When removing a function from the function set and adding it to deferred, we
[llvm.git] / lib / CodeGen / PreAllocSplitting.cpp
blobd6e31dae9d13669f555b0806c18b3c320a183cdf
1 //===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the machine instruction level pre-register allocation
11 // live interval splitting pass. It finds live interval barriers, i.e.
12 // instructions which will kill all physical registers in certain register
13 // classes, and split all live intervals which cross the barrier.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "pre-alloc-split"
18 #include "VirtRegMap.h"
19 #include "llvm/CodeGen/CalcSpillWeights.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/LiveStackAnalysis.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineLoopInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/RegisterCoalescer.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetOptions.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/DepthFirstIterator.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/Statistic.h"
40 using namespace llvm;
42 static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
43 static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1),
44 cl::Hidden);
45 static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1),
46 cl::Hidden);
48 STATISTIC(NumSplits, "Number of intervals split");
49 STATISTIC(NumRemats, "Number of intervals split by rematerialization");
50 STATISTIC(NumFolds, "Number of intervals split with spill folding");
51 STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding");
52 STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
53 STATISTIC(NumDeadSpills, "Number of dead spills removed");
55 namespace {
56 class PreAllocSplitting : public MachineFunctionPass {
57 MachineFunction *CurrMF;
58 const TargetMachine *TM;
59 const TargetInstrInfo *TII;
60 const TargetRegisterInfo* TRI;
61 MachineFrameInfo *MFI;
62 MachineRegisterInfo *MRI;
63 SlotIndexes *SIs;
64 LiveIntervals *LIs;
65 LiveStacks *LSs;
66 VirtRegMap *VRM;
68 // Barrier - Current barrier being processed.
69 MachineInstr *Barrier;
71 // BarrierMBB - Basic block where the barrier resides in.
72 MachineBasicBlock *BarrierMBB;
74 // Barrier - Current barrier index.
75 SlotIndex BarrierIdx;
77 // CurrLI - Current live interval being split.
78 LiveInterval *CurrLI;
80 // CurrSLI - Current stack slot live interval.
81 LiveInterval *CurrSLI;
83 // CurrSValNo - Current val# for the stack slot live interval.
84 VNInfo *CurrSValNo;
86 // IntervalSSMap - A map from live interval to spill slots.
87 DenseMap<unsigned, int> IntervalSSMap;
89 // Def2SpillMap - A map from a def instruction index to spill index.
90 DenseMap<SlotIndex, SlotIndex> Def2SpillMap;
92 public:
93 static char ID;
94 PreAllocSplitting() : MachineFunctionPass(ID) {
95 initializePreAllocSplittingPass(*PassRegistry::getPassRegistry());
98 virtual bool runOnMachineFunction(MachineFunction &MF);
100 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
101 AU.setPreservesCFG();
102 AU.addRequired<SlotIndexes>();
103 AU.addPreserved<SlotIndexes>();
104 AU.addRequired<LiveIntervals>();
105 AU.addPreserved<LiveIntervals>();
106 AU.addRequired<LiveStacks>();
107 AU.addPreserved<LiveStacks>();
108 AU.addPreserved<RegisterCoalescer>();
109 AU.addPreserved<CalculateSpillWeights>();
110 AU.addPreservedID(StrongPHIEliminationID);
111 AU.addPreservedID(PHIEliminationID);
112 AU.addRequired<MachineDominatorTree>();
113 AU.addRequired<MachineLoopInfo>();
114 AU.addRequired<VirtRegMap>();
115 AU.addPreserved<MachineDominatorTree>();
116 AU.addPreserved<MachineLoopInfo>();
117 AU.addPreserved<VirtRegMap>();
118 MachineFunctionPass::getAnalysisUsage(AU);
121 virtual void releaseMemory() {
122 IntervalSSMap.clear();
123 Def2SpillMap.clear();
126 virtual const char *getPassName() const {
127 return "Pre-Register Allocaton Live Interval Splitting";
130 /// print - Implement the dump method.
131 virtual void print(raw_ostream &O, const Module* M = 0) const {
132 LIs->print(O, M);
136 private:
138 MachineBasicBlock::iterator
139 findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
140 SmallPtrSet<MachineInstr*, 4>&);
142 MachineBasicBlock::iterator
143 findRestorePoint(MachineBasicBlock*, MachineInstr*, SlotIndex,
144 SmallPtrSet<MachineInstr*, 4>&);
146 int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
148 bool IsAvailableInStack(MachineBasicBlock*, unsigned,
149 SlotIndex, SlotIndex,
150 SlotIndex&, int&) const;
152 void UpdateSpillSlotInterval(VNInfo*, SlotIndex, SlotIndex);
154 bool SplitRegLiveInterval(LiveInterval*);
156 bool SplitRegLiveIntervals(const TargetRegisterClass **,
157 SmallPtrSet<LiveInterval*, 8>&);
159 bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
160 MachineBasicBlock* BarrierMBB);
161 bool Rematerialize(unsigned vreg, VNInfo* ValNo,
162 MachineInstr* DefMI,
163 MachineBasicBlock::iterator RestorePt,
164 SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
165 MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
166 MachineInstr* DefMI,
167 MachineInstr* Barrier,
168 MachineBasicBlock* MBB,
169 int& SS,
170 SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
171 MachineInstr* FoldRestore(unsigned vreg,
172 const TargetRegisterClass* RC,
173 MachineInstr* Barrier,
174 MachineBasicBlock* MBB,
175 int SS,
176 SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
177 void RenumberValno(VNInfo* VN);
178 void ReconstructLiveInterval(LiveInterval* LI);
179 bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split);
180 unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs,
181 unsigned Reg, int FrameIndex, bool& TwoAddr);
182 VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use,
183 MachineBasicBlock* MBB, LiveInterval* LI,
184 SmallPtrSet<MachineInstr*, 4>& Visited,
185 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
186 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
187 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
188 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
189 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
190 bool IsTopLevel, bool IsIntraBlock);
191 VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use,
192 MachineBasicBlock* MBB, LiveInterval* LI,
193 SmallPtrSet<MachineInstr*, 4>& Visited,
194 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
195 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
196 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
197 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
198 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
199 bool IsTopLevel, bool IsIntraBlock);
201 } // end anonymous namespace
203 char PreAllocSplitting::ID = 0;
205 INITIALIZE_PASS_BEGIN(PreAllocSplitting, "pre-alloc-splitting",
206 "Pre-Register Allocation Live Interval Splitting",
207 false, false)
208 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
209 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
210 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
211 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
212 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
213 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
214 INITIALIZE_PASS_END(PreAllocSplitting, "pre-alloc-splitting",
215 "Pre-Register Allocation Live Interval Splitting",
216 false, false)
218 char &llvm::PreAllocSplittingID = PreAllocSplitting::ID;
220 /// findSpillPoint - Find a gap as far away from the given MI that's suitable
221 /// for spilling the current live interval. The index must be before any
222 /// defs and uses of the live interval register in the mbb. Return begin() if
223 /// none is found.
224 MachineBasicBlock::iterator
225 PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
226 MachineInstr *DefMI,
227 SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
228 MachineBasicBlock::iterator Pt = MBB->begin();
230 MachineBasicBlock::iterator MII = MI;
231 MachineBasicBlock::iterator EndPt = DefMI
232 ? MachineBasicBlock::iterator(DefMI) : MBB->begin();
234 while (MII != EndPt && !RefsInMBB.count(MII) &&
235 MII->getOpcode() != TRI->getCallFrameSetupOpcode())
236 --MII;
237 if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
239 while (MII != EndPt && !RefsInMBB.count(MII)) {
240 // We can't insert the spill between the barrier (a call), and its
241 // corresponding call frame setup.
242 if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) {
243 while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) {
244 --MII;
245 if (MII == EndPt) {
246 return Pt;
249 continue;
250 } else {
251 Pt = MII;
254 if (RefsInMBB.count(MII))
255 return Pt;
258 --MII;
261 return Pt;
264 /// findRestorePoint - Find a gap in the instruction index map that's suitable
265 /// for restoring the current live interval value. The index must be before any
266 /// uses of the live interval register in the mbb. Return end() if none is
267 /// found.
268 MachineBasicBlock::iterator
269 PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
270 SlotIndex LastIdx,
271 SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
272 // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
273 // begin index accordingly.
274 MachineBasicBlock::iterator Pt = MBB->end();
275 MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator();
277 // We start at the call, so walk forward until we find the call frame teardown
278 // since we can't insert restores before that. Bail if we encounter a use
279 // during this time.
280 MachineBasicBlock::iterator MII = MI;
281 if (MII == EndPt) return Pt;
283 while (MII != EndPt && !RefsInMBB.count(MII) &&
284 MII->getOpcode() != TRI->getCallFrameDestroyOpcode())
285 ++MII;
286 if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
287 ++MII;
289 // FIXME: Limit the number of instructions to examine to reduce
290 // compile time?
291 while (MII != EndPt) {
292 SlotIndex Index = LIs->getInstructionIndex(MII);
293 if (Index > LastIdx)
294 break;
296 // We can't insert a restore between the barrier (a call) and its
297 // corresponding call frame teardown.
298 if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) {
299 do {
300 if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
301 ++MII;
302 } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode());
303 } else {
304 Pt = MII;
307 if (RefsInMBB.count(MII))
308 return Pt;
310 ++MII;
313 return Pt;
316 /// CreateSpillStackSlot - Create a stack slot for the live interval being
317 /// split. If the live interval was previously split, just reuse the same
318 /// slot.
319 int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
320 const TargetRegisterClass *RC) {
321 int SS;
322 DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
323 if (I != IntervalSSMap.end()) {
324 SS = I->second;
325 } else {
326 SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment());
327 IntervalSSMap[Reg] = SS;
330 // Create live interval for stack slot.
331 CurrSLI = &LSs->getOrCreateInterval(SS, RC);
332 if (CurrSLI->hasAtLeastOneValue())
333 CurrSValNo = CurrSLI->getValNumInfo(0);
334 else
335 CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0,
336 LSs->getVNInfoAllocator());
337 return SS;
340 /// IsAvailableInStack - Return true if register is available in a split stack
341 /// slot at the specified index.
342 bool
343 PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
344 unsigned Reg, SlotIndex DefIndex,
345 SlotIndex RestoreIndex,
346 SlotIndex &SpillIndex,
347 int& SS) const {
348 if (!DefMBB)
349 return false;
351 DenseMap<unsigned, int>::const_iterator I = IntervalSSMap.find(Reg);
352 if (I == IntervalSSMap.end())
353 return false;
354 DenseMap<SlotIndex, SlotIndex>::const_iterator
355 II = Def2SpillMap.find(DefIndex);
356 if (II == Def2SpillMap.end())
357 return false;
359 // If last spill of def is in the same mbb as barrier mbb (where restore will
360 // be), make sure it's not below the intended restore index.
361 // FIXME: Undo the previous spill?
362 assert(LIs->getMBBFromIndex(II->second) == DefMBB);
363 if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
364 return false;
366 SS = I->second;
367 SpillIndex = II->second;
368 return true;
371 /// UpdateSpillSlotInterval - Given the specified val# of the register live
372 /// interval being split, and the spill and restore indicies, update the live
373 /// interval of the spill stack slot.
374 void
375 PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, SlotIndex SpillIndex,
376 SlotIndex RestoreIndex) {
377 assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
378 "Expect restore in the barrier mbb");
380 MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
381 if (MBB == BarrierMBB) {
382 // Intra-block spill + restore. We are done.
383 LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
384 CurrSLI->addRange(SLR);
385 return;
388 SmallPtrSet<MachineBasicBlock*, 4> Processed;
389 SlotIndex EndIdx = LIs->getMBBEndIdx(MBB);
390 LiveRange SLR(SpillIndex, EndIdx, CurrSValNo);
391 CurrSLI->addRange(SLR);
392 Processed.insert(MBB);
394 // Start from the spill mbb, figure out the extend of the spill slot's
395 // live interval.
396 SmallVector<MachineBasicBlock*, 4> WorkList;
397 const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
398 if (LR->end > EndIdx)
399 // If live range extend beyond end of mbb, add successors to work list.
400 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
401 SE = MBB->succ_end(); SI != SE; ++SI)
402 WorkList.push_back(*SI);
404 while (!WorkList.empty()) {
405 MachineBasicBlock *MBB = WorkList.back();
406 WorkList.pop_back();
407 if (Processed.count(MBB))
408 continue;
409 SlotIndex Idx = LIs->getMBBStartIdx(MBB);
410 LR = CurrLI->getLiveRangeContaining(Idx);
411 if (LR && LR->valno == ValNo) {
412 EndIdx = LIs->getMBBEndIdx(MBB);
413 if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
414 // Spill slot live interval stops at the restore.
415 LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
416 CurrSLI->addRange(SLR);
417 } else if (LR->end > EndIdx) {
418 // Live range extends beyond end of mbb, process successors.
419 LiveRange SLR(Idx, EndIdx.getNextIndex(), CurrSValNo);
420 CurrSLI->addRange(SLR);
421 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
422 SE = MBB->succ_end(); SI != SE; ++SI)
423 WorkList.push_back(*SI);
424 } else {
425 LiveRange SLR(Idx, LR->end, CurrSValNo);
426 CurrSLI->addRange(SLR);
428 Processed.insert(MBB);
433 /// PerformPHIConstruction - From properly set up use and def lists, use a PHI
434 /// construction algorithm to compute the ranges and valnos for an interval.
435 VNInfo*
436 PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
437 MachineBasicBlock* MBB, LiveInterval* LI,
438 SmallPtrSet<MachineInstr*, 4>& Visited,
439 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
440 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
441 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
442 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
443 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
444 bool IsTopLevel, bool IsIntraBlock) {
445 // Return memoized result if it's available.
446 if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI))
447 return NewVNs[UseI];
448 else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI))
449 return NewVNs[UseI];
450 else if (!IsIntraBlock && LiveOut.count(MBB))
451 return LiveOut[MBB];
453 // Check if our block contains any uses or defs.
454 bool ContainsDefs = Defs.count(MBB);
455 bool ContainsUses = Uses.count(MBB);
457 VNInfo* RetVNI = 0;
459 // Enumerate the cases of use/def contaning blocks.
460 if (!ContainsDefs && !ContainsUses) {
461 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
462 NewVNs, LiveOut, Phis,
463 IsTopLevel, IsIntraBlock);
464 } else if (ContainsDefs && !ContainsUses) {
465 SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
467 // Search for the def in this block. If we don't find it before the
468 // instruction we care about, go to the fallback case. Note that that
469 // should never happen: this cannot be intrablock, so use should
470 // always be an end() iterator.
471 assert(UseI == MBB->end() && "No use marked in intrablock");
473 MachineBasicBlock::iterator Walker = UseI;
474 --Walker;
475 while (Walker != MBB->begin()) {
476 if (BlockDefs.count(Walker))
477 break;
478 --Walker;
481 // Once we've found it, extend its VNInfo to our instruction.
482 SlotIndex DefIndex = LIs->getInstructionIndex(Walker);
483 DefIndex = DefIndex.getDefIndex();
484 SlotIndex EndIndex = LIs->getMBBEndIdx(MBB);
486 RetVNI = NewVNs[Walker];
487 LI->addRange(LiveRange(DefIndex, EndIndex, RetVNI));
488 } else if (!ContainsDefs && ContainsUses) {
489 SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
491 // Search for the use in this block that precedes the instruction we care
492 // about, going to the fallback case if we don't find it.
493 MachineBasicBlock::iterator Walker = UseI;
494 bool found = false;
495 while (Walker != MBB->begin()) {
496 --Walker;
497 if (BlockUses.count(Walker)) {
498 found = true;
499 break;
503 if (!found)
504 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
505 Uses, NewVNs, LiveOut, Phis,
506 IsTopLevel, IsIntraBlock);
508 SlotIndex UseIndex = LIs->getInstructionIndex(Walker);
509 UseIndex = UseIndex.getUseIndex();
510 SlotIndex EndIndex;
511 if (IsIntraBlock) {
512 EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
513 } else
514 EndIndex = LIs->getMBBEndIdx(MBB);
516 // Now, recursively phi construct the VNInfo for the use we found,
517 // and then extend it to include the instruction we care about
518 RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
519 NewVNs, LiveOut, Phis, false, true);
521 LI->addRange(LiveRange(UseIndex, EndIndex, RetVNI));
523 // FIXME: Need to set kills properly for inter-block stuff.
524 } else if (ContainsDefs && ContainsUses) {
525 SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
526 SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
528 // This case is basically a merging of the two preceding case, with the
529 // special note that checking for defs must take precedence over checking
530 // for uses, because of two-address instructions.
531 MachineBasicBlock::iterator Walker = UseI;
532 bool foundDef = false;
533 bool foundUse = false;
534 while (Walker != MBB->begin()) {
535 --Walker;
536 if (BlockDefs.count(Walker)) {
537 foundDef = true;
538 break;
539 } else if (BlockUses.count(Walker)) {
540 foundUse = true;
541 break;
545 if (!foundDef && !foundUse)
546 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
547 Uses, NewVNs, LiveOut, Phis,
548 IsTopLevel, IsIntraBlock);
550 SlotIndex StartIndex = LIs->getInstructionIndex(Walker);
551 StartIndex = foundDef ? StartIndex.getDefIndex() : StartIndex.getUseIndex();
552 SlotIndex EndIndex;
553 if (IsIntraBlock) {
554 EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
555 } else
556 EndIndex = LIs->getMBBEndIdx(MBB);
558 if (foundDef)
559 RetVNI = NewVNs[Walker];
560 else
561 RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
562 NewVNs, LiveOut, Phis, false, true);
564 LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
567 // Memoize results so we don't have to recompute them.
568 if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
569 else {
570 if (!NewVNs.count(UseI))
571 NewVNs[UseI] = RetVNI;
572 Visited.insert(UseI);
575 return RetVNI;
578 /// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
580 VNInfo*
581 PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI,
582 MachineBasicBlock* MBB, LiveInterval* LI,
583 SmallPtrSet<MachineInstr*, 4>& Visited,
584 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
585 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
586 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
587 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
588 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
589 bool IsTopLevel, bool IsIntraBlock) {
590 // NOTE: Because this is the fallback case from other cases, we do NOT
591 // assume that we are not intrablock here.
592 if (Phis.count(MBB)) return Phis[MBB];
594 SlotIndex StartIndex = LIs->getMBBStartIdx(MBB);
595 VNInfo *RetVNI = Phis[MBB] =
596 LI->getNextValue(SlotIndex(), /*FIXME*/ 0,
597 LIs->getVNInfoAllocator());
599 if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
601 // If there are no uses or defs between our starting point and the
602 // beginning of the block, then recursive perform phi construction
603 // on our predecessors.
604 DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
605 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
606 PE = MBB->pred_end(); PI != PE; ++PI) {
607 VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI,
608 Visited, Defs, Uses, NewVNs,
609 LiveOut, Phis, false, false);
610 if (Incoming != 0)
611 IncomingVNs[*PI] = Incoming;
614 if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) {
615 VNInfo* OldVN = RetVNI;
616 VNInfo* NewVN = IncomingVNs.begin()->second;
617 VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN);
618 if (MergedVN == OldVN) std::swap(OldVN, NewVN);
620 for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(),
621 LOE = LiveOut.end(); LOI != LOE; ++LOI)
622 if (LOI->second == OldVN)
623 LOI->second = MergedVN;
624 for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(),
625 NVE = NewVNs.end(); NVI != NVE; ++NVI)
626 if (NVI->second == OldVN)
627 NVI->second = MergedVN;
628 for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(),
629 PE = Phis.end(); PI != PE; ++PI)
630 if (PI->second == OldVN)
631 PI->second = MergedVN;
632 RetVNI = MergedVN;
633 } else {
634 // Otherwise, merge the incoming VNInfos with a phi join. Create a new
635 // VNInfo to represent the joined value.
636 for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
637 IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
638 I->second->setHasPHIKill(true);
642 SlotIndex EndIndex;
643 if (IsIntraBlock) {
644 EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
645 } else
646 EndIndex = LIs->getMBBEndIdx(MBB);
647 LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
649 // Memoize results so we don't have to recompute them.
650 if (!IsIntraBlock)
651 LiveOut[MBB] = RetVNI;
652 else {
653 if (!NewVNs.count(UseI))
654 NewVNs[UseI] = RetVNI;
655 Visited.insert(UseI);
658 return RetVNI;
661 /// ReconstructLiveInterval - Recompute a live interval from scratch.
662 void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
663 VNInfo::Allocator& Alloc = LIs->getVNInfoAllocator();
665 // Clear the old ranges and valnos;
666 LI->clear();
668 // Cache the uses and defs of the register
669 typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
670 RegMap Defs, Uses;
672 // Keep track of the new VNs we're creating.
673 DenseMap<MachineInstr*, VNInfo*> NewVNs;
674 SmallPtrSet<VNInfo*, 2> PhiVNs;
676 // Cache defs, and create a new VNInfo for each def.
677 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
678 DE = MRI->def_end(); DI != DE; ++DI) {
679 Defs[(*DI).getParent()].insert(&*DI);
681 SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
682 DefIdx = DefIdx.getDefIndex();
684 assert(!DI->isPHI() && "PHI instr in code during pre-alloc splitting.");
685 VNInfo* NewVN = LI->getNextValue(DefIdx, 0, Alloc);
687 // If the def is a move, set the copy field.
688 if (DI->isCopyLike() && DI->getOperand(0).getReg() == LI->reg)
689 NewVN->setCopy(&*DI);
691 NewVNs[&*DI] = NewVN;
694 // Cache uses as a separate pass from actually processing them.
695 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
696 UE = MRI->use_end(); UI != UE; ++UI)
697 Uses[(*UI).getParent()].insert(&*UI);
699 // Now, actually process every use and use a phi construction algorithm
700 // to walk from it to its reaching definitions, building VNInfos along
701 // the way.
702 DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
703 DenseMap<MachineBasicBlock*, VNInfo*> Phis;
704 SmallPtrSet<MachineInstr*, 4> Visited;
705 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
706 UE = MRI->use_end(); UI != UE; ++UI) {
707 PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs,
708 Uses, NewVNs, LiveOut, Phis, true, true);
711 // Add ranges for dead defs
712 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
713 DE = MRI->def_end(); DI != DE; ++DI) {
714 SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
715 DefIdx = DefIdx.getDefIndex();
717 if (LI->liveAt(DefIdx)) continue;
719 VNInfo* DeadVN = NewVNs[&*DI];
720 LI->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), DeadVN));
724 /// RenumberValno - Split the given valno out into a new vreg, allowing it to
725 /// be allocated to a different register. This function creates a new vreg,
726 /// copies the valno and its live ranges over to the new vreg's interval,
727 /// removes them from the old interval, and rewrites all uses and defs of
728 /// the original reg to the new vreg within those ranges.
729 void PreAllocSplitting::RenumberValno(VNInfo* VN) {
730 SmallVector<VNInfo*, 4> Stack;
731 SmallVector<VNInfo*, 4> VNsToCopy;
732 Stack.push_back(VN);
734 // Walk through and copy the valno we care about, and any other valnos
735 // that are two-address redefinitions of the one we care about. These
736 // will need to be rewritten as well. We also check for safety of the
737 // renumbering here, by making sure that none of the valno involved has
738 // phi kills.
739 while (!Stack.empty()) {
740 VNInfo* OldVN = Stack.back();
741 Stack.pop_back();
743 // Bail out if we ever encounter a valno that has a PHI kill. We can't
744 // renumber these.
745 if (OldVN->hasPHIKill()) return;
747 VNsToCopy.push_back(OldVN);
749 // Locate two-address redefinitions
750 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(CurrLI->reg),
751 DE = MRI->def_end(); DI != DE; ++DI) {
752 if (!DI->isRegTiedToUseOperand(DI.getOperandNo())) continue;
753 SlotIndex DefIdx = LIs->getInstructionIndex(&*DI).getDefIndex();
754 VNInfo* NextVN = CurrLI->findDefinedVNInfoForRegInt(DefIdx);
755 if (std::find(VNsToCopy.begin(), VNsToCopy.end(), NextVN) !=
756 VNsToCopy.end())
757 Stack.push_back(NextVN);
761 // Create the new vreg
762 unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
764 // Create the new live interval
765 LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
767 for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE =
768 VNsToCopy.end(); OI != OE; ++OI) {
769 VNInfo* OldVN = *OI;
771 // Copy the valno over
772 VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator());
773 NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);
775 // Remove the valno from the old interval
776 CurrLI->removeValNo(OldVN);
779 // Rewrite defs and uses. This is done in two stages to avoid invalidating
780 // the reg_iterator.
781 SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
783 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
784 E = MRI->reg_end(); I != E; ++I) {
785 MachineOperand& MO = I.getOperand();
786 SlotIndex InstrIdx = LIs->getInstructionIndex(&*I);
788 if ((MO.isUse() && NewLI.liveAt(InstrIdx.getUseIndex())) ||
789 (MO.isDef() && NewLI.liveAt(InstrIdx.getDefIndex())))
790 OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
793 for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
794 OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
795 MachineInstr* Inst = I->first;
796 unsigned OpIdx = I->second;
797 MachineOperand& MO = Inst->getOperand(OpIdx);
798 MO.setReg(NewVReg);
801 // Grow the VirtRegMap, since we've created a new vreg.
802 VRM->grow();
804 // The renumbered vreg shares a stack slot with the old register.
805 if (IntervalSSMap.count(CurrLI->reg))
806 IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg];
808 ++NumRenumbers;
811 bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
812 MachineInstr* DefMI,
813 MachineBasicBlock::iterator RestorePt,
814 SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
815 MachineBasicBlock& MBB = *RestorePt->getParent();
817 MachineBasicBlock::iterator KillPt = BarrierMBB->end();
818 if (!DefMI || DefMI->getParent() == BarrierMBB)
819 KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
820 else
821 KillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
823 if (KillPt == DefMI->getParent()->end())
824 return false;
826 TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI, *TRI);
827 SlotIndex RematIdx = LIs->InsertMachineInstrInMaps(prior(RestorePt));
829 ReconstructLiveInterval(CurrLI);
830 RematIdx = RematIdx.getDefIndex();
831 RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx));
833 ++NumSplits;
834 ++NumRemats;
835 return true;
838 MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg,
839 const TargetRegisterClass* RC,
840 MachineInstr* DefMI,
841 MachineInstr* Barrier,
842 MachineBasicBlock* MBB,
843 int& SS,
844 SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
845 // Go top down if RefsInMBB is empty.
846 if (RefsInMBB.empty())
847 return 0;
849 MachineBasicBlock::iterator FoldPt = Barrier;
850 while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
851 !RefsInMBB.count(FoldPt))
852 --FoldPt;
854 int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg);
855 if (OpIdx == -1)
856 return 0;
858 SmallVector<unsigned, 1> Ops;
859 Ops.push_back(OpIdx);
861 if (!TII->canFoldMemoryOperand(FoldPt, Ops))
862 return 0;
864 DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
865 if (I != IntervalSSMap.end()) {
866 SS = I->second;
867 } else {
868 SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment());
871 MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS);
873 if (FMI) {
874 LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
875 FoldPt->eraseFromParent();
876 ++NumFolds;
878 IntervalSSMap[vreg] = SS;
879 CurrSLI = &LSs->getOrCreateInterval(SS, RC);
880 if (CurrSLI->hasAtLeastOneValue())
881 CurrSValNo = CurrSLI->getValNumInfo(0);
882 else
883 CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0,
884 LSs->getVNInfoAllocator());
887 return FMI;
890 MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg,
891 const TargetRegisterClass* RC,
892 MachineInstr* Barrier,
893 MachineBasicBlock* MBB,
894 int SS,
895 SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
896 if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds)
897 return 0;
899 // Go top down if RefsInMBB is empty.
900 if (RefsInMBB.empty())
901 return 0;
903 // Can't fold a restore between a call stack setup and teardown.
904 MachineBasicBlock::iterator FoldPt = Barrier;
906 // Advance from barrier to call frame teardown.
907 while (FoldPt != MBB->getFirstTerminator() &&
908 FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
909 if (RefsInMBB.count(FoldPt))
910 return 0;
912 ++FoldPt;
915 if (FoldPt == MBB->getFirstTerminator())
916 return 0;
917 else
918 ++FoldPt;
920 // Now find the restore point.
921 while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) {
922 if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) {
923 while (FoldPt != MBB->getFirstTerminator() &&
924 FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
925 if (RefsInMBB.count(FoldPt))
926 return 0;
928 ++FoldPt;
931 if (FoldPt == MBB->getFirstTerminator())
932 return 0;
935 ++FoldPt;
938 if (FoldPt == MBB->getFirstTerminator())
939 return 0;
941 int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true);
942 if (OpIdx == -1)
943 return 0;
945 SmallVector<unsigned, 1> Ops;
946 Ops.push_back(OpIdx);
948 if (!TII->canFoldMemoryOperand(FoldPt, Ops))
949 return 0;
951 MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS);
953 if (FMI) {
954 LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
955 FoldPt->eraseFromParent();
956 ++NumRestoreFolds;
959 return FMI;
962 /// SplitRegLiveInterval - Split (spill and restore) the given live interval
963 /// so it would not cross the barrier that's being processed. Shrink wrap
964 /// (minimize) the live interval to the last uses.
965 bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
966 DEBUG(dbgs() << "Pre-alloc splitting " << LI->reg << " for " << *Barrier
967 << " result: ");
969 CurrLI = LI;
971 // Find live range where current interval cross the barrier.
972 LiveInterval::iterator LR =
973 CurrLI->FindLiveRangeContaining(BarrierIdx.getUseIndex());
974 VNInfo *ValNo = LR->valno;
976 assert(!ValNo->isUnused() && "Val# is defined by a dead def?");
978 MachineInstr *DefMI = LIs->getInstructionFromIndex(ValNo->def);
980 // If this would create a new join point, do not split.
981 if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) {
982 DEBUG(dbgs() << "FAILED (would create a new join point).\n");
983 return false;
986 // Find all references in the barrier mbb.
987 SmallPtrSet<MachineInstr*, 4> RefsInMBB;
988 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
989 E = MRI->reg_end(); I != E; ++I) {
990 MachineInstr *RefMI = &*I;
991 if (RefMI->getParent() == BarrierMBB)
992 RefsInMBB.insert(RefMI);
995 // Find a point to restore the value after the barrier.
996 MachineBasicBlock::iterator RestorePt =
997 findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB);
998 if (RestorePt == BarrierMBB->end()) {
999 DEBUG(dbgs() << "FAILED (could not find a suitable restore point).\n");
1000 return false;
1003 if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
1004 if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, RefsInMBB)) {
1005 DEBUG(dbgs() << "success (remat).\n");
1006 return true;
1009 // Add a spill either before the barrier or after the definition.
1010 MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
1011 const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
1012 SlotIndex SpillIndex;
1013 MachineInstr *SpillMI = NULL;
1014 int SS = -1;
1015 if (!DefMI) {
1016 // If we don't know where the def is we must split just before the barrier.
1017 if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
1018 BarrierMBB, SS, RefsInMBB))) {
1019 SpillIndex = LIs->getInstructionIndex(SpillMI);
1020 } else {
1021 MachineBasicBlock::iterator SpillPt =
1022 findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
1023 if (SpillPt == BarrierMBB->begin()) {
1024 DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
1025 return false; // No gap to insert spill.
1027 // Add spill.
1029 SS = CreateSpillStackSlot(CurrLI->reg, RC);
1030 TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC,
1031 TRI);
1032 SpillMI = prior(SpillPt);
1033 SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
1035 } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
1036 LIs->getZeroIndex(), SpillIndex, SS)) {
1037 // If it's already split, just restore the value. There is no need to spill
1038 // the def again.
1039 if (!DefMI) {
1040 DEBUG(dbgs() << "FAILED (def is dead).\n");
1041 return false; // Def is dead. Do nothing.
1044 if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
1045 BarrierMBB, SS, RefsInMBB))) {
1046 SpillIndex = LIs->getInstructionIndex(SpillMI);
1047 } else {
1048 // Check if it's possible to insert a spill after the def MI.
1049 MachineBasicBlock::iterator SpillPt;
1050 if (DefMBB == BarrierMBB) {
1051 // Add spill after the def and the last use before the barrier.
1052 SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
1053 RefsInMBB);
1054 if (SpillPt == DefMBB->begin()) {
1055 DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
1056 return false; // No gap to insert spill.
1058 } else {
1059 SpillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
1060 if (SpillPt == DefMBB->end()) {
1061 DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
1062 return false; // No gap to insert spill.
1065 // Add spill.
1066 SS = CreateSpillStackSlot(CurrLI->reg, RC);
1067 TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC,
1068 TRI);
1069 SpillMI = prior(SpillPt);
1070 SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
1074 // Remember def instruction index to spill index mapping.
1075 if (DefMI && SpillMI)
1076 Def2SpillMap[ValNo->def] = SpillIndex;
1078 // Add restore.
1079 bool FoldedRestore = false;
1080 SlotIndex RestoreIndex;
1081 if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier,
1082 BarrierMBB, SS, RefsInMBB)) {
1083 RestorePt = LMI;
1084 RestoreIndex = LIs->getInstructionIndex(RestorePt);
1085 FoldedRestore = true;
1086 } else {
1087 TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC, TRI);
1088 MachineInstr *LoadMI = prior(RestorePt);
1089 RestoreIndex = LIs->InsertMachineInstrInMaps(LoadMI);
1092 // Update spill stack slot live interval.
1093 UpdateSpillSlotInterval(ValNo, SpillIndex.getUseIndex().getNextSlot(),
1094 RestoreIndex.getDefIndex());
1096 ReconstructLiveInterval(CurrLI);
1098 if (!FoldedRestore) {
1099 SlotIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
1100 RestoreIdx = RestoreIdx.getDefIndex();
1101 RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx));
1104 ++NumSplits;
1105 DEBUG(dbgs() << "success.\n");
1106 return true;
1109 /// SplitRegLiveIntervals - Split all register live intervals that cross the
1110 /// barrier that's being processed.
1111 bool
1112 PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs,
1113 SmallPtrSet<LiveInterval*, 8>& Split) {
1114 // First find all the virtual registers whose live intervals are intercepted
1115 // by the current barrier.
1116 SmallVector<LiveInterval*, 8> Intervals;
1117 for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
1118 // FIXME: If it's not safe to move any instruction that defines the barrier
1119 // register class, then it means there are some special dependencies which
1120 // codegen is not modelling. Ignore these barriers for now.
1121 if (!TII->isSafeToMoveRegClassDefs(*RC))
1122 continue;
1123 const std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
1124 for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
1125 unsigned Reg = VRs[i];
1126 if (!LIs->hasInterval(Reg))
1127 continue;
1128 LiveInterval *LI = &LIs->getInterval(Reg);
1129 if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
1130 // Virtual register live interval is intercepted by the barrier. We
1131 // should split and shrink wrap its interval if possible.
1132 Intervals.push_back(LI);
1136 // Process the affected live intervals.
1137 bool Change = false;
1138 while (!Intervals.empty()) {
1139 if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
1140 break;
1141 LiveInterval *LI = Intervals.back();
1142 Intervals.pop_back();
1143 bool result = SplitRegLiveInterval(LI);
1144 if (result) Split.insert(LI);
1145 Change |= result;
1148 return Change;
1151 unsigned PreAllocSplitting::getNumberOfNonSpills(
1152 SmallPtrSet<MachineInstr*, 4>& MIs,
1153 unsigned Reg, int FrameIndex,
1154 bool& FeedsTwoAddr) {
1155 unsigned NonSpills = 0;
1156 for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end();
1157 UI != UE; ++UI) {
1158 int StoreFrameIndex;
1159 unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
1160 if (StoreVReg != Reg || StoreFrameIndex != FrameIndex)
1161 ++NonSpills;
1163 int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg);
1164 if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx))
1165 FeedsTwoAddr = true;
1168 return NonSpills;
1171 /// removeDeadSpills - After doing splitting, filter through all intervals we've
1172 /// split, and see if any of the spills are unnecessary. If so, remove them.
1173 bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) {
1174 bool changed = false;
1176 // Walk over all of the live intervals that were touched by the splitter,
1177 // and see if we can do any DCE and/or folding.
1178 for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(),
1179 LE = split.end(); LI != LE; ++LI) {
1180 DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount;
1182 // First, collect all the uses of the vreg, and sort them by their
1183 // reaching definition (VNInfo).
1184 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg),
1185 UE = MRI->use_end(); UI != UE; ++UI) {
1186 SlotIndex index = LIs->getInstructionIndex(&*UI);
1187 index = index.getUseIndex();
1189 const LiveRange* LR = (*LI)->getLiveRangeContaining(index);
1190 VNUseCount[LR->valno].insert(&*UI);
1193 // Now, take the definitions (VNInfo's) one at a time and try to DCE
1194 // and/or fold them away.
1195 for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(),
1196 VE = (*LI)->vni_end(); VI != VE; ++VI) {
1198 if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit)
1199 return changed;
1201 VNInfo* CurrVN = *VI;
1203 // We don't currently try to handle definitions with PHI kills, because
1204 // it would involve processing more than one VNInfo at once.
1205 if (CurrVN->hasPHIKill()) continue;
1207 // We also don't try to handle the results of PHI joins, since there's
1208 // no defining instruction to analyze.
1209 MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def);
1210 if (!DefMI || CurrVN->isUnused()) continue;
1212 // We're only interested in eliminating cruft introduced by the splitter,
1213 // is of the form load-use or load-use-store. First, check that the
1214 // definition is a load, and remember what stack slot we loaded it from.
1215 int FrameIndex;
1216 if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue;
1218 // If the definition has no uses at all, just DCE it.
1219 if (VNUseCount[CurrVN].size() == 0) {
1220 LIs->RemoveMachineInstrFromMaps(DefMI);
1221 (*LI)->removeValNo(CurrVN);
1222 DefMI->eraseFromParent();
1223 VNUseCount.erase(CurrVN);
1224 ++NumDeadSpills;
1225 changed = true;
1226 continue;
1229 // Second, get the number of non-store uses of the definition, as well as
1230 // a flag indicating whether it feeds into a later two-address definition.
1231 bool FeedsTwoAddr = false;
1232 unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN],
1233 (*LI)->reg, FrameIndex,
1234 FeedsTwoAddr);
1236 // If there's one non-store use and it doesn't feed a two-addr, then
1237 // this is a load-use-store case that we can try to fold.
1238 if (NonSpillCount == 1 && !FeedsTwoAddr) {
1239 // Start by finding the non-store use MachineInstr.
1240 SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin();
1241 int StoreFrameIndex;
1242 unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
1243 while (UI != VNUseCount[CurrVN].end() &&
1244 (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) {
1245 ++UI;
1246 if (UI != VNUseCount[CurrVN].end())
1247 StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
1249 if (UI == VNUseCount[CurrVN].end()) continue;
1251 MachineInstr* use = *UI;
1253 // Attempt to fold it away!
1254 int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false);
1255 if (OpIdx == -1) continue;
1256 SmallVector<unsigned, 1> Ops;
1257 Ops.push_back(OpIdx);
1258 if (!TII->canFoldMemoryOperand(use, Ops)) continue;
1260 MachineInstr* NewMI = TII->foldMemoryOperand(use, Ops, FrameIndex);
1262 if (!NewMI) continue;
1264 // Update relevant analyses.
1265 LIs->RemoveMachineInstrFromMaps(DefMI);
1266 LIs->ReplaceMachineInstrInMaps(use, NewMI);
1267 (*LI)->removeValNo(CurrVN);
1269 DefMI->eraseFromParent();
1270 use->eraseFromParent();
1271 VNUseCount[CurrVN].erase(use);
1273 // Remove deleted instructions. Note that we need to remove them from
1274 // the VNInfo->use map as well, just to be safe.
1275 for (SmallPtrSet<MachineInstr*, 4>::iterator II =
1276 VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end();
1277 II != IE; ++II) {
1278 for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
1279 VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE;
1280 ++VNI)
1281 if (VNI->first != CurrVN)
1282 VNI->second.erase(*II);
1283 LIs->RemoveMachineInstrFromMaps(*II);
1284 (*II)->eraseFromParent();
1287 VNUseCount.erase(CurrVN);
1289 for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
1290 VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI)
1291 if (VI->second.erase(use))
1292 VI->second.insert(NewMI);
1294 ++NumDeadSpills;
1295 changed = true;
1296 continue;
1299 // If there's more than one non-store instruction, we can't profitably
1300 // fold it, so bail.
1301 if (NonSpillCount) continue;
1303 // Otherwise, this is a load-store case, so DCE them.
1304 for (SmallPtrSet<MachineInstr*, 4>::iterator UI =
1305 VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end();
1306 UI != UE; ++UI) {
1307 LIs->RemoveMachineInstrFromMaps(*UI);
1308 (*UI)->eraseFromParent();
1311 VNUseCount.erase(CurrVN);
1313 LIs->RemoveMachineInstrFromMaps(DefMI);
1314 (*LI)->removeValNo(CurrVN);
1315 DefMI->eraseFromParent();
1316 ++NumDeadSpills;
1317 changed = true;
1321 return changed;
1324 bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
1325 MachineBasicBlock* DefMBB,
1326 MachineBasicBlock* BarrierMBB) {
1327 if (DefMBB == BarrierMBB)
1328 return false;
1330 if (LR->valno->hasPHIKill())
1331 return false;
1333 SlotIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
1334 if (LR->end < MBBEnd)
1335 return false;
1337 MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
1338 if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
1339 return true;
1341 MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
1342 SmallPtrSet<MachineBasicBlock*, 4> Visited;
1343 typedef std::pair<MachineBasicBlock*,
1344 MachineBasicBlock::succ_iterator> ItPair;
1345 SmallVector<ItPair, 4> Stack;
1346 Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
1348 while (!Stack.empty()) {
1349 ItPair P = Stack.back();
1350 Stack.pop_back();
1352 MachineBasicBlock* PredMBB = P.first;
1353 MachineBasicBlock::succ_iterator S = P.second;
1355 if (S == PredMBB->succ_end())
1356 continue;
1357 else if (Visited.count(*S)) {
1358 Stack.push_back(std::make_pair(PredMBB, ++S));
1359 continue;
1360 } else
1361 Stack.push_back(std::make_pair(PredMBB, S+1));
1363 MachineBasicBlock* MBB = *S;
1364 Visited.insert(MBB);
1366 if (MBB == BarrierMBB)
1367 return true;
1369 MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
1370 MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
1371 MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
1372 while (MDTN) {
1373 if (MDTN == DefMDTN)
1374 return true;
1375 else if (MDTN == BarrierMDTN)
1376 break;
1377 MDTN = MDTN->getIDom();
1380 MBBEnd = LIs->getMBBEndIdx(MBB);
1381 if (LR->end > MBBEnd)
1382 Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
1385 return false;
1389 bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
1390 CurrMF = &MF;
1391 TM = &MF.getTarget();
1392 TRI = TM->getRegisterInfo();
1393 TII = TM->getInstrInfo();
1394 MFI = MF.getFrameInfo();
1395 MRI = &MF.getRegInfo();
1396 SIs = &getAnalysis<SlotIndexes>();
1397 LIs = &getAnalysis<LiveIntervals>();
1398 LSs = &getAnalysis<LiveStacks>();
1399 VRM = &getAnalysis<VirtRegMap>();
1401 bool MadeChange = false;
1403 // Make sure blocks are numbered in order.
1404 MF.RenumberBlocks();
1406 MachineBasicBlock *Entry = MF.begin();
1407 SmallPtrSet<MachineBasicBlock*,16> Visited;
1409 SmallPtrSet<LiveInterval*, 8> Split;
1411 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
1412 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1413 DFI != E; ++DFI) {
1414 BarrierMBB = *DFI;
1415 for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
1416 E = BarrierMBB->end(); I != E; ++I) {
1417 Barrier = &*I;
1418 const TargetRegisterClass **BarrierRCs =
1419 Barrier->getDesc().getRegClassBarriers();
1420 if (!BarrierRCs)
1421 continue;
1422 BarrierIdx = LIs->getInstructionIndex(Barrier);
1423 MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split);
1427 MadeChange |= removeDeadSpills(Split);
1429 return MadeChange;