When removing a function from the function set and adding it to deferred, we
[llvm.git] / lib / CodeGen / MachineInstr.cpp
blobaa9ea61acec7bc586598a71b22ed8f0ef0985618
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/InlineAsm.h"
18 #include "llvm/Metadata.h"
19 #include "llvm/Type.h"
20 #include "llvm/Value.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/MC/MCSymbol.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetInstrDesc.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/DebugInfo.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/LeakDetector.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/ADT/FoldingSet.h"
40 using namespace llvm;
42 //===----------------------------------------------------------------------===//
43 // MachineOperand Implementation
44 //===----------------------------------------------------------------------===//
46 /// AddRegOperandToRegInfo - Add this register operand to the specified
47 /// MachineRegisterInfo. If it is null, then the next/prev fields should be
48 /// explicitly nulled out.
49 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
50 assert(isReg() && "Can only add reg operand to use lists");
52 // If the reginfo pointer is null, just explicitly null out or next/prev
53 // pointers, to ensure they are not garbage.
54 if (RegInfo == 0) {
55 Contents.Reg.Prev = 0;
56 Contents.Reg.Next = 0;
57 return;
60 // Otherwise, add this operand to the head of the registers use/def list.
61 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
63 // For SSA values, we prefer to keep the definition at the start of the list.
64 // we do this by skipping over the definition if it is at the head of the
65 // list.
66 if (*Head && (*Head)->isDef())
67 Head = &(*Head)->Contents.Reg.Next;
69 Contents.Reg.Next = *Head;
70 if (Contents.Reg.Next) {
71 assert(getReg() == Contents.Reg.Next->getReg() &&
72 "Different regs on the same list!");
73 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
76 Contents.Reg.Prev = Head;
77 *Head = this;
80 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
81 /// MachineRegisterInfo it is linked with.
82 void MachineOperand::RemoveRegOperandFromRegInfo() {
83 assert(isOnRegUseList() && "Reg operand is not on a use list");
84 // Unlink this from the doubly linked list of operands.
85 MachineOperand *NextOp = Contents.Reg.Next;
86 *Contents.Reg.Prev = NextOp;
87 if (NextOp) {
88 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
89 NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
91 Contents.Reg.Prev = 0;
92 Contents.Reg.Next = 0;
95 void MachineOperand::setReg(unsigned Reg) {
96 if (getReg() == Reg) return; // No change.
98 // Otherwise, we have to change the register. If this operand is embedded
99 // into a machine function, we need to update the old and new register's
100 // use/def lists.
101 if (MachineInstr *MI = getParent())
102 if (MachineBasicBlock *MBB = MI->getParent())
103 if (MachineFunction *MF = MBB->getParent()) {
104 RemoveRegOperandFromRegInfo();
105 SmallContents.RegNo = Reg;
106 AddRegOperandToRegInfo(&MF->getRegInfo());
107 return;
110 // Otherwise, just change the register, no problem. :)
111 SmallContents.RegNo = Reg;
114 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
115 const TargetRegisterInfo &TRI) {
116 assert(TargetRegisterInfo::isVirtualRegister(Reg));
117 if (SubIdx && getSubReg())
118 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
119 setReg(Reg);
120 if (SubIdx)
121 setSubReg(SubIdx);
124 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
125 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
126 if (getSubReg()) {
127 Reg = TRI.getSubReg(Reg, getSubReg());
128 assert(Reg && "Invalid SubReg for physical register");
129 setSubReg(0);
131 setReg(Reg);
134 /// ChangeToImmediate - Replace this operand with a new immediate operand of
135 /// the specified value. If an operand is known to be an immediate already,
136 /// the setImm method should be used.
137 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
138 // If this operand is currently a register operand, and if this is in a
139 // function, deregister the operand from the register's use/def list.
140 if (isReg() && getParent() && getParent()->getParent() &&
141 getParent()->getParent()->getParent())
142 RemoveRegOperandFromRegInfo();
144 OpKind = MO_Immediate;
145 Contents.ImmVal = ImmVal;
148 /// ChangeToRegister - Replace this operand with a new register operand of
149 /// the specified value. If an operand is known to be an register already,
150 /// the setReg method should be used.
151 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
152 bool isKill, bool isDead, bool isUndef,
153 bool isDebug) {
154 // If this operand is already a register operand, use setReg to update the
155 // register's use/def lists.
156 if (isReg()) {
157 assert(!isEarlyClobber());
158 setReg(Reg);
159 } else {
160 // Otherwise, change this to a register and set the reg#.
161 OpKind = MO_Register;
162 SmallContents.RegNo = Reg;
164 // If this operand is embedded in a function, add the operand to the
165 // register's use/def list.
166 if (MachineInstr *MI = getParent())
167 if (MachineBasicBlock *MBB = MI->getParent())
168 if (MachineFunction *MF = MBB->getParent())
169 AddRegOperandToRegInfo(&MF->getRegInfo());
172 IsDef = isDef;
173 IsImp = isImp;
174 IsKill = isKill;
175 IsDead = isDead;
176 IsUndef = isUndef;
177 IsEarlyClobber = false;
178 IsDebug = isDebug;
179 SubReg = 0;
182 /// isIdenticalTo - Return true if this operand is identical to the specified
183 /// operand.
184 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
185 if (getType() != Other.getType() ||
186 getTargetFlags() != Other.getTargetFlags())
187 return false;
189 switch (getType()) {
190 default: llvm_unreachable("Unrecognized operand type");
191 case MachineOperand::MO_Register:
192 return getReg() == Other.getReg() && isDef() == Other.isDef() &&
193 getSubReg() == Other.getSubReg();
194 case MachineOperand::MO_Immediate:
195 return getImm() == Other.getImm();
196 case MachineOperand::MO_FPImmediate:
197 return getFPImm() == Other.getFPImm();
198 case MachineOperand::MO_MachineBasicBlock:
199 return getMBB() == Other.getMBB();
200 case MachineOperand::MO_FrameIndex:
201 return getIndex() == Other.getIndex();
202 case MachineOperand::MO_ConstantPoolIndex:
203 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
204 case MachineOperand::MO_JumpTableIndex:
205 return getIndex() == Other.getIndex();
206 case MachineOperand::MO_GlobalAddress:
207 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
208 case MachineOperand::MO_ExternalSymbol:
209 return !strcmp(getSymbolName(), Other.getSymbolName()) &&
210 getOffset() == Other.getOffset();
211 case MachineOperand::MO_BlockAddress:
212 return getBlockAddress() == Other.getBlockAddress();
213 case MachineOperand::MO_MCSymbol:
214 return getMCSymbol() == Other.getMCSymbol();
215 case MachineOperand::MO_Metadata:
216 return getMetadata() == Other.getMetadata();
220 /// print - Print the specified machine operand.
222 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
223 // If the instruction is embedded into a basic block, we can find the
224 // target info for the instruction.
225 if (!TM)
226 if (const MachineInstr *MI = getParent())
227 if (const MachineBasicBlock *MBB = MI->getParent())
228 if (const MachineFunction *MF = MBB->getParent())
229 TM = &MF->getTarget();
230 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
232 switch (getType()) {
233 case MachineOperand::MO_Register:
234 OS << PrintReg(getReg(), TRI, getSubReg());
236 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
237 isEarlyClobber()) {
238 OS << '<';
239 bool NeedComma = false;
240 if (isDef()) {
241 if (NeedComma) OS << ',';
242 if (isEarlyClobber())
243 OS << "earlyclobber,";
244 if (isImplicit())
245 OS << "imp-";
246 OS << "def";
247 NeedComma = true;
248 } else if (isImplicit()) {
249 OS << "imp-use";
250 NeedComma = true;
253 if (isKill() || isDead() || isUndef()) {
254 if (NeedComma) OS << ',';
255 if (isKill()) OS << "kill";
256 if (isDead()) OS << "dead";
257 if (isUndef()) {
258 if (isKill() || isDead())
259 OS << ',';
260 OS << "undef";
263 OS << '>';
265 break;
266 case MachineOperand::MO_Immediate:
267 OS << getImm();
268 break;
269 case MachineOperand::MO_FPImmediate:
270 if (getFPImm()->getType()->isFloatTy())
271 OS << getFPImm()->getValueAPF().convertToFloat();
272 else
273 OS << getFPImm()->getValueAPF().convertToDouble();
274 break;
275 case MachineOperand::MO_MachineBasicBlock:
276 OS << "<BB#" << getMBB()->getNumber() << ">";
277 break;
278 case MachineOperand::MO_FrameIndex:
279 OS << "<fi#" << getIndex() << '>';
280 break;
281 case MachineOperand::MO_ConstantPoolIndex:
282 OS << "<cp#" << getIndex();
283 if (getOffset()) OS << "+" << getOffset();
284 OS << '>';
285 break;
286 case MachineOperand::MO_JumpTableIndex:
287 OS << "<jt#" << getIndex() << '>';
288 break;
289 case MachineOperand::MO_GlobalAddress:
290 OS << "<ga:";
291 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
292 if (getOffset()) OS << "+" << getOffset();
293 OS << '>';
294 break;
295 case MachineOperand::MO_ExternalSymbol:
296 OS << "<es:" << getSymbolName();
297 if (getOffset()) OS << "+" << getOffset();
298 OS << '>';
299 break;
300 case MachineOperand::MO_BlockAddress:
301 OS << '<';
302 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
303 OS << '>';
304 break;
305 case MachineOperand::MO_Metadata:
306 OS << '<';
307 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
308 OS << '>';
309 break;
310 case MachineOperand::MO_MCSymbol:
311 OS << "<MCSym=" << *getMCSymbol() << '>';
312 break;
313 default:
314 llvm_unreachable("Unrecognized operand type");
317 if (unsigned TF = getTargetFlags())
318 OS << "[TF=" << TF << ']';
321 //===----------------------------------------------------------------------===//
322 // MachineMemOperand Implementation
323 //===----------------------------------------------------------------------===//
325 /// getAddrSpace - Return the LLVM IR address space number that this pointer
326 /// points into.
327 unsigned MachinePointerInfo::getAddrSpace() const {
328 if (V == 0) return 0;
329 return cast<PointerType>(V->getType())->getAddressSpace();
332 /// getConstantPool - Return a MachinePointerInfo record that refers to the
333 /// constant pool.
334 MachinePointerInfo MachinePointerInfo::getConstantPool() {
335 return MachinePointerInfo(PseudoSourceValue::getConstantPool());
338 /// getFixedStack - Return a MachinePointerInfo record that refers to the
339 /// the specified FrameIndex.
340 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
341 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
344 MachinePointerInfo MachinePointerInfo::getJumpTable() {
345 return MachinePointerInfo(PseudoSourceValue::getJumpTable());
348 MachinePointerInfo MachinePointerInfo::getGOT() {
349 return MachinePointerInfo(PseudoSourceValue::getGOT());
352 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
353 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
356 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
357 uint64_t s, unsigned int a,
358 const MDNode *TBAAInfo)
359 : PtrInfo(ptrinfo), Size(s),
360 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
361 TBAAInfo(TBAAInfo) {
362 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
363 "invalid pointer value");
364 assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
365 assert((isLoad() || isStore()) && "Not a load/store!");
368 /// Profile - Gather unique data for the object.
370 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
371 ID.AddInteger(getOffset());
372 ID.AddInteger(Size);
373 ID.AddPointer(getValue());
374 ID.AddInteger(Flags);
377 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
378 // The Value and Offset may differ due to CSE. But the flags and size
379 // should be the same.
380 assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
381 assert(MMO->getSize() == getSize() && "Size mismatch!");
383 if (MMO->getBaseAlignment() >= getBaseAlignment()) {
384 // Update the alignment value.
385 Flags = (Flags & ((1 << MOMaxBits) - 1)) |
386 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
387 // Also update the base and offset, because the new alignment may
388 // not be applicable with the old ones.
389 PtrInfo = MMO->PtrInfo;
393 /// getAlignment - Return the minimum known alignment in bytes of the
394 /// actual memory reference.
395 uint64_t MachineMemOperand::getAlignment() const {
396 return MinAlign(getBaseAlignment(), getOffset());
399 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
400 assert((MMO.isLoad() || MMO.isStore()) &&
401 "SV has to be a load, store or both.");
403 if (MMO.isVolatile())
404 OS << "Volatile ";
406 if (MMO.isLoad())
407 OS << "LD";
408 if (MMO.isStore())
409 OS << "ST";
410 OS << MMO.getSize();
412 // Print the address information.
413 OS << "[";
414 if (!MMO.getValue())
415 OS << "<unknown>";
416 else
417 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
419 // If the alignment of the memory reference itself differs from the alignment
420 // of the base pointer, print the base alignment explicitly, next to the base
421 // pointer.
422 if (MMO.getBaseAlignment() != MMO.getAlignment())
423 OS << "(align=" << MMO.getBaseAlignment() << ")";
425 if (MMO.getOffset() != 0)
426 OS << "+" << MMO.getOffset();
427 OS << "]";
429 // Print the alignment of the reference.
430 if (MMO.getBaseAlignment() != MMO.getAlignment() ||
431 MMO.getBaseAlignment() != MMO.getSize())
432 OS << "(align=" << MMO.getAlignment() << ")";
434 // Print TBAA info.
435 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
436 OS << "(tbaa=";
437 if (TBAAInfo->getNumOperands() > 0)
438 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
439 else
440 OS << "<unknown>";
441 OS << ")";
444 return OS;
447 //===----------------------------------------------------------------------===//
448 // MachineInstr Implementation
449 //===----------------------------------------------------------------------===//
451 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
452 /// TID NULL and no operands.
453 MachineInstr::MachineInstr()
454 : TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
455 Parent(0) {
456 // Make sure that we get added to a machine basicblock
457 LeakDetector::addGarbageObject(this);
460 void MachineInstr::addImplicitDefUseOperands() {
461 if (TID->ImplicitDefs)
462 for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
463 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
464 if (TID->ImplicitUses)
465 for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
466 addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
469 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
470 /// implicit operands. It reserves space for the number of operands specified by
471 /// the TargetInstrDesc.
472 MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
473 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
474 MemRefs(0), MemRefsEnd(0), Parent(0) {
475 if (!NoImp)
476 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
477 Operands.reserve(NumImplicitOps + TID->getNumOperands());
478 if (!NoImp)
479 addImplicitDefUseOperands();
480 // Make sure that we get added to a machine basicblock
481 LeakDetector::addGarbageObject(this);
484 /// MachineInstr ctor - As above, but with a DebugLoc.
485 MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
486 bool NoImp)
487 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
488 Parent(0), debugLoc(dl) {
489 if (!NoImp)
490 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
491 Operands.reserve(NumImplicitOps + TID->getNumOperands());
492 if (!NoImp)
493 addImplicitDefUseOperands();
494 // Make sure that we get added to a machine basicblock
495 LeakDetector::addGarbageObject(this);
498 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
499 /// that the MachineInstr is created and added to the end of the specified
500 /// basic block.
501 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
502 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
503 MemRefs(0), MemRefsEnd(0), Parent(0) {
504 assert(MBB && "Cannot use inserting ctor with null basic block!");
505 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
506 Operands.reserve(NumImplicitOps + TID->getNumOperands());
507 addImplicitDefUseOperands();
508 // Make sure that we get added to a machine basicblock
509 LeakDetector::addGarbageObject(this);
510 MBB->push_back(this); // Add instruction to end of basic block!
513 /// MachineInstr ctor - As above, but with a DebugLoc.
515 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
516 const TargetInstrDesc &tid)
517 : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
518 Parent(0), debugLoc(dl) {
519 assert(MBB && "Cannot use inserting ctor with null basic block!");
520 NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
521 Operands.reserve(NumImplicitOps + TID->getNumOperands());
522 addImplicitDefUseOperands();
523 // Make sure that we get added to a machine basicblock
524 LeakDetector::addGarbageObject(this);
525 MBB->push_back(this); // Add instruction to end of basic block!
528 /// MachineInstr ctor - Copies MachineInstr arg exactly
530 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
531 : TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0),
532 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
533 Parent(0), debugLoc(MI.getDebugLoc()) {
534 Operands.reserve(MI.getNumOperands());
536 // Add operands
537 for (unsigned i = 0; i != MI.getNumOperands(); ++i)
538 addOperand(MI.getOperand(i));
539 NumImplicitOps = MI.NumImplicitOps;
541 // Set parent to null.
542 Parent = 0;
544 LeakDetector::addGarbageObject(this);
547 MachineInstr::~MachineInstr() {
548 LeakDetector::removeGarbageObject(this);
549 #ifndef NDEBUG
550 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
551 assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
552 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
553 "Reg operand def/use list corrupted");
555 #endif
558 /// getRegInfo - If this instruction is embedded into a MachineFunction,
559 /// return the MachineRegisterInfo object for the current function, otherwise
560 /// return null.
561 MachineRegisterInfo *MachineInstr::getRegInfo() {
562 if (MachineBasicBlock *MBB = getParent())
563 return &MBB->getParent()->getRegInfo();
564 return 0;
567 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
568 /// this instruction from their respective use lists. This requires that the
569 /// operands already be on their use lists.
570 void MachineInstr::RemoveRegOperandsFromUseLists() {
571 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
572 if (Operands[i].isReg())
573 Operands[i].RemoveRegOperandFromRegInfo();
577 /// AddRegOperandsToUseLists - Add all of the register operands in
578 /// this instruction from their respective use lists. This requires that the
579 /// operands not be on their use lists yet.
580 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
581 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
582 if (Operands[i].isReg())
583 Operands[i].AddRegOperandToRegInfo(&RegInfo);
588 /// addOperand - Add the specified operand to the instruction. If it is an
589 /// implicit operand, it is added to the end of the operand list. If it is
590 /// an explicit operand it is added at the end of the explicit operand list
591 /// (before the first implicit operand).
592 void MachineInstr::addOperand(const MachineOperand &Op) {
593 bool isImpReg = Op.isReg() && Op.isImplicit();
594 assert((isImpReg || !OperandsComplete()) &&
595 "Trying to add an operand to a machine instr that is already done!");
597 MachineRegisterInfo *RegInfo = getRegInfo();
599 // If we are adding the operand to the end of the list, our job is simpler.
600 // This is true most of the time, so this is a reasonable optimization.
601 if (isImpReg || NumImplicitOps == 0) {
602 // We can only do this optimization if we know that the operand list won't
603 // reallocate.
604 if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
605 Operands.push_back(Op);
607 // Set the parent of the operand.
608 Operands.back().ParentMI = this;
610 // If the operand is a register, update the operand's use list.
611 if (Op.isReg()) {
612 Operands.back().AddRegOperandToRegInfo(RegInfo);
613 // If the register operand is flagged as early, mark the operand as such
614 unsigned OpNo = Operands.size() - 1;
615 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
616 Operands[OpNo].setIsEarlyClobber(true);
618 return;
622 // Otherwise, we have to insert a real operand before any implicit ones.
623 unsigned OpNo = Operands.size()-NumImplicitOps;
625 // If this instruction isn't embedded into a function, then we don't need to
626 // update any operand lists.
627 if (RegInfo == 0) {
628 // Simple insertion, no reginfo update needed for other register operands.
629 Operands.insert(Operands.begin()+OpNo, Op);
630 Operands[OpNo].ParentMI = this;
632 // Do explicitly set the reginfo for this operand though, to ensure the
633 // next/prev fields are properly nulled out.
634 if (Operands[OpNo].isReg()) {
635 Operands[OpNo].AddRegOperandToRegInfo(0);
636 // If the register operand is flagged as early, mark the operand as such
637 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
638 Operands[OpNo].setIsEarlyClobber(true);
641 } else if (Operands.size()+1 <= Operands.capacity()) {
642 // Otherwise, we have to remove register operands from their register use
643 // list, add the operand, then add the register operands back to their use
644 // list. This also must handle the case when the operand list reallocates
645 // to somewhere else.
647 // If insertion of this operand won't cause reallocation of the operand
648 // list, just remove the implicit operands, add the operand, then re-add all
649 // the rest of the operands.
650 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
651 assert(Operands[i].isReg() && "Should only be an implicit reg!");
652 Operands[i].RemoveRegOperandFromRegInfo();
655 // Add the operand. If it is a register, add it to the reg list.
656 Operands.insert(Operands.begin()+OpNo, Op);
657 Operands[OpNo].ParentMI = this;
659 if (Operands[OpNo].isReg()) {
660 Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
661 // If the register operand is flagged as early, mark the operand as such
662 if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
663 Operands[OpNo].setIsEarlyClobber(true);
666 // Re-add all the implicit ops.
667 for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
668 assert(Operands[i].isReg() && "Should only be an implicit reg!");
669 Operands[i].AddRegOperandToRegInfo(RegInfo);
671 } else {
672 // Otherwise, we will be reallocating the operand list. Remove all reg
673 // operands from their list, then readd them after the operand list is
674 // reallocated.
675 RemoveRegOperandsFromUseLists();
677 Operands.insert(Operands.begin()+OpNo, Op);
678 Operands[OpNo].ParentMI = this;
680 // Re-add all the operands.
681 AddRegOperandsToUseLists(*RegInfo);
683 // If the register operand is flagged as early, mark the operand as such
684 if (Operands[OpNo].isReg()
685 && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
686 Operands[OpNo].setIsEarlyClobber(true);
690 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
691 /// fewer operand than it started with.
693 void MachineInstr::RemoveOperand(unsigned OpNo) {
694 assert(OpNo < Operands.size() && "Invalid operand number");
696 // Special case removing the last one.
697 if (OpNo == Operands.size()-1) {
698 // If needed, remove from the reg def/use list.
699 if (Operands.back().isReg() && Operands.back().isOnRegUseList())
700 Operands.back().RemoveRegOperandFromRegInfo();
702 Operands.pop_back();
703 return;
706 // Otherwise, we are removing an interior operand. If we have reginfo to
707 // update, remove all operands that will be shifted down from their reg lists,
708 // move everything down, then re-add them.
709 MachineRegisterInfo *RegInfo = getRegInfo();
710 if (RegInfo) {
711 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
712 if (Operands[i].isReg())
713 Operands[i].RemoveRegOperandFromRegInfo();
717 Operands.erase(Operands.begin()+OpNo);
719 if (RegInfo) {
720 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
721 if (Operands[i].isReg())
722 Operands[i].AddRegOperandToRegInfo(RegInfo);
727 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
728 /// This function should be used only occasionally. The setMemRefs function
729 /// is the primary method for setting up a MachineInstr's MemRefs list.
730 void MachineInstr::addMemOperand(MachineFunction &MF,
731 MachineMemOperand *MO) {
732 mmo_iterator OldMemRefs = MemRefs;
733 mmo_iterator OldMemRefsEnd = MemRefsEnd;
735 size_t NewNum = (MemRefsEnd - MemRefs) + 1;
736 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
737 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
739 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
740 NewMemRefs[NewNum - 1] = MO;
742 MemRefs = NewMemRefs;
743 MemRefsEnd = NewMemRefsEnd;
746 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
747 MICheckType Check) const {
748 // If opcodes or number of operands are not the same then the two
749 // instructions are obviously not identical.
750 if (Other->getOpcode() != getOpcode() ||
751 Other->getNumOperands() != getNumOperands())
752 return false;
754 // Check operands to make sure they match.
755 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
756 const MachineOperand &MO = getOperand(i);
757 const MachineOperand &OMO = Other->getOperand(i);
758 // Clients may or may not want to ignore defs when testing for equality.
759 // For example, machine CSE pass only cares about finding common
760 // subexpressions, so it's safe to ignore virtual register defs.
761 if (Check != CheckDefs && MO.isReg() && MO.isDef()) {
762 if (Check == IgnoreDefs)
763 continue;
764 // Check == IgnoreVRegDefs
765 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
766 TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
767 if (MO.getReg() != OMO.getReg())
768 return false;
769 } else if (!MO.isIdenticalTo(OMO))
770 return false;
772 return true;
775 /// removeFromParent - This method unlinks 'this' from the containing basic
776 /// block, and returns it, but does not delete it.
777 MachineInstr *MachineInstr::removeFromParent() {
778 assert(getParent() && "Not embedded in a basic block!");
779 getParent()->remove(this);
780 return this;
784 /// eraseFromParent - This method unlinks 'this' from the containing basic
785 /// block, and deletes it.
786 void MachineInstr::eraseFromParent() {
787 assert(getParent() && "Not embedded in a basic block!");
788 getParent()->erase(this);
792 /// OperandComplete - Return true if it's illegal to add a new operand
794 bool MachineInstr::OperandsComplete() const {
795 unsigned short NumOperands = TID->getNumOperands();
796 if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
797 return true; // Broken: we have all the operands of this instruction!
798 return false;
801 /// getNumExplicitOperands - Returns the number of non-implicit operands.
803 unsigned MachineInstr::getNumExplicitOperands() const {
804 unsigned NumOperands = TID->getNumOperands();
805 if (!TID->isVariadic())
806 return NumOperands;
808 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
809 const MachineOperand &MO = getOperand(i);
810 if (!MO.isReg() || !MO.isImplicit())
811 NumOperands++;
813 return NumOperands;
816 bool MachineInstr::isStackAligningInlineAsm() const {
817 if (isInlineAsm()) {
818 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
819 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
820 return true;
822 return false;
825 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
826 /// the specific register or -1 if it is not found. It further tightens
827 /// the search criteria to a use that kills the register if isKill is true.
828 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
829 const TargetRegisterInfo *TRI) const {
830 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
831 const MachineOperand &MO = getOperand(i);
832 if (!MO.isReg() || !MO.isUse())
833 continue;
834 unsigned MOReg = MO.getReg();
835 if (!MOReg)
836 continue;
837 if (MOReg == Reg ||
838 (TRI &&
839 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
840 TargetRegisterInfo::isPhysicalRegister(Reg) &&
841 TRI->isSubRegister(MOReg, Reg)))
842 if (!isKill || MO.isKill())
843 return i;
845 return -1;
848 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
849 /// indicating if this instruction reads or writes Reg. This also considers
850 /// partial defines.
851 std::pair<bool,bool>
852 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
853 SmallVectorImpl<unsigned> *Ops) const {
854 bool PartDef = false; // Partial redefine.
855 bool FullDef = false; // Full define.
856 bool Use = false;
858 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
859 const MachineOperand &MO = getOperand(i);
860 if (!MO.isReg() || MO.getReg() != Reg)
861 continue;
862 if (Ops)
863 Ops->push_back(i);
864 if (MO.isUse())
865 Use |= !MO.isUndef();
866 else if (MO.getSubReg())
867 PartDef = true;
868 else
869 FullDef = true;
871 // A partial redefine uses Reg unless there is also a full define.
872 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
875 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
876 /// the specified register or -1 if it is not found. If isDead is true, defs
877 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
878 /// also checks if there is a def of a super-register.
880 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
881 const TargetRegisterInfo *TRI) const {
882 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
883 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
884 const MachineOperand &MO = getOperand(i);
885 if (!MO.isReg() || !MO.isDef())
886 continue;
887 unsigned MOReg = MO.getReg();
888 bool Found = (MOReg == Reg);
889 if (!Found && TRI && isPhys &&
890 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
891 if (Overlap)
892 Found = TRI->regsOverlap(MOReg, Reg);
893 else
894 Found = TRI->isSubRegister(MOReg, Reg);
896 if (Found && (!isDead || MO.isDead()))
897 return i;
899 return -1;
902 /// findFirstPredOperandIdx() - Find the index of the first operand in the
903 /// operand list that is used to represent the predicate. It returns -1 if
904 /// none is found.
905 int MachineInstr::findFirstPredOperandIdx() const {
906 const TargetInstrDesc &TID = getDesc();
907 if (TID.isPredicable()) {
908 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
909 if (TID.OpInfo[i].isPredicate())
910 return i;
913 return -1;
916 /// isRegTiedToUseOperand - Given the index of a register def operand,
917 /// check if the register def is tied to a source operand, due to either
918 /// two-address elimination or inline assembly constraints. Returns the
919 /// first tied use operand index by reference is UseOpIdx is not null.
920 bool MachineInstr::
921 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
922 if (isInlineAsm()) {
923 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
924 const MachineOperand &MO = getOperand(DefOpIdx);
925 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
926 return false;
927 // Determine the actual operand index that corresponds to this index.
928 unsigned DefNo = 0;
929 unsigned DefPart = 0;
930 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
931 i < e; ) {
932 const MachineOperand &FMO = getOperand(i);
933 // After the normal asm operands there may be additional imp-def regs.
934 if (!FMO.isImm())
935 return false;
936 // Skip over this def.
937 unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
938 unsigned PrevDef = i + 1;
939 i = PrevDef + NumOps;
940 if (i > DefOpIdx) {
941 DefPart = DefOpIdx - PrevDef;
942 break;
944 ++DefNo;
946 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
947 i != e; ++i) {
948 const MachineOperand &FMO = getOperand(i);
949 if (!FMO.isImm())
950 continue;
951 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
952 continue;
953 unsigned Idx;
954 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
955 Idx == DefNo) {
956 if (UseOpIdx)
957 *UseOpIdx = (unsigned)i + 1 + DefPart;
958 return true;
961 return false;
964 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
965 const TargetInstrDesc &TID = getDesc();
966 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
967 const MachineOperand &MO = getOperand(i);
968 if (MO.isReg() && MO.isUse() &&
969 TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
970 if (UseOpIdx)
971 *UseOpIdx = (unsigned)i;
972 return true;
975 return false;
978 /// isRegTiedToDefOperand - Return true if the operand of the specified index
979 /// is a register use and it is tied to an def operand. It also returns the def
980 /// operand index by reference.
981 bool MachineInstr::
982 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
983 if (isInlineAsm()) {
984 const MachineOperand &MO = getOperand(UseOpIdx);
985 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
986 return false;
988 // Find the flag operand corresponding to UseOpIdx
989 unsigned FlagIdx, NumOps=0;
990 for (FlagIdx = InlineAsm::MIOp_FirstOperand;
991 FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
992 const MachineOperand &UFMO = getOperand(FlagIdx);
993 // After the normal asm operands there may be additional imp-def regs.
994 if (!UFMO.isImm())
995 return false;
996 NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
997 assert(NumOps < getNumOperands() && "Invalid inline asm flag");
998 if (UseOpIdx < FlagIdx+NumOps+1)
999 break;
1001 if (FlagIdx >= UseOpIdx)
1002 return false;
1003 const MachineOperand &UFMO = getOperand(FlagIdx);
1004 unsigned DefNo;
1005 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
1006 if (!DefOpIdx)
1007 return true;
1009 unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
1010 // Remember to adjust the index. First operand is asm string, second is
1011 // the HasSideEffects and AlignStack bits, then there is a flag for each.
1012 while (DefNo) {
1013 const MachineOperand &FMO = getOperand(DefIdx);
1014 assert(FMO.isImm());
1015 // Skip over this def.
1016 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
1017 --DefNo;
1019 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
1020 return true;
1022 return false;
1025 const TargetInstrDesc &TID = getDesc();
1026 if (UseOpIdx >= TID.getNumOperands())
1027 return false;
1028 const MachineOperand &MO = getOperand(UseOpIdx);
1029 if (!MO.isReg() || !MO.isUse())
1030 return false;
1031 int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
1032 if (DefIdx == -1)
1033 return false;
1034 if (DefOpIdx)
1035 *DefOpIdx = (unsigned)DefIdx;
1036 return true;
1039 /// clearKillInfo - Clears kill flags on all operands.
1041 void MachineInstr::clearKillInfo() {
1042 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1043 MachineOperand &MO = getOperand(i);
1044 if (MO.isReg() && MO.isUse())
1045 MO.setIsKill(false);
1049 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1051 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1052 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1053 const MachineOperand &MO = MI->getOperand(i);
1054 if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1055 continue;
1056 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1057 MachineOperand &MOp = getOperand(j);
1058 if (!MOp.isIdenticalTo(MO))
1059 continue;
1060 if (MO.isKill())
1061 MOp.setIsKill();
1062 else
1063 MOp.setIsDead();
1064 break;
1069 /// copyPredicates - Copies predicate operand(s) from MI.
1070 void MachineInstr::copyPredicates(const MachineInstr *MI) {
1071 const TargetInstrDesc &TID = MI->getDesc();
1072 if (!TID.isPredicable())
1073 return;
1074 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1075 if (TID.OpInfo[i].isPredicate()) {
1076 // Predicated operands must be last operands.
1077 addOperand(MI->getOperand(i));
1082 void MachineInstr::substituteRegister(unsigned FromReg,
1083 unsigned ToReg,
1084 unsigned SubIdx,
1085 const TargetRegisterInfo &RegInfo) {
1086 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1087 if (SubIdx)
1088 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1089 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1090 MachineOperand &MO = getOperand(i);
1091 if (!MO.isReg() || MO.getReg() != FromReg)
1092 continue;
1093 MO.substPhysReg(ToReg, RegInfo);
1095 } else {
1096 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1097 MachineOperand &MO = getOperand(i);
1098 if (!MO.isReg() || MO.getReg() != FromReg)
1099 continue;
1100 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1105 /// isSafeToMove - Return true if it is safe to move this instruction. If
1106 /// SawStore is set to true, it means that there is a store (or call) between
1107 /// the instruction's location and its intended destination.
1108 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1109 AliasAnalysis *AA,
1110 bool &SawStore) const {
1111 // Ignore stuff that we obviously can't move.
1112 if (TID->mayStore() || TID->isCall()) {
1113 SawStore = true;
1114 return false;
1117 if (isLabel() || isDebugValue() ||
1118 TID->isTerminator() || hasUnmodeledSideEffects())
1119 return false;
1121 // See if this instruction does a load. If so, we have to guarantee that the
1122 // loaded value doesn't change between the load and the its intended
1123 // destination. The check for isInvariantLoad gives the targe the chance to
1124 // classify the load as always returning a constant, e.g. a constant pool
1125 // load.
1126 if (TID->mayLoad() && !isInvariantLoad(AA))
1127 // Otherwise, this is a real load. If there is a store between the load and
1128 // end of block, or if the load is volatile, we can't move it.
1129 return !SawStore && !hasVolatileMemoryRef();
1131 return true;
1134 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
1135 /// instruction which defined the specified register instead of copying it.
1136 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1137 AliasAnalysis *AA,
1138 unsigned DstReg) const {
1139 bool SawStore = false;
1140 if (!TII->isTriviallyReMaterializable(this, AA) ||
1141 !isSafeToMove(TII, AA, SawStore))
1142 return false;
1143 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1144 const MachineOperand &MO = getOperand(i);
1145 if (!MO.isReg())
1146 continue;
1147 // FIXME: For now, do not remat any instruction with register operands.
1148 // Later on, we can loosen the restriction is the register operands have
1149 // not been modified between the def and use. Note, this is different from
1150 // MachineSink because the code is no longer in two-address form (at least
1151 // partially).
1152 if (MO.isUse())
1153 return false;
1154 else if (!MO.isDead() && MO.getReg() != DstReg)
1155 return false;
1157 return true;
1160 /// hasVolatileMemoryRef - Return true if this instruction may have a
1161 /// volatile memory reference, or if the information describing the
1162 /// memory reference is not available. Return false if it is known to
1163 /// have no volatile memory references.
1164 bool MachineInstr::hasVolatileMemoryRef() const {
1165 // An instruction known never to access memory won't have a volatile access.
1166 if (!TID->mayStore() &&
1167 !TID->mayLoad() &&
1168 !TID->isCall() &&
1169 !hasUnmodeledSideEffects())
1170 return false;
1172 // Otherwise, if the instruction has no memory reference information,
1173 // conservatively assume it wasn't preserved.
1174 if (memoperands_empty())
1175 return true;
1177 // Check the memory reference information for volatile references.
1178 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1179 if ((*I)->isVolatile())
1180 return true;
1182 return false;
1185 /// isInvariantLoad - Return true if this instruction is loading from a
1186 /// location whose value is invariant across the function. For example,
1187 /// loading a value from the constant pool or from the argument area
1188 /// of a function if it does not change. This should only return true of
1189 /// *all* loads the instruction does are invariant (if it does multiple loads).
1190 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1191 // If the instruction doesn't load at all, it isn't an invariant load.
1192 if (!TID->mayLoad())
1193 return false;
1195 // If the instruction has lost its memoperands, conservatively assume that
1196 // it may not be an invariant load.
1197 if (memoperands_empty())
1198 return false;
1200 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1202 for (mmo_iterator I = memoperands_begin(),
1203 E = memoperands_end(); I != E; ++I) {
1204 if ((*I)->isVolatile()) return false;
1205 if ((*I)->isStore()) return false;
1207 if (const Value *V = (*I)->getValue()) {
1208 // A load from a constant PseudoSourceValue is invariant.
1209 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1210 if (PSV->isConstant(MFI))
1211 continue;
1212 // If we have an AliasAnalysis, ask it whether the memory is constant.
1213 if (AA && AA->pointsToConstantMemory(
1214 AliasAnalysis::Location(V, (*I)->getSize(),
1215 (*I)->getTBAAInfo())))
1216 continue;
1219 // Otherwise assume conservatively.
1220 return false;
1223 // Everything checks out.
1224 return true;
1227 /// isConstantValuePHI - If the specified instruction is a PHI that always
1228 /// merges together the same virtual register, return the register, otherwise
1229 /// return 0.
1230 unsigned MachineInstr::isConstantValuePHI() const {
1231 if (!isPHI())
1232 return 0;
1233 assert(getNumOperands() >= 3 &&
1234 "It's illegal to have a PHI without source operands");
1236 unsigned Reg = getOperand(1).getReg();
1237 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1238 if (getOperand(i).getReg() != Reg)
1239 return 0;
1240 return Reg;
1243 bool MachineInstr::hasUnmodeledSideEffects() const {
1244 if (getDesc().hasUnmodeledSideEffects())
1245 return true;
1246 if (isInlineAsm()) {
1247 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1248 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1249 return true;
1252 return false;
1255 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1257 bool MachineInstr::allDefsAreDead() const {
1258 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1259 const MachineOperand &MO = getOperand(i);
1260 if (!MO.isReg() || MO.isUse())
1261 continue;
1262 if (!MO.isDead())
1263 return false;
1265 return true;
1268 /// copyImplicitOps - Copy implicit register operands from specified
1269 /// instruction to this instruction.
1270 void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1271 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1272 i != e; ++i) {
1273 const MachineOperand &MO = MI->getOperand(i);
1274 if (MO.isReg() && MO.isImplicit())
1275 addOperand(MO);
1279 void MachineInstr::dump() const {
1280 dbgs() << " " << *this;
1283 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1284 raw_ostream &CommentOS) {
1285 const LLVMContext &Ctx = MF->getFunction()->getContext();
1286 if (!DL.isUnknown()) { // Print source line info.
1287 DIScope Scope(DL.getScope(Ctx));
1288 // Omit the directory, because it's likely to be long and uninteresting.
1289 if (Scope.Verify())
1290 CommentOS << Scope.getFilename();
1291 else
1292 CommentOS << "<unknown>";
1293 CommentOS << ':' << DL.getLine();
1294 if (DL.getCol() != 0)
1295 CommentOS << ':' << DL.getCol();
1296 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1297 if (!InlinedAtDL.isUnknown()) {
1298 CommentOS << " @[ ";
1299 printDebugLoc(InlinedAtDL, MF, CommentOS);
1300 CommentOS << " ]";
1305 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1306 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1307 const MachineFunction *MF = 0;
1308 const MachineRegisterInfo *MRI = 0;
1309 if (const MachineBasicBlock *MBB = getParent()) {
1310 MF = MBB->getParent();
1311 if (!TM && MF)
1312 TM = &MF->getTarget();
1313 if (MF)
1314 MRI = &MF->getRegInfo();
1317 // Save a list of virtual registers.
1318 SmallVector<unsigned, 8> VirtRegs;
1320 // Print explicitly defined operands on the left of an assignment syntax.
1321 unsigned StartOp = 0, e = getNumOperands();
1322 for (; StartOp < e && getOperand(StartOp).isReg() &&
1323 getOperand(StartOp).isDef() &&
1324 !getOperand(StartOp).isImplicit();
1325 ++StartOp) {
1326 if (StartOp != 0) OS << ", ";
1327 getOperand(StartOp).print(OS, TM);
1328 unsigned Reg = getOperand(StartOp).getReg();
1329 if (TargetRegisterInfo::isVirtualRegister(Reg))
1330 VirtRegs.push_back(Reg);
1333 if (StartOp != 0)
1334 OS << " = ";
1336 // Print the opcode name.
1337 OS << getDesc().getName();
1339 // Print the rest of the operands.
1340 bool OmittedAnyCallClobbers = false;
1341 bool FirstOp = true;
1343 if (isInlineAsm()) {
1344 // Print asm string.
1345 OS << " ";
1346 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1348 // Print HasSideEffects, IsAlignStack
1349 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1350 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1351 OS << " [sideeffect]";
1352 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1353 OS << " [alignstack]";
1355 StartOp = InlineAsm::MIOp_FirstOperand;
1356 FirstOp = false;
1360 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1361 const MachineOperand &MO = getOperand(i);
1363 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1364 VirtRegs.push_back(MO.getReg());
1366 // Omit call-clobbered registers which aren't used anywhere. This makes
1367 // call instructions much less noisy on targets where calls clobber lots
1368 // of registers. Don't rely on MO.isDead() because we may be called before
1369 // LiveVariables is run, or we may be looking at a non-allocatable reg.
1370 if (MF && getDesc().isCall() &&
1371 MO.isReg() && MO.isImplicit() && MO.isDef()) {
1372 unsigned Reg = MO.getReg();
1373 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1374 const MachineRegisterInfo &MRI = MF->getRegInfo();
1375 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1376 bool HasAliasLive = false;
1377 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1378 unsigned AliasReg = *Alias; ++Alias)
1379 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1380 HasAliasLive = true;
1381 break;
1383 if (!HasAliasLive) {
1384 OmittedAnyCallClobbers = true;
1385 continue;
1391 if (FirstOp) FirstOp = false; else OS << ",";
1392 OS << " ";
1393 if (i < getDesc().NumOperands) {
1394 const TargetOperandInfo &TOI = getDesc().OpInfo[i];
1395 if (TOI.isPredicate())
1396 OS << "pred:";
1397 if (TOI.isOptionalDef())
1398 OS << "opt:";
1400 if (isDebugValue() && MO.isMetadata()) {
1401 // Pretty print DBG_VALUE instructions.
1402 const MDNode *MD = MO.getMetadata();
1403 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1404 OS << "!\"" << MDS->getString() << '\"';
1405 else
1406 MO.print(OS, TM);
1407 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1408 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1409 } else
1410 MO.print(OS, TM);
1413 // Briefly indicate whether any call clobbers were omitted.
1414 if (OmittedAnyCallClobbers) {
1415 if (!FirstOp) OS << ",";
1416 OS << " ...";
1419 bool HaveSemi = false;
1420 if (!memoperands_empty()) {
1421 if (!HaveSemi) OS << ";"; HaveSemi = true;
1423 OS << " mem:";
1424 for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1425 i != e; ++i) {
1426 OS << **i;
1427 if (llvm::next(i) != e)
1428 OS << " ";
1432 // Print the regclass of any virtual registers encountered.
1433 if (MRI && !VirtRegs.empty()) {
1434 if (!HaveSemi) OS << ";"; HaveSemi = true;
1435 for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1436 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1437 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1438 for (unsigned j = i+1; j != VirtRegs.size();) {
1439 if (MRI->getRegClass(VirtRegs[j]) != RC) {
1440 ++j;
1441 continue;
1443 if (VirtRegs[i] != VirtRegs[j])
1444 OS << "," << PrintReg(VirtRegs[j]);
1445 VirtRegs.erase(VirtRegs.begin()+j);
1450 if (!debugLoc.isUnknown() && MF) {
1451 if (!HaveSemi) OS << ";";
1452 OS << " dbg:";
1453 printDebugLoc(debugLoc, MF, OS);
1456 OS << "\n";
1459 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1460 const TargetRegisterInfo *RegInfo,
1461 bool AddIfNotFound) {
1462 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1463 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1464 bool Found = false;
1465 SmallVector<unsigned,4> DeadOps;
1466 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1467 MachineOperand &MO = getOperand(i);
1468 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1469 continue;
1470 unsigned Reg = MO.getReg();
1471 if (!Reg)
1472 continue;
1474 if (Reg == IncomingReg) {
1475 if (!Found) {
1476 if (MO.isKill())
1477 // The register is already marked kill.
1478 return true;
1479 if (isPhysReg && isRegTiedToDefOperand(i))
1480 // Two-address uses of physregs must not be marked kill.
1481 return true;
1482 MO.setIsKill();
1483 Found = true;
1485 } else if (hasAliases && MO.isKill() &&
1486 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1487 // A super-register kill already exists.
1488 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1489 return true;
1490 if (RegInfo->isSubRegister(IncomingReg, Reg))
1491 DeadOps.push_back(i);
1495 // Trim unneeded kill operands.
1496 while (!DeadOps.empty()) {
1497 unsigned OpIdx = DeadOps.back();
1498 if (getOperand(OpIdx).isImplicit())
1499 RemoveOperand(OpIdx);
1500 else
1501 getOperand(OpIdx).setIsKill(false);
1502 DeadOps.pop_back();
1505 // If not found, this means an alias of one of the operands is killed. Add a
1506 // new implicit operand if required.
1507 if (!Found && AddIfNotFound) {
1508 addOperand(MachineOperand::CreateReg(IncomingReg,
1509 false /*IsDef*/,
1510 true /*IsImp*/,
1511 true /*IsKill*/));
1512 return true;
1514 return Found;
1517 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1518 const TargetRegisterInfo *RegInfo,
1519 bool AddIfNotFound) {
1520 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1521 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1522 bool Found = false;
1523 SmallVector<unsigned,4> DeadOps;
1524 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1525 MachineOperand &MO = getOperand(i);
1526 if (!MO.isReg() || !MO.isDef())
1527 continue;
1528 unsigned Reg = MO.getReg();
1529 if (!Reg)
1530 continue;
1532 if (Reg == IncomingReg) {
1533 if (!Found) {
1534 if (MO.isDead())
1535 // The register is already marked dead.
1536 return true;
1537 MO.setIsDead();
1538 Found = true;
1540 } else if (hasAliases && MO.isDead() &&
1541 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1542 // There exists a super-register that's marked dead.
1543 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1544 return true;
1545 if (RegInfo->getSubRegisters(IncomingReg) &&
1546 RegInfo->getSuperRegisters(Reg) &&
1547 RegInfo->isSubRegister(IncomingReg, Reg))
1548 DeadOps.push_back(i);
1552 // Trim unneeded dead operands.
1553 while (!DeadOps.empty()) {
1554 unsigned OpIdx = DeadOps.back();
1555 if (getOperand(OpIdx).isImplicit())
1556 RemoveOperand(OpIdx);
1557 else
1558 getOperand(OpIdx).setIsDead(false);
1559 DeadOps.pop_back();
1562 // If not found, this means an alias of one of the operands is dead. Add a
1563 // new implicit operand if required.
1564 if (Found || !AddIfNotFound)
1565 return Found;
1567 addOperand(MachineOperand::CreateReg(IncomingReg,
1568 true /*IsDef*/,
1569 true /*IsImp*/,
1570 false /*IsKill*/,
1571 true /*IsDead*/));
1572 return true;
1575 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1576 const TargetRegisterInfo *RegInfo) {
1577 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1578 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1579 if (MO)
1580 return;
1581 } else {
1582 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1583 const MachineOperand &MO = getOperand(i);
1584 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1585 MO.getSubReg() == 0)
1586 return;
1589 addOperand(MachineOperand::CreateReg(IncomingReg,
1590 true /*IsDef*/,
1591 true /*IsImp*/));
1594 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
1595 const TargetRegisterInfo &TRI) {
1596 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1597 MachineOperand &MO = getOperand(i);
1598 if (!MO.isReg() || !MO.isDef()) continue;
1599 unsigned Reg = MO.getReg();
1600 if (Reg == 0) continue;
1601 bool Dead = true;
1602 for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
1603 E = UsedRegs.end(); I != E; ++I)
1604 if (TRI.regsOverlap(*I, Reg)) {
1605 Dead = false;
1606 break;
1608 // If there are no uses, including partial uses, the def is dead.
1609 if (Dead) MO.setIsDead();
1613 unsigned
1614 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1615 unsigned Hash = MI->getOpcode() * 37;
1616 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1617 const MachineOperand &MO = MI->getOperand(i);
1618 uint64_t Key = (uint64_t)MO.getType() << 32;
1619 switch (MO.getType()) {
1620 default: break;
1621 case MachineOperand::MO_Register:
1622 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1623 continue; // Skip virtual register defs.
1624 Key |= MO.getReg();
1625 break;
1626 case MachineOperand::MO_Immediate:
1627 Key |= MO.getImm();
1628 break;
1629 case MachineOperand::MO_FrameIndex:
1630 case MachineOperand::MO_ConstantPoolIndex:
1631 case MachineOperand::MO_JumpTableIndex:
1632 Key |= MO.getIndex();
1633 break;
1634 case MachineOperand::MO_MachineBasicBlock:
1635 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
1636 break;
1637 case MachineOperand::MO_GlobalAddress:
1638 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
1639 break;
1640 case MachineOperand::MO_BlockAddress:
1641 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
1642 break;
1643 case MachineOperand::MO_MCSymbol:
1644 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
1645 break;
1647 Key += ~(Key << 32);
1648 Key ^= (Key >> 22);
1649 Key += ~(Key << 13);
1650 Key ^= (Key >> 8);
1651 Key += (Key << 3);
1652 Key ^= (Key >> 15);
1653 Key += ~(Key << 27);
1654 Key ^= (Key >> 31);
1655 Hash = (unsigned)Key + Hash * 37;
1657 return Hash;