MC: Eliminate an unnecessary copy.
[llvm.git] / lib / MC / MachObjectWriter.cpp
blob1de22c46ceb2cd10b4817e4912f76d7808fee50e
1 //===- lib/MC/MachObjectWriter.cpp - Mach-O File Writer -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/MC/MachObjectWriter.h"
11 #include "llvm/ADT/StringMap.h"
12 #include "llvm/ADT/Twine.h"
13 #include "llvm/MC/MCAssembler.h"
14 #include "llvm/MC/MCAsmLayout.h"
15 #include "llvm/MC/MCExpr.h"
16 #include "llvm/MC/MCObjectWriter.h"
17 #include "llvm/MC/MCSectionMachO.h"
18 #include "llvm/MC/MCSymbol.h"
19 #include "llvm/MC/MCMachOSymbolFlags.h"
20 #include "llvm/MC/MCValue.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/MachO.h"
23 #include "llvm/Target/TargetAsmBackend.h"
25 // FIXME: Gross.
26 #include "../Target/X86/X86FixupKinds.h"
28 #include <vector>
29 using namespace llvm;
31 static unsigned getFixupKindLog2Size(unsigned Kind) {
32 switch (Kind) {
33 default: llvm_unreachable("invalid fixup kind!");
34 case X86::reloc_pcrel_1byte:
35 case FK_Data_1: return 0;
36 case FK_Data_2: return 1;
37 case X86::reloc_pcrel_4byte:
38 case X86::reloc_riprel_4byte:
39 case X86::reloc_riprel_4byte_movq_load:
40 case FK_Data_4: return 2;
41 case FK_Data_8: return 3;
45 static bool isFixupKindPCRel(unsigned Kind) {
46 switch (Kind) {
47 default:
48 return false;
49 case X86::reloc_pcrel_1byte:
50 case X86::reloc_pcrel_4byte:
51 case X86::reloc_riprel_4byte:
52 case X86::reloc_riprel_4byte_movq_load:
53 return true;
57 static bool isFixupKindRIPRel(unsigned Kind) {
58 return Kind == X86::reloc_riprel_4byte ||
59 Kind == X86::reloc_riprel_4byte_movq_load;
62 static bool doesSymbolRequireExternRelocation(MCSymbolData *SD) {
63 // Undefined symbols are always extern.
64 if (SD->Symbol->isUndefined())
65 return true;
67 // References to weak definitions require external relocation entries; the
68 // definition may not always be the one in the same object file.
69 if (SD->getFlags() & SF_WeakDefinition)
70 return true;
72 // Otherwise, we can use an internal relocation.
73 return false;
76 namespace {
78 class MachObjectWriterImpl {
79 // See <mach-o/loader.h>.
80 enum {
81 Header_Magic32 = 0xFEEDFACE,
82 Header_Magic64 = 0xFEEDFACF
85 enum {
86 Header32Size = 28,
87 Header64Size = 32,
88 SegmentLoadCommand32Size = 56,
89 SegmentLoadCommand64Size = 72,
90 Section32Size = 68,
91 Section64Size = 80,
92 SymtabLoadCommandSize = 24,
93 DysymtabLoadCommandSize = 80,
94 Nlist32Size = 12,
95 Nlist64Size = 16,
96 RelocationInfoSize = 8
99 enum HeaderFileType {
100 HFT_Object = 0x1
103 enum HeaderFlags {
104 HF_SubsectionsViaSymbols = 0x2000
107 enum LoadCommandType {
108 LCT_Segment = 0x1,
109 LCT_Symtab = 0x2,
110 LCT_Dysymtab = 0xb,
111 LCT_Segment64 = 0x19
114 // See <mach-o/nlist.h>.
115 enum SymbolTypeType {
116 STT_Undefined = 0x00,
117 STT_Absolute = 0x02,
118 STT_Section = 0x0e
121 enum SymbolTypeFlags {
122 // If any of these bits are set, then the entry is a stab entry number (see
123 // <mach-o/stab.h>. Otherwise the other masks apply.
124 STF_StabsEntryMask = 0xe0,
126 STF_TypeMask = 0x0e,
127 STF_External = 0x01,
128 STF_PrivateExtern = 0x10
131 /// IndirectSymbolFlags - Flags for encoding special values in the indirect
132 /// symbol entry.
133 enum IndirectSymbolFlags {
134 ISF_Local = 0x80000000,
135 ISF_Absolute = 0x40000000
138 /// RelocationFlags - Special flags for addresses.
139 enum RelocationFlags {
140 RF_Scattered = 0x80000000
143 enum RelocationInfoType {
144 RIT_Vanilla = 0,
145 RIT_Pair = 1,
146 RIT_Difference = 2,
147 RIT_PreboundLazyPointer = 3,
148 RIT_LocalDifference = 4,
149 RIT_TLV = 5
152 /// X86_64 uses its own relocation types.
153 enum RelocationInfoTypeX86_64 {
154 RIT_X86_64_Unsigned = 0,
155 RIT_X86_64_Signed = 1,
156 RIT_X86_64_Branch = 2,
157 RIT_X86_64_GOTLoad = 3,
158 RIT_X86_64_GOT = 4,
159 RIT_X86_64_Subtractor = 5,
160 RIT_X86_64_Signed1 = 6,
161 RIT_X86_64_Signed2 = 7,
162 RIT_X86_64_Signed4 = 8,
163 RIT_X86_64_TLV = 9
166 /// MachSymbolData - Helper struct for containing some precomputed information
167 /// on symbols.
168 struct MachSymbolData {
169 MCSymbolData *SymbolData;
170 uint64_t StringIndex;
171 uint8_t SectionIndex;
173 // Support lexicographic sorting.
174 bool operator<(const MachSymbolData &RHS) const {
175 return SymbolData->getSymbol().getName() <
176 RHS.SymbolData->getSymbol().getName();
180 /// @name Relocation Data
181 /// @{
183 struct MachRelocationEntry {
184 uint32_t Word0;
185 uint32_t Word1;
188 llvm::DenseMap<const MCSectionData*,
189 std::vector<MachRelocationEntry> > Relocations;
190 llvm::DenseMap<const MCSectionData*, unsigned> IndirectSymBase;
192 /// @}
193 /// @name Symbol Table Data
194 /// @{
196 SmallString<256> StringTable;
197 std::vector<MachSymbolData> LocalSymbolData;
198 std::vector<MachSymbolData> ExternalSymbolData;
199 std::vector<MachSymbolData> UndefinedSymbolData;
201 /// @}
203 MachObjectWriter *Writer;
205 raw_ostream &OS;
207 unsigned Is64Bit : 1;
209 public:
210 MachObjectWriterImpl(MachObjectWriter *_Writer, bool _Is64Bit)
211 : Writer(_Writer), OS(Writer->getStream()), Is64Bit(_Is64Bit) {
214 void Write8(uint8_t Value) { Writer->Write8(Value); }
215 void Write16(uint16_t Value) { Writer->Write16(Value); }
216 void Write32(uint32_t Value) { Writer->Write32(Value); }
217 void Write64(uint64_t Value) { Writer->Write64(Value); }
218 void WriteZeros(unsigned N) { Writer->WriteZeros(N); }
219 void WriteBytes(StringRef Str, unsigned ZeroFillSize = 0) {
220 Writer->WriteBytes(Str, ZeroFillSize);
223 void WriteHeader(unsigned NumLoadCommands, unsigned LoadCommandsSize,
224 bool SubsectionsViaSymbols) {
225 uint32_t Flags = 0;
227 if (SubsectionsViaSymbols)
228 Flags |= HF_SubsectionsViaSymbols;
230 // struct mach_header (28 bytes) or
231 // struct mach_header_64 (32 bytes)
233 uint64_t Start = OS.tell();
234 (void) Start;
236 Write32(Is64Bit ? Header_Magic64 : Header_Magic32);
238 // FIXME: Support cputype.
239 Write32(Is64Bit ? MachO::CPUTypeX86_64 : MachO::CPUTypeI386);
240 // FIXME: Support cpusubtype.
241 Write32(MachO::CPUSubType_I386_ALL);
242 Write32(HFT_Object);
243 Write32(NumLoadCommands); // Object files have a single load command, the
244 // segment.
245 Write32(LoadCommandsSize);
246 Write32(Flags);
247 if (Is64Bit)
248 Write32(0); // reserved
250 assert(OS.tell() - Start == Is64Bit ? Header64Size : Header32Size);
253 /// WriteSegmentLoadCommand - Write a segment load command.
255 /// \arg NumSections - The number of sections in this segment.
256 /// \arg SectionDataSize - The total size of the sections.
257 void WriteSegmentLoadCommand(unsigned NumSections,
258 uint64_t VMSize,
259 uint64_t SectionDataStartOffset,
260 uint64_t SectionDataSize) {
261 // struct segment_command (56 bytes) or
262 // struct segment_command_64 (72 bytes)
264 uint64_t Start = OS.tell();
265 (void) Start;
267 unsigned SegmentLoadCommandSize = Is64Bit ? SegmentLoadCommand64Size :
268 SegmentLoadCommand32Size;
269 Write32(Is64Bit ? LCT_Segment64 : LCT_Segment);
270 Write32(SegmentLoadCommandSize +
271 NumSections * (Is64Bit ? Section64Size : Section32Size));
273 WriteBytes("", 16);
274 if (Is64Bit) {
275 Write64(0); // vmaddr
276 Write64(VMSize); // vmsize
277 Write64(SectionDataStartOffset); // file offset
278 Write64(SectionDataSize); // file size
279 } else {
280 Write32(0); // vmaddr
281 Write32(VMSize); // vmsize
282 Write32(SectionDataStartOffset); // file offset
283 Write32(SectionDataSize); // file size
285 Write32(0x7); // maxprot
286 Write32(0x7); // initprot
287 Write32(NumSections);
288 Write32(0); // flags
290 assert(OS.tell() - Start == SegmentLoadCommandSize);
293 void WriteSection(const MCAssembler &Asm, const MCAsmLayout &Layout,
294 const MCSectionData &SD, uint64_t FileOffset,
295 uint64_t RelocationsStart, unsigned NumRelocations) {
296 uint64_t SectionSize = Layout.getSectionSize(&SD);
298 // The offset is unused for virtual sections.
299 if (Asm.getBackend().isVirtualSection(SD.getSection())) {
300 assert(Layout.getSectionFileSize(&SD) == 0 && "Invalid file size!");
301 FileOffset = 0;
304 // struct section (68 bytes) or
305 // struct section_64 (80 bytes)
307 uint64_t Start = OS.tell();
308 (void) Start;
310 const MCSectionMachO &Section = cast<MCSectionMachO>(SD.getSection());
311 WriteBytes(Section.getSectionName(), 16);
312 WriteBytes(Section.getSegmentName(), 16);
313 if (Is64Bit) {
314 Write64(Layout.getSectionAddress(&SD)); // address
315 Write64(SectionSize); // size
316 } else {
317 Write32(Layout.getSectionAddress(&SD)); // address
318 Write32(SectionSize); // size
320 Write32(FileOffset);
322 unsigned Flags = Section.getTypeAndAttributes();
323 if (SD.hasInstructions())
324 Flags |= MCSectionMachO::S_ATTR_SOME_INSTRUCTIONS;
326 assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!");
327 Write32(Log2_32(SD.getAlignment()));
328 Write32(NumRelocations ? RelocationsStart : 0);
329 Write32(NumRelocations);
330 Write32(Flags);
331 Write32(IndirectSymBase.lookup(&SD)); // reserved1
332 Write32(Section.getStubSize()); // reserved2
333 if (Is64Bit)
334 Write32(0); // reserved3
336 assert(OS.tell() - Start == Is64Bit ? Section64Size : Section32Size);
339 void WriteSymtabLoadCommand(uint32_t SymbolOffset, uint32_t NumSymbols,
340 uint32_t StringTableOffset,
341 uint32_t StringTableSize) {
342 // struct symtab_command (24 bytes)
344 uint64_t Start = OS.tell();
345 (void) Start;
347 Write32(LCT_Symtab);
348 Write32(SymtabLoadCommandSize);
349 Write32(SymbolOffset);
350 Write32(NumSymbols);
351 Write32(StringTableOffset);
352 Write32(StringTableSize);
354 assert(OS.tell() - Start == SymtabLoadCommandSize);
357 void WriteDysymtabLoadCommand(uint32_t FirstLocalSymbol,
358 uint32_t NumLocalSymbols,
359 uint32_t FirstExternalSymbol,
360 uint32_t NumExternalSymbols,
361 uint32_t FirstUndefinedSymbol,
362 uint32_t NumUndefinedSymbols,
363 uint32_t IndirectSymbolOffset,
364 uint32_t NumIndirectSymbols) {
365 // struct dysymtab_command (80 bytes)
367 uint64_t Start = OS.tell();
368 (void) Start;
370 Write32(LCT_Dysymtab);
371 Write32(DysymtabLoadCommandSize);
372 Write32(FirstLocalSymbol);
373 Write32(NumLocalSymbols);
374 Write32(FirstExternalSymbol);
375 Write32(NumExternalSymbols);
376 Write32(FirstUndefinedSymbol);
377 Write32(NumUndefinedSymbols);
378 Write32(0); // tocoff
379 Write32(0); // ntoc
380 Write32(0); // modtaboff
381 Write32(0); // nmodtab
382 Write32(0); // extrefsymoff
383 Write32(0); // nextrefsyms
384 Write32(IndirectSymbolOffset);
385 Write32(NumIndirectSymbols);
386 Write32(0); // extreloff
387 Write32(0); // nextrel
388 Write32(0); // locreloff
389 Write32(0); // nlocrel
391 assert(OS.tell() - Start == DysymtabLoadCommandSize);
394 void WriteNlist(MachSymbolData &MSD, const MCAsmLayout &Layout) {
395 MCSymbolData &Data = *MSD.SymbolData;
396 const MCSymbol &Symbol = Data.getSymbol();
397 uint8_t Type = 0;
398 uint16_t Flags = Data.getFlags();
399 uint32_t Address = 0;
401 // Set the N_TYPE bits. See <mach-o/nlist.h>.
403 // FIXME: Are the prebound or indirect fields possible here?
404 if (Symbol.isUndefined())
405 Type = STT_Undefined;
406 else if (Symbol.isAbsolute())
407 Type = STT_Absolute;
408 else
409 Type = STT_Section;
411 // FIXME: Set STAB bits.
413 if (Data.isPrivateExtern())
414 Type |= STF_PrivateExtern;
416 // Set external bit.
417 if (Data.isExternal() || Symbol.isUndefined())
418 Type |= STF_External;
420 // Compute the symbol address.
421 if (Symbol.isDefined()) {
422 if (Symbol.isAbsolute()) {
423 Address = cast<MCConstantExpr>(Symbol.getVariableValue())->getValue();
424 } else {
425 Address = Layout.getSymbolAddress(&Data);
427 } else if (Data.isCommon()) {
428 // Common symbols are encoded with the size in the address
429 // field, and their alignment in the flags.
430 Address = Data.getCommonSize();
432 // Common alignment is packed into the 'desc' bits.
433 if (unsigned Align = Data.getCommonAlignment()) {
434 unsigned Log2Size = Log2_32(Align);
435 assert((1U << Log2Size) == Align && "Invalid 'common' alignment!");
436 if (Log2Size > 15)
437 report_fatal_error("invalid 'common' alignment '" +
438 Twine(Align) + "'");
439 // FIXME: Keep this mask with the SymbolFlags enumeration.
440 Flags = (Flags & 0xF0FF) | (Log2Size << 8);
444 // struct nlist (12 bytes)
446 Write32(MSD.StringIndex);
447 Write8(Type);
448 Write8(MSD.SectionIndex);
450 // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc'
451 // value.
452 Write16(Flags);
453 if (Is64Bit)
454 Write64(Address);
455 else
456 Write32(Address);
459 // FIXME: We really need to improve the relocation validation. Basically, we
460 // want to implement a separate computation which evaluates the relocation
461 // entry as the linker would, and verifies that the resultant fixup value is
462 // exactly what the encoder wanted. This will catch several classes of
463 // problems:
465 // - Relocation entry bugs, the two algorithms are unlikely to have the same
466 // exact bug.
468 // - Relaxation issues, where we forget to relax something.
470 // - Input errors, where something cannot be correctly encoded. 'as' allows
471 // these through in many cases.
473 void RecordX86_64Relocation(const MCAssembler &Asm, const MCAsmLayout &Layout,
474 const MCFragment *Fragment,
475 const MCFixup &Fixup, MCValue Target,
476 uint64_t &FixedValue) {
477 unsigned IsPCRel = isFixupKindPCRel(Fixup.getKind());
478 unsigned IsRIPRel = isFixupKindRIPRel(Fixup.getKind());
479 unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());
481 // See <reloc.h>.
482 uint32_t FixupOffset =
483 Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
484 uint32_t FixupAddress =
485 Layout.getFragmentAddress(Fragment) + Fixup.getOffset();
486 int64_t Value = 0;
487 unsigned Index = 0;
488 unsigned IsExtern = 0;
489 unsigned Type = 0;
491 Value = Target.getConstant();
493 if (IsPCRel) {
494 // Compensate for the relocation offset, Darwin x86_64 relocations only
495 // have the addend and appear to have attempted to define it to be the
496 // actual expression addend without the PCrel bias. However, instructions
497 // with data following the relocation are not accomodated for (see comment
498 // below regarding SIGNED{1,2,4}), so it isn't exactly that either.
499 Value += 1LL << Log2Size;
502 if (Target.isAbsolute()) { // constant
503 // SymbolNum of 0 indicates the absolute section.
504 Type = RIT_X86_64_Unsigned;
505 Index = 0;
507 // FIXME: I believe this is broken, I don't think the linker can
508 // understand it. I think it would require a local relocation, but I'm not
509 // sure if that would work either. The official way to get an absolute
510 // PCrel relocation is to use an absolute symbol (which we don't support
511 // yet).
512 if (IsPCRel) {
513 IsExtern = 1;
514 Type = RIT_X86_64_Branch;
516 } else if (Target.getSymB()) { // A - B + constant
517 const MCSymbol *A = &Target.getSymA()->getSymbol();
518 MCSymbolData &A_SD = Asm.getSymbolData(*A);
519 const MCSymbolData *A_Base = Asm.getAtom(Layout, &A_SD);
521 const MCSymbol *B = &Target.getSymB()->getSymbol();
522 MCSymbolData &B_SD = Asm.getSymbolData(*B);
523 const MCSymbolData *B_Base = Asm.getAtom(Layout, &B_SD);
525 // Neither symbol can be modified.
526 if (Target.getSymA()->getKind() != MCSymbolRefExpr::VK_None ||
527 Target.getSymB()->getKind() != MCSymbolRefExpr::VK_None)
528 report_fatal_error("unsupported relocation of modified symbol");
530 // We don't support PCrel relocations of differences. Darwin 'as' doesn't
531 // implement most of these correctly.
532 if (IsPCRel)
533 report_fatal_error("unsupported pc-relative relocation of difference");
535 // We don't currently support any situation where one or both of the
536 // symbols would require a local relocation. This is almost certainly
537 // unused and may not be possible to encode correctly.
538 if (!A_Base || !B_Base)
539 report_fatal_error("unsupported local relocations in difference");
541 // Darwin 'as' doesn't emit correct relocations for this (it ends up with
542 // a single SIGNED relocation); reject it for now.
543 if (A_Base == B_Base)
544 report_fatal_error("unsupported relocation with identical base");
546 Value += Layout.getSymbolAddress(&A_SD) - Layout.getSymbolAddress(A_Base);
547 Value -= Layout.getSymbolAddress(&B_SD) - Layout.getSymbolAddress(B_Base);
549 Index = A_Base->getIndex();
550 IsExtern = 1;
551 Type = RIT_X86_64_Unsigned;
553 MachRelocationEntry MRE;
554 MRE.Word0 = FixupOffset;
555 MRE.Word1 = ((Index << 0) |
556 (IsPCRel << 24) |
557 (Log2Size << 25) |
558 (IsExtern << 27) |
559 (Type << 28));
560 Relocations[Fragment->getParent()].push_back(MRE);
562 Index = B_Base->getIndex();
563 IsExtern = 1;
564 Type = RIT_X86_64_Subtractor;
565 } else {
566 const MCSymbol *Symbol = &Target.getSymA()->getSymbol();
567 MCSymbolData &SD = Asm.getSymbolData(*Symbol);
568 const MCSymbolData *Base = Asm.getAtom(Layout, &SD);
570 // Relocations inside debug sections always use local relocations when
571 // possible. This seems to be done because the debugger doesn't fully
572 // understand x86_64 relocation entries, and expects to find values that
573 // have already been fixed up.
574 if (Symbol->isInSection()) {
575 const MCSectionMachO &Section = static_cast<const MCSectionMachO&>(
576 Fragment->getParent()->getSection());
577 if (Section.hasAttribute(MCSectionMachO::S_ATTR_DEBUG))
578 Base = 0;
581 // x86_64 almost always uses external relocations, except when there is no
582 // symbol to use as a base address (a local symbol with no preceeding
583 // non-local symbol).
584 if (Base) {
585 Index = Base->getIndex();
586 IsExtern = 1;
588 // Add the local offset, if needed.
589 if (Base != &SD)
590 Value += Layout.getSymbolAddress(&SD) - Layout.getSymbolAddress(Base);
591 } else if (Symbol->isInSection()) {
592 // The index is the section ordinal (1-based).
593 Index = SD.getFragment()->getParent()->getOrdinal() + 1;
594 IsExtern = 0;
595 Value += Layout.getSymbolAddress(&SD);
597 if (IsPCRel)
598 Value -= FixupAddress + (1 << Log2Size);
599 } else {
600 report_fatal_error("unsupported relocation of undefined symbol '" +
601 Symbol->getName() + "'");
604 MCSymbolRefExpr::VariantKind Modifier = Target.getSymA()->getKind();
605 if (IsPCRel) {
606 if (IsRIPRel) {
607 if (Modifier == MCSymbolRefExpr::VK_GOTPCREL) {
608 // x86_64 distinguishes movq foo@GOTPCREL so that the linker can
609 // rewrite the movq to an leaq at link time if the symbol ends up in
610 // the same linkage unit.
611 if (unsigned(Fixup.getKind()) == X86::reloc_riprel_4byte_movq_load)
612 Type = RIT_X86_64_GOTLoad;
613 else
614 Type = RIT_X86_64_GOT;
615 } else if (Modifier != MCSymbolRefExpr::VK_None) {
616 report_fatal_error("unsupported symbol modifier in relocation");
617 } else if (Modifier == MCSymbolRefExpr::VK_TLVP) {
618 Type = RIT_X86_64_TLV;
619 } else {
620 Type = RIT_X86_64_Signed;
622 // The Darwin x86_64 relocation format has a problem where it cannot
623 // encode an address (L<foo> + <constant>) which is outside the atom
624 // containing L<foo>. Generally, this shouldn't occur but it does
625 // happen when we have a RIPrel instruction with data following the
626 // relocation entry (e.g., movb $012, L0(%rip)). Even with the PCrel
627 // adjustment Darwin x86_64 uses, the offset is still negative and
628 // the linker has no way to recognize this.
630 // To work around this, Darwin uses several special relocation types
631 // to indicate the offsets. However, the specification or
632 // implementation of these seems to also be incomplete; they should
633 // adjust the addend as well based on the actual encoded instruction
634 // (the additional bias), but instead appear to just look at the
635 // final offset.
636 switch (-(Target.getConstant() + (1LL << Log2Size))) {
637 case 1: Type = RIT_X86_64_Signed1; break;
638 case 2: Type = RIT_X86_64_Signed2; break;
639 case 4: Type = RIT_X86_64_Signed4; break;
642 } else {
643 if (Modifier != MCSymbolRefExpr::VK_None)
644 report_fatal_error("unsupported symbol modifier in branch "
645 "relocation");
647 Type = RIT_X86_64_Branch;
649 } else {
650 if (Modifier == MCSymbolRefExpr::VK_GOT) {
651 Type = RIT_X86_64_GOT;
652 } else if (Modifier == MCSymbolRefExpr::VK_GOTPCREL) {
653 // GOTPCREL is allowed as a modifier on non-PCrel instructions, in
654 // which case all we do is set the PCrel bit in the relocation entry;
655 // this is used with exception handling, for example. The source is
656 // required to include any necessary offset directly.
657 Type = RIT_X86_64_GOT;
658 IsPCRel = 1;
659 } else if (Modifier == MCSymbolRefExpr::VK_TLVP) {
660 report_fatal_error("TLVP symbol modifier should have been rip-rel");
661 } else if (Modifier != MCSymbolRefExpr::VK_None)
662 report_fatal_error("unsupported symbol modifier in relocation");
663 else
664 Type = RIT_X86_64_Unsigned;
668 // x86_64 always writes custom values into the fixups.
669 FixedValue = Value;
671 // struct relocation_info (8 bytes)
672 MachRelocationEntry MRE;
673 MRE.Word0 = FixupOffset;
674 MRE.Word1 = ((Index << 0) |
675 (IsPCRel << 24) |
676 (Log2Size << 25) |
677 (IsExtern << 27) |
678 (Type << 28));
679 Relocations[Fragment->getParent()].push_back(MRE);
682 void RecordScatteredRelocation(const MCAssembler &Asm,
683 const MCAsmLayout &Layout,
684 const MCFragment *Fragment,
685 const MCFixup &Fixup, MCValue Target,
686 uint64_t &FixedValue) {
687 uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
688 unsigned IsPCRel = isFixupKindPCRel(Fixup.getKind());
689 unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());
690 unsigned Type = RIT_Vanilla;
692 // See <reloc.h>.
693 const MCSymbol *A = &Target.getSymA()->getSymbol();
694 MCSymbolData *A_SD = &Asm.getSymbolData(*A);
696 if (!A_SD->getFragment())
697 report_fatal_error("symbol '" + A->getName() +
698 "' can not be undefined in a subtraction expression");
700 uint32_t Value = Layout.getSymbolAddress(A_SD);
701 uint32_t Value2 = 0;
703 if (const MCSymbolRefExpr *B = Target.getSymB()) {
704 MCSymbolData *B_SD = &Asm.getSymbolData(B->getSymbol());
706 if (!B_SD->getFragment())
707 report_fatal_error("symbol '" + B->getSymbol().getName() +
708 "' can not be undefined in a subtraction expression");
710 // Select the appropriate difference relocation type.
712 // Note that there is no longer any semantic difference between these two
713 // relocation types from the linkers point of view, this is done solely
714 // for pedantic compatibility with 'as'.
715 Type = A_SD->isExternal() ? RIT_Difference : RIT_LocalDifference;
716 Value2 = Layout.getSymbolAddress(B_SD);
719 // Relocations are written out in reverse order, so the PAIR comes first.
720 if (Type == RIT_Difference || Type == RIT_LocalDifference) {
721 MachRelocationEntry MRE;
722 MRE.Word0 = ((0 << 0) |
723 (RIT_Pair << 24) |
724 (Log2Size << 28) |
725 (IsPCRel << 30) |
726 RF_Scattered);
727 MRE.Word1 = Value2;
728 Relocations[Fragment->getParent()].push_back(MRE);
731 MachRelocationEntry MRE;
732 MRE.Word0 = ((FixupOffset << 0) |
733 (Type << 24) |
734 (Log2Size << 28) |
735 (IsPCRel << 30) |
736 RF_Scattered);
737 MRE.Word1 = Value;
738 Relocations[Fragment->getParent()].push_back(MRE);
741 void RecordRelocation(const MCAssembler &Asm, const MCAsmLayout &Layout,
742 const MCFragment *Fragment, const MCFixup &Fixup,
743 MCValue Target, uint64_t &FixedValue) {
744 if (Is64Bit) {
745 RecordX86_64Relocation(Asm, Layout, Fragment, Fixup, Target, FixedValue);
746 return;
749 unsigned IsPCRel = isFixupKindPCRel(Fixup.getKind());
750 unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());
752 // If this is a difference or a defined symbol plus an offset, then we need
753 // a scattered relocation entry.
754 // Differences always require scattered relocations.
755 if (Target.getSymB())
756 return RecordScatteredRelocation(Asm, Layout, Fragment, Fixup,
757 Target, FixedValue);
759 // Get the symbol data, if any.
760 MCSymbolData *SD = 0;
761 if (Target.getSymA())
762 SD = &Asm.getSymbolData(Target.getSymA()->getSymbol());
764 // If this is an internal relocation with an offset, it also needs a
765 // scattered relocation entry.
766 uint32_t Offset = Target.getConstant();
767 if (IsPCRel)
768 Offset += 1 << Log2Size;
769 if (Offset && SD && !doesSymbolRequireExternRelocation(SD))
770 return RecordScatteredRelocation(Asm, Layout, Fragment, Fixup,
771 Target, FixedValue);
773 // See <reloc.h>.
774 uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
775 uint32_t Value = 0;
776 unsigned Index = 0;
777 unsigned IsExtern = 0;
778 unsigned Type = 0;
780 if (Target.isAbsolute()) { // constant
781 // SymbolNum of 0 indicates the absolute section.
783 // FIXME: Currently, these are never generated (see code below). I cannot
784 // find a case where they are actually emitted.
785 Type = RIT_Vanilla;
786 Value = 0;
787 } else {
788 // Check whether we need an external or internal relocation.
789 if (doesSymbolRequireExternRelocation(SD)) {
790 IsExtern = 1;
791 Index = SD->getIndex();
792 // For external relocations, make sure to offset the fixup value to
793 // compensate for the addend of the symbol address, if it was
794 // undefined. This occurs with weak definitions, for example.
795 if (!SD->Symbol->isUndefined())
796 FixedValue -= Layout.getSymbolAddress(SD);
797 Value = 0;
798 } else {
799 // The index is the section ordinal (1-based).
800 Index = SD->getFragment()->getParent()->getOrdinal() + 1;
801 Value = Layout.getSymbolAddress(SD);
804 Type = RIT_Vanilla;
807 // struct relocation_info (8 bytes)
808 MachRelocationEntry MRE;
809 MRE.Word0 = FixupOffset;
810 MRE.Word1 = ((Index << 0) |
811 (IsPCRel << 24) |
812 (Log2Size << 25) |
813 (IsExtern << 27) |
814 (Type << 28));
815 Relocations[Fragment->getParent()].push_back(MRE);
818 void BindIndirectSymbols(MCAssembler &Asm) {
819 // This is the point where 'as' creates actual symbols for indirect symbols
820 // (in the following two passes). It would be easier for us to do this
821 // sooner when we see the attribute, but that makes getting the order in the
822 // symbol table much more complicated than it is worth.
824 // FIXME: Revisit this when the dust settles.
826 // Bind non lazy symbol pointers first.
827 unsigned IndirectIndex = 0;
828 for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(),
829 ie = Asm.indirect_symbol_end(); it != ie; ++it, ++IndirectIndex) {
830 const MCSectionMachO &Section =
831 cast<MCSectionMachO>(it->SectionData->getSection());
833 if (Section.getType() != MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS)
834 continue;
836 // Initialize the section indirect symbol base, if necessary.
837 if (!IndirectSymBase.count(it->SectionData))
838 IndirectSymBase[it->SectionData] = IndirectIndex;
840 Asm.getOrCreateSymbolData(*it->Symbol);
843 // Then lazy symbol pointers and symbol stubs.
844 IndirectIndex = 0;
845 for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(),
846 ie = Asm.indirect_symbol_end(); it != ie; ++it, ++IndirectIndex) {
847 const MCSectionMachO &Section =
848 cast<MCSectionMachO>(it->SectionData->getSection());
850 if (Section.getType() != MCSectionMachO::S_LAZY_SYMBOL_POINTERS &&
851 Section.getType() != MCSectionMachO::S_SYMBOL_STUBS)
852 continue;
854 // Initialize the section indirect symbol base, if necessary.
855 if (!IndirectSymBase.count(it->SectionData))
856 IndirectSymBase[it->SectionData] = IndirectIndex;
858 // Set the symbol type to undefined lazy, but only on construction.
860 // FIXME: Do not hardcode.
861 bool Created;
862 MCSymbolData &Entry = Asm.getOrCreateSymbolData(*it->Symbol, &Created);
863 if (Created)
864 Entry.setFlags(Entry.getFlags() | 0x0001);
868 /// ComputeSymbolTable - Compute the symbol table data
870 /// \param StringTable [out] - The string table data.
871 /// \param StringIndexMap [out] - Map from symbol names to offsets in the
872 /// string table.
873 void ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable,
874 std::vector<MachSymbolData> &LocalSymbolData,
875 std::vector<MachSymbolData> &ExternalSymbolData,
876 std::vector<MachSymbolData> &UndefinedSymbolData) {
877 // Build section lookup table.
878 DenseMap<const MCSection*, uint8_t> SectionIndexMap;
879 unsigned Index = 1;
880 for (MCAssembler::iterator it = Asm.begin(),
881 ie = Asm.end(); it != ie; ++it, ++Index)
882 SectionIndexMap[&it->getSection()] = Index;
883 assert(Index <= 256 && "Too many sections!");
885 // Index 0 is always the empty string.
886 StringMap<uint64_t> StringIndexMap;
887 StringTable += '\x00';
889 // Build the symbol arrays and the string table, but only for non-local
890 // symbols.
892 // The particular order that we collect the symbols and create the string
893 // table, then sort the symbols is chosen to match 'as'. Even though it
894 // doesn't matter for correctness, this is important for letting us diff .o
895 // files.
896 for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
897 ie = Asm.symbol_end(); it != ie; ++it) {
898 const MCSymbol &Symbol = it->getSymbol();
900 // Ignore non-linker visible symbols.
901 if (!Asm.isSymbolLinkerVisible(it))
902 continue;
904 if (!it->isExternal() && !Symbol.isUndefined())
905 continue;
907 uint64_t &Entry = StringIndexMap[Symbol.getName()];
908 if (!Entry) {
909 Entry = StringTable.size();
910 StringTable += Symbol.getName();
911 StringTable += '\x00';
914 MachSymbolData MSD;
915 MSD.SymbolData = it;
916 MSD.StringIndex = Entry;
918 if (Symbol.isUndefined()) {
919 MSD.SectionIndex = 0;
920 UndefinedSymbolData.push_back(MSD);
921 } else if (Symbol.isAbsolute()) {
922 MSD.SectionIndex = 0;
923 ExternalSymbolData.push_back(MSD);
924 } else {
925 MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection());
926 assert(MSD.SectionIndex && "Invalid section index!");
927 ExternalSymbolData.push_back(MSD);
931 // Now add the data for local symbols.
932 for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
933 ie = Asm.symbol_end(); it != ie; ++it) {
934 const MCSymbol &Symbol = it->getSymbol();
936 // Ignore non-linker visible symbols.
937 if (!Asm.isSymbolLinkerVisible(it))
938 continue;
940 if (it->isExternal() || Symbol.isUndefined())
941 continue;
943 uint64_t &Entry = StringIndexMap[Symbol.getName()];
944 if (!Entry) {
945 Entry = StringTable.size();
946 StringTable += Symbol.getName();
947 StringTable += '\x00';
950 MachSymbolData MSD;
951 MSD.SymbolData = it;
952 MSD.StringIndex = Entry;
954 if (Symbol.isAbsolute()) {
955 MSD.SectionIndex = 0;
956 LocalSymbolData.push_back(MSD);
957 } else {
958 MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection());
959 assert(MSD.SectionIndex && "Invalid section index!");
960 LocalSymbolData.push_back(MSD);
964 // External and undefined symbols are required to be in lexicographic order.
965 std::sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
966 std::sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end());
968 // Set the symbol indices.
969 Index = 0;
970 for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
971 LocalSymbolData[i].SymbolData->setIndex(Index++);
972 for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
973 ExternalSymbolData[i].SymbolData->setIndex(Index++);
974 for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
975 UndefinedSymbolData[i].SymbolData->setIndex(Index++);
977 // The string table is padded to a multiple of 4.
978 while (StringTable.size() % 4)
979 StringTable += '\x00';
982 void ExecutePostLayoutBinding(MCAssembler &Asm) {
983 // Create symbol data for any indirect symbols.
984 BindIndirectSymbols(Asm);
986 // Compute symbol table information and bind symbol indices.
987 ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData,
988 UndefinedSymbolData);
991 void WriteObject(const MCAssembler &Asm, const MCAsmLayout &Layout) {
992 unsigned NumSections = Asm.size();
994 // The section data starts after the header, the segment load command (and
995 // section headers) and the symbol table.
996 unsigned NumLoadCommands = 1;
997 uint64_t LoadCommandsSize = Is64Bit ?
998 SegmentLoadCommand64Size + NumSections * Section64Size :
999 SegmentLoadCommand32Size + NumSections * Section32Size;
1001 // Add the symbol table load command sizes, if used.
1002 unsigned NumSymbols = LocalSymbolData.size() + ExternalSymbolData.size() +
1003 UndefinedSymbolData.size();
1004 if (NumSymbols) {
1005 NumLoadCommands += 2;
1006 LoadCommandsSize += SymtabLoadCommandSize + DysymtabLoadCommandSize;
1009 // Compute the total size of the section data, as well as its file size and
1010 // vm size.
1011 uint64_t SectionDataStart = (Is64Bit ? Header64Size : Header32Size)
1012 + LoadCommandsSize;
1013 uint64_t SectionDataSize = 0;
1014 uint64_t SectionDataFileSize = 0;
1015 uint64_t VMSize = 0;
1016 for (MCAssembler::const_iterator it = Asm.begin(),
1017 ie = Asm.end(); it != ie; ++it) {
1018 const MCSectionData &SD = *it;
1019 uint64_t Address = Layout.getSectionAddress(&SD);
1020 uint64_t Size = Layout.getSectionSize(&SD);
1021 uint64_t FileSize = Layout.getSectionFileSize(&SD);
1023 VMSize = std::max(VMSize, Address + Size);
1025 if (Asm.getBackend().isVirtualSection(SD.getSection()))
1026 continue;
1028 SectionDataSize = std::max(SectionDataSize, Address + Size);
1029 SectionDataFileSize = std::max(SectionDataFileSize, Address + FileSize);
1032 // The section data is padded to 4 bytes.
1034 // FIXME: Is this machine dependent?
1035 unsigned SectionDataPadding = OffsetToAlignment(SectionDataFileSize, 4);
1036 SectionDataFileSize += SectionDataPadding;
1038 // Write the prolog, starting with the header and load command...
1039 WriteHeader(NumLoadCommands, LoadCommandsSize,
1040 Asm.getSubsectionsViaSymbols());
1041 WriteSegmentLoadCommand(NumSections, VMSize,
1042 SectionDataStart, SectionDataSize);
1044 // ... and then the section headers.
1045 uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize;
1046 for (MCAssembler::const_iterator it = Asm.begin(),
1047 ie = Asm.end(); it != ie; ++it) {
1048 std::vector<MachRelocationEntry> &Relocs = Relocations[it];
1049 unsigned NumRelocs = Relocs.size();
1050 uint64_t SectionStart = SectionDataStart + Layout.getSectionAddress(it);
1051 WriteSection(Asm, Layout, *it, SectionStart, RelocTableEnd, NumRelocs);
1052 RelocTableEnd += NumRelocs * RelocationInfoSize;
1055 // Write the symbol table load command, if used.
1056 if (NumSymbols) {
1057 unsigned FirstLocalSymbol = 0;
1058 unsigned NumLocalSymbols = LocalSymbolData.size();
1059 unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols;
1060 unsigned NumExternalSymbols = ExternalSymbolData.size();
1061 unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols;
1062 unsigned NumUndefinedSymbols = UndefinedSymbolData.size();
1063 unsigned NumIndirectSymbols = Asm.indirect_symbol_size();
1064 unsigned NumSymTabSymbols =
1065 NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols;
1066 uint64_t IndirectSymbolSize = NumIndirectSymbols * 4;
1067 uint64_t IndirectSymbolOffset = 0;
1069 // If used, the indirect symbols are written after the section data.
1070 if (NumIndirectSymbols)
1071 IndirectSymbolOffset = RelocTableEnd;
1073 // The symbol table is written after the indirect symbol data.
1074 uint64_t SymbolTableOffset = RelocTableEnd + IndirectSymbolSize;
1076 // The string table is written after symbol table.
1077 uint64_t StringTableOffset =
1078 SymbolTableOffset + NumSymTabSymbols * (Is64Bit ? Nlist64Size :
1079 Nlist32Size);
1080 WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols,
1081 StringTableOffset, StringTable.size());
1083 WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols,
1084 FirstExternalSymbol, NumExternalSymbols,
1085 FirstUndefinedSymbol, NumUndefinedSymbols,
1086 IndirectSymbolOffset, NumIndirectSymbols);
1089 // Write the actual section data.
1090 for (MCAssembler::const_iterator it = Asm.begin(),
1091 ie = Asm.end(); it != ie; ++it)
1092 Asm.WriteSectionData(it, Layout, Writer);
1094 // Write the extra padding.
1095 WriteZeros(SectionDataPadding);
1097 // Write the relocation entries.
1098 for (MCAssembler::const_iterator it = Asm.begin(),
1099 ie = Asm.end(); it != ie; ++it) {
1100 // Write the section relocation entries, in reverse order to match 'as'
1101 // (approximately, the exact algorithm is more complicated than this).
1102 std::vector<MachRelocationEntry> &Relocs = Relocations[it];
1103 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1104 Write32(Relocs[e - i - 1].Word0);
1105 Write32(Relocs[e - i - 1].Word1);
1109 // Write the symbol table data, if used.
1110 if (NumSymbols) {
1111 // Write the indirect symbol entries.
1112 for (MCAssembler::const_indirect_symbol_iterator
1113 it = Asm.indirect_symbol_begin(),
1114 ie = Asm.indirect_symbol_end(); it != ie; ++it) {
1115 // Indirect symbols in the non lazy symbol pointer section have some
1116 // special handling.
1117 const MCSectionMachO &Section =
1118 static_cast<const MCSectionMachO&>(it->SectionData->getSection());
1119 if (Section.getType() == MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) {
1120 // If this symbol is defined and internal, mark it as such.
1121 if (it->Symbol->isDefined() &&
1122 !Asm.getSymbolData(*it->Symbol).isExternal()) {
1123 uint32_t Flags = ISF_Local;
1124 if (it->Symbol->isAbsolute())
1125 Flags |= ISF_Absolute;
1126 Write32(Flags);
1127 continue;
1131 Write32(Asm.getSymbolData(*it->Symbol).getIndex());
1134 // FIXME: Check that offsets match computed ones.
1136 // Write the symbol table entries.
1137 for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
1138 WriteNlist(LocalSymbolData[i], Layout);
1139 for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
1140 WriteNlist(ExternalSymbolData[i], Layout);
1141 for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
1142 WriteNlist(UndefinedSymbolData[i], Layout);
1144 // Write the string table.
1145 OS << StringTable.str();
1152 MachObjectWriter::MachObjectWriter(raw_ostream &OS,
1153 bool Is64Bit,
1154 bool IsLittleEndian)
1155 : MCObjectWriter(OS, IsLittleEndian)
1157 Impl = new MachObjectWriterImpl(this, Is64Bit);
1160 MachObjectWriter::~MachObjectWriter() {
1161 delete (MachObjectWriterImpl*) Impl;
1164 void MachObjectWriter::ExecutePostLayoutBinding(MCAssembler &Asm) {
1165 ((MachObjectWriterImpl*) Impl)->ExecutePostLayoutBinding(Asm);
1168 void MachObjectWriter::RecordRelocation(const MCAssembler &Asm,
1169 const MCAsmLayout &Layout,
1170 const MCFragment *Fragment,
1171 const MCFixup &Fixup, MCValue Target,
1172 uint64_t &FixedValue) {
1173 ((MachObjectWriterImpl*) Impl)->RecordRelocation(Asm, Layout, Fragment, Fixup,
1174 Target, FixedValue);
1177 void MachObjectWriter::WriteObject(const MCAssembler &Asm,
1178 const MCAsmLayout &Layout) {
1179 ((MachObjectWriterImpl*) Impl)->WriteObject(Asm, Layout);