When removing a function from the function set and adding it to deferred, we
[llvm.git] / lib / CodeGen / StrongPHIElimination.cpp
blob17bd2cfee6c5d1f633ac0d3f56a060b8546856a9
1 //===- StrongPHIElimination.cpp - Eliminate PHI nodes by inserting copies -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates PHI instructions by aggressively coalescing the copies
11 // that would be inserted by a naive algorithm and only inserting the copies
12 // that are necessary. The coalescing technique initially assumes that all
13 // registers appearing in a PHI instruction do not interfere. It then eliminates
14 // proven interferences, using dominators to only perform a linear number of
15 // interference tests instead of the quadratic number of interference tests
16 // that this would naively require. This is a technique derived from:
17 //
18 // Budimlic, et al. Fast copy coalescing and live-range identification.
19 // In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
20 // Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
21 // PLDI '02. ACM, New York, NY, 25-32.
23 // The original implementation constructs a data structure they call a dominance
24 // forest for this purpose. The dominance forest was shown to be unnecessary,
25 // as it is possible to emulate the creation and traversal of a dominance forest
26 // by directly using the dominator tree, rather than actually constructing the
27 // dominance forest. This technique is explained in:
29 // Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
30 // Quality and Efficiency,
31 // In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
32 // Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
33 // CGO '09. IEEE, Washington, DC, 114-125.
35 // Careful implementation allows for all of the dominator forest interference
36 // checks to be performed at once in a single depth-first traversal of the
37 // dominator tree, which is what is implemented here.
39 //===----------------------------------------------------------------------===//
41 #define DEBUG_TYPE "strongphielim"
42 #include "PHIEliminationUtils.h"
43 #include "llvm/CodeGen/Passes.h"
44 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Support/Debug.h"
51 using namespace llvm;
53 namespace {
54 class StrongPHIElimination : public MachineFunctionPass {
55 public:
56 static char ID; // Pass identification, replacement for typeid
57 StrongPHIElimination() : MachineFunctionPass(ID) {
58 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
61 virtual void getAnalysisUsage(AnalysisUsage&) const;
62 bool runOnMachineFunction(MachineFunction&);
64 private:
65 /// This struct represents a single node in the union-find data structure
66 /// representing the variable congruence classes. There is one difference
67 /// from a normal union-find data structure. We steal two bits from the parent
68 /// pointer . One of these bits is used to represent whether the register
69 /// itself has been isolated, and the other is used to represent whether the
70 /// PHI with that register as its destination has been isolated.
71 ///
72 /// Note that this leads to the strange situation where the leader of a
73 /// congruence class may no longer logically be a member, due to being
74 /// isolated.
75 struct Node {
76 enum Flags {
77 kRegisterIsolatedFlag = 1,
78 kPHIIsolatedFlag = 2
80 Node(unsigned v) : value(v), rank(0) { parent.setPointer(this); }
82 Node *getLeader();
84 PointerIntPair<Node*, 2> parent;
85 unsigned value;
86 unsigned rank;
89 /// Add a register in a new congruence class containing only itself.
90 void addReg(unsigned);
92 /// Join the congruence classes of two registers. This function is biased
93 /// towards the left argument, i.e. after
94 ///
95 /// addReg(r2);
96 /// unionRegs(r1, r2);
97 ///
98 /// the leader of the unioned congruence class is the same as the leader of
99 /// r1's congruence class prior to the union. This is actually relied upon
100 /// in the copy insertion code.
101 void unionRegs(unsigned, unsigned);
103 /// Get the color of a register. The color is 0 if the register has been
104 /// isolated.
105 unsigned getRegColor(unsigned);
107 // Isolate a register.
108 void isolateReg(unsigned);
110 /// Get the color of a PHI. The color of a PHI is 0 if the PHI has been
111 /// isolated. Otherwise, it is the original color of its destination and
112 /// all of its operands (before they were isolated, if they were).
113 unsigned getPHIColor(MachineInstr*);
115 /// Isolate a PHI.
116 void isolatePHI(MachineInstr*);
118 /// Traverses a basic block, splitting any interferences found between
119 /// registers in the same congruence class. It takes two DenseMaps as
120 /// arguments that it also updates: CurrentDominatingParent, which maps
121 /// a color to the register in that congruence class whose definition was
122 /// most recently seen, and ImmediateDominatingParent, which maps a register
123 /// to the register in the same congruence class that most immediately
124 /// dominates it.
126 /// This function assumes that it is being called in a depth-first traversal
127 /// of the dominator tree.
128 void SplitInterferencesForBasicBlock(
129 MachineBasicBlock&,
130 DenseMap<unsigned, unsigned> &CurrentDominatingParent,
131 DenseMap<unsigned, unsigned> &ImmediateDominatingParent);
133 // Lowers a PHI instruction, inserting copies of the source and destination
134 // registers as necessary.
135 void InsertCopiesForPHI(MachineInstr*, MachineBasicBlock*);
137 // Merges the live interval of Reg into NewReg and renames Reg to NewReg
138 // everywhere that Reg appears. Requires Reg and NewReg to have non-
139 // overlapping lifetimes.
140 void MergeLIsAndRename(unsigned Reg, unsigned NewReg);
142 MachineRegisterInfo *MRI;
143 const TargetInstrInfo *TII;
144 MachineDominatorTree *DT;
145 LiveIntervals *LI;
147 BumpPtrAllocator Allocator;
149 DenseMap<unsigned, Node*> RegNodeMap;
151 // Maps a basic block to a list of its defs of registers that appear as PHI
152 // sources.
153 DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > PHISrcDefs;
155 // Maps a color to a pair of a MachineInstr* and a virtual register, which
156 // is the operand of that PHI corresponding to the current basic block.
157 DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > CurrentPHIForColor;
159 // FIXME: Can these two data structures be combined? Would a std::multimap
160 // be any better?
162 // Stores pairs of predecessor basic blocks and the source registers of
163 // inserted copy instructions.
164 typedef DenseSet<std::pair<MachineBasicBlock*, unsigned> > SrcCopySet;
165 SrcCopySet InsertedSrcCopySet;
167 // Maps pairs of predecessor basic blocks and colors to their defining copy
168 // instructions.
169 typedef DenseMap<std::pair<MachineBasicBlock*, unsigned>, MachineInstr*>
170 SrcCopyMap;
171 SrcCopyMap InsertedSrcCopyMap;
173 // Maps inserted destination copy registers to their defining copy
174 // instructions.
175 typedef DenseMap<unsigned, MachineInstr*> DestCopyMap;
176 DestCopyMap InsertedDestCopies;
179 struct MIIndexCompare {
180 MIIndexCompare(LiveIntervals *LiveIntervals) : LI(LiveIntervals) { }
182 bool operator()(const MachineInstr *LHS, const MachineInstr *RHS) const {
183 return LI->getInstructionIndex(LHS) < LI->getInstructionIndex(RHS);
186 LiveIntervals *LI;
188 } // namespace
190 char StrongPHIElimination::ID = 0;
191 INITIALIZE_PASS_BEGIN(StrongPHIElimination, "strong-phi-node-elimination",
192 "Eliminate PHI nodes for register allocation, intelligently", false, false)
193 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
194 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
195 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
196 INITIALIZE_PASS_END(StrongPHIElimination, "strong-phi-node-elimination",
197 "Eliminate PHI nodes for register allocation, intelligently", false, false)
199 char &llvm::StrongPHIEliminationID = StrongPHIElimination::ID;
201 void StrongPHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
202 AU.setPreservesCFG();
203 AU.addRequired<MachineDominatorTree>();
204 AU.addRequired<SlotIndexes>();
205 AU.addPreserved<SlotIndexes>();
206 AU.addRequired<LiveIntervals>();
207 AU.addPreserved<LiveIntervals>();
208 MachineFunctionPass::getAnalysisUsage(AU);
211 static MachineOperand *findLastUse(MachineBasicBlock *MBB, unsigned Reg) {
212 // FIXME: This only needs to check from the first terminator, as only the
213 // first terminator can use a virtual register.
214 for (MachineBasicBlock::reverse_iterator RI = MBB->rbegin(); ; ++RI) {
215 assert (RI != MBB->rend());
216 MachineInstr *MI = &*RI;
218 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
219 OE = MI->operands_end(); OI != OE; ++OI) {
220 MachineOperand &MO = *OI;
221 if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
222 return &MO;
225 return NULL;
228 bool StrongPHIElimination::runOnMachineFunction(MachineFunction &MF) {
229 MRI = &MF.getRegInfo();
230 TII = MF.getTarget().getInstrInfo();
231 DT = &getAnalysis<MachineDominatorTree>();
232 LI = &getAnalysis<LiveIntervals>();
234 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
235 I != E; ++I) {
236 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
237 BBI != BBE && BBI->isPHI(); ++BBI) {
238 unsigned DestReg = BBI->getOperand(0).getReg();
239 addReg(DestReg);
240 PHISrcDefs[I].push_back(BBI);
242 for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
243 MachineOperand &SrcMO = BBI->getOperand(i);
244 unsigned SrcReg = SrcMO.getReg();
245 addReg(SrcReg);
246 unionRegs(DestReg, SrcReg);
248 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
249 if (DefMI)
250 PHISrcDefs[DefMI->getParent()].push_back(DefMI);
255 // Perform a depth-first traversal of the dominator tree, splitting
256 // interferences amongst PHI-congruence classes.
257 DenseMap<unsigned, unsigned> CurrentDominatingParent;
258 DenseMap<unsigned, unsigned> ImmediateDominatingParent;
259 for (df_iterator<MachineDomTreeNode*> DI = df_begin(DT->getRootNode()),
260 DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
261 SplitInterferencesForBasicBlock(*DI->getBlock(),
262 CurrentDominatingParent,
263 ImmediateDominatingParent);
266 // Insert copies for all PHI source and destination registers.
267 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
268 I != E; ++I) {
269 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
270 BBI != BBE && BBI->isPHI(); ++BBI) {
271 InsertCopiesForPHI(BBI, I);
275 // FIXME: Preserve the equivalence classes during copy insertion and use
276 // the preversed equivalence classes instead of recomputing them.
277 RegNodeMap.clear();
278 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
279 I != E; ++I) {
280 for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
281 BBI != BBE && BBI->isPHI(); ++BBI) {
282 unsigned DestReg = BBI->getOperand(0).getReg();
283 addReg(DestReg);
285 for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
286 unsigned SrcReg = BBI->getOperand(i).getReg();
287 addReg(SrcReg);
288 unionRegs(DestReg, SrcReg);
293 DenseMap<unsigned, unsigned> RegRenamingMap;
294 bool Changed = false;
295 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
296 I != E; ++I) {
297 MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
298 while (BBI != BBE && BBI->isPHI()) {
299 MachineInstr *PHI = BBI;
301 assert(PHI->getNumOperands() > 0);
303 unsigned SrcReg = PHI->getOperand(1).getReg();
304 unsigned SrcColor = getRegColor(SrcReg);
305 unsigned NewReg = RegRenamingMap[SrcColor];
306 if (!NewReg) {
307 NewReg = SrcReg;
308 RegRenamingMap[SrcColor] = SrcReg;
310 MergeLIsAndRename(SrcReg, NewReg);
312 unsigned DestReg = PHI->getOperand(0).getReg();
313 if (!InsertedDestCopies.count(DestReg))
314 MergeLIsAndRename(DestReg, NewReg);
316 for (unsigned i = 3; i < PHI->getNumOperands(); i += 2) {
317 unsigned SrcReg = PHI->getOperand(i).getReg();
318 MergeLIsAndRename(SrcReg, NewReg);
321 ++BBI;
322 LI->RemoveMachineInstrFromMaps(PHI);
323 PHI->eraseFromParent();
324 Changed = true;
328 // Due to the insertion of copies to split live ranges, the live intervals are
329 // guaranteed to not overlap, except in one case: an original PHI source and a
330 // PHI destination copy. In this case, they have the same value and thus don't
331 // truly intersect, so we merge them into the value live at that point.
332 // FIXME: Is there some better way we can handle this?
333 for (DestCopyMap::iterator I = InsertedDestCopies.begin(),
334 E = InsertedDestCopies.end(); I != E; ++I) {
335 unsigned DestReg = I->first;
336 unsigned DestColor = getRegColor(DestReg);
337 unsigned NewReg = RegRenamingMap[DestColor];
339 LiveInterval &DestLI = LI->getInterval(DestReg);
340 LiveInterval &NewLI = LI->getInterval(NewReg);
342 assert(DestLI.ranges.size() == 1
343 && "PHI destination copy's live interval should be a single live "
344 "range from the beginning of the BB to the copy instruction.");
345 LiveRange *DestLR = DestLI.begin();
346 VNInfo *NewVNI = NewLI.getVNInfoAt(DestLR->start);
347 if (!NewVNI) {
348 NewVNI = NewLI.createValueCopy(DestLR->valno, LI->getVNInfoAllocator());
349 MachineInstr *CopyInstr = I->second;
350 CopyInstr->getOperand(1).setIsKill(true);
353 LiveRange NewLR(DestLR->start, DestLR->end, NewVNI);
354 NewLI.addRange(NewLR);
356 LI->removeInterval(DestReg);
357 MRI->replaceRegWith(DestReg, NewReg);
360 // Adjust the live intervals of all PHI source registers to handle the case
361 // where the PHIs in successor blocks were the only later uses of the source
362 // register.
363 for (SrcCopySet::iterator I = InsertedSrcCopySet.begin(),
364 E = InsertedSrcCopySet.end(); I != E; ++I) {
365 MachineBasicBlock *MBB = I->first;
366 unsigned SrcReg = I->second;
367 if (unsigned RenamedRegister = RegRenamingMap[getRegColor(SrcReg)])
368 SrcReg = RenamedRegister;
370 LiveInterval &SrcLI = LI->getInterval(SrcReg);
372 bool isLiveOut = false;
373 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
374 SE = MBB->succ_end(); SI != SE; ++SI) {
375 if (SrcLI.liveAt(LI->getMBBStartIdx(*SI))) {
376 isLiveOut = true;
377 break;
381 if (isLiveOut)
382 continue;
384 MachineOperand *LastUse = findLastUse(MBB, SrcReg);
385 assert(LastUse);
386 SlotIndex LastUseIndex = LI->getInstructionIndex(LastUse->getParent());
387 SrcLI.removeRange(LastUseIndex.getDefIndex(), LI->getMBBEndIdx(MBB));
388 LastUse->setIsKill(true);
391 LI->renumber();
393 Allocator.Reset();
394 RegNodeMap.clear();
395 PHISrcDefs.clear();
396 InsertedSrcCopySet.clear();
397 InsertedSrcCopyMap.clear();
398 InsertedDestCopies.clear();
400 return Changed;
403 void StrongPHIElimination::addReg(unsigned Reg) {
404 if (RegNodeMap.count(Reg))
405 return;
406 RegNodeMap[Reg] = new (Allocator) Node(Reg);
409 StrongPHIElimination::Node*
410 StrongPHIElimination::Node::getLeader() {
411 Node *N = this;
412 Node *Parent = parent.getPointer();
413 Node *Grandparent = Parent->parent.getPointer();
415 while (Parent != Grandparent) {
416 N->parent.setPointer(Grandparent);
417 N = Grandparent;
418 Parent = Parent->parent.getPointer();
419 Grandparent = Parent->parent.getPointer();
422 return Parent;
425 unsigned StrongPHIElimination::getRegColor(unsigned Reg) {
426 DenseMap<unsigned, Node*>::iterator RI = RegNodeMap.find(Reg);
427 if (RI == RegNodeMap.end())
428 return 0;
429 Node *Node = RI->second;
430 if (Node->parent.getInt() & Node::kRegisterIsolatedFlag)
431 return 0;
432 return Node->getLeader()->value;
435 void StrongPHIElimination::unionRegs(unsigned Reg1, unsigned Reg2) {
436 Node *Node1 = RegNodeMap[Reg1]->getLeader();
437 Node *Node2 = RegNodeMap[Reg2]->getLeader();
439 if (Node1->rank > Node2->rank) {
440 Node2->parent.setPointer(Node1->getLeader());
441 } else if (Node1->rank < Node2->rank) {
442 Node1->parent.setPointer(Node2->getLeader());
443 } else if (Node1 != Node2) {
444 Node2->parent.setPointer(Node1->getLeader());
445 Node1->rank++;
449 void StrongPHIElimination::isolateReg(unsigned Reg) {
450 Node *Node = RegNodeMap[Reg];
451 Node->parent.setInt(Node->parent.getInt() | Node::kRegisterIsolatedFlag);
454 unsigned StrongPHIElimination::getPHIColor(MachineInstr *PHI) {
455 assert(PHI->isPHI());
457 unsigned DestReg = PHI->getOperand(0).getReg();
458 Node *DestNode = RegNodeMap[DestReg];
459 if (DestNode->parent.getInt() & Node::kPHIIsolatedFlag)
460 return 0;
462 for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
463 unsigned SrcColor = getRegColor(PHI->getOperand(i).getReg());
464 if (SrcColor)
465 return SrcColor;
467 return 0;
470 void StrongPHIElimination::isolatePHI(MachineInstr *PHI) {
471 assert(PHI->isPHI());
472 Node *Node = RegNodeMap[PHI->getOperand(0).getReg()];
473 Node->parent.setInt(Node->parent.getInt() | Node::kPHIIsolatedFlag);
476 /// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
477 /// interferences found between registers in the same congruence class. It
478 /// takes two DenseMaps as arguments that it also updates:
480 /// 1) CurrentDominatingParent, which maps a color to the register in that
481 /// congruence class whose definition was most recently seen.
483 /// 2) ImmediateDominatingParent, which maps a register to the register in the
484 /// same congruence class that most immediately dominates it.
486 /// This function assumes that it is being called in a depth-first traversal
487 /// of the dominator tree.
489 /// The algorithm used here is a generalization of the dominance-based SSA test
490 /// for two variables. If there are variables a_1, ..., a_n such that
492 /// def(a_1) dom ... dom def(a_n),
494 /// then we can test for an interference between any two a_i by only using O(n)
495 /// interference tests between pairs of variables. If i < j and a_i and a_j
496 /// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
497 /// Thus, in order to test for an interference involving a_i, we need only check
498 /// for a potential interference with a_i+1.
500 /// This method can be generalized to arbitrary sets of variables by performing
501 /// a depth-first traversal of the dominator tree. As we traverse down a branch
502 /// of the dominator tree, we keep track of the current dominating variable and
503 /// only perform an interference test with that variable. However, when we go to
504 /// another branch of the dominator tree, the definition of the current dominating
505 /// variable may no longer dominate the current block. In order to correct this,
506 /// we need to use a stack of past choices of the current dominating variable
507 /// and pop from this stack until we find a variable whose definition actually
508 /// dominates the current block.
509 ///
510 /// There will be one push on this stack for each variable that has become the
511 /// current dominating variable, so instead of using an explicit stack we can
512 /// simply associate the previous choice for a current dominating variable with
513 /// the new choice. This works better in our implementation, where we test for
514 /// interference in multiple distinct sets at once.
515 void
516 StrongPHIElimination::SplitInterferencesForBasicBlock(
517 MachineBasicBlock &MBB,
518 DenseMap<unsigned, unsigned> &CurrentDominatingParent,
519 DenseMap<unsigned, unsigned> &ImmediateDominatingParent) {
520 // Sort defs by their order in the original basic block, as the code below
521 // assumes that it is processing definitions in dominance order.
522 std::vector<MachineInstr*> &DefInstrs = PHISrcDefs[&MBB];
523 std::sort(DefInstrs.begin(), DefInstrs.end(), MIIndexCompare(LI));
525 for (std::vector<MachineInstr*>::const_iterator BBI = DefInstrs.begin(),
526 BBE = DefInstrs.end(); BBI != BBE; ++BBI) {
527 for (MachineInstr::const_mop_iterator I = (*BBI)->operands_begin(),
528 E = (*BBI)->operands_end(); I != E; ++I) {
529 const MachineOperand &MO = *I;
531 // FIXME: This would be faster if it were possible to bail out of checking
532 // an instruction's operands after the explicit defs, but this is incorrect
533 // for variadic instructions, which may appear before register allocation
534 // in the future.
535 if (!MO.isReg() || !MO.isDef())
536 continue;
538 unsigned DestReg = MO.getReg();
539 if (!DestReg || !TargetRegisterInfo::isVirtualRegister(DestReg))
540 continue;
542 // If the virtual register being defined is not used in any PHI or has
543 // already been isolated, then there are no more interferences to check.
544 unsigned DestColor = getRegColor(DestReg);
545 if (!DestColor)
546 continue;
548 // The input to this pass sometimes is not in SSA form in every basic
549 // block, as some virtual registers have redefinitions. We could eliminate
550 // this by fixing the passes that generate the non-SSA code, or we could
551 // handle it here by tracking defining machine instructions rather than
552 // virtual registers. For now, we just handle the situation conservatively
553 // in a way that will possibly lead to false interferences.
554 unsigned &CurrentParent = CurrentDominatingParent[DestColor];
555 unsigned NewParent = CurrentParent;
556 if (NewParent == DestReg)
557 continue;
559 // Pop registers from the stack represented by ImmediateDominatingParent
560 // until we find a parent that dominates the current instruction.
561 while (NewParent && (!DT->dominates(MRI->getVRegDef(NewParent), *BBI)
562 || !getRegColor(NewParent)))
563 NewParent = ImmediateDominatingParent[NewParent];
565 // If NewParent is nonzero, then its definition dominates the current
566 // instruction, so it is only necessary to check for the liveness of
567 // NewParent in order to check for an interference.
568 if (NewParent
569 && LI->getInterval(NewParent).liveAt(LI->getInstructionIndex(*BBI))) {
570 // If there is an interference, always isolate the new register. This
571 // could be improved by using a heuristic that decides which of the two
572 // registers to isolate.
573 isolateReg(DestReg);
574 CurrentParent = NewParent;
575 } else {
576 // If there is no interference, update ImmediateDominatingParent and set
577 // the CurrentDominatingParent for this color to the current register.
578 ImmediateDominatingParent[DestReg] = NewParent;
579 CurrentParent = DestReg;
584 // We now walk the PHIs in successor blocks and check for interferences. This
585 // is necesary because the use of a PHI's operands are logically contained in
586 // the predecessor block. The def of a PHI's destination register is processed
587 // along with the other defs in a basic block.
589 CurrentPHIForColor.clear();
591 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
592 SE = MBB.succ_end(); SI != SE; ++SI) {
593 for (MachineBasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end();
594 BBI != BBE && BBI->isPHI(); ++BBI) {
595 MachineInstr *PHI = BBI;
597 // If a PHI is already isolated, either by being isolated directly or
598 // having all of its operands isolated, ignore it.
599 unsigned Color = getPHIColor(PHI);
600 if (!Color)
601 continue;
603 // Find the index of the PHI operand that corresponds to this basic block.
604 unsigned PredIndex;
605 for (PredIndex = 1; PredIndex < PHI->getNumOperands(); PredIndex += 2) {
606 if (PHI->getOperand(PredIndex + 1).getMBB() == &MBB)
607 break;
609 assert(PredIndex < PHI->getNumOperands());
610 unsigned PredOperandReg = PHI->getOperand(PredIndex).getReg();
612 // Pop registers from the stack represented by ImmediateDominatingParent
613 // until we find a parent that dominates the current instruction.
614 unsigned &CurrentParent = CurrentDominatingParent[Color];
615 unsigned NewParent = CurrentParent;
616 while (NewParent
617 && (!DT->dominates(MRI->getVRegDef(NewParent)->getParent(), &MBB)
618 || !getRegColor(NewParent)))
619 NewParent = ImmediateDominatingParent[NewParent];
620 CurrentParent = NewParent;
622 // If there is an interference with a register, always isolate the
623 // register rather than the PHI. It is also possible to isolate the
624 // PHI, but that introduces copies for all of the registers involved
625 // in that PHI.
626 if (NewParent && LI->isLiveOutOfMBB(LI->getInterval(NewParent), &MBB)
627 && NewParent != PredOperandReg)
628 isolateReg(NewParent);
630 std::pair<MachineInstr*, unsigned>
631 &CurrentPHI = CurrentPHIForColor[Color];
633 // If two PHIs have the same operand from every shared predecessor, then
634 // they don't actually interfere. Otherwise, isolate the current PHI. This
635 // could possibly be improved, e.g. we could isolate the PHI with the
636 // fewest operands.
637 if (CurrentPHI.first && CurrentPHI.second != PredOperandReg)
638 isolatePHI(PHI);
639 else
640 CurrentPHI = std::make_pair(PHI, PredOperandReg);
645 void StrongPHIElimination::InsertCopiesForPHI(MachineInstr *PHI,
646 MachineBasicBlock *MBB) {
647 assert(PHI->isPHI());
648 unsigned PHIColor = getPHIColor(PHI);
650 for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
651 MachineOperand &SrcMO = PHI->getOperand(i);
653 // If a source is defined by an implicit def, there is no need to insert a
654 // copy in the predecessor.
655 if (SrcMO.isUndef())
656 continue;
658 unsigned SrcReg = SrcMO.getReg();
659 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
660 "Machine PHI Operands must all be virtual registers!");
662 MachineBasicBlock *PredBB = PHI->getOperand(i + 1).getMBB();
663 unsigned SrcColor = getRegColor(SrcReg);
665 // If neither the PHI nor the operand were isolated, then we only need to
666 // set the phi-kill flag on the VNInfo at this PHI.
667 if (PHIColor && SrcColor == PHIColor) {
668 LiveInterval &SrcInterval = LI->getInterval(SrcReg);
669 SlotIndex PredIndex = LI->getMBBEndIdx(PredBB);
670 VNInfo *SrcVNI = SrcInterval.getVNInfoAt(PredIndex.getPrevIndex());
671 assert(SrcVNI);
672 SrcVNI->setHasPHIKill(true);
673 continue;
676 unsigned CopyReg = 0;
677 if (PHIColor) {
678 SrcCopyMap::const_iterator I
679 = InsertedSrcCopyMap.find(std::make_pair(PredBB, PHIColor));
680 CopyReg
681 = I != InsertedSrcCopyMap.end() ? I->second->getOperand(0).getReg() : 0;
684 if (!CopyReg) {
685 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
686 CopyReg = MRI->createVirtualRegister(RC);
688 MachineBasicBlock::iterator
689 CopyInsertPoint = findPHICopyInsertPoint(PredBB, MBB, SrcReg);
690 unsigned SrcSubReg = SrcMO.getSubReg();
691 MachineInstr *CopyInstr = BuildMI(*PredBB,
692 CopyInsertPoint,
693 PHI->getDebugLoc(),
694 TII->get(TargetOpcode::COPY),
695 CopyReg).addReg(SrcReg, 0, SrcSubReg);
696 LI->InsertMachineInstrInMaps(CopyInstr);
698 // addLiveRangeToEndOfBlock() also adds the phikill flag to the VNInfo for
699 // the newly added range.
700 LI->addLiveRangeToEndOfBlock(CopyReg, CopyInstr);
701 InsertedSrcCopySet.insert(std::make_pair(PredBB, SrcReg));
703 addReg(CopyReg);
704 if (PHIColor) {
705 unionRegs(PHIColor, CopyReg);
706 assert(getRegColor(CopyReg) != CopyReg);
707 } else {
708 PHIColor = CopyReg;
709 assert(getRegColor(CopyReg) == CopyReg);
712 if (!InsertedSrcCopyMap.count(std::make_pair(PredBB, PHIColor)))
713 InsertedSrcCopyMap[std::make_pair(PredBB, PHIColor)] = CopyInstr;
716 SrcMO.setReg(CopyReg);
718 // If SrcReg is not live beyond the PHI, trim its interval so that it is no
719 // longer live-in to MBB. Note that SrcReg may appear in other PHIs that are
720 // processed later, but this is still correct to do at this point because we
721 // never rely on LiveIntervals being correct while inserting copies.
722 // FIXME: Should this just count uses at PHIs like the normal PHIElimination
723 // pass does?
724 LiveInterval &SrcLI = LI->getInterval(SrcReg);
725 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
726 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
727 SlotIndex NextInstrIndex = PHIIndex.getNextIndex();
728 if (SrcLI.liveAt(MBBStartIndex) && SrcLI.expiredAt(NextInstrIndex))
729 SrcLI.removeRange(MBBStartIndex, PHIIndex, true);
732 unsigned DestReg = PHI->getOperand(0).getReg();
733 unsigned DestColor = getRegColor(DestReg);
735 if (PHIColor && DestColor == PHIColor) {
736 LiveInterval &DestLI = LI->getInterval(DestReg);
738 // Set the phi-def flag for the VN at this PHI.
739 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
740 VNInfo *DestVNI = DestLI.getVNInfoAt(PHIIndex.getDefIndex());
741 assert(DestVNI);
742 DestVNI->setIsPHIDef(true);
744 // Prior to PHI elimination, the live ranges of PHIs begin at their defining
745 // instruction. After PHI elimination, PHI instructions are replaced by VNs
746 // with the phi-def flag set, and the live ranges of these VNs start at the
747 // beginning of the basic block.
748 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
749 DestVNI->def = MBBStartIndex;
750 DestLI.addRange(LiveRange(MBBStartIndex,
751 PHIIndex.getDefIndex(),
752 DestVNI));
753 return;
756 const TargetRegisterClass *RC = MRI->getRegClass(DestReg);
757 unsigned CopyReg = MRI->createVirtualRegister(RC);
759 MachineInstr *CopyInstr = BuildMI(*MBB,
760 MBB->SkipPHIsAndLabels(MBB->begin()),
761 PHI->getDebugLoc(),
762 TII->get(TargetOpcode::COPY),
763 DestReg).addReg(CopyReg);
764 LI->InsertMachineInstrInMaps(CopyInstr);
765 PHI->getOperand(0).setReg(CopyReg);
767 // Add the region from the beginning of MBB to the copy instruction to
768 // CopyReg's live interval, and give the VNInfo the phidef flag.
769 LiveInterval &CopyLI = LI->getOrCreateInterval(CopyReg);
770 SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
771 SlotIndex DestCopyIndex = LI->getInstructionIndex(CopyInstr);
772 VNInfo *CopyVNI = CopyLI.getNextValue(MBBStartIndex,
773 CopyInstr,
774 LI->getVNInfoAllocator());
775 CopyVNI->setIsPHIDef(true);
776 CopyLI.addRange(LiveRange(MBBStartIndex,
777 DestCopyIndex.getDefIndex(),
778 CopyVNI));
780 // Adjust DestReg's live interval to adjust for its new definition at
781 // CopyInstr.
782 LiveInterval &DestLI = LI->getOrCreateInterval(DestReg);
783 SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
784 DestLI.removeRange(PHIIndex.getDefIndex(), DestCopyIndex.getDefIndex());
786 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getDefIndex());
787 assert(DestVNI);
788 DestVNI->def = DestCopyIndex.getDefIndex();
790 InsertedDestCopies[CopyReg] = CopyInstr;
793 void StrongPHIElimination::MergeLIsAndRename(unsigned Reg, unsigned NewReg) {
794 if (Reg == NewReg)
795 return;
797 LiveInterval &OldLI = LI->getInterval(Reg);
798 LiveInterval &NewLI = LI->getInterval(NewReg);
800 // Merge the live ranges of the two registers.
801 DenseMap<VNInfo*, VNInfo*> VNMap;
802 for (LiveInterval::iterator LRI = OldLI.begin(), LRE = OldLI.end();
803 LRI != LRE; ++LRI) {
804 LiveRange OldLR = *LRI;
805 VNInfo *OldVN = OldLR.valno;
807 VNInfo *&NewVN = VNMap[OldVN];
808 if (!NewVN) {
809 NewVN = NewLI.createValueCopy(OldVN, LI->getVNInfoAllocator());
810 VNMap[OldVN] = NewVN;
813 LiveRange LR(OldLR.start, OldLR.end, NewVN);
814 NewLI.addRange(LR);
817 // Remove the LiveInterval for the register being renamed and replace all
818 // of its defs and uses with the new register.
819 LI->removeInterval(Reg);
820 MRI->replaceRegWith(Reg, NewReg);