Clean up ConstantRange a bit:
[llvm.git] / lib / Support / ConstantRange.cpp
blob8ef3785f53318ef1576e6bad60b94b79a47e0e9b
1 //===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Represent a range of possible values that may occur when the program is run
11 // for an integral value. This keeps track of a lower and upper bound for the
12 // constant, which MAY wrap around the end of the numeric range. To do this, it
13 // keeps track of a [lower, upper) bound, which specifies an interval just like
14 // STL iterators. When used with boolean values, the following are important
15 // ranges (other integral ranges use min/max values for special range values):
17 // [F, F) = {} = Empty set
18 // [T, F) = {T}
19 // [F, T) = {F}
20 // [T, T) = {F, T} = Full set
22 //===----------------------------------------------------------------------===//
24 #include "llvm/Constants.h"
25 #include "llvm/Support/ConstantRange.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Instructions.h"
29 using namespace llvm;
31 /// Initialize a full (the default) or empty set for the specified type.
32 ///
33 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
34 if (Full)
35 Lower = Upper = APInt::getMaxValue(BitWidth);
36 else
37 Lower = Upper = APInt::getMinValue(BitWidth);
40 /// Initialize a range to hold the single specified value.
41 ///
42 ConstantRange::ConstantRange(const APInt &V) : Lower(V), Upper(V + 1) {}
44 ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
45 Lower(L), Upper(U) {
46 assert(L.getBitWidth() == U.getBitWidth() &&
47 "ConstantRange with unequal bit widths");
48 assert((L != U || (L.isMaxValue() || L.isMinValue())) &&
49 "Lower == Upper, but they aren't min or max value!");
52 ConstantRange ConstantRange::makeICmpRegion(unsigned Pred,
53 const ConstantRange &CR) {
54 uint32_t W = CR.getBitWidth();
55 switch (Pred) {
56 default: assert(!"Invalid ICmp predicate to makeICmpRegion()");
57 case ICmpInst::ICMP_EQ:
58 return CR;
59 case ICmpInst::ICMP_NE:
60 if (CR.isSingleElement())
61 return ConstantRange(CR.getUpper(), CR.getLower());
62 return ConstantRange(W);
63 case ICmpInst::ICMP_ULT:
64 return ConstantRange(APInt::getMinValue(W), CR.getUnsignedMax());
65 case ICmpInst::ICMP_SLT:
66 return ConstantRange(APInt::getSignedMinValue(W), CR.getSignedMax());
67 case ICmpInst::ICMP_ULE: {
68 APInt UMax(CR.getUnsignedMax());
69 if (UMax.isMaxValue())
70 return ConstantRange(W);
71 return ConstantRange(APInt::getMinValue(W), UMax + 1);
73 case ICmpInst::ICMP_SLE: {
74 APInt SMax(CR.getSignedMax());
75 if (SMax.isMaxSignedValue() || (SMax+1).isMaxSignedValue())
76 return ConstantRange(W);
77 return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
79 case ICmpInst::ICMP_UGT:
80 return ConstantRange(CR.getUnsignedMin() + 1, APInt::getNullValue(W));
81 case ICmpInst::ICMP_SGT:
82 return ConstantRange(CR.getSignedMin() + 1,
83 APInt::getSignedMinValue(W));
84 case ICmpInst::ICMP_UGE: {
85 APInt UMin(CR.getUnsignedMin());
86 if (UMin.isMinValue())
87 return ConstantRange(W);
88 return ConstantRange(UMin, APInt::getNullValue(W));
90 case ICmpInst::ICMP_SGE: {
91 APInt SMin(CR.getSignedMin());
92 if (SMin.isMinSignedValue())
93 return ConstantRange(W);
94 return ConstantRange(SMin, APInt::getSignedMinValue(W));
99 /// isFullSet - Return true if this set contains all of the elements possible
100 /// for this data-type
101 bool ConstantRange::isFullSet() const {
102 return Lower == Upper && Lower.isMaxValue();
105 /// isEmptySet - Return true if this set contains no members.
107 bool ConstantRange::isEmptySet() const {
108 return Lower == Upper && Lower.isMinValue();
111 /// isWrappedSet - Return true if this set wraps around the top of the range,
112 /// for example: [100, 8)
114 bool ConstantRange::isWrappedSet() const {
115 return Lower.ugt(Upper);
118 /// getSetSize - Return the number of elements in this set.
120 APInt ConstantRange::getSetSize() const {
121 if (isEmptySet())
122 return APInt(getBitWidth(), 0);
123 if (getBitWidth() == 1) {
124 if (Lower != Upper) // One of T or F in the set...
125 return APInt(2, 1);
126 return APInt(2, 2); // Must be full set...
129 // Simply subtract the bounds...
130 return Upper - Lower;
133 /// getUnsignedMax - Return the largest unsigned value contained in the
134 /// ConstantRange.
136 APInt ConstantRange::getUnsignedMax() const {
137 if (isFullSet() || isWrappedSet())
138 return APInt::getMaxValue(getBitWidth());
139 else
140 return getUpper() - 1;
143 /// getUnsignedMin - Return the smallest unsigned value contained in the
144 /// ConstantRange.
146 APInt ConstantRange::getUnsignedMin() const {
147 if (isFullSet() || (isWrappedSet() && getUpper() != 0))
148 return APInt::getMinValue(getBitWidth());
149 else
150 return getLower();
153 /// getSignedMax - Return the largest signed value contained in the
154 /// ConstantRange.
156 APInt ConstantRange::getSignedMax() const {
157 APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
158 if (!isWrappedSet()) {
159 if (getLower().sle(getUpper() - 1))
160 return getUpper() - 1;
161 else
162 return SignedMax;
163 } else {
164 if (getLower().isNegative() == getUpper().isNegative())
165 return SignedMax;
166 else
167 return getUpper() - 1;
171 /// getSignedMin - Return the smallest signed value contained in the
172 /// ConstantRange.
174 APInt ConstantRange::getSignedMin() const {
175 APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
176 if (!isWrappedSet()) {
177 if (getLower().sle(getUpper() - 1))
178 return getLower();
179 else
180 return SignedMin;
181 } else {
182 if ((getUpper() - 1).slt(getLower())) {
183 if (getUpper() != SignedMin)
184 return SignedMin;
185 else
186 return getLower();
187 } else {
188 return getLower();
193 /// contains - Return true if the specified value is in the set.
195 bool ConstantRange::contains(const APInt &V) const {
196 if (Lower == Upper)
197 return isFullSet();
199 if (!isWrappedSet())
200 return Lower.ule(V) && V.ult(Upper);
201 else
202 return Lower.ule(V) || V.ult(Upper);
205 /// contains - Return true if the argument is a subset of this range.
206 /// Two equal sets contain each other. The empty set contained by all other
207 /// sets.
209 bool ConstantRange::contains(const ConstantRange &Other) const {
210 if (isFullSet() || Other.isEmptySet()) return true;
211 if (isEmptySet() || Other.isFullSet()) return false;
213 if (!isWrappedSet()) {
214 if (Other.isWrappedSet())
215 return false;
217 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
220 if (!Other.isWrappedSet())
221 return Other.getUpper().ule(Upper) ||
222 Lower.ule(Other.getLower());
224 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
227 /// subtract - Subtract the specified constant from the endpoints of this
228 /// constant range.
229 ConstantRange ConstantRange::subtract(const APInt &Val) const {
230 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
231 // If the set is empty or full, don't modify the endpoints.
232 if (Lower == Upper)
233 return *this;
234 return ConstantRange(Lower - Val, Upper - Val);
237 /// intersectWith - Return the range that results from the intersection of this
238 /// range with another range. The resultant range is guaranteed to include all
239 /// elements contained in both input ranges, and to have the smallest possible
240 /// set size that does so. Because there may be two intersections with the
241 /// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
242 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
243 assert(getBitWidth() == CR.getBitWidth() &&
244 "ConstantRange types don't agree!");
246 // Handle common cases.
247 if ( isEmptySet() || CR.isFullSet()) return *this;
248 if (CR.isEmptySet() || isFullSet()) return CR;
250 if (!isWrappedSet() && CR.isWrappedSet())
251 return CR.intersectWith(*this);
253 if (!isWrappedSet() && !CR.isWrappedSet()) {
254 if (Lower.ult(CR.Lower)) {
255 if (Upper.ule(CR.Lower))
256 return ConstantRange(getBitWidth(), false);
258 if (Upper.ult(CR.Upper))
259 return ConstantRange(CR.Lower, Upper);
261 return CR;
262 } else {
263 if (Upper.ult(CR.Upper))
264 return *this;
266 if (Lower.ult(CR.Upper))
267 return ConstantRange(Lower, CR.Upper);
269 return ConstantRange(getBitWidth(), false);
273 if (isWrappedSet() && !CR.isWrappedSet()) {
274 if (CR.Lower.ult(Upper)) {
275 if (CR.Upper.ult(Upper))
276 return CR;
278 if (CR.Upper.ult(Lower))
279 return ConstantRange(CR.Lower, Upper);
281 if (getSetSize().ult(CR.getSetSize()))
282 return *this;
283 else
284 return CR;
285 } else if (CR.Lower.ult(Lower)) {
286 if (CR.Upper.ule(Lower))
287 return ConstantRange(getBitWidth(), false);
289 return ConstantRange(Lower, CR.Upper);
291 return CR;
294 if (CR.Upper.ult(Upper)) {
295 if (CR.Lower.ult(Upper)) {
296 if (getSetSize().ult(CR.getSetSize()))
297 return *this;
298 else
299 return CR;
302 if (CR.Lower.ult(Lower))
303 return ConstantRange(Lower, CR.Upper);
305 return CR;
306 } else if (CR.Upper.ult(Lower)) {
307 if (CR.Lower.ult(Lower))
308 return *this;
310 return ConstantRange(CR.Lower, Upper);
312 if (getSetSize().ult(CR.getSetSize()))
313 return *this;
314 else
315 return CR;
319 /// unionWith - Return the range that results from the union of this range with
320 /// another range. The resultant range is guaranteed to include the elements of
321 /// both sets, but may contain more. For example, [3, 9) union [12,15) is
322 /// [3, 15), which includes 9, 10, and 11, which were not included in either
323 /// set before.
325 ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
326 assert(getBitWidth() == CR.getBitWidth() &&
327 "ConstantRange types don't agree!");
329 if ( isFullSet() || CR.isEmptySet()) return *this;
330 if (CR.isFullSet() || isEmptySet()) return CR;
332 if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
334 if (!isWrappedSet() && !CR.isWrappedSet()) {
335 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
336 // If the two ranges are disjoint, find the smaller gap and bridge it.
337 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
338 if (d1.ult(d2))
339 return ConstantRange(Lower, CR.Upper);
340 else
341 return ConstantRange(CR.Lower, Upper);
344 APInt L = Lower, U = Upper;
345 if (CR.Lower.ult(L))
346 L = CR.Lower;
347 if ((CR.Upper - 1).ugt(U - 1))
348 U = CR.Upper;
350 if (L == 0 && U == 0)
351 return ConstantRange(getBitWidth());
353 return ConstantRange(L, U);
356 if (!CR.isWrappedSet()) {
357 // ------U L----- and ------U L----- : this
358 // L--U L--U : CR
359 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
360 return *this;
362 // ------U L----- : this
363 // L---------U : CR
364 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
365 return ConstantRange(getBitWidth());
367 // ----U L---- : this
368 // L---U : CR
369 // <d1> <d2>
370 if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
371 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
372 if (d1.ult(d2))
373 return ConstantRange(Lower, CR.Upper);
374 else
375 return ConstantRange(CR.Lower, Upper);
378 // ----U L----- : this
379 // L----U : CR
380 if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
381 return ConstantRange(CR.Lower, Upper);
383 // ------U L---- : this
384 // L-----U : CR
385 if (CR.Lower.ult(Upper) && CR.Upper.ult(Lower))
386 return ConstantRange(Lower, CR.Upper);
389 assert(isWrappedSet() && CR.isWrappedSet() &&
390 "ConstantRange::unionWith missed wrapped union unwrapped case");
392 // ------U L---- and ------U L---- : this
393 // -U L----------- and ------------U L : CR
394 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
395 return ConstantRange(getBitWidth());
397 APInt L = Lower, U = Upper;
398 if (CR.Upper.ugt(U))
399 U = CR.Upper;
400 if (CR.Lower.ult(L))
401 L = CR.Lower;
403 return ConstantRange(L, U);
406 /// zeroExtend - Return a new range in the specified integer type, which must
407 /// be strictly larger than the current type. The returned range will
408 /// correspond to the possible range of values as if the source range had been
409 /// zero extended.
410 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
411 unsigned SrcTySize = getBitWidth();
412 assert(SrcTySize < DstTySize && "Not a value extension");
413 if (isFullSet())
414 // Change a source full set into [0, 1 << 8*numbytes)
415 return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize));
417 APInt L = Lower; L.zext(DstTySize);
418 APInt U = Upper; U.zext(DstTySize);
419 return ConstantRange(L, U);
422 /// signExtend - Return a new range in the specified integer type, which must
423 /// be strictly larger than the current type. The returned range will
424 /// correspond to the possible range of values as if the source range had been
425 /// sign extended.
426 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
427 unsigned SrcTySize = getBitWidth();
428 assert(SrcTySize < DstTySize && "Not a value extension");
429 if (isFullSet()) {
430 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
431 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
434 APInt L = Lower; L.sext(DstTySize);
435 APInt U = Upper; U.sext(DstTySize);
436 return ConstantRange(L, U);
439 /// truncate - Return a new range in the specified integer type, which must be
440 /// strictly smaller than the current type. The returned range will
441 /// correspond to the possible range of values as if the source range had been
442 /// truncated to the specified type.
443 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
444 unsigned SrcTySize = getBitWidth();
445 assert(SrcTySize > DstTySize && "Not a value truncation");
446 APInt Size(APInt::getLowBitsSet(SrcTySize, DstTySize));
447 if (isFullSet() || getSetSize().ugt(Size))
448 return ConstantRange(DstTySize, /*isFullSet=*/true);
450 APInt L = Lower; L.trunc(DstTySize);
451 APInt U = Upper; U.trunc(DstTySize);
452 return ConstantRange(L, U);
455 /// zextOrTrunc - make this range have the bit width given by \p DstTySize. The
456 /// value is zero extended, truncated, or left alone to make it that width.
457 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
458 unsigned SrcTySize = getBitWidth();
459 if (SrcTySize > DstTySize)
460 return truncate(DstTySize);
461 else if (SrcTySize < DstTySize)
462 return zeroExtend(DstTySize);
463 else
464 return *this;
467 /// sextOrTrunc - make this range have the bit width given by \p DstTySize. The
468 /// value is sign extended, truncated, or left alone to make it that width.
469 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
470 unsigned SrcTySize = getBitWidth();
471 if (SrcTySize > DstTySize)
472 return truncate(DstTySize);
473 else if (SrcTySize < DstTySize)
474 return signExtend(DstTySize);
475 else
476 return *this;
479 ConstantRange
480 ConstantRange::add(const ConstantRange &Other) const {
481 if (isEmptySet() || Other.isEmptySet())
482 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
483 if (isFullSet() || Other.isFullSet())
484 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
486 APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
487 APInt NewLower = getLower() + Other.getLower();
488 APInt NewUpper = getUpper() + Other.getUpper() - 1;
489 if (NewLower == NewUpper)
490 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
492 ConstantRange X = ConstantRange(NewLower, NewUpper);
493 if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
494 // We've wrapped, therefore, full set.
495 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
497 return X;
500 ConstantRange
501 ConstantRange::sub(const ConstantRange &Other) const {
502 if (isEmptySet() || Other.isEmptySet())
503 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
504 if (isFullSet() || Other.isFullSet())
505 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
507 APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
508 APInt NewLower = getLower() - Other.getLower();
509 APInt NewUpper = getUpper() - Other.getUpper() + 1;
510 if (NewLower == NewUpper)
511 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
513 ConstantRange X = ConstantRange(NewLower, NewUpper);
514 if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
515 // We've wrapped, therefore, full set.
516 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
518 return X;
521 ConstantRange
522 ConstantRange::multiply(const ConstantRange &Other) const {
523 // TODO: If either operand is a single element and the multiply is known to
524 // be non-wrapping, round the result min and max value to the appropriate
525 // multiple of that element. If wrapping is possible, at least adjust the
526 // range according to the greatest power-of-two factor of the single element.
528 if (isEmptySet() || Other.isEmptySet())
529 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
530 if (isFullSet() || Other.isFullSet())
531 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
533 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
534 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
535 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
536 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
538 ConstantRange Result_zext = ConstantRange(this_min * Other_min,
539 this_max * Other_max + 1);
540 return Result_zext.truncate(getBitWidth());
543 ConstantRange
544 ConstantRange::smax(const ConstantRange &Other) const {
545 // X smax Y is: range(smax(X_smin, Y_smin),
546 // smax(X_smax, Y_smax))
547 if (isEmptySet() || Other.isEmptySet())
548 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
549 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
550 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
551 if (NewU == NewL)
552 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
553 return ConstantRange(NewL, NewU);
556 ConstantRange
557 ConstantRange::umax(const ConstantRange &Other) const {
558 // X umax Y is: range(umax(X_umin, Y_umin),
559 // umax(X_umax, Y_umax))
560 if (isEmptySet() || Other.isEmptySet())
561 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
562 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
563 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
564 if (NewU == NewL)
565 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
566 return ConstantRange(NewL, NewU);
569 ConstantRange
570 ConstantRange::udiv(const ConstantRange &RHS) const {
571 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0)
572 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
573 if (RHS.isFullSet())
574 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
576 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
578 APInt RHS_umin = RHS.getUnsignedMin();
579 if (RHS_umin == 0) {
580 // We want the lowest value in RHS excluding zero. Usually that would be 1
581 // except for a range in the form of [X, 1) in which case it would be X.
582 if (RHS.getUpper() == 1)
583 RHS_umin = RHS.getLower();
584 else
585 RHS_umin = APInt(getBitWidth(), 1);
588 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
590 // If the LHS is Full and the RHS is a wrapped interval containing 1 then
591 // this could occur.
592 if (Lower == Upper)
593 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
595 return ConstantRange(Lower, Upper);
598 ConstantRange
599 ConstantRange::shl(const ConstantRange &Other) const {
600 if (isEmptySet() || Other.isEmptySet())
601 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
603 APInt min = getUnsignedMin().shl(Other.getUnsignedMin());
604 APInt max = getUnsignedMax().shl(Other.getUnsignedMax());
606 // there's no overflow!
607 APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros());
608 if (Zeros.ugt(Other.getUnsignedMax()))
609 return ConstantRange(min, max + 1);
611 // FIXME: implement the other tricky cases
612 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
615 ConstantRange
616 ConstantRange::lshr(const ConstantRange &Other) const {
617 if (isEmptySet() || Other.isEmptySet())
618 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
620 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin());
621 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
622 if (min == max + 1)
623 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
625 return ConstantRange(min, max + 1);
628 ConstantRange ConstantRange::inverse() const {
629 if (isFullSet()) {
630 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
631 } else if (isEmptySet()) {
632 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
634 return ConstantRange(Upper, Lower);
637 /// print - Print out the bounds to a stream...
639 void ConstantRange::print(raw_ostream &OS) const {
640 if (isFullSet())
641 OS << "full-set";
642 else if (isEmptySet())
643 OS << "empty-set";
644 else
645 OS << "[" << Lower << "," << Upper << ")";
648 /// dump - Allow printing from a debugger easily...
650 void ConstantRange::dump() const {
651 print(dbgs());