.AddPointer(RHS);
1966 void *IP = 0;
1967 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1968 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1969 LHS, RHS);
1970 UniqueSCEVs.InsertNode(S, IP);
1971 return S;
1975 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1976 /// Simplify the expression as much as possible.
1977 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1978 const SCEV *Step, const Loop *L,
1979 bool HasNUW, bool HasNSW) {
1980 SmallVector<const SCEV *, 4> Operands;
1981 Operands.push_back(Start);
1982 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1983 if (StepChrec->getLoop() == L) {
1984 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
1985 return getAddRecExpr(Operands, L);
1988 Operands.push_back(Step);
1989 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
1992 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1993 /// Simplify the expression as much as possible.
1994 const SCEV *
1995 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1996 const Loop *L,
1997 bool HasNUW, bool HasNSW) {
1998 if (Operands.size() == 1) return Operands[0];
1999 #ifndef NDEBUG
2000 const Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2001 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2002 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2003 "SCEVAddRecExpr operand types don't match!");
2004 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2005 assert(isLoopInvariant(Operands[i], L) &&
2006 "SCEVAddRecExpr operand is not loop-invariant!");
2007 #endif
2009 if (Operands.back()->isZero()) {
2010 Operands.pop_back();
2011 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
2014 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2015 // use that information to infer NUW and NSW flags. However, computing a
2016 // BE count requires calling getAddRecExpr, so we may not yet have a
2017 // meaningful BE count at this point (and if we don't, we'd be stuck
2018 // with a SCEVCouldNotCompute as the cached BE count).
2020 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2021 if (!HasNUW && HasNSW) {
2022 bool All = true;
2023 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2024 E = Operands.end(); I != E; ++I)
2025 if (!isKnownNonNegative(*I)) {
2026 All = false;
2027 break;
2029 if (All) HasNUW = true;
2032 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2033 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2034 const Loop *NestedLoop = NestedAR->getLoop();
2035 if (L->contains(NestedLoop) ?
2036 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2037 (!NestedLoop->contains(L) &&
2038 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2039 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2040 NestedAR->op_end());
2041 Operands[0] = NestedAR->getStart();
2042 // AddRecs require their operands be loop-invariant with respect to their
2043 // loops. Don't perform this transformation if it would break this
2044 // requirement.
2045 bool AllInvariant = true;
2046 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2047 if (!isLoopInvariant(Operands[i], L)) {
2048 AllInvariant = false;
2049 break;
2051 if (AllInvariant) {
2052 NestedOperands[0] = getAddRecExpr(Operands, L);
2053 AllInvariant = true;
2054 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2055 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2056 AllInvariant = false;
2057 break;
2059 if (AllInvariant)
2060 // Ok, both add recurrences are valid after the transformation.
2061 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
2063 // Reset Operands to its original state.
2064 Operands[0] = NestedAR;
2068 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2069 // already have one, otherwise create a new one.
2070 FoldingSetNodeID ID;
2071 ID.AddInteger(scAddRecExpr);
2072 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2073 ID.AddPointer(Operands[i]);
2074 ID.AddPointer(L);
2075 void *IP = 0;
2076 SCEVAddRecExpr *S =
2077 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2078 if (!S) {
2079 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2080 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2081 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2082 O, Operands.size(), L);
2083 UniqueSCEVs.InsertNode(S, IP);
2085 if (HasNUW) S->setHasNoUnsignedWrap(true);
2086 if (HasNSW) S->setHasNoSignedWrap(true);
2087 return S;
2090 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2091 const SCEV *RHS) {
2092 SmallVector<const SCEV *, 2> Ops;
2093 Ops.push_back(LHS);
2094 Ops.push_back(RHS);
2095 return getSMaxExpr(Ops);
2098 const SCEV *
2099 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2100 assert(!Ops.empty() && "Cannot get empty smax!");
2101 if (Ops.size() == 1) return Ops[0];
2102 #ifndef NDEBUG
2103 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2104 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2105 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2106 "SCEVSMaxExpr operand types don't match!");
2107 #endif
2109 // Sort by complexity, this groups all similar expression types together.
2110 GroupByComplexity(Ops, LI);
2112 // If there are any constants, fold them together.
2113 unsigned Idx = 0;
2114 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2115 ++Idx;
2116 assert(Idx < Ops.size());
2117 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2118 // We found two constants, fold them together!
2119 ConstantInt *Fold = ConstantInt::get(getContext(),
2120 APIntOps::smax(LHSC->getValue()->getValue(),
2121 RHSC->getValue()->getValue()));
2122 Ops[0] = getConstant(Fold);
2123 Ops.erase(Ops.begin()+1); // Erase the folded element
2124 if (Ops.size() == 1) return Ops[0];
2125 LHSC = cast<SCEVConstant>(Ops[0]);
2128 // If we are left with a constant minimum-int, strip it off.
2129 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2130 Ops.erase(Ops.begin());
2131 --Idx;
2132 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2133 // If we have an smax with a constant maximum-int, it will always be
2134 // maximum-int.
2135 return Ops[0];
2138 if (Ops.size() == 1) return Ops[0];
2141 // Find the first SMax
2142 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2143 ++Idx;
2145 // Check to see if one of the operands is an SMax. If so, expand its operands
2146 // onto our operand list, and recurse to simplify.
2147 if (Idx < Ops.size()) {
2148 bool DeletedSMax = false;
2149 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2150 Ops.erase(Ops.begin()+Idx);
2151 Ops.append(SMax->op_begin(), SMax->op_end());
2152 DeletedSMax = true;
2155 if (DeletedSMax)
2156 return getSMaxExpr(Ops);
2159 // Okay, check to see if the same value occurs in the operand list twice. If
2160 // so, delete one. Since we sorted the list, these values are required to
2161 // be adjacent.
2162 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2163 // X smax Y smax Y --> X smax Y
2164 // X smax Y --> X, if X is always greater than Y
2165 if (Ops[i] == Ops[i+1] ||
2166 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2167 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2168 --i; --e;
2169 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2170 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2171 --i; --e;
2174 if (Ops.size() == 1) return Ops[0];
2176 assert(!Ops.empty() && "Reduced smax down to nothing!");
2178 // Okay, it looks like we really DO need an smax expr. Check to see if we
2179 // already have one, otherwise create a new one.
2180 FoldingSetNodeID ID;
2181 ID.AddInteger(scSMaxExpr);
2182 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2183 ID.AddPointer(Ops[i]);
2184 void *IP = 0;
2185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2186 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2187 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2188 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2189 O, Ops.size());
2190 UniqueSCEVs.InsertNode(S, IP);
2191 return S;
2194 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2195 const SCEV *RHS) {
2196 SmallVector<const SCEV *, 2> Ops;
2197 Ops.push_back(LHS);
2198 Ops.push_back(RHS);
2199 return getUMaxExpr(Ops);
2202 const SCEV *
2203 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2204 assert(!Ops.empty() && "Cannot get empty umax!");
2205 if (Ops.size() == 1) return Ops[0];
2206 #ifndef NDEBUG
2207 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2208 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2209 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2210 "SCEVUMaxExpr operand types don't match!");
2211 #endif
2213 // Sort by complexity, this groups all similar expression types together.
2214 GroupByComplexity(Ops, LI);
2216 // If there are any constants, fold them together.
2217 unsigned Idx = 0;
2218 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2219 ++Idx;
2220 assert(Idx < Ops.size());
2221 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2222 // We found two constants, fold them together!
2223 ConstantInt *Fold = ConstantInt::get(getContext(),
2224 APIntOps::umax(LHSC->getValue()->getValue(),
2225 RHSC->getValue()->getValue()));
2226 Ops[0] = getConstant(Fold);
2227 Ops.erase(Ops.begin()+1); // Erase the folded element
2228 if (Ops.size() == 1) return Ops[0];
2229 LHSC = cast<SCEVConstant>(Ops[0]);
2232 // If we are left with a constant minimum-int, strip it off.
2233 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2234 Ops.erase(Ops.begin());
2235 --Idx;
2236 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2237 // If we have an umax with a constant maximum-int, it will always be
2238 // maximum-int.
2239 return Ops[0];
2242 if (Ops.size() == 1) return Ops[0];
2245 // Find the first UMax
2246 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2247 ++Idx;
2249 // Check to see if one of the operands is a UMax. If so, expand its operands
2250 // onto our operand list, and recurse to simplify.
2251 if (Idx < Ops.size()) {
2252 bool DeletedUMax = false;
2253 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2254 Ops.erase(Ops.begin()+Idx);
2255 Ops.append(UMax->op_begin(), UMax->op_end());
2256 DeletedUMax = true;
2259 if (DeletedUMax)
2260 return getUMaxExpr(Ops);
2263 // Okay, check to see if the same value occurs in the operand list twice. If
2264 // so, delete one. Since we sorted the list, these values are required to
2265 // be adjacent.
2266 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2267 // X umax Y umax Y --> X umax Y
2268 // X umax Y --> X, if X is always greater than Y
2269 if (Ops[i] == Ops[i+1] ||
2270 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2271 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2272 --i; --e;
2273 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2274 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2275 --i; --e;
2278 if (Ops.size() == 1) return Ops[0];
2280 assert(!Ops.empty() && "Reduced umax down to nothing!");
2282 // Okay, it looks like we really DO need a umax expr. Check to see if we
2283 // already have one, otherwise create a new one.
2284 FoldingSetNodeID ID;
2285 ID.AddInteger(scUMaxExpr);
2286 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2287 ID.AddPointer(Ops[i]);
2288 void *IP = 0;
2289 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2290 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2291 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2292 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2293 O, Ops.size());
2294 UniqueSCEVs.InsertNode(S, IP);
2295 return S;
2298 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2299 const SCEV *RHS) {
2300 // ~smax(~x, ~y) == smin(x, y).
2301 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2304 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2305 const SCEV *RHS) {
2306 // ~umax(~x, ~y) == umin(x, y)
2307 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2310 const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
2311 // If we have TargetData, we can bypass creating a target-independent
2312 // constant expression and then folding it back into a ConstantInt.
2313 // This is just a compile-time optimization.
2314 if (TD)
2315 return getConstant(TD->getIntPtrType(getContext()),
2316 TD->getTypeAllocSize(AllocTy));
2318 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2319 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2320 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2321 C = Folded;
2322 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2323 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2326 const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2327 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2328 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2329 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2330 C = Folded;
2331 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2332 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2335 const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2336 unsigned FieldNo) {
2337 // If we have TargetData, we can bypass creating a target-independent
2338 // constant expression and then folding it back into a ConstantInt.
2339 // This is just a compile-time optimization.
2340 if (TD)
2341 return getConstant(TD->getIntPtrType(getContext()),
2342 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2344 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2345 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2346 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2347 C = Folded;
2348 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2349 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2352 const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2353 Constant *FieldNo) {
2354 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2355 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2356 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2357 C = Folded;
2358 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2359 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2362 const SCEV *ScalarEvolution::getUnknown(Value *V) {
2363 // Don't attempt to do anything other than create a SCEVUnknown object
2364 // here. createSCEV only calls getUnknown after checking for all other
2365 // interesting possibilities, and any other code that calls getUnknown
2366 // is doing so in order to hide a value from SCEV canonicalization.
2368 FoldingSetNodeID ID;
2369 ID.AddInteger(scUnknown);
2370 ID.AddPointer(V);
2371 void *IP = 0;
2372 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2373 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2374 "Stale SCEVUnknown in uniquing map!");
2375 return S;
2377 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2378 FirstUnknown);
2379 FirstUnknown = cast<SCEVUnknown>(S);
2380 UniqueSCEVs.InsertNode(S, IP);
2381 return S;
2384 //===----------------------------------------------------------------------===//
2385 // Basic SCEV Analysis and PHI Idiom Recognition Code
2388 /// isSCEVable - Test if values of the given type are analyzable within
2389 /// the SCEV framework. This primarily includes integer types, and it
2390 /// can optionally include pointer types if the ScalarEvolution class
2391 /// has access to target-specific information.
2392 bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2393 // Integers and pointers are always SCEVable.
2394 return Ty->isIntegerTy() || Ty->isPointerTy();
2397 /// getTypeSizeInBits - Return the size in bits of the specified type,
2398 /// for which isSCEVable must return true.
2399 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2400 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2402 // If we have a TargetData, use it!
2403 if (TD)
2404 return TD->getTypeSizeInBits(Ty);
2406 // Integer types have fixed sizes.
2407 if (Ty->isIntegerTy())
2408 return Ty->getPrimitiveSizeInBits();
2410 // The only other support type is pointer. Without TargetData, conservatively
2411 // assume pointers are 64-bit.
2412 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2413 return 64;
2416 /// getEffectiveSCEVType - Return a type with the same bitwidth as
2417 /// the given type and which represents how SCEV will treat the given
2418 /// type, for which isSCEVable must return true. For pointer types,
2419 /// this is the pointer-sized integer type.
2420 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2421 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2423 if (Ty->isIntegerTy())
2424 return Ty;
2426 // The only other support type is pointer.
2427 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2428 if (TD) return TD->getIntPtrType(getContext());
2430 // Without TargetData, conservatively assume pointers are 64-bit.
2431 return Type::getInt64Ty(getContext());
2434 const SCEV *ScalarEvolution::getCouldNotCompute() {
2435 return &CouldNotCompute;
2438 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2439 /// expression and create a new one.
2440 const SCEV *ScalarEvolution::getSCEV(Value *V) {
2441 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2443 ValueExprMapType::const_iterator I = ValueExprMap.find(V);
2444 if (I != ValueExprMap.end()) return I->second;
2445 const SCEV *S = createSCEV(V);
2447 // The process of creating a SCEV for V may have caused other SCEVs
2448 // to have been created, so it's necessary to insert the new entry
2449 // from scratch, rather than trying to remember the insert position
2450 // above.
2451 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2452 return S;
2455 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2457 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2458 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2459 return getConstant(
2460 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2462 const Type *Ty = V->getType();
2463 Ty = getEffectiveSCEVType(Ty);
2464 return getMulExpr(V,
2465 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2468 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2469 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2470 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2471 return getConstant(
2472 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2474 const Type *Ty = V->getType();
2475 Ty = getEffectiveSCEVType(Ty);
2476 const SCEV *AllOnes =
2477 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2478 return getMinusSCEV(AllOnes, V);
2481 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1,
2482 /// and thus the HasNUW and HasNSW bits apply to the resultant add, not
2483 /// whether the sub would have overflowed.
2484 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2485 bool HasNUW, bool HasNSW) {
2486 // Fast path: X - X --> 0.
2487 if (LHS == RHS)
2488 return getConstant(LHS->getType(), 0);
2490 // X - Y --> X + -Y
2491 return getAddExpr(LHS, getNegativeSCEV(RHS), HasNUW, HasNSW);
2494 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2495 /// input value to the specified type. If the type must be extended, it is zero
2496 /// extended.
2497 const SCEV *
2498 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, const Type *Ty) {
2499 const Type *SrcTy = V->getType();
2500 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2501 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2502 "Cannot truncate or zero extend with non-integer arguments!");
2503 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2504 return V; // No conversion
2505 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2506 return getTruncateExpr(V, Ty);
2507 return getZeroExtendExpr(V, Ty);
2510 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2511 /// input value to the specified type. If the type must be extended, it is sign
2512 /// extended.
2513 const SCEV *
2514 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2515 const Type *Ty) {
2516 const Type *SrcTy = V->getType();
2517 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2518 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2519 "Cannot truncate or zero extend with non-integer arguments!");
2520 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2521 return V; // No conversion
2522 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2523 return getTruncateExpr(V, Ty);
2524 return getSignExtendExpr(V, Ty);
2527 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2528 /// input value to the specified type. If the type must be extended, it is zero
2529 /// extended. The conversion must not be narrowing.
2530 const SCEV *
2531 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2532 const Type *SrcTy = V->getType();
2533 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2534 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2535 "Cannot noop or zero extend with non-integer arguments!");
2536 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2537 "getNoopOrZeroExtend cannot truncate!");
2538 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2539 return V; // No conversion
2540 return getZeroExtendExpr(V, Ty);
2543 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2544 /// input value to the specified type. If the type must be extended, it is sign
2545 /// extended. The conversion must not be narrowing.
2546 const SCEV *
2547 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2548 const Type *SrcTy = V->getType();
2549 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2550 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2551 "Cannot noop or sign extend with non-integer arguments!");
2552 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2553 "getNoopOrSignExtend cannot truncate!");
2554 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2555 return V; // No conversion
2556 return getSignExtendExpr(V, Ty);
2559 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2560 /// the input value to the specified type. If the type must be extended,
2561 /// it is extended with unspecified bits. The conversion must not be
2562 /// narrowing.
2563 const SCEV *
2564 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2565 const Type *SrcTy = V->getType();
2566 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2567 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2568 "Cannot noop or any extend with non-integer arguments!");
2569 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2570 "getNoopOrAnyExtend cannot truncate!");
2571 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2572 return V; // No conversion
2573 return getAnyExtendExpr(V, Ty);
2576 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2577 /// input value to the specified type. The conversion must not be widening.
2578 const SCEV *
2579 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2580 const Type *SrcTy = V->getType();
2581 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2582 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2583 "Cannot truncate or noop with non-integer arguments!");
2584 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2585 "getTruncateOrNoop cannot extend!");
2586 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2587 return V; // No conversion
2588 return getTruncateExpr(V, Ty);
2591 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2592 /// the types using zero-extension, and then perform a umax operation
2593 /// with them.
2594 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2595 const SCEV *RHS) {
2596 const SCEV *PromotedLHS = LHS;
2597 const SCEV *PromotedRHS = RHS;
2599 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2600 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2601 else
2602 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2604 return getUMaxExpr(PromotedLHS, PromotedRHS);
2607 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
2608 /// the types using zero-extension, and then perform a umin operation
2609 /// with them.
2610 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2611 const SCEV *RHS) {
2612 const SCEV *PromotedLHS = LHS;
2613 const SCEV *PromotedRHS = RHS;
2615 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2616 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2617 else
2618 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2620 return getUMinExpr(PromotedLHS, PromotedRHS);
2623 /// PushDefUseChildren - Push users of the given Instruction
2624 /// onto the given Worklist.
2625 static void
2626 PushDefUseChildren(Instruction *I,
2627 SmallVectorImpl<Instruction *> &Worklist) {
2628 // Push the def-use children onto the Worklist stack.
2629 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2630 UI != UE; ++UI)
2631 Worklist.push_back(cast<Instruction>(*UI));
2634 /// ForgetSymbolicValue - This looks up computed SCEV values for all
2635 /// instructions that depend on the given instruction and removes them from
2636 /// the ValueExprMapType map if they reference SymName. This is used during PHI
2637 /// resolution.
2638 void
2639 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2640 SmallVector<Instruction *, 16> Worklist;
2641 PushDefUseChildren(PN, Worklist);
2643 SmallPtrSet<Instruction *, 8> Visited;
2644 Visited.insert(PN);
2645 while (!Worklist.empty()) {
2646 Instruction *I = Worklist.pop_back_val();
2647 if (!Visited.insert(I)) continue;
2649 ValueExprMapType::iterator It =
2650 ValueExprMap.find(static_cast<Value *>(I));
2651 if (It != ValueExprMap.end()) {
2652 const SCEV *Old = It->second;
2654 // Short-circuit the def-use traversal if the symbolic name
2655 // ceases to appear in expressions.
2656 if (Old != SymName && !hasOperand(Old, SymName))
2657 continue;
2659 // SCEVUnknown for a PHI either means that it has an unrecognized
2660 // structure, it's a PHI that's in the progress of being computed
2661 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2662 // additional loop trip count information isn't going to change anything.
2663 // In the second case, createNodeForPHI will perform the necessary
2664 // updates on its own when it gets to that point. In the third, we do
2665 // want to forget the SCEVUnknown.
2666 if (!isa<PHINode>(I) ||
2667 !isa<SCEVUnknown>(Old) ||
2668 (I != PN && Old == SymName)) {
2669 forgetMemoizedResults(Old);
2670 ValueExprMap.erase(It);
2674 PushDefUseChildren(I, Worklist);
2678 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2679 /// a loop header, making it a potential recurrence, or it doesn't.
2681 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2682 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2683 if (L->getHeader() == PN->getParent()) {
2684 // The loop may have multiple entrances or multiple exits; we can analyze
2685 // this phi as an addrec if it has a unique entry value and a unique
2686 // backedge value.
2687 Value *BEValueV = 0, *StartValueV = 0;
2688 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2689 Value *V = PN->getIncomingValue(i);
2690 if (L->contains(PN->getIncomingBlock(i))) {
2691 if (!BEValueV) {
2692 BEValueV = V;
2693 } else if (BEValueV != V) {
2694 BEValueV = 0;
2695 break;
2697 } else if (!StartValueV) {
2698 StartValueV = V;
2699 } else if (StartValueV != V) {
2700 StartValueV = 0;
2701 break;
2704 if (BEValueV && StartValueV) {
2705 // While we are analyzing this PHI node, handle its value symbolically.
2706 const SCEV *SymbolicName = getUnknown(PN);
2707 assert(ValueExprMap.find(PN) == ValueExprMap.end() &&
2708 "PHI node already processed?");
2709 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2711 // Using this symbolic name for the PHI, analyze the value coming around
2712 // the back-edge.
2713 const SCEV *BEValue = getSCEV(BEValueV);
2715 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2716 // has a special value for the first iteration of the loop.
2718 // If the value coming around the backedge is an add with the symbolic
2719 // value we just inserted, then we found a simple induction variable!
2720 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2721 // If there is a single occurrence of the symbolic value, replace it
2722 // with a recurrence.
2723 unsigned FoundIndex = Add->getNumOperands();
2724 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2725 if (Add->getOperand(i) == SymbolicName)
2726 if (FoundIndex == e) {
2727 FoundIndex = i;
2728 break;
2731 if (FoundIndex != Add->getNumOperands()) {
2732 // Create an add with everything but the specified operand.
2733 SmallVector<const SCEV *, 8> Ops;
2734 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2735 if (i != FoundIndex)
2736 Ops.push_back(Add->getOperand(i));
2737 const SCEV *Accum = getAddExpr(Ops);
2739 // This is not a valid addrec if the step amount is varying each
2740 // loop iteration, but is not itself an addrec in this loop.
2741 if (isLoopInvariant(Accum, L) ||
2742 (isa<SCEVAddRecExpr>(Accum) &&
2743 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2744 bool HasNUW = false;
2745 bool HasNSW = false;
2747 // If the increment doesn't overflow, then neither the addrec nor
2748 // the post-increment will overflow.
2749 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2750 if (OBO->hasNoUnsignedWrap())
2751 HasNUW = true;
2752 if (OBO->hasNoSignedWrap())
2753 HasNSW = true;
2754 } else if (const GEPOperator *GEP =
2755 dyn_cast<GEPOperator>(BEValueV)) {
2756 // If the increment is a GEP, then we know it won't perform an
2757 // unsigned overflow, because the address space cannot be
2758 // wrapped around.
2759 HasNUW |= GEP->isInBounds();
2762 const SCEV *StartVal = getSCEV(StartValueV);
2763 const SCEV *PHISCEV =
2764 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
2766 // Since the no-wrap flags are on the increment, they apply to the
2767 // post-incremented value as well.
2768 if (isLoopInvariant(Accum, L))
2769 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2770 Accum, L, HasNUW, HasNSW);
2772 // Okay, for the entire analysis of this edge we assumed the PHI
2773 // to be symbolic. We now need to go back and purge all of the
2774 // entries for the scalars that use the symbolic expression.
2775 ForgetSymbolicName(PN, SymbolicName);
2776 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2777 return PHISCEV;
2780 } else if (const SCEVAddRecExpr *AddRec =
2781 dyn_cast<SCEVAddRecExpr>(BEValue)) {
2782 // Otherwise, this could be a loop like this:
2783 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2784 // In this case, j = {1,+,1} and BEValue is j.
2785 // Because the other in-value of i (0) fits the evolution of BEValue
2786 // i really is an addrec evolution.
2787 if (AddRec->getLoop() == L && AddRec->isAffine()) {
2788 const SCEV *StartVal = getSCEV(StartValueV);
2790 // If StartVal = j.start - j.stride, we can use StartVal as the
2791 // initial step of the addrec evolution.
2792 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2793 AddRec->getOperand(1))) {
2794 const SCEV *PHISCEV =
2795 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2797 // Okay, for the entire analysis of this edge we assumed the PHI
2798 // to be symbolic. We now need to go back and purge all of the
2799 // entries for the scalars that use the symbolic expression.
2800 ForgetSymbolicName(PN, SymbolicName);
2801 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
2802 return PHISCEV;
2809 // If the PHI has a single incoming value, follow that value, unless the
2810 // PHI's incoming blocks are in a different loop, in which case doing so
2811 // risks breaking LCSSA form. Instcombine would normally zap these, but
2812 // it doesn't have DominatorTree information, so it may miss cases.
2813 if (Value *V = SimplifyInstruction(PN, TD, DT))
2814 if (LI->replacementPreservesLCSSAForm(PN, V))
2815 return getSCEV(V);
2817 // If it's not a loop phi, we can't handle it yet.
2818 return getUnknown(PN);
2821 /// createNodeForGEP - Expand GEP instructions into add and multiply
2822 /// operations. This allows them to be analyzed by regular SCEV code.
2824 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
2826 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2827 // Add expression, because the Instruction may be guarded by control flow
2828 // and the no-overflow bits may not be valid for the expression in any
2829 // context.
2831 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
2832 Value *Base = GEP->getOperand(0);
2833 // Don't attempt to analyze GEPs over unsized objects.
2834 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2835 return getUnknown(GEP);
2836 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
2837 gep_type_iterator GTI = gep_type_begin(GEP);
2838 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
2839 E = GEP->op_end();
2840 I != E; ++I) {
2841 Value *Index = *I;
2842 // Compute the (potentially symbolic) offset in bytes for this index.
2843 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2844 // For a struct, add the member offset.
2845 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2846 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2848 // Add the field offset to the running total offset.
2849 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2850 } else {
2851 // For an array, add the element offset, explicitly scaled.
2852 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2853 const SCEV *IndexS = getSCEV(Index);
2854 // Getelementptr indices are signed.
2855 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2857 // Multiply the index by the element size to compute the element offset.
2858 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
2860 // Add the element offset to the running total offset.
2861 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2865 // Get the SCEV for the GEP base.
2866 const SCEV *BaseS = getSCEV(Base);
2868 // Add the total offset from all the GEP indices to the base.
2869 return getAddExpr(BaseS, TotalOffset);
2872 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2873 /// guaranteed to end in (at every loop iteration). It is, at the same time,
2874 /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2875 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
2876 uint32_t
2877 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2878 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2879 return C->getValue()->getValue().countTrailingZeros();
2881 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2882 return std::min(GetMinTrailingZeros(T->getOperand()),
2883 (uint32_t)getTypeSizeInBits(T->getType()));
2885 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2886 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2887 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2888 getTypeSizeInBits(E->getType()) : OpRes;
2891 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2892 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2893 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2894 getTypeSizeInBits(E->getType()) : OpRes;
2897 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2898 // The result is the min of all operands results.
2899 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2900 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2901 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2902 return MinOpRes;
2905 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2906 // The result is the sum of all operands results.
2907 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2908 uint32_t BitWidth = getTypeSizeInBits(M->getType());
2909 for (unsigned i = 1, e = M->getNumOperands();
2910 SumOpRes != BitWidth && i != e; ++i)
2911 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2912 BitWidth);
2913 return SumOpRes;
2916 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2917 // The result is the min of all operands results.
2918 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2919 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2920 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2921 return MinOpRes;
2924 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2925 // The result is the min of all operands results.
2926 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2927 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2928 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2929 return MinOpRes;
2932 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2933 // The result is the min of all operands results.
2934 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2935 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2936 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2937 return MinOpRes;
2940 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2941 // For a SCEVUnknown, ask ValueTracking.
2942 unsigned BitWidth = getTypeSizeInBits(U->getType());
2943 APInt Mask = APInt::getAllOnesValue(BitWidth);
2944 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2945 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2946 return Zeros.countTrailingOnes();
2949 // SCEVUDivExpr
2950 return 0;
2953 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2955 ConstantRange
2956 ScalarEvolution::getUnsignedRange(const SCEV *S) {
2957 // See if we've computed this range already.
2958 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
2959 if (I != UnsignedRanges.end())
2960 return I->second;
2962 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2963 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
2965 unsigned BitWidth = getTypeSizeInBits(S->getType());
2966 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2968 // If the value has known zeros, the maximum unsigned value will have those
2969 // known zeros as well.
2970 uint32_t TZ = GetMinTrailingZeros(S);
2971 if (TZ != 0)
2972 ConservativeResult =
2973 ConstantRange(APInt::getMinValue(BitWidth),
2974 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2976 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2977 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2978 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2979 X = X.add(getUnsignedRange(Add->getOperand(i)));
2980 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
2983 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2984 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2985 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2986 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2987 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
2990 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2991 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2992 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2993 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2994 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
2997 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2998 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2999 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3000 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3001 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3004 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3005 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3006 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3007 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3010 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3011 ConstantRange X = getUnsignedRange(ZExt->getOperand());
3012 return setUnsignedRange(ZExt,
3013 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3016 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3017 ConstantRange X = getUnsignedRange(SExt->getOperand());
3018 return setUnsignedRange(SExt,
3019 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3022 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3023 ConstantRange X = getUnsignedRange(Trunc->getOperand());
3024 return setUnsignedRange(Trunc,
3025 ConservativeResult.intersectWith(X.truncate(BitWidth)));
3028 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3029 // If there's no unsigned wrap, the value will never be less than its
3030 // initial value.
3031 if (AddRec->hasNoUnsignedWrap())
3032 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3033 if (!C->getValue()->isZero())
3034 ConservativeResult =
3035 ConservativeResult.intersectWith(
3036 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3038 // TODO: non-affine addrec
3039 if (AddRec->isAffine()) {
3040 const Type *Ty = AddRec->getType();
3041 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3042 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3043 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3044 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3046 const SCEV *Start = AddRec->getStart();
3047 const SCEV *Step = AddRec->getStepRecurrence(*this);
3049 ConstantRange StartRange = getUnsignedRange(Start);
3050 ConstantRange StepRange = getSignedRange(Step);
3051 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3052 ConstantRange EndRange =
3053 StartRange.add(MaxBECountRange.multiply(StepRange));
3055 // Check for overflow. This must be done with ConstantRange arithmetic
3056 // because we could be called from within the ScalarEvolution overflow
3057 // checking code.
3058 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3059 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3060 ConstantRange ExtMaxBECountRange =
3061 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3062 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3063 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3064 ExtEndRange)
3065 return setUnsignedRange(AddRec, ConservativeResult);
3067 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3068 EndRange.getUnsignedMin());
3069 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3070 EndRange.getUnsignedMax());
3071 if (Min.isMinValue() && Max.isMaxValue())
3072 return setUnsignedRange(AddRec, ConservativeResult);
3073 return setUnsignedRange(AddRec,
3074 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3078 return setUnsignedRange(AddRec, ConservativeResult);
3081 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3082 // For a SCEVUnknown, ask ValueTracking.
3083 APInt Mask = APInt::getAllOnesValue(BitWidth);
3084 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3085 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
3086 if (Ones == ~Zeros + 1)
3087 return setUnsignedRange(U, ConservativeResult);
3088 return setUnsignedRange(U,
3089 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3092 return setUnsignedRange(S, ConservativeResult);
3095 /// getSignedRange - Determine the signed range for a particular SCEV.
3097 ConstantRange
3098 ScalarEvolution::getSignedRange(const SCEV *S) {
3099 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3100 if (I != SignedRanges.end())
3101 return I->second;
3103 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3104 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3106 unsigned BitWidth = getTypeSizeInBits(S->getType());
3107 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3109 // If the value has known zeros, the maximum signed value will have those
3110 // known zeros as well.
3111 uint32_t TZ = GetMinTrailingZeros(S);
3112 if (TZ != 0)
3113 ConservativeResult =
3114 ConstantRange(APInt::getSignedMinValue(BitWidth),
3115 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3117 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3118 ConstantRange X = getSignedRange(Add->getOperand(0));
3119 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3120 X = X.add(getSignedRange(Add->getOperand(i)));
3121 return setSignedRange(Add, ConservativeResult.intersectWith(X));
3124 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3125 ConstantRange X = getSignedRange(Mul->getOperand(0));
3126 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3127 X = X.multiply(getSignedRange(Mul->getOperand(i)));
3128 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3131 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3132 ConstantRange X = getSignedRange(SMax->getOperand(0));
3133 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3134 X = X.smax(getSignedRange(SMax->getOperand(i)));
3135 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3138 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3139 ConstantRange X = getSignedRange(UMax->getOperand(0));
3140 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3141 X = X.umax(getSignedRange(UMax->getOperand(i)));
3142 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3145 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3146 ConstantRange X = getSignedRange(UDiv->getLHS());
3147 ConstantRange Y = getSignedRange(UDiv->getRHS());
3148 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3151 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3152 ConstantRange X = getSignedRange(ZExt->getOperand());
3153 return setSignedRange(ZExt,
3154 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3157 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3158 ConstantRange X = getSignedRange(SExt->getOperand());
3159 return setSignedRange(SExt,
3160 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3163 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3164 ConstantRange X = getSignedRange(Trunc->getOperand());
3165 return setSignedRange(Trunc,
3166 ConservativeResult.intersectWith(X.truncate(BitWidth)));
3169 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3170 // If there's no signed wrap, and all the operands have the same sign or
3171 // zero, the value won't ever change sign.
3172 if (AddRec->hasNoSignedWrap()) {
3173 bool AllNonNeg = true;
3174 bool AllNonPos = true;
3175 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3176 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3177 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3179 if (AllNonNeg)
3180 ConservativeResult = ConservativeResult.intersectWith(
3181 ConstantRange(APInt(BitWidth, 0),
3182 APInt::getSignedMinValue(BitWidth)));
3183 else if (AllNonPos)
3184 ConservativeResult = ConservativeResult.intersectWith(
3185 ConstantRange(APInt::getSignedMinValue(BitWidth),
3186 APInt(BitWidth, 1)));
3189 // TODO: non-affine addrec
3190 if (AddRec->isAffine()) {
3191 const Type *Ty = AddRec->getType();
3192 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3193 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3194 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3195 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3197 const SCEV *Start = AddRec->getStart();
3198 const SCEV *Step = AddRec->getStepRecurrence(*this);
3200 ConstantRange StartRange = getSignedRange(Start);
3201 ConstantRange StepRange = getSignedRange(Step);
3202 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3203 ConstantRange EndRange =
3204 StartRange.add(MaxBECountRange.multiply(StepRange));
3206 // Check for overflow. This must be done with ConstantRange arithmetic
3207 // because we could be called from within the ScalarEvolution overflow
3208 // checking code.
3209 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3210 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3211 ConstantRange ExtMaxBECountRange =
3212 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3213 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3214 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3215 ExtEndRange)
3216 return setSignedRange(AddRec, ConservativeResult);
3218 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3219 EndRange.getSignedMin());
3220 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3221 EndRange.getSignedMax());
3222 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3223 return setSignedRange(AddRec, ConservativeResult);
3224 return setSignedRange(AddRec,
3225 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3229 return setSignedRange(AddRec, ConservativeResult);
3232 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3233 // For a SCEVUnknown, ask ValueTracking.
3234 if (!U->getValue()->getType()->isIntegerTy() && !TD)
3235 return setSignedRange(U, ConservativeResult);
3236 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3237 if (NS == 1)
3238 return setSignedRange(U, ConservativeResult);
3239 return setSignedRange(U, ConservativeResult.intersectWith(
3240 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3241 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3244 return setSignedRange(S, ConservativeResult);
3247 /// createSCEV - We know that there is no SCEV for the specified value.
3248 /// Analyze the expression.
3250 const SCEV *ScalarEvolution::createSCEV(Value *V) {
3251 if (!isSCEVable(V->getType()))
3252 return getUnknown(V);
3254 unsigned Opcode = Instruction::UserOp1;
3255 if (Instruction *I = dyn_cast<Instruction>(V)) {
3256 Opcode = I->getOpcode();
3258 // Don't attempt to analyze instructions in blocks that aren't
3259 // reachable. Such instructions don't matter, and they aren't required
3260 // to obey basic rules for definitions dominating uses which this
3261 // analysis depends on.
3262 if (!DT->isReachableFromEntry(I->getParent()))
3263 return getUnknown(V);
3264 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3265 Opcode = CE->getOpcode();
3266 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3267 return getConstant(CI);
3268 else if (isa<ConstantPointerNull>(V))
3269 return getConstant(V->getType(), 0);
3270 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3271 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3272 else
3273 return getUnknown(V);
3275 Operator *U = cast<Operator>(V);
3276 switch (Opcode) {
3277 case Instruction::Add: {
3278 // The simple thing to do would be to just call getSCEV on both operands
3279 // and call getAddExpr with the result. However if we're looking at a
3280 // bunch of things all added together, this can be quite inefficient,
3281 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3282 // Instead, gather up all the operands and make a single getAddExpr call.
3283 // LLVM IR canonical form means we need only traverse the left operands.
3284 SmallVector<const SCEV *, 4> AddOps;
3285 AddOps.push_back(getSCEV(U->getOperand(1)));
3286 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3287 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3288 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3289 break;
3290 U = cast<Operator>(Op);
3291 const SCEV *Op1 = getSCEV(U->getOperand(1));
3292 if (Opcode == Instruction::Sub)
3293 AddOps.push_back(getNegativeSCEV(Op1));
3294 else
3295 AddOps.push_back(Op1);
3297 AddOps.push_back(getSCEV(U->getOperand(0)));
3298 return getAddExpr(AddOps);
3300 case Instruction::Mul: {
3301 // See the Add code above.
3302 SmallVector<const SCEV *, 4> MulOps;
3303 MulOps.push_back(getSCEV(U->getOperand(1)));
3304 for (Value *Op = U->getOperand(0);
3305 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3306 Op = U->getOperand(0)) {
3307 U = cast<Operator>(Op);
3308 MulOps.push_back(getSCEV(U->getOperand(1)));
3310 MulOps.push_back(getSCEV(U->getOperand(0)));
3311 return getMulExpr(MulOps);
3313 case Instruction::UDiv:
3314 return getUDivExpr(getSCEV(U->getOperand(0)),
3315 getSCEV(U->getOperand(1)));
3316 case Instruction::Sub:
3317 return getMinusSCEV(getSCEV(U->getOperand(0)),
3318 getSCEV(U->getOperand(1)));
3319 case Instruction::And:
3320 // For an expression like x&255 that merely masks off the high bits,
3321 // use zext(trunc(x)) as the SCEV expression.
3322 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3323 if (CI->isNullValue())
3324 return getSCEV(U->getOperand(1));
3325 if (CI->isAllOnesValue())
3326 return getSCEV(U->getOperand(0));
3327 const APInt &A = CI->getValue();
3329 // Instcombine's ShrinkDemandedConstant may strip bits out of
3330 // constants, obscuring what would otherwise be a low-bits mask.
3331 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3332 // knew about to reconstruct a low-bits mask value.
3333 unsigned LZ = A.countLeadingZeros();
3334 unsigned BitWidth = A.getBitWidth();
3335 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3336 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3337 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3339 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3341 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3342 return
3343 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3344 IntegerType::get(getContext(), BitWidth - LZ)),
3345 U->getType());
3347 break;
3349 case Instruction::Or:
3350 // If the RHS of the Or is a constant, we may have something like:
3351 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3352 // optimizations will transparently handle this case.
3354 // In order for this transformation to be safe, the LHS must be of the
3355 // form X*(2^n) and the Or constant must be less than 2^n.
3356 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3357 const SCEV *LHS = getSCEV(U->getOperand(0));
3358 const APInt &CIVal = CI->getValue();
3359 if (GetMinTrailingZeros(LHS) >=
3360 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3361 // Build a plain add SCEV.
3362 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3363 // If the LHS of the add was an addrec and it has no-wrap flags,
3364 // transfer the no-wrap flags, since an or won't introduce a wrap.
3365 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3366 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3367 if (OldAR->hasNoUnsignedWrap())
3368 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3369 if (OldAR->hasNoSignedWrap())
3370 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3372 return S;
3375 break;
3376 case Instruction::Xor:
3377 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3378 // If the RHS of the xor is a signbit, then this is just an add.
3379 // Instcombine turns add of signbit into xor as a strength reduction step.
3380 if (CI->getValue().isSignBit())
3381 return getAddExpr(getSCEV(U->getOperand(0)),
3382 getSCEV(U->getOperand(1)));
3384 // If the RHS of xor is -1, then this is a not operation.
3385 if (CI->isAllOnesValue())
3386 return getNotSCEV(getSCEV(U->getOperand(0)));
3388 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3389 // This is a variant of the check for xor with -1, and it handles
3390 // the case where instcombine has trimmed non-demanded bits out
3391 // of an xor with -1.
3392 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3393 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3394 if (BO->getOpcode() == Instruction::And &&
3395 LCI->getValue() == CI->getValue())
3396 if (const SCEVZeroExtendExpr *Z =
3397 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3398 const Type *UTy = U->getType();
3399 const SCEV *Z0 = Z->getOperand();
3400 const Type *Z0Ty = Z0->getType();
3401 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3403 // If C is a low-bits mask, the zero extend is serving to
3404 // mask off the high bits. Complement the operand and
3405 // re-apply the zext.
3406 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3407 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3409 // If C is a single bit, it may be in the sign-bit position
3410 // before the zero-extend. In this case, represent the xor
3411 // using an add, which is equivalent, and re-apply the zext.
3412 APInt Trunc = CI->getValue().trunc(Z0TySize);
3413 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3414 Trunc.isSignBit())
3415 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3416 UTy);
3419 break;
3421 case Instruction::Shl:
3422 // Turn shift left of a constant amount into a multiply.
3423 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3424 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3426 // If the shift count is not less than the bitwidth, the result of
3427 // the shift is undefined. Don't try to analyze it, because the
3428 // resolution chosen here may differ from the resolution chosen in
3429 // other parts of the compiler.
3430 if (SA->getValue().uge(BitWidth))
3431 break;
3433 Constant *X = ConstantInt::get(getContext(),
3434 APInt(BitWidth, 1).shl(SA->getZExtValue()));
3435 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3437 break;
3439 case Instruction::LShr:
3440 // Turn logical shift right of a constant into a unsigned divide.
3441 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3442 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3444 // If the shift count is not less than the bitwidth, the result of
3445 // the shift is undefined. Don't try to analyze it, because the
3446 // resolution chosen here may differ from the resolution chosen in
3447 // other parts of the compiler.
3448 if (SA->getValue().uge(BitWidth))
3449 break;
3451 Constant *X = ConstantInt::get(getContext(),
3452 APInt(BitWidth, 1).shl(SA->getZExtValue()));
3453 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3455 break;
3457 case Instruction::AShr:
3458 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3459 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3460 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3461 if (L->getOpcode() == Instruction::Shl &&
3462 L->getOperand(1) == U->getOperand(1)) {
3463 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3465 // If the shift count is not less than the bitwidth, the result of
3466 // the shift is undefined. Don't try to analyze it, because the
3467 // resolution chosen here may differ from the resolution chosen in
3468 // other parts of the compiler.
3469 if (CI->getValue().uge(BitWidth))
3470 break;
3472 uint64_t Amt = BitWidth - CI->getZExtValue();
3473 if (Amt == BitWidth)
3474 return getSCEV(L->getOperand(0)); // shift by zero --> noop
3475 return
3476 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3477 IntegerType::get(getContext(),
3478 Amt)),
3479 U->getType());
3481 break;
3483 case Instruction::Trunc:
3484 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3486 case Instruction::ZExt:
3487 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3489 case Instruction::SExt:
3490 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3492 case Instruction::BitCast:
3493 // BitCasts are no-op casts so we just eliminate the cast.
3494 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3495 return getSCEV(U->getOperand(0));
3496 break;
3498 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3499 // lead to pointer expressions which cannot safely be expanded to GEPs,
3500 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3501 // simplifying integer expressions.
3503 case Instruction::GetElementPtr:
3504 return createNodeForGEP(cast<GEPOperator>(U));
3506 case Instruction::PHI:
3507 return createNodeForPHI(cast<PHINode>(U));
3509 case Instruction::Select:
3510 // This could be a smax or umax that was lowered earlier.
3511 // Try to recover it.
3512 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3513 Value *LHS = ICI->getOperand(0);
3514 Value *RHS = ICI->getOperand(1);
3515 switch (ICI->getPredicate()) {
3516 case ICmpInst::ICMP_SLT:
3517 case ICmpInst::ICMP_SLE:
3518 std::swap(LHS, RHS);
3519 // fall through
3520 case ICmpInst::ICMP_SGT:
3521 case ICmpInst::ICMP_SGE:
3522 // a >s b ? a+x : b+x -> smax(a, b)+x
3523 // a >s b ? b+x : a+x -> smin(a, b)+x
3524 if (LHS->getType() == U->getType()) {
3525 const SCEV *LS = getSCEV(LHS);
3526 const SCEV *RS = getSCEV(RHS);
3527 const SCEV *LA = getSCEV(U->getOperand(1));
3528 const SCEV *RA = getSCEV(U->getOperand(2));
3529 const SCEV *LDiff = getMinusSCEV(LA, LS);
3530 const SCEV *RDiff = getMinusSCEV(RA, RS);
3531 if (LDiff == RDiff)
3532 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3533 LDiff = getMinusSCEV(LA, RS);
3534 RDiff = getMinusSCEV(RA, LS);
3535 if (LDiff == RDiff)
3536 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3538 break;
3539 case ICmpInst::ICMP_ULT:
3540 case ICmpInst::ICMP_ULE:
3541 std::swap(LHS, RHS);
3542 // fall through
3543 case ICmpInst::ICMP_UGT:
3544 case ICmpInst::ICMP_UGE:
3545 // a >u b ? a+x : b+x -> umax(a, b)+x
3546 // a >u b ? b+x : a+x -> umin(a, b)+x
3547 if (LHS->getType() == U->getType()) {
3548 const SCEV *LS = getSCEV(LHS);
3549 const SCEV *RS = getSCEV(RHS);
3550 const SCEV *LA = getSCEV(U->getOperand(1));
3551 const SCEV *RA = getSCEV(U->getOperand(2));
3552 const SCEV *LDiff = getMinusSCEV(LA, LS);
3553 const SCEV *RDiff = getMinusSCEV(RA, RS);
3554 if (LDiff == RDiff)
3555 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3556 LDiff = getMinusSCEV(LA, RS);
3557 RDiff = getMinusSCEV(RA, LS);
3558 if (LDiff == RDiff)
3559 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3561 break;
3562 case ICmpInst::ICMP_NE:
3563 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3564 if (LHS->getType() == U->getType() &&
3565 isa<ConstantInt>(RHS) &&
3566 cast<ConstantInt>(RHS)->isZero()) {
3567 const SCEV *One = getConstant(LHS->getType(), 1);
3568 const SCEV *LS = getSCEV(LHS);
3569 const SCEV *LA = getSCEV(U->getOperand(1));
3570 const SCEV *RA = getSCEV(U->getOperand(2));
3571 const SCEV *LDiff = getMinusSCEV(LA, LS);
3572 const SCEV *RDiff = getMinusSCEV(RA, One);
3573 if (LDiff == RDiff)
3574 return getAddExpr(getUMaxExpr(One, LS), LDiff);
3576 break;
3577 case ICmpInst::ICMP_EQ:
3578 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3579 if (LHS->getType() == U->getType() &&
3580 isa<ConstantInt>(RHS) &&
3581 cast<ConstantInt>(RHS)->isZero()) {
3582 const SCEV *One = getConstant(LHS->getType(), 1);
3583 const SCEV *LS = getSCEV(LHS);
3584 const SCEV *LA = getSCEV(U->getOperand(1));
3585 const SCEV *RA = getSCEV(U->getOperand(2));
3586 const SCEV *LDiff = getMinusSCEV(LA, One);
3587 const SCEV *RDiff = getMinusSCEV(RA, LS);
3588 if (LDiff == RDiff)
3589 return getAddExpr(getUMaxExpr(One, LS), LDiff);
3591 break;
3592 default:
3593 break;
3597 default: // We cannot analyze this expression.
3598 break;
3601 return getUnknown(V);
3606 //===----------------------------------------------------------------------===//
3607 // Iteration Count Computation Code
3610 /// getBackedgeTakenCount - If the specified loop has a predictable
3611 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3612 /// object. The backedge-taken count is the number of times the loop header
3613 /// will be branched to from within the loop. This is one less than the
3614 /// trip count of the loop, since it doesn't count the first iteration,
3615 /// when the header is branched to from outside the loop.
3617 /// Note that it is not valid to call this method on a loop without a
3618 /// loop-invariant backedge-taken count (see
3619 /// hasLoopInvariantBackedgeTakenCount).
3621 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3622 return getBackedgeTakenInfo(L).Exact;
3625 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3626 /// return the least SCEV value that is known never to be less than the
3627 /// actual backedge taken count.
3628 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3629 return getBackedgeTakenInfo(L).Max;
3632 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
3633 /// onto the given Worklist.
3634 static void
3635 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3636 BasicBlock *Header = L->getHeader();
3638 // Push all Loop-header PHIs onto the Worklist stack.
3639 for (BasicBlock::iterator I = Header->begin();
3640 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3641 Worklist.push_back(PN);
3644 const ScalarEvolution::BackedgeTakenInfo &
3645 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3646 // Initially insert a CouldNotCompute for this loop. If the insertion
3647 // succeeds, proceed to actually compute a backedge-taken count and
3648 // update the value. The temporary CouldNotCompute value tells SCEV
3649 // code elsewhere that it shouldn't attempt to request a new
3650 // backedge-taken count, which could result in infinite recursion.
3651 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
3652 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3653 if (!Pair.second)
3654 return Pair.first->second;
3656 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3657 if (BECount.Exact != getCouldNotCompute()) {
3658 assert(isLoopInvariant(BECount.Exact, L) &&
3659 isLoopInvariant(BECount.Max, L) &&
3660 "Computed backedge-taken count isn't loop invariant for loop!");
3661 ++NumTripCountsComputed;
3663 // Update the value in the map.
3664 Pair.first->second = BECount;
3665 } else {
3666 if (BECount.Max != getCouldNotCompute())
3667 // Update the value in the map.
3668 Pair.first->second = BECount;
3669 if (isa<PHINode>(L->getHeader()->begin()))
3670 // Only count loops that have phi nodes as not being computable.
3671 ++NumTripCountsNotComputed;
3674 // Now that we know more about the trip count for this loop, forget any
3675 // existing SCEV values for PHI nodes in this loop since they are only
3676 // conservative estimates made without the benefit of trip count
3677 // information. This is similar to the code in forgetLoop, except that
3678 // it handles SCEVUnknown PHI nodes specially.
3679 if (BECount.hasAnyInfo()) {
3680 SmallVector<Instruction *, 16> Worklist;
3681 PushLoopPHIs(L, Worklist);
3683 SmallPtrSet<Instruction *, 8> Visited;
3684 while (!Worklist.empty()) {
3685 Instruction *I = Worklist.pop_back_val();
3686 if (!Visited.insert(I)) continue;
3688 ValueExprMapType::iterator It =
3689 ValueExprMap.find(static_cast<Value *>(I));
3690 if (It != ValueExprMap.end()) {
3691 const SCEV *Old = It->second;
3693 // SCEVUnknown for a PHI either means that it has an unrecognized
3694 // structure, or it's a PHI that's in the progress of being computed
3695 // by createNodeForPHI. In the former case, additional loop trip
3696 // count information isn't going to change anything. In the later
3697 // case, createNodeForPHI will perform the necessary updates on its
3698 // own when it gets to that point.
3699 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
3700 forgetMemoizedResults(Old);
3701 ValueExprMap.erase(It);
3703 if (PHINode *PN = dyn_cast<PHINode>(I))
3704 ConstantEvolutionLoopExitValue.erase(PN);
3707 PushDefUseChildren(I, Worklist);
3710 return Pair.first->second;
3713 /// forgetLoop - This method should be called by the client when it has
3714 /// changed a loop in a way that may effect ScalarEvolution's ability to
3715 /// compute a trip count, or if the loop is deleted.
3716 void ScalarEvolution::forgetLoop(const Loop *L) {
3717 // Drop any stored trip count value.
3718 BackedgeTakenCounts.erase(L);
3720 // Drop information about expressions based on loop-header PHIs.
3721 SmallVector<Instruction *, 16> Worklist;
3722 PushLoopPHIs(L, Worklist);
3724 SmallPtrSet<Instruction *, 8> Visited;
3725 while (!Worklist.empty()) {
3726 Instruction *I = Worklist.pop_back_val();
3727 if (!Visited.insert(I)) continue;
3729 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3730 if (It != ValueExprMap.end()) {
3731 forgetMemoizedResults(It->second);
3732 ValueExprMap.erase(It);
3733 if (PHINode *PN = dyn_cast<PHINode>(I))
3734 ConstantEvolutionLoopExitValue.erase(PN);
3737 PushDefUseChildren(I, Worklist);
3740 // Forget all contained loops too, to avoid dangling entries in the
3741 // ValuesAtScopes map.
3742 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3743 forgetLoop(*I);
3746 /// forgetValue - This method should be called by the client when it has
3747 /// changed a value in a way that may effect its value, or which may
3748 /// disconnect it from a def-use chain linking it to a loop.
3749 void ScalarEvolution::forgetValue(Value *V) {
3750 Instruction *I = dyn_cast<Instruction>(V);
3751 if (!I) return;
3753 // Drop information about expressions based on loop-header PHIs.
3754 SmallVector<Instruction *, 16> Worklist;
3755 Worklist.push_back(I);
3757 SmallPtrSet<Instruction *, 8> Visited;
3758 while (!Worklist.empty()) {
3759 I = Worklist.pop_back_val();
3760 if (!Visited.insert(I)) continue;
3762 ValueExprMapType::iterator It = ValueExprMap.find(static_cast<Value *>(I));
3763 if (It != ValueExprMap.end()) {
3764 forgetMemoizedResults(It->second);
3765 ValueExprMap.erase(It);
3766 if (PHINode *PN = dyn_cast<PHINode>(I))
3767 ConstantEvolutionLoopExitValue.erase(PN);
3770 PushDefUseChildren(I, Worklist);
3774 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
3775 /// of the specified loop will execute.
3776 ScalarEvolution::BackedgeTakenInfo
3777 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3778 SmallVector<BasicBlock *, 8> ExitingBlocks;
3779 L->getExitingBlocks(ExitingBlocks);
3781 // Examine all exits and pick the most conservative values.
3782 const SCEV *BECount = getCouldNotCompute();
3783 const SCEV *MaxBECount = getCouldNotCompute();
3784 bool CouldNotComputeBECount = false;
3785 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3786 BackedgeTakenInfo NewBTI =
3787 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3789 if (NewBTI.Exact == getCouldNotCompute()) {
3790 // We couldn't compute an exact value for this exit, so
3791 // we won't be able to compute an exact value for the loop.
3792 CouldNotComputeBECount = true;
3793 BECount = getCouldNotCompute();
3794 } else if (!CouldNotComputeBECount) {
3795 if (BECount == getCouldNotCompute())
3796 BECount = NewBTI.Exact;
3797 else
3798 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3800 if (MaxBECount == getCouldNotCompute())
3801 MaxBECount = NewBTI.Max;
3802 else if (NewBTI.Max != getCouldNotCompute())
3803 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3806 return BackedgeTakenInfo(BECount, MaxBECount);
3809 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3810 /// of the specified loop will execute if it exits via the specified block.
3811 ScalarEvolution::BackedgeTakenInfo
3812 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3813 BasicBlock *ExitingBlock) {
3815 // Okay, we've chosen an exiting block. See what condition causes us to
3816 // exit at this block.
3818 // FIXME: we should be able to handle switch instructions (with a single exit)
3819 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3820 if (ExitBr == 0) return getCouldNotCompute();
3821 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3823 // At this point, we know we have a conditional branch that determines whether
3824 // the loop is exited. However, we don't know if the branch is executed each
3825 // time through the loop. If not, then the execution count of the branch will
3826 // not be equal to the trip count of the loop.
3828 // Currently we check for this by checking to see if the Exit branch goes to
3829 // the loop header. If so, we know it will always execute the same number of
3830 // times as the loop. We also handle the case where the exit block *is* the
3831 // loop header. This is common for un-rotated loops.
3833 // If both of those tests fail, walk up the unique predecessor chain to the
3834 // header, stopping if there is an edge that doesn't exit the loop. If the
3835 // header is reached, the execution count of the branch will be equal to the
3836 // trip count of the loop.
3838 // More extensive analysis could be done to handle more cases here.
3840 if (ExitBr->getSuccessor(0) != L->getHeader() &&
3841 ExitBr->getSuccessor(1) != L->getHeader() &&
3842 ExitBr->getParent() != L->getHeader()) {
3843 // The simple checks failed, try climbing the unique predecessor chain
3844 // up to the header.
3845 bool Ok = false;
3846 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3847 BasicBlock *Pred = BB->getUniquePredecessor();
3848 if (!Pred)
3849 return getCouldNotCompute();
3850 TerminatorInst *PredTerm = Pred->getTerminator();
3851 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3852 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3853 if (PredSucc == BB)
3854 continue;
3855 // If the predecessor has a successor that isn't BB and isn't
3856 // outside the loop, assume the worst.
3857 if (L->contains(PredSucc))
3858 return getCouldNotCompute();
3860 if (Pred == L->getHeader()) {
3861 Ok = true;
3862 break;
3864 BB = Pred;
3866 if (!Ok)
3867 return getCouldNotCompute();
3870 // Proceed to the next level to examine the exit condition expression.
3871 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3872 ExitBr->getSuccessor(0),
3873 ExitBr->getSuccessor(1));
3876 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3877 /// backedge of the specified loop will execute if its exit condition
3878 /// were a conditional branch of ExitCond, TBB, and FBB.
3879 ScalarEvolution::BackedgeTakenInfo
3880 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3881 Value *ExitCond,
3882 BasicBlock *TBB,
3883 BasicBlock *FBB) {
3884 // Check if the controlling expression for this loop is an And or Or.
3885 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3886 if (BO->getOpcode() == Instruction::And) {
3887 // Recurse on the operands of the and.
3888 BackedgeTakenInfo BTI0 =
3889 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3890 BackedgeTakenInfo BTI1 =
3891 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3892 const SCEV *BECount = getCouldNotCompute();
3893 const SCEV *MaxBECount = getCouldNotCompute();
3894 if (L->contains(TBB)) {
3895 // Both conditions must be true for the loop to continue executing.
3896 // Choose the less conservative count.
3897 if (BTI0.Exact == getCouldNotCompute() ||
3898 BTI1.Exact == getCouldNotCompute())
3899 BECount = getCouldNotCompute();
3900 else
3901 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3902 if (BTI0.Max == getCouldNotCompute())
3903 MaxBECount = BTI1.Max;
3904 else if (BTI1.Max == getCouldNotCompute())
3905 MaxBECount = BTI0.Max;
3906 else
3907 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3908 } else {
3909 // Both conditions must be true at the same time for the loop to exit.
3910 // For now, be conservative.
3911 assert(L->contains(FBB) && "Loop block has no successor in loop!");
3912 if (BTI0.Max == BTI1.Max)
3913 MaxBECount = BTI0.Max;
3914 if (BTI0.Exact == BTI1.Exact)
3915 BECount = BTI0.Exact;
3918 return BackedgeTakenInfo(BECount, MaxBECount);
3920 if (BO->getOpcode() == Instruction::Or) {
3921 // Recurse on the operands of the or.
3922 BackedgeTakenInfo BTI0 =
3923 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3924 BackedgeTakenInfo BTI1 =
3925 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3926 const SCEV *BECount = getCouldNotCompute();
3927 const SCEV *MaxBECount = getCouldNotCompute();
3928 if (L->contains(FBB)) {
3929 // Both conditions must be false for the loop to continue executing.
3930 // Choose the less conservative count.
3931 if (BTI0.Exact == getCouldNotCompute() ||
3932 BTI1.Exact == getCouldNotCompute())
3933 BECount = getCouldNotCompute();
3934 else
3935 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3936 if (BTI0.Max == getCouldNotCompute())
3937 MaxBECount = BTI1.Max;
3938 else if (BTI1.Max == getCouldNotCompute())
3939 MaxBECount = BTI0.Max;
3940 else
3941 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3942 } else {
3943 // Both conditions must be false at the same time for the loop to exit.
3944 // For now, be conservative.
3945 assert(L->contains(TBB) && "Loop block has no successor in loop!");
3946 if (BTI0.Max == BTI1.Max)
3947 MaxBECount = BTI0.Max;
3948 if (BTI0.Exact == BTI1.Exact)
3949 BECount = BTI0.Exact;
3952 return BackedgeTakenInfo(BECount, MaxBECount);
3956 // With an icmp, it may be feasible to compute an exact backedge-taken count.
3957 // Proceed to the next level to examine the icmp.
3958 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3959 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3961 // Check for a constant condition. These are normally stripped out by
3962 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3963 // preserve the CFG and is temporarily leaving constant conditions
3964 // in place.
3965 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3966 if (L->contains(FBB) == !CI->getZExtValue())
3967 // The backedge is always taken.
3968 return getCouldNotCompute();
3969 else
3970 // The backedge is never taken.
3971 return getConstant(CI->getType(), 0);
3974 // If it's not an integer or pointer comparison then compute it the hard way.
3975 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3978 static const SCEVAddRecExpr *
3979 isSimpleUnwrappingAddRec(const SCEV *S, const Loop *L) {
3980 const SCEVAddRecExpr *SA = dyn_cast<SCEVAddRecExpr>(S);
3982 // The SCEV must be an addrec of this loop.
3983 if (!SA || SA->getLoop() != L || !SA->isAffine())
3984 return 0;
3986 // The SCEV must be known to not wrap in some way to be interesting.
3987 if (!SA->hasNoUnsignedWrap() && !SA->hasNoSignedWrap())
3988 return 0;
3990 // The stride must be a constant so that we know if it is striding up or down.
3991 if (!isa<SCEVConstant>(SA->getOperand(1)))
3992 return 0;
3993 return SA;
3996 /// getMinusSCEVForExitTest - When considering an exit test for a loop with a
3997 /// "x != y" exit test, we turn this into a computation that evaluates x-y != 0,
3998 /// and this function returns the expression to use for x-y. We know and take
3999 /// advantage of the fact that this subtraction is only being used in a
4000 /// comparison by zero context.
4002 static const SCEV *getMinusSCEVForExitTest(const SCEV *LHS, const SCEV *RHS,
4003 const Loop *L, ScalarEvolution &SE) {
4004 // If either LHS or RHS is an AddRec SCEV (of this loop) that is known to not
4005 // wrap (either NSW or NUW), then we know that the value will either become
4006 // the other one (and thus the loop terminates), that the loop will terminate
4007 // through some other exit condition first, or that the loop has undefined
4008 // behavior. This information is useful when the addrec has a stride that is
4009 // != 1 or -1, because it means we can't "miss" the exit value.
4011 // In any of these three cases, it is safe to turn the exit condition into a
4012 // "counting down" AddRec (to zero) by subtracting the two inputs as normal,
4013 // but since we know that the "end cannot be missed" we can force the
4014 // resulting AddRec to be a NUW addrec. Since it is counting down, this means
4015 // that the AddRec *cannot* pass zero.
4017 // See if LHS and RHS are addrec's we can handle.
4018 const SCEVAddRecExpr *LHSA = isSimpleUnwrappingAddRec(LHS, L);
4019 const SCEVAddRecExpr *RHSA = isSimpleUnwrappingAddRec(RHS, L);
4021 // If neither addrec is interesting, just return a minus.
4022 if (RHSA == 0 && LHSA == 0)
4023 return SE.getMinusSCEV(LHS, RHS);
4025 // If only one of LHS and RHS are an AddRec of this loop, make sure it is LHS.
4026 if (RHSA && LHSA == 0) {
4027 // Safe because a-b === b-a for comparisons against zero.
4028 std::swap(LHS, RHS);
4029 std::swap(LHSA, RHSA);
4032 // Handle the case when only one is advancing in a non-overflowing way.
4033 if (RHSA == 0) {
4034 // If RHS is loop varying, then we can't predict when LHS will cross it.
4035 if (!SE.isLoopInvariant(RHS, L))
4036 return SE.getMinusSCEV(LHS, RHS);
4038 // If LHS has a positive stride, then we compute RHS-LHS, because the loop
4039 // is counting up until it crosses RHS (which must be larger than LHS). If
4040 // it is negative, we compute LHS-RHS because we're counting down to RHS.
4041 const ConstantInt *Stride =
4042 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4043 if (Stride->getValue().isNegative())
4044 std::swap(LHS, RHS);
4046 return SE.getMinusSCEV(RHS, LHS, true /*HasNUW*/);
4049 // If both LHS and RHS are interesting, we have something like:
4050 // a+i*4 != b+i*8.
4051 const ConstantInt *LHSStride =
4052 cast<SCEVConstant>(LHSA->getOperand(1))->getValue();
4053 const ConstantInt *RHSStride =
4054 cast<SCEVConstant>(RHSA->getOperand(1))->getValue();
4056 // If the strides are equal, then this is just a (complex) loop invariant
4057 // comparison of a and b.
4058 if (LHSStride == RHSStride)
4059 return SE.getMinusSCEV(LHSA->getStart(), RHSA->getStart());
4061 // If the signs of the strides differ, then the negative stride is counting
4062 // down to the positive stride.
4063 if (LHSStride->getValue().isNegative() != RHSStride->getValue().isNegative()){
4064 if (RHSStride->getValue().isNegative())
4065 std::swap(LHS, RHS);
4066 } else {
4067 // If LHS's stride is smaller than RHS's stride, then "b" must be less than
4068 // "a" and "b" is RHS is counting up (catching up) to LHS. This is true
4069 // whether the strides are positive or negative.
4070 if (RHSStride->getValue().slt(LHSStride->getValue()))
4071 std::swap(LHS, RHS);
4074 return SE.getMinusSCEV(LHS, RHS, true /*HasNUW*/);
4077 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
4078 /// backedge of the specified loop will execute if its exit condition
4079 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4080 ScalarEvolution::BackedgeTakenInfo
4081 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
4082 ICmpInst *ExitCond,
4083 BasicBlock *TBB,
4084 BasicBlock *FBB) {
4086 // If the condition was exit on true, convert the condition to exit on false
4087 ICmpInst::Predicate Cond;
4088 if (!L->contains(FBB))
4089 Cond = ExitCond->getPredicate();
4090 else
4091 Cond = ExitCond->getInversePredicate();
4093 // Handle common loops like: for (X = "string"; *X; ++X)
4094 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4095 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4096 BackedgeTakenInfo ItCnt =
4097 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
4098 if (ItCnt.hasAnyInfo())
4099 return ItCnt;
4102 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4103 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4105 // Try to evaluate any dependencies out of the loop.
4106 LHS = getSCEVAtScope(LHS, L);
4107 RHS = getSCEVAtScope(RHS, L);
4109 // At this point, we would like to compute how many iterations of the
4110 // loop the predicate will return true for these inputs.
4111 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4112 // If there is a loop-invariant, force it into the RHS.
4113 std::swap(LHS, RHS);
4114 Cond = ICmpInst::getSwappedPredicate(Cond);
4117 // Simplify the operands before analyzing them.
4118 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4120 // If we have a comparison of a chrec against a constant, try to use value
4121 // ranges to answer this query.
4122 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4123 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4124 if (AddRec->getLoop() == L) {
4125 // Form the constant range.
4126 ConstantRange CompRange(
4127 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4129 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4130 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4133 switch (Cond) {
4134 case ICmpInst::ICMP_NE: { // while (X != Y)
4135 // Convert to: while (X-Y != 0)
4136 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEVForExitTest(LHS, RHS, L,
4137 *this), L);
4138 if (BTI.hasAnyInfo()) return BTI;
4139 break;
4141 case ICmpInst::ICMP_EQ: { // while (X == Y)
4142 // Convert to: while (X-Y == 0)
4143 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4144 if (BTI.hasAnyInfo()) return BTI;
4145 break;
4147 case ICmpInst::ICMP_SLT: {
4148 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4149 if (BTI.hasAnyInfo()) return BTI;
4150 break;
4152 case ICmpInst::ICMP_SGT: {
4153 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4154 getNotSCEV(RHS), L, true);
4155 if (BTI.hasAnyInfo()) return BTI;
4156 break;
4158 case ICmpInst::ICMP_ULT: {
4159 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4160 if (BTI.hasAnyInfo()) return BTI;
4161 break;
4163 case ICmpInst::ICMP_UGT: {
4164 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4165 getNotSCEV(RHS), L, false);
4166 if (BTI.hasAnyInfo()) return BTI;
4167 break;
4169 default:
4170 #if 0
4171 dbgs() << "ComputeBackedgeTakenCount ";
4172 if (ExitCond->getOperand(0)->getType()->isUnsigned())
4173 dbgs() << "[unsigned] ";
4174 dbgs() << *LHS << " "
4175 << Instruction::getOpcodeName(Instruction::ICmp)
4176 << " " << *RHS << "\n";
4177 #endif
4178 break;
4180 return
4181 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
4184 static ConstantInt *
4185 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4186 ScalarEvolution &SE) {
4187 const SCEV *InVal = SE.getConstant(C);
4188 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4189 assert(isa<SCEVConstant>(Val) &&
4190 "Evaluation of SCEV at constant didn't fold correctly?");
4191 return cast<SCEVConstant>(Val)->getValue();
4194 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
4195 /// and a GEP expression (missing the pointer index) indexing into it, return
4196 /// the addressed element of the initializer or null if the index expression is
4197 /// invalid.
4198 static Constant *
4199 GetAddressedElementFromGlobal(GlobalVariable *GV,
4200 const std::vector<ConstantInt*> &Indices) {
4201 Constant *Init = GV->getInitializer();
4202 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
4203 uint64_t Idx = Indices[i]->getZExtValue();
4204 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4205 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4206 Init = cast<Constant>(CS->getOperand(Idx));
4207 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4208 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4209 Init = cast<Constant>(CA->getOperand(Idx));
4210 } else if (isa<ConstantAggregateZero>(Init)) {
4211 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4212 assert(Idx < STy->getNumElements() && "Bad struct index!");
4213 Init = Constant::getNullValue(STy->getElementType(Idx));
4214 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4215 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
4216 Init = Constant::getNullValue(ATy->getElementType());
4217 } else {
4218 llvm_unreachable("Unknown constant aggregate type!");
4220 return 0;
4221 } else {
4222 return 0; // Unknown initializer type
4225 return Init;
4228 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4229 /// 'icmp op load X, cst', try to see if we can compute the backedge
4230 /// execution count.
4231 ScalarEvolution::BackedgeTakenInfo
4232 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4233 LoadInst *LI,
4234 Constant *RHS,
4235 const Loop *L,
4236 ICmpInst::Predicate predicate) {
4237 if (LI->isVolatile()) return getCouldNotCompute();
4239 // Check to see if the loaded pointer is a getelementptr of a global.
4240 // TODO: Use SCEV instead of manually grubbing with GEPs.
4241 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4242 if (!GEP) return getCouldNotCompute();
4244 // Make sure that it is really a constant global we are gepping, with an
4245 // initializer, and make sure the first IDX is really 0.
4246 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4247 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4248 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4249 !cast<Constant>(GEP->getOperand(1))->isNullValue())
4250 return getCouldNotCompute();
4252 // Okay, we allow one non-constant index into the GEP instruction.
4253 Value *VarIdx = 0;
4254 std::vector<ConstantInt*> Indexes;
4255 unsigned VarIdxNum = 0;
4256 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4257 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4258 Indexes.push_back(CI);
4259 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4260 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
4261 VarIdx = GEP->getOperand(i);
4262 VarIdxNum = i-2;
4263 Indexes.push_back(0);
4266 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4267 // Check to see if X is a loop variant variable value now.
4268 const SCEV *Idx = getSCEV(VarIdx);
4269 Idx = getSCEVAtScope(Idx, L);
4271 // We can only recognize very limited forms of loop index expressions, in
4272 // particular, only affine AddRec's like {C1,+,C2}.
4273 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4274 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4275 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4276 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4277 return getCouldNotCompute();
4279 unsigned MaxSteps = MaxBruteForceIterations;
4280 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4281 ConstantInt *ItCst = ConstantInt::get(
4282 cast<IntegerType>(IdxExpr->getType()), IterationNum);
4283 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4285 // Form the GEP offset.
4286 Indexes[VarIdxNum] = Val;
4288 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
4289 if (Result == 0) break; // Cannot compute!
4291 // Evaluate the condition for this iteration.
4292 Result = ConstantExpr::getICmp(predicate, Result, RHS);
4293 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
4294 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4295 #if 0
4296 dbgs() << "\n***\n*** Computed loop count " << *ItCst
4297 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4298 << "***\n";
4299 #endif
4300 ++NumArrayLenItCounts;
4301 return getConstant(ItCst); // Found terminating iteration!
4304 return getCouldNotCompute();
4308 /// CanConstantFold - Return true if we can constant fold an instruction of the
4309 /// specified type, assuming that all operands were constants.
4310 static bool CanConstantFold(const Instruction *I) {
4311 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4312 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4313 return true;
4315 if (const CallInst *CI = dyn_cast<CallInst>(I))
4316 if (const Function *F = CI->getCalledFunction())
4317 return canConstantFoldCallTo(F);
4318 return false;
4321 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4322 /// in the loop that V is derived from. We allow arbitrary operations along the
4323 /// way, but the operands of an operation must either be constants or a value
4324 /// derived from a constant PHI. If this expression does not fit with these
4325 /// constraints, return null.
4326 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4327 // If this is not an instruction, or if this is an instruction outside of the
4328 // loop, it can't be derived from a loop PHI.
4329 Instruction *I = dyn_cast<Instruction>(V);
4330 if (I == 0 || !L->contains(I)) return 0;
4332 if (PHINode *PN = dyn_cast<PHINode>(I)) {
4333 if (L->getHeader() == I->getParent())
4334 return PN;
4335 else
4336 // We don't currently keep track of the control flow needed to evaluate
4337 // PHIs, so we cannot handle PHIs inside of loops.
4338 return 0;
4341 // If we won't be able to constant fold this expression even if the operands
4342 // are constants, return early.
4343 if (!CanConstantFold(I)) return 0;
4345 // Otherwise, we can evaluate this instruction if all of its operands are
4346 // constant or derived from a PHI node themselves.
4347 PHINode *PHI = 0;
4348 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
4349 if (!isa<Constant>(I->getOperand(Op))) {
4350 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4351 if (P == 0) return 0; // Not evolving from PHI
4352 if (PHI == 0)
4353 PHI = P;
4354 else if (PHI != P)
4355 return 0; // Evolving from multiple different PHIs.
4358 // This is a expression evolving from a constant PHI!
4359 return PHI;
4362 /// EvaluateExpression - Given an expression that passes the
4363 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4364 /// in the loop has the value PHIVal. If we can't fold this expression for some
4365 /// reason, return null.
4366 static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4367 const TargetData *TD) {
4368 if (isa<PHINode>(V)) return PHIVal;
4369 if (Constant *C = dyn_cast<Constant>(V)) return C;
4370 Instruction *I = cast<Instruction>(V);
4372 std::vector<Constant*> Operands(I->getNumOperands());
4374 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4375 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
4376 if (Operands[i] == 0) return 0;
4379 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4380 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4381 Operands[1], TD);
4382 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4383 &Operands[0], Operands.size(), TD);
4386 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4387 /// in the header of its containing loop, we know the loop executes a
4388 /// constant number of times, and the PHI node is just a recurrence
4389 /// involving constants, fold it.
4390 Constant *
4391 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4392 const APInt &BEs,
4393 const Loop *L) {
4394 std::map<PHINode*, Constant*>::const_iterator I =
4395 ConstantEvolutionLoopExitValue.find(PN);
4396 if (I != ConstantEvolutionLoopExitValue.end())
4397 return I->second;
4399 if (BEs.ugt(MaxBruteForceIterations))
4400 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4402 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4404 // Since the loop is canonicalized, the PHI node must have two entries. One
4405 // entry must be a constant (coming in from outside of the loop), and the
4406 // second must be derived from the same PHI.
4407 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4408 Constant *StartCST =
4409 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4410 if (StartCST == 0)
4411 return RetVal = 0; // Must be a constant.
4413 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4414 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4415 !isa<Constant>(BEValue))
4416 return RetVal = 0; // Not derived from same PHI.
4418 // Execute the loop symbolically to determine the exit value.
4419 if (BEs.getActiveBits() >= 32)
4420 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4422 unsigned NumIterations = BEs.getZExtValue(); // must be in range
4423 unsigned IterationNum = 0;
4424 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4425 if (IterationNum == NumIterations)
4426 return RetVal = PHIVal; // Got exit value!
4428 // Compute the value of the PHI node for the next iteration.
4429 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4430 if (NextPHI == PHIVal)
4431 return RetVal = NextPHI; // Stopped evolving!
4432 if (NextPHI == 0)
4433 return 0; // Couldn't evaluate!
4434 PHIVal = NextPHI;
4438 /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
4439 /// constant number of times (the condition evolves only from constants),
4440 /// try to evaluate a few iterations of the loop until we get the exit
4441 /// condition gets a value of ExitWhen (true or false). If we cannot
4442 /// evaluate the trip count of the loop, return getCouldNotCompute().
4443 const SCEV *
4444 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4445 Value *Cond,
4446 bool ExitWhen) {
4447 PHINode *PN = getConstantEvolvingPHI(Cond, L);
4448 if (PN == 0) return getCouldNotCompute();
4450 // If the loop is canonicalized, the PHI will have exactly two entries.
4451 // That's the only form we support here.
4452 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4454 // One entry must be a constant (coming in from outside of the loop), and the
4455 // second must be derived from the same PHI.
4456 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4457 Constant *StartCST =
4458 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4459 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
4461 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4462 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4463 !isa<Constant>(BEValue))
4464 return getCouldNotCompute(); // Not derived from same PHI.
4466 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4467 // the loop symbolically to determine when the condition gets a value of
4468 // "ExitWhen".
4469 unsigned IterationNum = 0;
4470 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4471 for (Constant *PHIVal = StartCST;
4472 IterationNum != MaxIterations; ++IterationNum) {
4473 ConstantInt *CondVal =
4474 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
4476 // Couldn't symbolically evaluate.
4477 if (!CondVal) return getCouldNotCompute();
4479 if (CondVal->getValue() == uint64_t(ExitWhen)) {
4480 ++NumBruteForceTripCountsComputed;
4481 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4484 // Compute the value of the PHI node for the next iteration.
4485 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
4486 if (NextPHI == 0 || NextPHI == PHIVal)
4487 return getCouldNotCompute();// Couldn't evaluate or not making progress...
4488 PHIVal = NextPHI;
4491 // Too many iterations were needed to evaluate.
4492 return getCouldNotCompute();
4495 /// getSCEVAtScope - Return a SCEV expression for the specified value
4496 /// at the specified scope in the program. The L value specifies a loop
4497 /// nest to evaluate the expression at, where null is the top-level or a
4498 /// specified loop is immediately inside of the loop.
4500 /// This method can be used to compute the exit value for a variable defined
4501 /// in a loop by querying what the value will hold in the parent loop.
4503 /// In the case that a relevant loop exit value cannot be computed, the
4504 /// original value V is returned.
4505 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4506 // Check to see if we've folded this expression at this loop before.
4507 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4508 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4509 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4510 if (!Pair.second)
4511 return Pair.first->second ? Pair.first->second : V;
4513 // Otherwise compute it.
4514 const SCEV *C = computeSCEVAtScope(V, L);
4515 ValuesAtScopes[V][L] = C;
4516 return C;
4519 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
4520 if (isa<SCEVConstant>(V)) return V;
4522 // If this instruction is evolved from a constant-evolving PHI, compute the
4523 // exit value from the loop without using SCEVs.
4524 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
4525 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
4526 const Loop *LI = (*this->LI)[I->getParent()];
4527 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4528 if (PHINode *PN = dyn_cast<PHINode>(I))
4529 if (PN->getParent() == LI->getHeader()) {
4530 // Okay, there is no closed form solution for the PHI node. Check
4531 // to see if the loop that contains it has a known backedge-taken
4532 // count. If so, we may be able to force computation of the exit
4533 // value.
4534 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
4535 if (const SCEVConstant *BTCC =
4536 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
4537 // Okay, we know how many times the containing loop executes. If
4538 // this is a constant evolving PHI node, get the final value at
4539 // the specified iteration number.
4540 Constant *RV = getConstantEvolutionLoopExitValue(PN,
4541 BTCC->getValue()->getValue(),
4542 LI);
4543 if (RV) return getSCEV(RV);
4547 // Okay, this is an expression that we cannot symbolically evaluate
4548 // into a SCEV. Check to see if it's possible to symbolically evaluate
4549 // the arguments into constants, and if so, try to constant propagate the
4550 // result. This is particularly useful for computing loop exit values.
4551 if (CanConstantFold(I)) {
4552 SmallVector<Constant *, 4> Operands;
4553 bool MadeImprovement = false;
4554 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4555 Value *Op = I->getOperand(i);
4556 if (Constant *C = dyn_cast<Constant>(Op)) {
4557 Operands.push_back(C);
4558 continue;
4561 // If any of the operands is non-constant and if they are
4562 // non-integer and non-pointer, don't even try to analyze them
4563 // with scev techniques.
4564 if (!isSCEVable(Op->getType()))
4565 return V;
4567 const SCEV *OrigV = getSCEV(Op);
4568 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4569 MadeImprovement |= OrigV != OpV;
4571 Constant *C = 0;
4572 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4573 C = SC->getValue();
4574 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4575 C = dyn_cast<Constant>(SU->getValue());
4576 if (!C) return V;
4577 if (C->getType() != Op->getType())
4578 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4579 Op->getType(),
4580 false),
4581 C, Op->getType());
4582 Operands.push_back(C);
4585 // Check to see if getSCEVAtScope actually made an improvement.
4586 if (MadeImprovement) {
4587 Constant *C = 0;
4588 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4589 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4590 Operands[0], Operands[1], TD);
4591 else
4592 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4593 &Operands[0], Operands.size(), TD);
4594 if (!C) return V;
4595 return getSCEV(C);
4600 // This is some other type of SCEVUnknown, just return it.
4601 return V;
4604 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
4605 // Avoid performing the look-up in the common case where the specified
4606 // expression has no loop-variant portions.
4607 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
4608 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4609 if (OpAtScope != Comm->getOperand(i)) {
4610 // Okay, at least one of these operands is loop variant but might be
4611 // foldable. Build a new instance of the folded commutative expression.
4612 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4613 Comm->op_begin()+i);
4614 NewOps.push_back(OpAtScope);
4616 for (++i; i != e; ++i) {
4617 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
4618 NewOps.push_back(OpAtScope);
4620 if (isa<SCEVAddExpr>(Comm))
4621 return getAddExpr(NewOps);
4622 if (isa<SCEVMulExpr>(Comm))
4623 return getMulExpr(NewOps);
4624 if (isa<SCEVSMaxExpr>(Comm))
4625 return getSMaxExpr(NewOps);
4626 if (isa<SCEVUMaxExpr>(Comm))
4627 return getUMaxExpr(NewOps);
4628 llvm_unreachable("Unknown commutative SCEV type!");
4631 // If we got here, all operands are loop invariant.
4632 return Comm;
4635 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
4636 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4637 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
4638 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4639 return Div; // must be loop invariant
4640 return getUDivExpr(LHS, RHS);
4643 // If this is a loop recurrence for a loop that does not contain L, then we
4644 // are dealing with the final value computed by the loop.
4645 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4646 // First, attempt to evaluate each operand.
4647 // Avoid performing the look-up in the common case where the specified
4648 // expression has no loop-variant portions.
4649 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4650 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4651 if (OpAtScope == AddRec->getOperand(i))
4652 continue;
4654 // Okay, at least one of these operands is loop variant but might be
4655 // foldable. Build a new instance of the folded commutative expression.
4656 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4657 AddRec->op_begin()+i);
4658 NewOps.push_back(OpAtScope);
4659 for (++i; i != e; ++i)
4660 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4662 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4663 break;
4666 // If the scope is outside the addrec's loop, evaluate it by using the
4667 // loop exit value of the addrec.
4668 if (!AddRec->getLoop()->contains(L)) {
4669 // To evaluate this recurrence, we need to know how many times the AddRec
4670 // loop iterates. Compute this now.
4671 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
4672 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
4674 // Then, evaluate the AddRec.
4675 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
4678 return AddRec;
4681 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
4682 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4683 if (Op == Cast->getOperand())
4684 return Cast; // must be loop invariant
4685 return getZeroExtendExpr(Op, Cast->getType());
4688 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
4689 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4690 if (Op == Cast->getOperand())
4691 return Cast; // must be loop invariant
4692 return getSignExtendExpr(Op, Cast->getType());
4695 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
4696 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
4697 if (Op == Cast->getOperand())
4698 return Cast; // must be loop invariant
4699 return getTruncateExpr(Op, Cast->getType());
4702 llvm_unreachable("Unknown SCEV type!");
4703 return 0;
4706 /// getSCEVAtScope - This is a convenience function which does
4707 /// getSCEVAtScope(getSCEV(V), L).
4708 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
4709 return getSCEVAtScope(getSCEV(V), L);
4712 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4713 /// following equation:
4715 /// A * X = B (mod N)
4717 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4718 /// A and B isn't important.
4720 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
4721 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
4722 ScalarEvolution &SE) {
4723 uint32_t BW = A.getBitWidth();
4724 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4725 assert(A != 0 && "A must be non-zero.");
4727 // 1. D = gcd(A, N)
4729 // The gcd of A and N may have only one prime factor: 2. The number of
4730 // trailing zeros in A is its multiplicity
4731 uint32_t Mult2 = A.countTrailingZeros();
4732 // D = 2^Mult2
4734 // 2. Check if B is divisible by D.
4736 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4737 // is not less than multiplicity of this prime factor for D.
4738 if (B.countTrailingZeros() < Mult2)
4739 return SE.getCouldNotCompute();
4741 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4742 // modulo (N / D).
4744 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4745 // bit width during computations.
4746 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4747 APInt Mod(BW + 1, 0);
4748 Mod.setBit(BW - Mult2); // Mod = N / D
4749 APInt I = AD.multiplicativeInverse(Mod);
4751 // 4. Compute the minimum unsigned root of the equation:
4752 // I * (B / D) mod (N / D)
4753 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4755 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4756 // bits.
4757 return SE.getConstant(Result.trunc(BW));
4760 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4761 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4762 /// might be the same) or two SCEVCouldNotCompute objects.
4764 static std::pair<const SCEV *,const SCEV *>
4765 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4766 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4767 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4768 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4769 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4771 // We currently can only solve this if the coefficients are constants.
4772 if (!LC || !MC || !NC) {
4773 const SCEV *CNC = SE.getCouldNotCompute();
4774 return std::make_pair(CNC, CNC);
4777 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4778 const APInt &L = LC->getValue()->getValue();
4779 const APInt &M = MC->getValue()->getValue();
4780 const APInt &N = NC->getValue()->getValue();
4781 APInt Two(BitWidth, 2);
4782 APInt Four(BitWidth, 4);
4785 using namespace APIntOps;
4786 const APInt& C = L;
4787 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4788 // The B coefficient is M-N/2
4789 APInt B(M);
4790 B -= sdiv(N,Two);
4792 // The A coefficient is N/2
4793 APInt A(N.sdiv(Two));
4795 // Compute the B^2-4ac term.
4796 APInt SqrtTerm(B);
4797 SqrtTerm *= B;
4798 SqrtTerm -= Four * (A * C);
4800 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4801 // integer value or else APInt::sqrt() will assert.
4802 APInt SqrtVal(SqrtTerm.sqrt());
4804 // Compute the two solutions for the quadratic formula.
4805 // The divisions must be performed as signed divisions.
4806 APInt NegB(-B);
4807 APInt TwoA( A << 1 );
4808 if (TwoA.isMinValue()) {
4809 const SCEV *CNC = SE.getCouldNotCompute();
4810 return std::make_pair(CNC, CNC);
4813 LLVMContext &Context = SE.getContext();
4815 ConstantInt *Solution1 =
4816 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4817 ConstantInt *Solution2 =
4818 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4820 return std::make_pair(SE.getConstant(Solution1),
4821 SE.getConstant(Solution2));
4822 } // end APIntOps namespace
4825 /// HowFarToZero - Return the number of times a backedge comparing the specified
4826 /// value to zero will execute. If not computable, return CouldNotCompute.
4827 ScalarEvolution::BackedgeTakenInfo
4828 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4829 // If the value is a constant
4830 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4831 // If the value is already zero, the branch will execute zero times.
4832 if (C->getValue()->isZero()) return C;
4833 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4836 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4837 if (!AddRec || AddRec->getLoop() != L)
4838 return getCouldNotCompute();
4840 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4841 // the quadratic equation to solve it.
4842 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
4843 std::pair<const SCEV *,const SCEV *> Roots =
4844 SolveQuadraticEquation(AddRec, *this);
4845 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4846 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4847 if (R1 && R2) {
4848 #if 0
4849 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
4850 << " sol#2: " << *R2 << "\n";
4851 #endif
4852 // Pick the smallest positive root value.
4853 if (ConstantInt *CB =
4854 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
4855 R1->getValue(),
4856 R2->getValue()))) {
4857 if (CB->getZExtValue() == false)
4858 std::swap(R1, R2); // R1 is the minimum root now.
4860 // We can only use this value if the chrec ends up with an exact zero
4861 // value at this index. When solving for "X*X != 5", for example, we
4862 // should not accept a root of 2.
4863 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4864 if (Val->isZero())
4865 return R1; // We found a quadratic root!
4868 return getCouldNotCompute();
4871 // Otherwise we can only handle this if it is affine.
4872 if (!AddRec->isAffine())
4873 return getCouldNotCompute();
4875 // If this is an affine expression, the execution count of this branch is
4876 // the minimum unsigned root of the following equation:
4878 // Start + Step*N = 0 (mod 2^BW)
4880 // equivalent to:
4882 // Step*N = -Start (mod 2^BW)
4884 // where BW is the common bit width of Start and Step.
4886 // Get the initial value for the loop.
4887 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
4888 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
4890 // If the AddRec is NUW, then (in an unsigned sense) it cannot be counting up
4891 // to wrap to 0, it must be counting down to equal 0. Also, while counting
4892 // down, it cannot "miss" 0 (which would cause it to wrap), regardless of what
4893 // the stride is. As such, NUW addrec's will always become zero in
4894 // "start / -stride" steps, and we know that the division is exact.
4895 if (AddRec->hasNoUnsignedWrap())
4896 // FIXME: We really want an "isexact" bit for udiv.
4897 return getUDivExpr(Start, getNegativeSCEV(Step));
4899 // For now we handle only constant steps.
4900 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
4901 if (StepC == 0)
4902 return getCouldNotCompute();
4904 // First, handle unitary steps.
4905 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4906 return getNegativeSCEV(Start); // N = -Start (as unsigned)
4908 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4909 return Start; // N = Start (as unsigned)
4911 // Then, try to solve the above equation provided that Start is constant.
4912 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4913 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4914 -StartC->getValue()->getValue(),
4915 *this);
4916 return getCouldNotCompute();
4919 /// HowFarToNonZero - Return the number of times a backedge checking the
4920 /// specified value for nonzero will execute. If not computable, return
4921 /// CouldNotCompute
4922 ScalarEvolution::BackedgeTakenInfo
4923 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4924 // Loops that look like: while (X == 0) are very strange indeed. We don't
4925 // handle them yet except for the trivial case. This could be expanded in the
4926 // future as needed.
4928 // If the value is a constant, check to see if it is known to be non-zero
4929 // already. If so, the backedge will execute zero times.
4930 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4931 if (!C->getValue()->isNullValue())
4932 return getConstant(C->getType(), 0);
4933 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4936 // We could implement others, but I really doubt anyone writes loops like
4937 // this, and if they did, they would already be constant folded.
4938 return getCouldNotCompute();
4941 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4942 /// (which may not be an immediate predecessor) which has exactly one
4943 /// successor from which BB is reachable, or null if no such block is
4944 /// found.
4946 std::pair<BasicBlock *, BasicBlock *>
4947 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4948 // If the block has a unique predecessor, then there is no path from the
4949 // predecessor to the block that does not go through the direct edge
4950 // from the predecessor to the block.
4951 if (BasicBlock *Pred = BB->getSinglePredecessor())
4952 return std::make_pair(Pred, BB);
4954 // A loop's header is defined to be a block that dominates the loop.
4955 // If the header has a unique predecessor outside the loop, it must be
4956 // a block that has exactly one successor that can reach the loop.
4957 if (Loop *L = LI->getLoopFor(BB))
4958 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
4960 return std::pair<BasicBlock *, BasicBlock *>();
4963 /// HasSameValue - SCEV structural equivalence is usually sufficient for
4964 /// testing whether two expressions are equal, however for the purposes of
4965 /// looking for a condition guarding a loop, it can be useful to be a little
4966 /// more general, since a front-end may have replicated the controlling
4967 /// expression.
4969 static bool HasSameValue(const SCEV *A, const SCEV *B) {
4970 // Quick check to see if they are the same SCEV.
4971 if (A == B) return true;
4973 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4974 // two different instructions with the same value. Check for this case.
4975 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4976 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4977 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4978 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4979 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
4980 return true;
4982 // Otherwise assume they may have a different value.
4983 return false;
4986 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4987 /// predicate Pred. Return true iff any changes were made.
4989 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4990 const SCEV *&LHS, const SCEV *&RHS) {
4991 bool Changed = false;
4993 // Canonicalize a constant to the right side.
4994 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4995 // Check for both operands constant.
4996 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4997 if (ConstantExpr::getICmp(Pred,
4998 LHSC->getValue(),
4999 RHSC->getValue())->isNullValue())
5000 goto trivially_false;
5001 else
5002 goto trivially_true;
5004 // Otherwise swap the operands to put the constant on the right.
5005 std::swap(LHS, RHS);
5006 Pred = ICmpInst::getSwappedPredicate(Pred);
5007 Changed = true;
5010 // If we're comparing an addrec with a value which is loop-invariant in the
5011 // addrec's loop, put the addrec on the left. Also make a dominance check,
5012 // as both operands could be addrecs loop-invariant in each other's loop.
5013 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5014 const Loop *L = AR->getLoop();
5015 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5016 std::swap(LHS, RHS);
5017 Pred = ICmpInst::getSwappedPredicate(Pred);
5018 Changed = true;
5022 // If there's a constant operand, canonicalize comparisons with boundary
5023 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5024 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5025 const APInt &RA = RC->getValue()->getValue();
5026 switch (Pred) {
5027 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5028 case ICmpInst::ICMP_EQ:
5029 case ICmpInst::ICMP_NE:
5030 break;
5031 case ICmpInst::ICMP_UGE:
5032 if ((RA - 1).isMinValue()) {
5033 Pred = ICmpInst::ICMP_NE;
5034 RHS = getConstant(RA - 1);
5035 Changed = true;
5036 break;
5038 if (RA.isMaxValue()) {
5039 Pred = ICmpInst::ICMP_EQ;
5040 Changed = true;
5041 break;
5043 if (RA.isMinValue()) goto trivially_true;
5045 Pred = ICmpInst::ICMP_UGT;
5046 RHS = getConstant(RA - 1);
5047 Changed = true;
5048 break;
5049 case ICmpInst::ICMP_ULE:
5050 if ((RA + 1).isMaxValue()) {
5051 Pred = ICmpInst::ICMP_NE;
5052 RHS = getConstant(RA + 1);
5053 Changed = true;
5054 break;
5056 if (RA.isMinValue()) {
5057 Pred = ICmpInst::ICMP_EQ;
5058 Changed = true;
5059 break;
5061 if (RA.isMaxValue()) goto trivially_true;
5063 Pred = ICmpInst::ICMP_ULT;
5064 RHS = getConstant(RA + 1);
5065 Changed = true;
5066 break;
5067 case ICmpInst::ICMP_SGE:
5068 if ((RA - 1).isMinSignedValue()) {
5069 Pred = ICmpInst::ICMP_NE;
5070 RHS = getConstant(RA - 1);
5071 Changed = true;
5072 break;
5074 if (RA.isMaxSignedValue()) {
5075 Pred = ICmpInst::ICMP_EQ;
5076 Changed = true;
5077 break;
5079 if (RA.isMinSignedValue()) goto trivially_true;
5081 Pred = ICmpInst::ICMP_SGT;
5082 RHS = getConstant(RA - 1);
5083 Changed = true;
5084 break;
5085 case ICmpInst::ICMP_SLE:
5086 if ((RA + 1).isMaxSignedValue()) {
5087 Pred = ICmpInst::ICMP_NE;
5088 RHS = getConstant(RA + 1);
5089 Changed = true;
5090 break;
5092 if (RA.isMinSignedValue()) {
5093 Pred = ICmpInst::ICMP_EQ;
5094 Changed = true;
5095 break;
5097 if (RA.isMaxSignedValue()) goto trivially_true;
5099 Pred = ICmpInst::ICMP_SLT;
5100 RHS = getConstant(RA + 1);
5101 Changed = true;
5102 break;
5103 case ICmpInst::ICMP_UGT:
5104 if (RA.isMinValue()) {
5105 Pred = ICmpInst::ICMP_NE;
5106 Changed = true;
5107 break;
5109 if ((RA + 1).isMaxValue()) {
5110 Pred = ICmpInst::ICMP_EQ;
5111 RHS = getConstant(RA + 1);
5112 Changed = true;
5113 break;
5115 if (RA.isMaxValue()) goto trivially_false;
5116 break;
5117 case ICmpInst::ICMP_ULT:
5118 if (RA.isMaxValue()) {
5119 Pred = ICmpInst::ICMP_NE;
5120 Changed = true;
5121 break;
5123 if ((RA - 1).isMinValue()) {
5124 Pred = ICmpInst::ICMP_EQ;
5125 RHS = getConstant(RA - 1);
5126 Changed = true;
5127 break;
5129 if (RA.isMinValue()) goto trivially_false;
5130 break;
5131 case ICmpInst::ICMP_SGT:
5132 if (RA.isMinSignedValue()) {
5133 Pred = ICmpInst::ICMP_NE;
5134 Changed = true;
5135 break;
5137 if ((RA + 1).isMaxSignedValue()) {
5138 Pred = ICmpInst::ICMP_EQ;
5139 RHS = getConstant(RA + 1);
5140 Changed = true;
5141 break;
5143 if (RA.isMaxSignedValue()) goto trivially_false;
5144 break;
5145 case ICmpInst::ICMP_SLT:
5146 if (RA.isMaxSignedValue()) {
5147 Pred = ICmpInst::ICMP_NE;
5148 Changed = true;
5149 break;
5151 if ((RA - 1).isMinSignedValue()) {
5152 Pred = ICmpInst::ICMP_EQ;
5153 RHS = getConstant(RA - 1);
5154 Changed = true;
5155 break;
5157 if (RA.isMinSignedValue()) goto trivially_false;
5158 break;
5162 // Check for obvious equality.
5163 if (HasSameValue(LHS, RHS)) {
5164 if (ICmpInst::isTrueWhenEqual(Pred))
5165 goto trivially_true;
5166 if (ICmpInst::isFalseWhenEqual(Pred))
5167 goto trivially_false;
5170 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5171 // adding or subtracting 1 from one of the operands.
5172 switch (Pred) {
5173 case ICmpInst::ICMP_SLE:
5174 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5175 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5176 /*HasNUW=*/false, /*HasNSW=*/true);
5177 Pred = ICmpInst::ICMP_SLT;
5178 Changed = true;
5179 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5180 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5181 /*HasNUW=*/false, /*HasNSW=*/true);
5182 Pred = ICmpInst::ICMP_SLT;
5183 Changed = true;
5185 break;
5186 case ICmpInst::ICMP_SGE:
5187 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5188 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5189 /*HasNUW=*/false, /*HasNSW=*/true);
5190 Pred = ICmpInst::ICMP_SGT;
5191 Changed = true;
5192 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5193 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5194 /*HasNUW=*/false, /*HasNSW=*/true);
5195 Pred = ICmpInst::ICMP_SGT;
5196 Changed = true;
5198 break;
5199 case ICmpInst::ICMP_ULE:
5200 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5201 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5202 /*HasNUW=*/true, /*HasNSW=*/false);
5203 Pred = ICmpInst::ICMP_ULT;
5204 Changed = true;
5205 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5206 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5207 /*HasNUW=*/true, /*HasNSW=*/false);
5208 Pred = ICmpInst::ICMP_ULT;
5209 Changed = true;
5211 break;
5212 case ICmpInst::ICMP_UGE:
5213 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5214 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5215 /*HasNUW=*/true, /*HasNSW=*/false);
5216 Pred = ICmpInst::ICMP_UGT;
5217 Changed = true;
5218 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5219 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5220 /*HasNUW=*/true, /*HasNSW=*/false);
5221 Pred = ICmpInst::ICMP_UGT;
5222 Changed = true;
5224 break;
5225 default:
5226 break;
5229 // TODO: More simplifications are possible here.
5231 return Changed;
5233 trivially_true:
5234 // Return 0 == 0.
5235 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5236 Pred = ICmpInst::ICMP_EQ;
5237 return true;
5239 trivially_false:
5240 // Return 0 != 0.
5241 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5242 Pred = ICmpInst::ICMP_NE;
5243 return true;
5246 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5247 return getSignedRange(S).getSignedMax().isNegative();
5250 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5251 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5254 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5255 return !getSignedRange(S).getSignedMin().isNegative();
5258 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5259 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5262 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5263 return isKnownNegative(S) || isKnownPositive(S);
5266 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5267 const SCEV *LHS, const SCEV *RHS) {
5268 // Canonicalize the inputs first.
5269 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5271 // If LHS or RHS is an addrec, check to see if the condition is true in
5272 // every iteration of the loop.
5273 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5274 if (isLoopEntryGuardedByCond(
5275 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5276 isLoopBackedgeGuardedByCond(
5277 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5278 return true;
5279 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5280 if (isLoopEntryGuardedByCond(
5281 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5282 isLoopBackedgeGuardedByCond(
5283 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5284 return true;
5286 // Otherwise see what can be done with known constant ranges.
5287 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5290 bool
5291 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5292 const SCEV *LHS, const SCEV *RHS) {
5293 if (HasSameValue(LHS, RHS))
5294 return ICmpInst::isTrueWhenEqual(Pred);
5296 // This code is split out from isKnownPredicate because it is called from
5297 // within isLoopEntryGuardedByCond.
5298 switch (Pred) {
5299 default:
5300 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5301 break;
5302 case ICmpInst::ICMP_SGT:
5303 Pred = ICmpInst::ICMP_SLT;
5304 std::swap(LHS, RHS);
5305 case ICmpInst::ICMP_SLT: {
5306 ConstantRange LHSRange = getSignedRange(LHS);
5307 ConstantRange RHSRange = getSignedRange(RHS);
5308 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5309 return true;
5310 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5311 return false;
5312 break;
5314 case ICmpInst::ICMP_SGE:
5315 Pred = ICmpInst::ICMP_SLE;
5316 std::swap(LHS, RHS);
5317 case ICmpInst::ICMP_SLE: {
5318 ConstantRange LHSRange = getSignedRange(LHS);
5319 ConstantRange RHSRange = getSignedRange(RHS);
5320 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5321 return true;
5322 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5323 return false;
5324 break;
5326 case ICmpInst::ICMP_UGT:
5327 Pred = ICmpInst::ICMP_ULT;
5328 std::swap(LHS, RHS);
5329 case ICmpInst::ICMP_ULT: {
5330 ConstantRange LHSRange = getUnsignedRange(LHS);
5331 ConstantRange RHSRange = getUnsignedRange(RHS);
5332 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5333 return true;
5334 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5335 return false;
5336 break;
5338 case ICmpInst::ICMP_UGE:
5339 Pred = ICmpInst::ICMP_ULE;
5340 std::swap(LHS, RHS);
5341 case ICmpInst::ICMP_ULE: {
5342 ConstantRange LHSRange = getUnsignedRange(LHS);
5343 ConstantRange RHSRange = getUnsignedRange(RHS);
5344 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5345 return true;
5346 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5347 return false;
5348 break;
5350 case ICmpInst::ICMP_NE: {
5351 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5352 return true;
5353 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5354 return true;
5356 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5357 if (isKnownNonZero(Diff))
5358 return true;
5359 break;
5361 case ICmpInst::ICMP_EQ:
5362 // The check at the top of the function catches the case where
5363 // the values are known to be equal.
5364 break;
5366 return false;
5369 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5370 /// protected by a conditional between LHS and RHS. This is used to
5371 /// to eliminate casts.
5372 bool
5373 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5374 ICmpInst::Predicate Pred,
5375 const SCEV *LHS, const SCEV *RHS) {
5376 // Interpret a null as meaning no loop, where there is obviously no guard
5377 // (interprocedural conditions notwithstanding).
5378 if (!L) return true;
5380 BasicBlock *Latch = L->getLoopLatch();
5381 if (!Latch)
5382 return false;
5384 BranchInst *LoopContinuePredicate =
5385 dyn_cast<BranchInst>(Latch->getTerminator());
5386 if (!LoopContinuePredicate ||
5387 LoopContinuePredicate->isUnconditional())
5388 return false;
5390 return isImpliedCond(Pred, LHS, RHS,
5391 LoopContinuePredicate->getCondition(),
5392 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
5395 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
5396 /// by a conditional between LHS and RHS. This is used to help avoid max
5397 /// expressions in loop trip counts, and to eliminate casts.
5398 bool
5399 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5400 ICmpInst::Predicate Pred,
5401 const SCEV *LHS, const SCEV *RHS) {
5402 // Interpret a null as meaning no loop, where there is obviously no guard
5403 // (interprocedural conditions notwithstanding).
5404 if (!L) return false;
5406 // Starting at the loop predecessor, climb up the predecessor chain, as long
5407 // as there are predecessors that can be found that have unique successors
5408 // leading to the original header.
5409 for (std::pair<BasicBlock *, BasicBlock *>
5410 Pair(L->getLoopPredecessor(), L->getHeader());
5411 Pair.first;
5412 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
5414 BranchInst *LoopEntryPredicate =
5415 dyn_cast<BranchInst>(Pair.first->getTerminator());
5416 if (!LoopEntryPredicate ||
5417 LoopEntryPredicate->isUnconditional())
5418 continue;
5420 if (isImpliedCond(Pred, LHS, RHS,
5421 LoopEntryPredicate->getCondition(),
5422 LoopEntryPredicate->getSuccessor(0) != Pair.second))
5423 return true;
5426 return false;
5429 /// isImpliedCond - Test whether the condition described by Pred, LHS,
5430 /// and RHS is true whenever the given Cond value evaluates to true.
5431 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
5432 const SCEV *LHS, const SCEV *RHS,
5433 Value *FoundCondValue,
5434 bool Inverse) {
5435 // Recursively handle And and Or conditions.
5436 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
5437 if (BO->getOpcode() == Instruction::And) {
5438 if (!Inverse)
5439 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5440 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5441 } else if (BO->getOpcode() == Instruction::Or) {
5442 if (Inverse)
5443 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5444 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
5448 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
5449 if (!ICI) return false;
5451 // Bail if the ICmp's operands' types are wider than the needed type
5452 // before attempting to call getSCEV on them. This avoids infinite
5453 // recursion, since the analysis of widening casts can require loop
5454 // exit condition information for overflow checking, which would
5455 // lead back here.
5456 if (getTypeSizeInBits(LHS->getType()) <
5457 getTypeSizeInBits(ICI->getOperand(0)->getType()))
5458 return false;
5460 // Now that we found a conditional branch that dominates the loop, check to
5461 // see if it is the comparison we are looking for.
5462 ICmpInst::Predicate FoundPred;
5463 if (Inverse)
5464 FoundPred = ICI->getInversePredicate();
5465 else
5466 FoundPred = ICI->getPredicate();
5468 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5469 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
5471 // Balance the types. The case where FoundLHS' type is wider than
5472 // LHS' type is checked for above.
5473 if (getTypeSizeInBits(LHS->getType()) >
5474 getTypeSizeInBits(FoundLHS->getType())) {
5475 if (CmpInst::isSigned(Pred)) {
5476 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5477 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5478 } else {
5479 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5480 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5484 // Canonicalize the query to match the way instcombine will have
5485 // canonicalized the comparison.
5486 if (SimplifyICmpOperands(Pred, LHS, RHS))
5487 if (LHS == RHS)
5488 return CmpInst::isTrueWhenEqual(Pred);
5489 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5490 if (FoundLHS == FoundRHS)
5491 return CmpInst::isFalseWhenEqual(Pred);
5493 // Check to see if we can make the LHS or RHS match.
5494 if (LHS == FoundRHS || RHS == FoundLHS) {
5495 if (isa<SCEVConstant>(RHS)) {
5496 std::swap(FoundLHS, FoundRHS);
5497 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5498 } else {
5499 std::swap(LHS, RHS);
5500 Pred = ICmpInst::getSwappedPredicate(Pred);
5504 // Check whether the found predicate is the same as the desired predicate.
5505 if (FoundPred == Pred)
5506 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5508 // Check whether swapping the found predicate makes it the same as the
5509 // desired predicate.
5510 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5511 if (isa<SCEVConstant>(RHS))
5512 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5513 else
5514 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5515 RHS, LHS, FoundLHS, FoundRHS);
5518 // Check whether the actual condition is beyond sufficient.
5519 if (FoundPred == ICmpInst::ICMP_EQ)
5520 if (ICmpInst::isTrueWhenEqual(Pred))
5521 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5522 return true;
5523 if (Pred == ICmpInst::ICMP_NE)
5524 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5525 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5526 return true;
5528 // Otherwise assume the worst.
5529 return false;
5532 /// isImpliedCondOperands - Test whether the condition described by Pred,
5533 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
5534 /// and FoundRHS is true.
5535 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5536 const SCEV *LHS, const SCEV *RHS,
5537 const SCEV *FoundLHS,
5538 const SCEV *FoundRHS) {
5539 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5540 FoundLHS, FoundRHS) ||
5541 // ~x < ~y --> x > y
5542 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5543 getNotSCEV(FoundRHS),
5544 getNotSCEV(FoundLHS));
5547 /// isImpliedCondOperandsHelper - Test whether the condition described by
5548 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
5549 /// FoundLHS, and FoundRHS is true.
5550 bool
5551 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5552 const SCEV *LHS, const SCEV *RHS,
5553 const SCEV *FoundLHS,
5554 const SCEV *FoundRHS) {
5555 switch (Pred) {
5556 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5557 case ICmpInst::ICMP_EQ:
5558 case ICmpInst::ICMP_NE:
5559 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5560 return true;
5561 break;
5562 case ICmpInst::ICMP_SLT:
5563 case ICmpInst::ICMP_SLE:
5564 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5565 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
5566 return true;
5567 break;
5568 case ICmpInst::ICMP_SGT:
5569 case ICmpInst::ICMP_SGE:
5570 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5571 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
5572 return true;
5573 break;
5574 case ICmpInst::ICMP_ULT:
5575 case ICmpInst::ICMP_ULE:
5576 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5577 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
5578 return true;
5579 break;
5580 case ICmpInst::ICMP_UGT:
5581 case ICmpInst::ICMP_UGE:
5582 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5583 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
5584 return true;
5585 break;
5588 return false;
5591 /// getBECount - Subtract the end and start values and divide by the step,
5592 /// rounding up, to get the number of times the backedge is executed. Return
5593 /// CouldNotCompute if an intermediate computation overflows.
5594 const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
5595 const SCEV *End,
5596 const SCEV *Step,
5597 bool NoWrap) {
5598 assert(!isKnownNegative(Step) &&
5599 "This code doesn't handle negative strides yet!");
5601 const Type *Ty = Start->getType();
5602 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
5603 const SCEV *Diff = getMinusSCEV(End, Start);
5604 const SCEV *RoundUp = getAddExpr(Step, NegOne);
5606 // Add an adjustment to the difference between End and Start so that
5607 // the division will effectively round up.
5608 const SCEV *Add = getAddExpr(Diff, RoundUp);
5610 if (!NoWrap) {
5611 // Check Add for unsigned overflow.
5612 // TODO: More sophisticated things could be done here.
5613 const Type *WideTy = IntegerType::get(getContext(),
5614 getTypeSizeInBits(Ty) + 1);
5615 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5616 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5617 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5618 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5619 return getCouldNotCompute();
5622 return getUDivExpr(Add, Step);
5625 /// HowManyLessThans - Return the number of times a backedge containing the
5626 /// specified less-than comparison will execute. If not computable, return
5627 /// CouldNotCompute.
5628 ScalarEvolution::BackedgeTakenInfo
5629 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5630 const Loop *L, bool isSigned) {
5631 // Only handle: "ADDREC < LoopInvariant".
5632 if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
5634 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
5635 if (!AddRec || AddRec->getLoop() != L)
5636 return getCouldNotCompute();
5638 // Check to see if we have a flag which makes analysis easy.
5639 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5640 AddRec->hasNoUnsignedWrap();
5642 if (AddRec->isAffine()) {
5643 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
5644 const SCEV *Step = AddRec->getStepRecurrence(*this);
5646 if (Step->isZero())
5647 return getCouldNotCompute();
5648 if (Step->isOne()) {
5649 // With unit stride, the iteration never steps past the limit value.
5650 } else if (isKnownPositive(Step)) {
5651 // Test whether a positive iteration can step past the limit
5652 // value and past the maximum value for its type in a single step.
5653 // Note that it's not sufficient to check NoWrap here, because even
5654 // though the value after a wrap is undefined, it's not undefined
5655 // behavior, so if wrap does occur, the loop could either terminate or
5656 // loop infinitely, but in either case, the loop is guaranteed to
5657 // iterate at least until the iteration where the wrapping occurs.
5658 const SCEV *One = getConstant(Step->getType(), 1);
5659 if (isSigned) {
5660 APInt Max = APInt::getSignedMaxValue(BitWidth);
5661 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5662 .slt(getSignedRange(RHS).getSignedMax()))
5663 return getCouldNotCompute();
5664 } else {
5665 APInt Max = APInt::getMaxValue(BitWidth);
5666 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5667 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5668 return getCouldNotCompute();
5670 } else
5671 // TODO: Handle negative strides here and below.
5672 return getCouldNotCompute();
5674 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5675 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5676 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
5677 // treat m-n as signed nor unsigned due to overflow possibility.
5679 // First, we get the value of the LHS in the first iteration: n
5680 const SCEV *Start = AddRec->getOperand(0);
5682 // Determine the minimum constant start value.
5683 const SCEV *MinStart = getConstant(isSigned ?
5684 getSignedRange(Start).getSignedMin() :
5685 getUnsignedRange(Start).getUnsignedMin());
5687 // If we know that the condition is true in order to enter the loop,
5688 // then we know that it will run exactly (m-n)/s times. Otherwise, we
5689 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5690 // the division must round up.
5691 const SCEV *End = RHS;
5692 if (!isLoopEntryGuardedByCond(L,
5693 isSigned ? ICmpInst::ICMP_SLT :
5694 ICmpInst::ICMP_ULT,
5695 getMinusSCEV(Start, Step), RHS))
5696 End = isSigned ? getSMaxExpr(RHS, Start)
5697 : getUMaxExpr(RHS, Start);
5699 // Determine the maximum constant end value.
5700 const SCEV *MaxEnd = getConstant(isSigned ?
5701 getSignedRange(End).getSignedMax() :
5702 getUnsignedRange(End).getUnsignedMax());
5704 // If MaxEnd is within a step of the maximum integer value in its type,
5705 // adjust it down to the minimum value which would produce the same effect.
5706 // This allows the subsequent ceiling division of (N+(step-1))/step to
5707 // compute the correct value.
5708 const SCEV *StepMinusOne = getMinusSCEV(Step,
5709 getConstant(Step->getType(), 1));
5710 MaxEnd = isSigned ?
5711 getSMinExpr(MaxEnd,
5712 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5713 StepMinusOne)) :
5714 getUMinExpr(MaxEnd,
5715 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5716 StepMinusOne));
5718 // Finally, we subtract these two values and divide, rounding up, to get
5719 // the number of times the backedge is executed.
5720 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
5722 // The maximum backedge count is similar, except using the minimum start
5723 // value and the maximum end value.
5724 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
5726 return BackedgeTakenInfo(BECount, MaxBECount);
5729 return getCouldNotCompute();
5732 /// getNumIterationsInRange - Return the number of iterations of this loop that
5733 /// produce values in the specified constant range. Another way of looking at
5734 /// this is that it returns the first iteration number where the value is not in
5735 /// the condition, thus computing the exit count. If the iteration count can't
5736 /// be computed, an instance of SCEVCouldNotCompute is returned.
5737 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
5738 ScalarEvolution &SE) const {
5739 if (Range.isFullSet()) // Infinite loop.
5740 return SE.getCouldNotCompute();
5742 // If the start is a non-zero constant, shift the range to simplify things.
5743 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
5744 if (!SC->getValue()->isZero()) {
5745 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
5746 Operands[0] = SE.getConstant(SC->getType(), 0);
5747 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
5748 if (const SCEVAddRecExpr *ShiftedAddRec =
5749 dyn_cast<SCEVAddRecExpr>(Shifted))
5750 return ShiftedAddRec->getNumIterationsInRange(
5751 Range.subtract(SC->getValue()->getValue()), SE);
5752 // This is strange and shouldn't happen.
5753 return SE.getCouldNotCompute();
5756 // The only time we can solve this is when we have all constant indices.
5757 // Otherwise, we cannot determine the overflow conditions.
5758 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5759 if (!isa<SCEVConstant>(getOperand(i)))
5760 return SE.getCouldNotCompute();
5763 // Okay at this point we know that all elements of the chrec are constants and
5764 // that the start element is zero.
5766 // First check to see if the range contains zero. If not, the first
5767 // iteration exits.
5768 unsigned BitWidth = SE.getTypeSizeInBits(getType());
5769 if (!Range.contains(APInt(BitWidth, 0)))
5770 return SE.getConstant(getType(), 0);
5772 if (isAffine()) {
5773 // If this is an affine expression then we have this situation:
5774 // Solve {0,+,A} in Range === Ax in Range
5776 // We know that zero is in the range. If A is positive then we know that
5777 // the upper value of the range must be the first possible exit value.
5778 // If A is negative then the lower of the range is the last possible loop
5779 // value. Also note that we already checked for a full range.
5780 APInt One(BitWidth,1);
5781 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5782 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
5784 // The exit value should be (End+A)/A.
5785 APInt ExitVal = (End + A).udiv(A);
5786 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
5788 // Evaluate at the exit value. If we really did fall out of the valid
5789 // range, then we computed our trip count, otherwise wrap around or other
5790 // things must have happened.
5791 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
5792 if (Range.contains(Val->getValue()))
5793 return SE.getCouldNotCompute(); // Something strange happened
5795 // Ensure that the previous value is in the range. This is a sanity check.
5796 assert(Range.contains(
5797 EvaluateConstantChrecAtConstant(this,
5798 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
5799 "Linear scev computation is off in a bad way!");
5800 return SE.getConstant(ExitValue);
5801 } else if (isQuadratic()) {
5802 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5803 // quadratic equation to solve it. To do this, we must frame our problem in
5804 // terms of figuring out when zero is crossed, instead of when
5805 // Range.getUpper() is crossed.
5806 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
5807 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
5808 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
5810 // Next, solve the constructed addrec
5811 std::pair<const SCEV *,const SCEV *> Roots =
5812 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
5813 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5814 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5815 if (R1) {
5816 // Pick the smallest positive root value.
5817 if (ConstantInt *CB =
5818 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
5819 R1->getValue(), R2->getValue()))) {
5820 if (CB->getZExtValue() == false)
5821 std::swap(R1, R2); // R1 is the minimum root now.
5823 // Make sure the root is not off by one. The returned iteration should
5824 // not be in the range, but the previous one should be. When solving
5825 // for "X*X < 5", for example, we should not return a root of 2.
5826 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
5827 R1->getValue(),
5828 SE);
5829 if (Range.contains(R1Val->getValue())) {
5830 // The next iteration must be out of the range...
5831 ConstantInt *NextVal =
5832 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
5834 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5835 if (!Range.contains(R1Val->getValue()))
5836 return SE.getConstant(NextVal);
5837 return SE.getCouldNotCompute(); // Something strange happened
5840 // If R1 was not in the range, then it is a good return value. Make
5841 // sure that R1-1 WAS in the range though, just in case.
5842 ConstantInt *NextVal =
5843 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
5844 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
5845 if (Range.contains(R1Val->getValue()))
5846 return R1;
5847 return SE.getCouldNotCompute(); // Something strange happened
5852 return SE.getCouldNotCompute();
5857 //===----------------------------------------------------------------------===//
5858 // SCEVCallbackVH Class Implementation
5859 //===----------------------------------------------------------------------===//
5861 void ScalarEvolution::SCEVCallbackVH::deleted() {
5862 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5863 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5864 SE->ConstantEvolutionLoopExitValue.erase(PN);
5865 SE->ValueExprMap.erase(getValPtr());
5866 // this now dangles!
5869 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
5870 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
5872 // Forget all the expressions associated with users of the old value,
5873 // so that future queries will recompute the expressions using the new
5874 // value.
5875 Value *Old = getValPtr();
5876 SmallVector<User *, 16> Worklist;
5877 SmallPtrSet<User *, 8> Visited;
5878 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5879 UI != UE; ++UI)
5880 Worklist.push_back(*UI);
5881 while (!Worklist.empty()) {
5882 User *U = Worklist.pop_back_val();
5883 // Deleting the Old value will cause this to dangle. Postpone
5884 // that until everything else is done.
5885 if (U == Old)
5886 continue;
5887 if (!Visited.insert(U))
5888 continue;
5889 if (PHINode *PN = dyn_cast<PHINode>(U))
5890 SE->ConstantEvolutionLoopExitValue.erase(PN);
5891 SE->ValueExprMap.erase(U);
5892 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5893 UI != UE; ++UI)
5894 Worklist.push_back(*UI);
5896 // Delete the Old value.
5897 if (PHINode *PN = dyn_cast<PHINode>(Old))
5898 SE->ConstantEvolutionLoopExitValue.erase(PN);
5899 SE->ValueExprMap.erase(Old);
5900 // this now dangles!
5903 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
5904 : CallbackVH(V), SE(se) {}
5906 //===----------------------------------------------------------------------===//
5907 // ScalarEvolution Class Implementation
5908 //===----------------------------------------------------------------------===//
5910 ScalarEvolution::ScalarEvolution()
5911 : FunctionPass(ID), FirstUnknown(0) {
5912 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
5915 bool ScalarEvolution::runOnFunction(Function &F) {
5916 this->F = &F;
5917 LI = &getAnalysis<LoopInfo>();
5918 TD = getAnalysisIfAvailable<TargetData>();
5919 DT = &getAnalysis<DominatorTree>();
5920 return false;
5923 void ScalarEvolution::releaseMemory() {
5924 // Iterate through all the SCEVUnknown instances and call their
5925 // destructors, so that they release their references to their values.
5926 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5927 U->~SCEVUnknown();
5928 FirstUnknown = 0;
5930 ValueExprMap.clear();
5931 BackedgeTakenCounts.clear();
5932 ConstantEvolutionLoopExitValue.clear();
5933 ValuesAtScopes.clear();
5934 LoopDispositions.clear();
5935 BlockDispositions.clear();
5936 UnsignedRanges.clear();
5937 SignedRanges.clear();
5938 UniqueSCEVs.clear();
5939 SCEVAllocator.Reset();
5942 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5943 AU.setPreservesAll();
5944 AU.addRequiredTransitive<LoopInfo>();
5945 AU.addRequiredTransitive<DominatorTree>();
5948 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5949 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5952 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5953 const Loop *L) {
5954 // Print all inner loops first
5955 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5956 PrintLoopInfo(OS, SE, *I);
5958 OS << "Loop ";
5959 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5960 OS << ": ";
5962 SmallVector<BasicBlock *, 8> ExitBlocks;
5963 L->getExitBlocks(ExitBlocks);
5964 if (ExitBlocks.size() != 1)
5965 OS << "<multiple exits> ";
5967 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5968 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5969 } else {
5970 OS << "Unpredictable backedge-taken count. ";
5973 OS << "\n"
5974 "Loop ";
5975 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5976 OS << ": ";
5978 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5979 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5980 } else {
5981 OS << "Unpredictable max backedge-taken count. ";
5984 OS << "\n";
5987 void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
5988 // ScalarEvolution's implementation of the print method is to print
5989 // out SCEV values of all instructions that are interesting. Doing
5990 // this potentially causes it to create new SCEV objects though,
5991 // which technically conflicts with the const qualifier. This isn't
5992 // observable from outside the class though, so casting away the
5993 // const isn't dangerous.
5994 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
5996 OS << "Classifying expressions for: ";
5997 WriteAsOperand(OS, F, /*PrintType=*/false);
5998 OS << "\n";
5999 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
6000 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
6001 OS << *I << '\n';
6002 OS << " --> ";
6003 const SCEV *SV = SE.getSCEV(&*I);
6004 SV->print(OS);
6006 const Loop *L = LI->getLoopFor((*I).getParent());
6008 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
6009 if (AtUse != SV) {
6010 OS << " --> ";
6011 AtUse->print(OS);
6014 if (L) {
6015 OS << "\t\t" "Exits: ";
6016 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
6017 if (!SE.isLoopInvariant(ExitValue, L)) {
6018 OS << "<<Unknown>>";
6019 } else {
6020 OS << *ExitValue;
6024 OS << "\n";
6027 OS << "Determining loop execution counts for: ";
6028 WriteAsOperand(OS, F, /*PrintType=*/false);
6029 OS << "\n";
6030 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6031 PrintLoopInfo(OS, &SE, *I);
6034 ScalarEvolution::LoopDisposition
6035 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6036 std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6037 std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6038 Values.insert(std::make_pair(L, LoopVariant));
6039 if (!Pair.second)
6040 return Pair.first->second;
6042 LoopDisposition D = computeLoopDisposition(S, L);
6043 return LoopDispositions[S][L] = D;
6046 ScalarEvolution::LoopDisposition
6047 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6048 switch (S->getSCEVType()) {
6049 case scConstant:
6050 return LoopInvariant;
6051 case scTruncate:
6052 case scZeroExtend:
6053 case scSignExtend:
6054 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6055 case scAddRecExpr: {
6056 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6058 // If L is the addrec's loop, it's computable.
6059 if (AR->getLoop() == L)
6060 return LoopComputable;
6062 // Add recurrences are never invariant in the function-body (null loop).
6063 if (!L)
6064 return LoopVariant;
6066 // This recurrence is variant w.r.t. L if L contains AR's loop.
6067 if (L->contains(AR->getLoop()))
6068 return LoopVariant;
6070 // This recurrence is invariant w.r.t. L if AR's loop contains L.
6071 if (AR->getLoop()->contains(L))
6072 return LoopInvariant;
6074 // This recurrence is variant w.r.t. L if any of its operands
6075 // are variant.
6076 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6077 I != E; ++I)
6078 if (!isLoopInvariant(*I, L))
6079 return LoopVariant;
6081 // Otherwise it's loop-invariant.
6082 return LoopInvariant;
6084 case scAddExpr:
6085 case scMulExpr:
6086 case scUMaxExpr:
6087 case scSMaxExpr: {
6088 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6089 bool HasVarying = false;
6090 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6091 I != E; ++I) {
6092 LoopDisposition D = getLoopDisposition(*I, L);
6093 if (D == LoopVariant)
6094 return LoopVariant;
6095 if (D == LoopComputable)
6096 HasVarying = true;
6098 return HasVarying ? LoopComputable : LoopInvariant;
6100 case scUDivExpr: {
6101 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6102 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6103 if (LD == LoopVariant)
6104 return LoopVariant;
6105 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6106 if (RD == LoopVariant)
6107 return LoopVariant;
6108 return (LD == LoopInvariant && RD == LoopInvariant) ?
6109 LoopInvariant : LoopComputable;
6111 case scUnknown:
6112 // All non-instruction values are loop invariant. All instructions are loop
6113 // invariant if they are not contained in the specified loop.
6114 // Instructions are never considered invariant in the function body
6115 // (null loop) because they are defined within the "loop".
6116 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6117 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6118 return LoopInvariant;
6119 case scCouldNotCompute:
6120 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6121 return LoopVariant;
6122 default: break;
6124 llvm_unreachable("Unknown SCEV kind!");
6125 return LoopVariant;
6128 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6129 return getLoopDisposition(S, L) == LoopInvariant;
6132 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6133 return getLoopDisposition(S, L) == LoopComputable;
6136 ScalarEvolution::BlockDisposition
6137 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6138 std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6139 std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6140 Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6141 if (!Pair.second)
6142 return Pair.first->second;
6144 BlockDisposition D = computeBlockDisposition(S, BB);
6145 return BlockDispositions[S][BB] = D;
6148 ScalarEvolution::BlockDisposition
6149 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6150 switch (S->getSCEVType()) {
6151 case scConstant:
6152 return ProperlyDominatesBlock;
6153 case scTruncate:
6154 case scZeroExtend:
6155 case scSignExtend:
6156 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6157 case scAddRecExpr: {
6158 // This uses a "dominates" query instead of "properly dominates" query
6159 // to test for proper dominance too, because the instruction which
6160 // produces the addrec's value is a PHI, and a PHI effectively properly
6161 // dominates its entire containing block.
6162 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6163 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6164 return DoesNotDominateBlock;
6166 // FALL THROUGH into SCEVNAryExpr handling.
6167 case scAddExpr:
6168 case scMulExpr:
6169 case scUMaxExpr:
6170 case scSMaxExpr: {
6171 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6172 bool Proper = true;
6173 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6174 I != E; ++I) {
6175 BlockDisposition D = getBlockDisposition(*I, BB);
6176 if (D == DoesNotDominateBlock)
6177 return DoesNotDominateBlock;
6178 if (D == DominatesBlock)
6179 Proper = false;
6181 return Proper ? ProperlyDominatesBlock : DominatesBlock;
6183 case scUDivExpr: {
6184 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6185 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6186 BlockDisposition LD = getBlockDisposition(LHS, BB);
6187 if (LD == DoesNotDominateBlock)
6188 return DoesNotDominateBlock;
6189 BlockDisposition RD = getBlockDisposition(RHS, BB);
6190 if (RD == DoesNotDominateBlock)
6191 return DoesNotDominateBlock;
6192 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6193 ProperlyDominatesBlock : DominatesBlock;
6195 case scUnknown:
6196 if (Instruction *I =
6197 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6198 if (I->getParent() == BB)
6199 return DominatesBlock;
6200 if (DT->properlyDominates(I->getParent(), BB))
6201 return ProperlyDominatesBlock;
6202 return DoesNotDominateBlock;
6204 return ProperlyDominatesBlock;
6205 case scCouldNotCompute:
6206 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6207 return DoesNotDominateBlock;
6208 default: break;
6210 llvm_unreachable("Unknown SCEV kind!");
6211 return DoesNotDominateBlock;
6214 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6215 return getBlockDisposition(S, BB) >= DominatesBlock;
6218 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6219 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6222 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6223 switch (S->getSCEVType()) {
6224 case scConstant:
6225 return false;
6226 case scTruncate:
6227 case scZeroExtend:
6228 case scSignExtend: {
6229 const SCEVCastExpr *Cast = cast<SCEVCastExpr>(S);
6230 const SCEV *CastOp = Cast->getOperand();
6231 return Op == CastOp || hasOperand(CastOp, Op);
6233 case scAddRecExpr:
6234 case scAddExpr:
6235 case scMulExpr:
6236 case scUMaxExpr:
6237 case scSMaxExpr: {
6238 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6239 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6240 I != E; ++I) {
6241 const SCEV *NAryOp = *I;
6242 if (NAryOp == Op || hasOperand(NAryOp, Op))
6243 return true;
6245 return false;
6247 case scUDivExpr: {
6248 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6249 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6250 return LHS == Op || hasOperand(LHS, Op) ||
6251 RHS == Op || hasOperand(RHS, Op);
6253 case scUnknown:
6254 return false;
6255 case scCouldNotCompute:
6256 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6257 return false;
6258 default: break;
6260 llvm_unreachable("Unknown SCEV kind!");
6261 return false;
6264 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6265 ValuesAtScopes.erase(S);
6266 LoopDispositions.erase(S);
6267 BlockDispositions.erase(S);
6268 UnsignedRanges.erase(S);
6269 SignedRanges.erase(S);