When removing a function from the function set and adding it to deferred, we
[llvm.git] / lib / CodeGen / RegAllocBasic.cpp
blob7fbb035ed617785c57edc4e8416f3cd54c0b91bf
1 //===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RABasic function pass, which provides a minimal
11 // implementation of the basic register allocator.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "LiveIntervalUnion.h"
17 #include "RegAllocBase.h"
18 #include "RenderMachineFunction.h"
19 #include "Spiller.h"
20 #include "VirtRegMap.h"
21 #include "VirtRegRewriter.h"
22 #include "llvm/ADT/OwningPtr.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Function.h"
25 #include "llvm/PassAnalysisSupport.h"
26 #include "llvm/CodeGen/CalcSpillWeights.h"
27 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
28 #include "llvm/CodeGen/LiveStackAnalysis.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/CodeGen/RegAllocRegistry.h"
35 #include "llvm/CodeGen/RegisterCoalescer.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #ifndef NDEBUG
40 #include "llvm/ADT/SparseBitVector.h"
41 #endif
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Support/Timer.h"
47 #include <cstdlib>
49 using namespace llvm;
51 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
52 createBasicRegisterAllocator);
54 // Temporary verification option until we can put verification inside
55 // MachineVerifier.
56 static cl::opt<bool, true>
57 VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled),
58 cl::desc("Verify during register allocation"));
60 const char *RegAllocBase::TimerGroupName = "Register Allocation";
61 bool RegAllocBase::VerifyEnabled = false;
63 namespace {
64 /// RABasic provides a minimal implementation of the basic register allocation
65 /// algorithm. It prioritizes live virtual registers by spill weight and spills
66 /// whenever a register is unavailable. This is not practical in production but
67 /// provides a useful baseline both for measuring other allocators and comparing
68 /// the speed of the basic algorithm against other styles of allocators.
69 class RABasic : public MachineFunctionPass, public RegAllocBase
71 // context
72 MachineFunction *MF;
73 BitVector ReservedRegs;
75 // analyses
76 LiveStacks *LS;
77 RenderMachineFunction *RMF;
79 // state
80 std::auto_ptr<Spiller> SpillerInstance;
82 public:
83 RABasic();
85 /// Return the pass name.
86 virtual const char* getPassName() const {
87 return "Basic Register Allocator";
90 /// RABasic analysis usage.
91 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
93 virtual void releaseMemory();
95 virtual Spiller &spiller() { return *SpillerInstance; }
97 virtual float getPriority(LiveInterval *LI) { return LI->weight; }
99 virtual unsigned selectOrSplit(LiveInterval &VirtReg,
100 SmallVectorImpl<LiveInterval*> &SplitVRegs);
102 /// Perform register allocation.
103 virtual bool runOnMachineFunction(MachineFunction &mf);
105 static char ID;
108 char RABasic::ID = 0;
110 } // end anonymous namespace
112 RABasic::RABasic(): MachineFunctionPass(ID) {
113 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
114 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
115 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
116 initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
117 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
118 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
119 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
120 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
121 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
122 initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
125 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
126 AU.setPreservesCFG();
127 AU.addRequired<AliasAnalysis>();
128 AU.addPreserved<AliasAnalysis>();
129 AU.addRequired<LiveIntervals>();
130 AU.addPreserved<SlotIndexes>();
131 if (StrongPHIElim)
132 AU.addRequiredID(StrongPHIEliminationID);
133 AU.addRequiredTransitive<RegisterCoalescer>();
134 AU.addRequired<CalculateSpillWeights>();
135 AU.addRequired<LiveStacks>();
136 AU.addPreserved<LiveStacks>();
137 AU.addRequiredID(MachineDominatorsID);
138 AU.addPreservedID(MachineDominatorsID);
139 AU.addRequired<MachineLoopInfo>();
140 AU.addPreserved<MachineLoopInfo>();
141 AU.addRequired<VirtRegMap>();
142 AU.addPreserved<VirtRegMap>();
143 DEBUG(AU.addRequired<RenderMachineFunction>());
144 MachineFunctionPass::getAnalysisUsage(AU);
147 void RABasic::releaseMemory() {
148 SpillerInstance.reset(0);
149 RegAllocBase::releaseMemory();
152 #ifndef NDEBUG
153 // Verify each LiveIntervalUnion.
154 void RegAllocBase::verify() {
155 LiveVirtRegBitSet VisitedVRegs;
156 OwningArrayPtr<LiveVirtRegBitSet>
157 unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]);
159 // Verify disjoint unions.
160 for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
161 DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI));
162 LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg];
163 PhysReg2LiveUnion[PhysReg].verify(VRegs);
164 // Union + intersection test could be done efficiently in one pass, but
165 // don't add a method to SparseBitVector unless we really need it.
166 assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions");
167 VisitedVRegs |= VRegs;
170 // Verify vreg coverage.
171 for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end();
172 liItr != liEnd; ++liItr) {
173 unsigned reg = liItr->first;
174 if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
175 if (!VRM->hasPhys(reg)) continue; // spilled?
176 unsigned PhysReg = VRM->getPhys(reg);
177 if (!unionVRegs[PhysReg].test(reg)) {
178 dbgs() << "LiveVirtReg " << reg << " not in union " <<
179 TRI->getName(PhysReg) << "\n";
180 llvm_unreachable("unallocated live vreg");
183 // FIXME: I'm not sure how to verify spilled intervals.
185 #endif //!NDEBUG
187 //===----------------------------------------------------------------------===//
188 // RegAllocBase Implementation
189 //===----------------------------------------------------------------------===//
191 // Instantiate a LiveIntervalUnion for each physical register.
192 void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator,
193 unsigned NRegs) {
194 NumRegs = NRegs;
195 Array =
196 static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs));
197 for (unsigned r = 0; r != NRegs; ++r)
198 new(Array + r) LiveIntervalUnion(r, allocator);
201 void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) {
202 NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled);
203 TRI = &vrm.getTargetRegInfo();
204 MRI = &vrm.getRegInfo();
205 VRM = &vrm;
206 LIS = &lis;
207 PhysReg2LiveUnion.init(UnionAllocator, TRI->getNumRegs());
208 // Cache an interferece query for each physical reg
209 Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]);
212 void RegAllocBase::LiveUnionArray::clear() {
213 if (!Array)
214 return;
215 for (unsigned r = 0; r != NumRegs; ++r)
216 Array[r].~LiveIntervalUnion();
217 free(Array);
218 NumRegs = 0;
219 Array = 0;
222 void RegAllocBase::releaseMemory() {
223 PhysReg2LiveUnion.clear();
226 // Visit all the live virtual registers. If they are already assigned to a
227 // physical register, unify them with the corresponding LiveIntervalUnion,
228 // otherwise push them on the priority queue for later assignment.
229 void RegAllocBase::
230 seedLiveVirtRegs(std::priority_queue<std::pair<float, unsigned> > &VirtRegQ) {
231 for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) {
232 unsigned RegNum = I->first;
233 LiveInterval &VirtReg = *I->second;
234 if (TargetRegisterInfo::isPhysicalRegister(RegNum))
235 PhysReg2LiveUnion[RegNum].unify(VirtReg);
236 else
237 VirtRegQ.push(std::make_pair(getPriority(&VirtReg), RegNum));
241 void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) {
242 assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment");
243 VRM->assignVirt2Phys(VirtReg.reg, PhysReg);
244 PhysReg2LiveUnion[PhysReg].unify(VirtReg);
247 void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) {
248 assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign");
249 PhysReg2LiveUnion[PhysReg].extract(VirtReg);
250 VRM->clearVirt(VirtReg.reg);
253 // Top-level driver to manage the queue of unassigned VirtRegs and call the
254 // selectOrSplit implementation.
255 void RegAllocBase::allocatePhysRegs() {
257 // Push each vreg onto a queue or "precolor" by adding it to a physreg union.
258 std::priority_queue<std::pair<float, unsigned> > VirtRegQ;
259 seedLiveVirtRegs(VirtRegQ);
261 // Continue assigning vregs one at a time to available physical registers.
262 while (!VirtRegQ.empty()) {
263 // Pop the highest priority vreg.
264 LiveInterval &VirtReg = LIS->getInterval(VirtRegQ.top().second);
265 VirtRegQ.pop();
267 // selectOrSplit requests the allocator to return an available physical
268 // register if possible and populate a list of new live intervals that
269 // result from splitting.
270 DEBUG(dbgs() << "\nselectOrSplit " << MRI->getRegClass(VirtReg.reg)->getName()
271 << ':' << VirtReg << '\n');
272 typedef SmallVector<LiveInterval*, 4> VirtRegVec;
273 VirtRegVec SplitVRegs;
274 unsigned AvailablePhysReg = selectOrSplit(VirtReg, SplitVRegs);
276 if (AvailablePhysReg) {
277 DEBUG(dbgs() << "allocating: " << TRI->getName(AvailablePhysReg)
278 << " for " << VirtReg << '\n');
279 assign(VirtReg, AvailablePhysReg);
281 for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
282 I != E; ++I) {
283 LiveInterval* SplitVirtReg = *I;
284 if (SplitVirtReg->empty()) continue;
285 DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
286 assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
287 "expect split value in virtual register");
288 VirtRegQ.push(std::make_pair(getPriority(SplitVirtReg),
289 SplitVirtReg->reg));
294 // Check if this live virtual register interferes with a physical register. If
295 // not, then check for interference on each register that aliases with the
296 // physical register. Return the interfering register.
297 unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg,
298 unsigned PhysReg) {
299 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
300 if (query(VirtReg, *AliasI).checkInterference())
301 return *AliasI;
302 return 0;
305 // Helper for spillInteferences() that spills all interfering vregs currently
306 // assigned to this physical register.
307 void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
308 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
309 LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
310 assert(Q.seenAllInterferences() && "need collectInterferences()");
311 const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
313 for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
314 E = PendingSpills.end(); I != E; ++I) {
315 LiveInterval &SpilledVReg = **I;
316 DEBUG(dbgs() << "extracting from " <<
317 TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
319 // Deallocate the interfering vreg by removing it from the union.
320 // A LiveInterval instance may not be in a union during modification!
321 unassign(SpilledVReg, PhysReg);
323 // Spill the extracted interval.
324 spiller().spill(&SpilledVReg, SplitVRegs, PendingSpills);
326 // After extracting segments, the query's results are invalid. But keep the
327 // contents valid until we're done accessing pendingSpills.
328 Q.clear();
331 // Spill or split all live virtual registers currently unified under PhysReg
332 // that interfere with VirtReg. The newly spilled or split live intervals are
333 // returned by appending them to SplitVRegs.
334 bool
335 RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
336 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
337 // Record each interference and determine if all are spillable before mutating
338 // either the union or live intervals.
339 unsigned NumInterferences = 0;
340 // Collect interferences assigned to any alias of the physical register.
341 for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
342 LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
343 NumInterferences += QAlias.collectInterferingVRegs();
344 if (QAlias.seenUnspillableVReg()) {
345 return false;
348 DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
349 " interferences with " << VirtReg << "\n");
350 assert(NumInterferences > 0 && "expect interference");
352 // Spill each interfering vreg allocated to PhysReg or an alias.
353 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
354 spillReg(VirtReg, *AliasI, SplitVRegs);
355 return true;
358 // Add newly allocated physical registers to the MBB live in sets.
359 void RegAllocBase::addMBBLiveIns(MachineFunction *MF) {
360 NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled);
361 typedef SmallVector<MachineBasicBlock*, 8> MBBVec;
362 MBBVec liveInMBBs;
363 MachineBasicBlock &entryMBB = *MF->begin();
365 for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
366 LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg];
367 if (LiveUnion.empty())
368 continue;
369 for (LiveIntervalUnion::SegmentIter SI = LiveUnion.begin(); SI.valid();
370 ++SI) {
372 // Find the set of basic blocks which this range is live into...
373 liveInMBBs.clear();
374 if (!LIS->findLiveInMBBs(SI.start(), SI.stop(), liveInMBBs)) continue;
376 // And add the physreg for this interval to their live-in sets.
377 for (MBBVec::iterator I = liveInMBBs.begin(), E = liveInMBBs.end();
378 I != E; ++I) {
379 MachineBasicBlock *MBB = *I;
380 if (MBB == &entryMBB) continue;
381 if (MBB->isLiveIn(PhysReg)) continue;
382 MBB->addLiveIn(PhysReg);
389 //===----------------------------------------------------------------------===//
390 // RABasic Implementation
391 //===----------------------------------------------------------------------===//
393 // Driver for the register assignment and splitting heuristics.
394 // Manages iteration over the LiveIntervalUnions.
396 // This is a minimal implementation of register assignment and splitting that
397 // spills whenever we run out of registers.
399 // selectOrSplit can only be called once per live virtual register. We then do a
400 // single interference test for each register the correct class until we find an
401 // available register. So, the number of interference tests in the worst case is
402 // |vregs| * |machineregs|. And since the number of interference tests is
403 // minimal, there is no value in caching them outside the scope of
404 // selectOrSplit().
405 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
406 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
407 // Populate a list of physical register spill candidates.
408 SmallVector<unsigned, 8> PhysRegSpillCands;
410 // Check for an available register in this class.
411 const TargetRegisterClass *TRC = MRI->getRegClass(VirtReg.reg);
413 for (TargetRegisterClass::iterator I = TRC->allocation_order_begin(*MF),
414 E = TRC->allocation_order_end(*MF);
415 I != E; ++I) {
417 unsigned PhysReg = *I;
418 if (ReservedRegs.test(PhysReg)) continue;
420 // Check interference and as a side effect, intialize queries for this
421 // VirtReg and its aliases.
422 unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
423 if (interfReg == 0) {
424 // Found an available register.
425 return PhysReg;
427 LiveInterval *interferingVirtReg =
428 Queries[interfReg].firstInterference().liveUnionPos().value();
430 // The current VirtReg must either be spillable, or one of its interferences
431 // must have less spill weight.
432 if (interferingVirtReg->weight < VirtReg.weight ) {
433 PhysRegSpillCands.push_back(PhysReg);
436 // Try to spill another interfering reg with less spill weight.
437 for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
438 PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
440 if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
442 assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
443 "Interference after spill.");
444 // Tell the caller to allocate to this newly freed physical register.
445 return *PhysRegI;
447 // No other spill candidates were found, so spill the current VirtReg.
448 DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
449 SmallVector<LiveInterval*, 1> pendingSpills;
451 spiller().spill(&VirtReg, SplitVRegs, pendingSpills);
453 // The live virtual register requesting allocation was spilled, so tell
454 // the caller not to allocate anything during this round.
455 return 0;
458 bool RABasic::runOnMachineFunction(MachineFunction &mf) {
459 DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
460 << "********** Function: "
461 << ((Value*)mf.getFunction())->getName() << '\n');
463 MF = &mf;
464 DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
466 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
468 ReservedRegs = TRI->getReservedRegs(*MF);
470 SpillerInstance.reset(createSpiller(*this, *MF, *VRM));
472 allocatePhysRegs();
474 addMBBLiveIns(MF);
476 // Diagnostic output before rewriting
477 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
479 // optional HTML output
480 DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
482 // FIXME: Verification currently must run before VirtRegRewriter. We should
483 // make the rewriter a separate pass and override verifyAnalysis instead. When
484 // that happens, verification naturally falls under VerifyMachineCode.
485 #ifndef NDEBUG
486 if (VerifyEnabled) {
487 // Verify accuracy of LiveIntervals. The standard machine code verifier
488 // ensures that each LiveIntervals covers all uses of the virtual reg.
490 // FIXME: MachineVerifier is badly broken when using the standard
491 // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
492 // inline spiller, some tests fail to verify because the coalescer does not
493 // always generate verifiable code.
494 MF->verify(this, "In RABasic::verify");
496 // Verify that LiveIntervals are partitioned into unions and disjoint within
497 // the unions.
498 verify();
500 #endif // !NDEBUG
502 // Run rewriter
503 std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
504 rewriter->runOnMachineFunction(*MF, *VRM, LIS);
506 // The pass output is in VirtRegMap. Release all the transient data.
507 releaseMemory();
509 return true;
512 FunctionPass* llvm::createBasicRegisterAllocator()
514 return new RABasic();