When removing a function from the function set and adding it to deferred, we
[llvm.git] / lib / CodeGen / MachineCSE.cpp
blob07a7d27b019f13cb758b5e1f48695edf39724e3e
1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "machine-cse"
17 #include "llvm/CodeGen/Passes.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/ScopedHashTable.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/RecyclingAllocator.h"
30 using namespace llvm;
32 STATISTIC(NumCoalesces, "Number of copies coalesced");
33 STATISTIC(NumCSEs, "Number of common subexpression eliminated");
34 STATISTIC(NumPhysCSEs,
35 "Number of physreg referencing common subexpr eliminated");
36 STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
38 namespace {
39 class MachineCSE : public MachineFunctionPass {
40 const TargetInstrInfo *TII;
41 const TargetRegisterInfo *TRI;
42 AliasAnalysis *AA;
43 MachineDominatorTree *DT;
44 MachineRegisterInfo *MRI;
45 public:
46 static char ID; // Pass identification
47 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
48 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
51 virtual bool runOnMachineFunction(MachineFunction &MF);
53 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
54 AU.setPreservesCFG();
55 MachineFunctionPass::getAnalysisUsage(AU);
56 AU.addRequired<AliasAnalysis>();
57 AU.addPreservedID(MachineLoopInfoID);
58 AU.addRequired<MachineDominatorTree>();
59 AU.addPreserved<MachineDominatorTree>();
62 virtual void releaseMemory() {
63 ScopeMap.clear();
64 Exps.clear();
67 private:
68 const unsigned LookAheadLimit;
69 typedef RecyclingAllocator<BumpPtrAllocator,
70 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
71 typedef ScopedHashTable<MachineInstr*, unsigned,
72 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
73 typedef ScopedHTType::ScopeTy ScopeType;
74 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
75 ScopedHTType VNT;
76 SmallVector<MachineInstr*, 64> Exps;
77 unsigned CurrVN;
79 bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
80 bool isPhysDefTriviallyDead(unsigned Reg,
81 MachineBasicBlock::const_iterator I,
82 MachineBasicBlock::const_iterator E) const ;
83 bool hasLivePhysRegDefUses(const MachineInstr *MI,
84 const MachineBasicBlock *MBB,
85 SmallSet<unsigned,8> &PhysRefs) const;
86 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
87 SmallSet<unsigned,8> &PhysRefs) const;
88 bool isCSECandidate(MachineInstr *MI);
89 bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
90 MachineInstr *CSMI, MachineInstr *MI);
91 void EnterScope(MachineBasicBlock *MBB);
92 void ExitScope(MachineBasicBlock *MBB);
93 bool ProcessBlock(MachineBasicBlock *MBB);
94 void ExitScopeIfDone(MachineDomTreeNode *Node,
95 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
96 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
97 bool PerformCSE(MachineDomTreeNode *Node);
99 } // end anonymous namespace
101 char MachineCSE::ID = 0;
102 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
103 "Machine Common Subexpression Elimination", false, false)
104 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
105 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
106 INITIALIZE_PASS_END(MachineCSE, "machine-cse",
107 "Machine Common Subexpression Elimination", false, false)
109 FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }
111 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
112 MachineBasicBlock *MBB) {
113 bool Changed = false;
114 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
115 MachineOperand &MO = MI->getOperand(i);
116 if (!MO.isReg() || !MO.isUse())
117 continue;
118 unsigned Reg = MO.getReg();
119 if (!TargetRegisterInfo::isVirtualRegister(Reg))
120 continue;
121 if (!MRI->hasOneNonDBGUse(Reg))
122 // Only coalesce single use copies. This ensure the copy will be
123 // deleted.
124 continue;
125 MachineInstr *DefMI = MRI->getVRegDef(Reg);
126 if (DefMI->getParent() != MBB)
127 continue;
128 if (!DefMI->isCopy())
129 continue;
130 unsigned SrcReg = DefMI->getOperand(1).getReg();
131 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
132 continue;
133 if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg())
134 continue;
135 if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg)))
136 continue;
137 DEBUG(dbgs() << "Coalescing: " << *DefMI);
138 DEBUG(dbgs() << "*** to: " << *MI);
139 MO.setReg(SrcReg);
140 MRI->clearKillFlags(SrcReg);
141 DefMI->eraseFromParent();
142 ++NumCoalesces;
143 Changed = true;
146 return Changed;
149 bool
150 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
151 MachineBasicBlock::const_iterator I,
152 MachineBasicBlock::const_iterator E) const {
153 unsigned LookAheadLeft = LookAheadLimit;
154 while (LookAheadLeft) {
155 // Skip over dbg_value's.
156 while (I != E && I->isDebugValue())
157 ++I;
159 if (I == E)
160 // Reached end of block, register is obviously dead.
161 return true;
163 bool SeenDef = false;
164 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
165 const MachineOperand &MO = I->getOperand(i);
166 if (!MO.isReg() || !MO.getReg())
167 continue;
168 if (!TRI->regsOverlap(MO.getReg(), Reg))
169 continue;
170 if (MO.isUse())
171 // Found a use!
172 return false;
173 SeenDef = true;
175 if (SeenDef)
176 // See a def of Reg (or an alias) before encountering any use, it's
177 // trivially dead.
178 return true;
180 --LookAheadLeft;
181 ++I;
183 return false;
186 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
187 /// physical registers (except for dead defs of physical registers). It also
188 /// returns the physical register def by reference if it's the only one and the
189 /// instruction does not uses a physical register.
190 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
191 const MachineBasicBlock *MBB,
192 SmallSet<unsigned,8> &PhysRefs) const {
193 MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
194 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
195 const MachineOperand &MO = MI->getOperand(i);
196 if (!MO.isReg())
197 continue;
198 unsigned Reg = MO.getReg();
199 if (!Reg)
200 continue;
201 if (TargetRegisterInfo::isVirtualRegister(Reg))
202 continue;
203 // If the def is dead, it's ok. But the def may not marked "dead". That's
204 // common since this pass is run before livevariables. We can scan
205 // forward a few instructions and check if it is obviously dead.
206 if (MO.isDef() &&
207 (MO.isDead() || isPhysDefTriviallyDead(Reg, I, MBB->end())))
208 continue;
209 PhysRefs.insert(Reg);
210 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
211 PhysRefs.insert(*Alias);
214 return !PhysRefs.empty();
217 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
218 SmallSet<unsigned,8> &PhysRefs) const {
219 // For now conservatively returns false if the common subexpression is
220 // not in the same basic block as the given instruction.
221 MachineBasicBlock *MBB = MI->getParent();
222 if (CSMI->getParent() != MBB)
223 return false;
224 MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
225 MachineBasicBlock::const_iterator E = MI;
226 unsigned LookAheadLeft = LookAheadLimit;
227 while (LookAheadLeft) {
228 // Skip over dbg_value's.
229 while (I != E && I->isDebugValue())
230 ++I;
232 if (I == E)
233 return true;
235 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
236 const MachineOperand &MO = I->getOperand(i);
237 if (!MO.isReg() || !MO.isDef())
238 continue;
239 unsigned MOReg = MO.getReg();
240 if (TargetRegisterInfo::isVirtualRegister(MOReg))
241 continue;
242 if (PhysRefs.count(MOReg))
243 return false;
246 --LookAheadLeft;
247 ++I;
250 return false;
253 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
254 if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
255 MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
256 return false;
258 // Ignore copies.
259 if (MI->isCopyLike())
260 return false;
262 // Ignore stuff that we obviously can't move.
263 const TargetInstrDesc &TID = MI->getDesc();
264 if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
265 MI->hasUnmodeledSideEffects())
266 return false;
268 if (TID.mayLoad()) {
269 // Okay, this instruction does a load. As a refinement, we allow the target
270 // to decide whether the loaded value is actually a constant. If so, we can
271 // actually use it as a load.
272 if (!MI->isInvariantLoad(AA))
273 // FIXME: we should be able to hoist loads with no other side effects if
274 // there are no other instructions which can change memory in this loop.
275 // This is a trivial form of alias analysis.
276 return false;
278 return true;
281 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
282 /// common expression that defines Reg.
283 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
284 MachineInstr *CSMI, MachineInstr *MI) {
285 // FIXME: Heuristics that works around the lack the live range splitting.
287 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
288 // an immediate predecessor. We don't want to increase register pressure and
289 // end up causing other computation to be spilled.
290 if (MI->getDesc().isAsCheapAsAMove()) {
291 MachineBasicBlock *CSBB = CSMI->getParent();
292 MachineBasicBlock *BB = MI->getParent();
293 if (CSBB != BB && !CSBB->isSuccessor(BB))
294 return false;
297 // Heuristics #2: If the expression doesn't not use a vr and the only use
298 // of the redundant computation are copies, do not cse.
299 bool HasVRegUse = false;
300 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
301 const MachineOperand &MO = MI->getOperand(i);
302 if (MO.isReg() && MO.isUse() &&
303 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
304 HasVRegUse = true;
305 break;
308 if (!HasVRegUse) {
309 bool HasNonCopyUse = false;
310 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
311 E = MRI->use_nodbg_end(); I != E; ++I) {
312 MachineInstr *Use = &*I;
313 // Ignore copies.
314 if (!Use->isCopyLike()) {
315 HasNonCopyUse = true;
316 break;
319 if (!HasNonCopyUse)
320 return false;
323 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
324 // it unless the defined value is already used in the BB of the new use.
325 bool HasPHI = false;
326 SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
327 for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg),
328 E = MRI->use_nodbg_end(); I != E; ++I) {
329 MachineInstr *Use = &*I;
330 HasPHI |= Use->isPHI();
331 CSBBs.insert(Use->getParent());
334 if (!HasPHI)
335 return true;
336 return CSBBs.count(MI->getParent());
339 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
340 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
341 ScopeType *Scope = new ScopeType(VNT);
342 ScopeMap[MBB] = Scope;
345 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
346 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
347 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
348 assert(SI != ScopeMap.end());
349 ScopeMap.erase(SI);
350 delete SI->second;
353 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
354 bool Changed = false;
356 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
357 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
358 MachineInstr *MI = &*I;
359 ++I;
361 if (!isCSECandidate(MI))
362 continue;
364 bool FoundCSE = VNT.count(MI);
365 if (!FoundCSE) {
366 // Look for trivial copy coalescing opportunities.
367 if (PerformTrivialCoalescing(MI, MBB)) {
368 // After coalescing MI itself may become a copy.
369 if (MI->isCopyLike())
370 continue;
371 FoundCSE = VNT.count(MI);
375 // Commute commutable instructions.
376 bool Commuted = false;
377 if (!FoundCSE && MI->getDesc().isCommutable()) {
378 MachineInstr *NewMI = TII->commuteInstruction(MI);
379 if (NewMI) {
380 Commuted = true;
381 FoundCSE = VNT.count(NewMI);
382 if (NewMI != MI)
383 // New instruction. It doesn't need to be kept.
384 NewMI->eraseFromParent();
385 else if (!FoundCSE)
386 // MI was changed but it didn't help, commute it back!
387 (void)TII->commuteInstruction(MI);
391 // If the instruction defines physical registers and the values *may* be
392 // used, then it's not safe to replace it with a common subexpression.
393 // It's also not safe if the instruction uses physical registers.
394 SmallSet<unsigned,8> PhysRefs;
395 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs)) {
396 FoundCSE = false;
398 // ... Unless the CS is local and it also defines the physical register
399 // which is not clobbered in between and the physical register uses
400 // were not clobbered.
401 unsigned CSVN = VNT.lookup(MI);
402 MachineInstr *CSMI = Exps[CSVN];
403 if (PhysRegDefsReach(CSMI, MI, PhysRefs))
404 FoundCSE = true;
407 if (!FoundCSE) {
408 VNT.insert(MI, CurrVN++);
409 Exps.push_back(MI);
410 continue;
413 // Found a common subexpression, eliminate it.
414 unsigned CSVN = VNT.lookup(MI);
415 MachineInstr *CSMI = Exps[CSVN];
416 DEBUG(dbgs() << "Examining: " << *MI);
417 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
419 // Check if it's profitable to perform this CSE.
420 bool DoCSE = true;
421 unsigned NumDefs = MI->getDesc().getNumDefs();
422 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
423 MachineOperand &MO = MI->getOperand(i);
424 if (!MO.isReg() || !MO.isDef())
425 continue;
426 unsigned OldReg = MO.getReg();
427 unsigned NewReg = CSMI->getOperand(i).getReg();
428 if (OldReg == NewReg)
429 continue;
430 assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
431 TargetRegisterInfo::isVirtualRegister(NewReg) &&
432 "Do not CSE physical register defs!");
433 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
434 DoCSE = false;
435 break;
437 CSEPairs.push_back(std::make_pair(OldReg, NewReg));
438 --NumDefs;
441 // Actually perform the elimination.
442 if (DoCSE) {
443 for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
444 MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
445 MRI->clearKillFlags(CSEPairs[i].second);
447 MI->eraseFromParent();
448 ++NumCSEs;
449 if (!PhysRefs.empty())
450 ++NumPhysCSEs;
451 if (Commuted)
452 ++NumCommutes;
453 } else {
454 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
455 VNT.insert(MI, CurrVN++);
456 Exps.push_back(MI);
458 CSEPairs.clear();
461 return Changed;
464 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
465 /// dominator tree node if its a leaf or all of its children are done. Walk
466 /// up the dominator tree to destroy ancestors which are now done.
467 void
468 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
469 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
470 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
471 if (OpenChildren[Node])
472 return;
474 // Pop scope.
475 ExitScope(Node->getBlock());
477 // Now traverse upwards to pop ancestors whose offsprings are all done.
478 while (MachineDomTreeNode *Parent = ParentMap[Node]) {
479 unsigned Left = --OpenChildren[Parent];
480 if (Left != 0)
481 break;
482 ExitScope(Parent->getBlock());
483 Node = Parent;
487 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
488 SmallVector<MachineDomTreeNode*, 32> Scopes;
489 SmallVector<MachineDomTreeNode*, 8> WorkList;
490 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
491 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
493 CurrVN = 0;
495 // Perform a DFS walk to determine the order of visit.
496 WorkList.push_back(Node);
497 do {
498 Node = WorkList.pop_back_val();
499 Scopes.push_back(Node);
500 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
501 unsigned NumChildren = Children.size();
502 OpenChildren[Node] = NumChildren;
503 for (unsigned i = 0; i != NumChildren; ++i) {
504 MachineDomTreeNode *Child = Children[i];
505 ParentMap[Child] = Node;
506 WorkList.push_back(Child);
508 } while (!WorkList.empty());
510 // Now perform CSE.
511 bool Changed = false;
512 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
513 MachineDomTreeNode *Node = Scopes[i];
514 MachineBasicBlock *MBB = Node->getBlock();
515 EnterScope(MBB);
516 Changed |= ProcessBlock(MBB);
517 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
518 ExitScopeIfDone(Node, OpenChildren, ParentMap);
521 return Changed;
524 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
525 TII = MF.getTarget().getInstrInfo();
526 TRI = MF.getTarget().getRegisterInfo();
527 MRI = &MF.getRegInfo();
528 AA = &getAnalysis<AliasAnalysis>();
529 DT = &getAnalysis<MachineDominatorTree>();
530 return PerformCSE(DT->getRootNode());