1 //===-- llvm/AbstractTypeUser.h - AbstractTypeUser Interface ----*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file declares the AbstractTypeUser class.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_ABSTRACT_TYPE_USER_H
15 #define LLVM_ABSTRACT_TYPE_USER_H
17 #if !defined(LLVM_TYPE_H) && !defined(LLVM_VALUE_H)
18 #error Do not include this file directly. Include Type.h instead.
19 #error Some versions of GCC (e.g. 3.4 and 4.1) can not handle the inlined method
20 #error PATypeHolder::dropRef() correctly otherwise.
23 // This is the "master" include for <cassert> Whether this file needs it or not,
24 // it must always include <cassert> for the files which include
25 // llvm/AbstractTypeUser.h
27 // In this way, most every LLVM source file will have access to the assert()
28 // macro without having to #include <cassert> directly.
37 template<typename T
> struct simplify_type
;
39 /// The AbstractTypeUser class is an interface to be implemented by classes who
40 /// could possibly use an abstract type. Abstract types are denoted by the
41 /// isAbstract flag set to true in the Type class. These are classes that
42 /// contain an Opaque type in their structure somewhere.
44 /// Classes must implement this interface so that they may be notified when an
45 /// abstract type is resolved. Abstract types may be resolved into more
46 /// concrete types through: linking, parsing, and bitcode reading. When this
47 /// happens, all of the users of the type must be updated to reference the new,
48 /// more concrete type. They are notified through the AbstractTypeUser
51 /// In addition to this, AbstractTypeUsers must keep the use list of the
52 /// potentially abstract type that they reference up-to-date. To do this in a
53 /// nice, transparent way, the PATypeHandle class is used to hold "Potentially
54 /// Abstract Types", and keep the use list of the abstract types up-to-date.
55 /// @brief LLVM Abstract Type User Representation
56 class AbstractTypeUser
{
58 virtual ~AbstractTypeUser(); // Derive from me
60 /// setType - It's normally not possible to change a Value's type in place,
61 /// but an AbstractTypeUser subclass that knows what its doing can be
62 /// permitted to do so with care.
63 void setType(Value
*V
, const Type
*NewTy
);
67 /// refineAbstractType - The callback method invoked when an abstract type is
68 /// resolved to another type. An object must override this method to update
69 /// its internal state to reference NewType instead of OldType.
71 virtual void refineAbstractType(const DerivedType
*OldTy
,
72 const Type
*NewTy
) = 0;
74 /// The other case which AbstractTypeUsers must be aware of is when a type
75 /// makes the transition from being abstract (where it has clients on its
76 /// AbstractTypeUsers list) to concrete (where it does not). This method
77 /// notifies ATU's when this occurs for a type.
79 virtual void typeBecameConcrete(const DerivedType
*AbsTy
) = 0;
82 virtual void dump() const = 0;
86 /// PATypeHandle - Handle to a Type subclass. This class is used to keep the
87 /// use list of abstract types up-to-date.
91 AbstractTypeUser
* const User
;
93 // These functions are defined at the bottom of Type.h. See the comment there
98 // ctor - Add use to type if abstract. Note that Ty must not be null
99 inline PATypeHandle(const Type
*ty
, AbstractTypeUser
*user
)
100 : Ty(ty
), User(user
) {
104 // ctor - Add use to type if abstract.
105 inline PATypeHandle(const PATypeHandle
&T
) : Ty(T
.Ty
), User(T
.User
) {
109 // dtor - Remove reference to type...
110 inline ~PATypeHandle() { removeUser(); }
112 // Automatic casting operator so that the handle may be used naturally
113 inline operator Type
*() const { return const_cast<Type
*>(Ty
); }
114 inline Type
*get() const { return const_cast<Type
*>(Ty
); }
116 // operator= - Allow assignment to handle
117 inline Type
*operator=(const Type
*ty
) {
118 if (Ty
!= ty
) { // Ensure we don't accidentally drop last ref to Ty
126 // operator= - Allow assignment to handle
127 inline const Type
*operator=(const PATypeHandle
&T
) {
128 return operator=(T
.Ty
);
131 inline bool operator==(const Type
*ty
) {
135 // operator-> - Allow user to dereference handle naturally...
136 inline const Type
*operator->() const { return Ty
; }
140 /// PATypeHolder - Holder class for a potentially abstract type. This uses
141 /// efficient union-find techniques to handle dynamic type resolution. Unless
142 /// you need to do custom processing when types are resolved, you should always
143 /// use PATypeHolders in preference to PATypeHandles.
146 mutable const Type
*Ty
;
149 PATypeHolder() : Ty(0) {}
150 PATypeHolder(const Type
*ty
) : Ty(ty
) {
153 PATypeHolder(const PATypeHolder
&T
) : Ty(T
.Ty
) {
157 ~PATypeHolder() { dropRef(); }
159 operator Type
*() const { return get(); }
162 // operator-> - Allow user to dereference handle naturally...
163 Type
*operator->() const { return get(); }
165 // operator= - Allow assignment to handle
166 Type
*operator=(const Type
*ty
) {
167 if (Ty
!= ty
) { // Don't accidentally drop last ref to Ty.
174 Type
*operator=(const PATypeHolder
&H
) {
175 return operator=(H
.Ty
);
178 /// getRawType - This should only be used to implement the vmcore library.
180 const Type
*getRawType() const { return Ty
; }
185 friend class TypeMapBase
;
188 // simplify_type - Allow clients to treat uses just like values when using
189 // casting operators.
190 template<> struct simplify_type
<PATypeHolder
> {
191 typedef const Type
* SimpleType
;
192 static SimpleType
getSimplifiedValue(const PATypeHolder
&Val
) {
193 return static_cast<SimpleType
>(Val
.get());
196 template<> struct simplify_type
<const PATypeHolder
> {
197 typedef const Type
* SimpleType
;
198 static SimpleType
getSimplifiedValue(const PATypeHolder
&Val
) {
199 return static_cast<SimpleType
>(Val
.get());
203 } // End llvm namespace