Teach LazyValueInfo that allocas aren't NULL. Over all of llvm-test, this saves
[llvm.git] / include / llvm / Type.h
blob0939d67265b096222fb004d10f9ada199ba79ee8
1 //===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #ifndef LLVM_TYPE_H
11 #define LLVM_TYPE_H
13 #include "llvm/AbstractTypeUser.h"
14 #include "llvm/Support/Casting.h"
15 #include "llvm/ADT/GraphTraits.h"
16 #include <string>
17 #include <vector>
19 namespace llvm {
21 class DerivedType;
22 class PointerType;
23 class IntegerType;
24 class TypeMapBase;
25 class raw_ostream;
26 class Module;
27 class LLVMContext;
29 /// This file contains the declaration of the Type class. For more "Type" type
30 /// stuff, look in DerivedTypes.h.
31 ///
32 /// The instances of the Type class are immutable: once they are created,
33 /// they are never changed. Also note that only one instance of a particular
34 /// type is ever created. Thus seeing if two types are equal is a matter of
35 /// doing a trivial pointer comparison. To enforce that no two equal instances
36 /// are created, Type instances can only be created via static factory methods
37 /// in class Type and in derived classes.
38 ///
39 /// Once allocated, Types are never free'd, unless they are an abstract type
40 /// that is resolved to a more concrete type.
41 ///
42 /// Types themself don't have a name, and can be named either by:
43 /// - using SymbolTable instance, typically from some Module,
44 /// - using convenience methods in the Module class (which uses module's
45 /// SymbolTable too).
46 ///
47 /// Opaque types are simple derived types with no state. There may be many
48 /// different Opaque type objects floating around, but two are only considered
49 /// identical if they are pointer equals of each other. This allows us to have
50 /// two opaque types that end up resolving to different concrete types later.
51 ///
52 /// Opaque types are also kinda weird and scary and different because they have
53 /// to keep a list of uses of the type. When, through linking, parsing, or
54 /// bitcode reading, they become resolved, they need to find and update all
55 /// users of the unknown type, causing them to reference a new, more concrete
56 /// type. Opaque types are deleted when their use list dwindles to zero users.
57 ///
58 /// @brief Root of type hierarchy
59 class Type : public AbstractTypeUser {
60 public:
61 //===-------------------------------------------------------------------===//
62 /// Definitions of all of the base types for the Type system. Based on this
63 /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
64 /// Note: If you add an element to this, you need to add an element to the
65 /// Type::getPrimitiveType function, or else things will break!
66 /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
67 ///
68 enum TypeID {
69 // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
70 VoidTyID = 0, ///< 0: type with no size
71 FloatTyID, ///< 1: 32 bit floating point type
72 DoubleTyID, ///< 2: 64 bit floating point type
73 X86_FP80TyID, ///< 3: 80 bit floating point type (X87)
74 FP128TyID, ///< 4: 128 bit floating point type (112-bit mantissa)
75 PPC_FP128TyID, ///< 5: 128 bit floating point type (two 64-bits)
76 LabelTyID, ///< 6: Labels
77 MetadataTyID, ///< 7: Metadata
78 X86_MMXTyID, ///< 8: MMX vectors (64 bits)
80 // Derived types... see DerivedTypes.h file...
81 // Make sure FirstDerivedTyID stays up to date!!!
82 IntegerTyID, ///< 9: Arbitrary bit width integers
83 FunctionTyID, ///< 10: Functions
84 StructTyID, ///< 11: Structures
85 ArrayTyID, ///< 12: Arrays
86 PointerTyID, ///< 13: Pointers
87 OpaqueTyID, ///< 14: Opaque: type with unknown structure
88 VectorTyID, ///< 15: SIMD 'packed' format, or other vector type
90 NumTypeIDs, // Must remain as last defined ID
91 LastPrimitiveTyID = X86_MMXTyID,
92 FirstDerivedTyID = IntegerTyID
95 private:
96 TypeID ID : 8; // The current base type of this type.
97 bool Abstract : 1; // True if type contains an OpaqueType
98 unsigned SubclassData : 23; //Space for subclasses to store data
100 /// RefCount - This counts the number of PATypeHolders that are pointing to
101 /// this type. When this number falls to zero, if the type is abstract and
102 /// has no AbstractTypeUsers, the type is deleted. This is only sensical for
103 /// derived types.
105 mutable unsigned RefCount;
107 /// Context - This refers to the LLVMContext in which this type was uniqued.
108 LLVMContext &Context;
109 friend class LLVMContextImpl;
111 const Type *getForwardedTypeInternal() const;
113 // Some Type instances are allocated as arrays, some aren't. So we provide
114 // this method to get the right kind of destruction for the type of Type.
115 void destroy() const; // const is a lie, this does "delete this"!
117 protected:
118 explicit Type(LLVMContext &C, TypeID id) :
119 ID(id), Abstract(false), SubclassData(0),
120 RefCount(0), Context(C),
121 ForwardType(0), NumContainedTys(0),
122 ContainedTys(0) {}
123 virtual ~Type() {
124 assert(AbstractTypeUsers.empty() && "Abstract types remain");
127 /// Types can become nonabstract later, if they are refined.
129 inline void setAbstract(bool Val) { Abstract = Val; }
131 unsigned getRefCount() const { return RefCount; }
133 unsigned getSubclassData() const { return SubclassData; }
134 void setSubclassData(unsigned val) { SubclassData = val; }
136 /// ForwardType - This field is used to implement the union find scheme for
137 /// abstract types. When types are refined to other types, this field is set
138 /// to the more refined type. Only abstract types can be forwarded.
139 mutable const Type *ForwardType;
142 /// AbstractTypeUsers - Implement a list of the users that need to be notified
143 /// if I am a type, and I get resolved into a more concrete type.
145 mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
147 /// NumContainedTys - Keeps track of how many PATypeHandle instances there
148 /// are at the end of this type instance for the list of contained types. It
149 /// is the subclasses responsibility to set this up. Set to 0 if there are no
150 /// contained types in this type.
151 unsigned NumContainedTys;
153 /// ContainedTys - A pointer to the array of Types (PATypeHandle) contained
154 /// by this Type. For example, this includes the arguments of a function
155 /// type, the elements of a structure, the pointee of a pointer, the element
156 /// type of an array, etc. This pointer may be 0 for types that don't
157 /// contain other types (Integer, Double, Float). In general, the subclass
158 /// should arrange for space for the PATypeHandles to be included in the
159 /// allocation of the type object and set this pointer to the address of the
160 /// first element. This allows the Type class to manipulate the ContainedTys
161 /// without understanding the subclass's placement for this array. keeping
162 /// it here also allows the subtype_* members to be implemented MUCH more
163 /// efficiently, and dynamically very few types do not contain any elements.
164 PATypeHandle *ContainedTys;
166 public:
167 void print(raw_ostream &O) const;
169 /// @brief Debugging support: print to stderr
170 void dump() const;
172 /// @brief Debugging support: print to stderr (use type names from context
173 /// module).
174 void dump(const Module *Context) const;
176 /// getContext - Fetch the LLVMContext in which this type was uniqued.
177 LLVMContext &getContext() const { return Context; }
179 //===--------------------------------------------------------------------===//
180 // Property accessors for dealing with types... Some of these virtual methods
181 // are defined in private classes defined in Type.cpp for primitive types.
184 /// getDescription - Return the string representation of the type.
185 std::string getDescription() const;
187 /// getTypeID - Return the type id for the type. This will return one
188 /// of the TypeID enum elements defined above.
190 inline TypeID getTypeID() const { return ID; }
192 /// isVoidTy - Return true if this is 'void'.
193 bool isVoidTy() const { return ID == VoidTyID; }
195 /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
196 bool isFloatTy() const { return ID == FloatTyID; }
198 /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
199 bool isDoubleTy() const { return ID == DoubleTyID; }
201 /// isX86_FP80Ty - Return true if this is x86 long double.
202 bool isX86_FP80Ty() const { return ID == X86_FP80TyID; }
204 /// isFP128Ty - Return true if this is 'fp128'.
205 bool isFP128Ty() const { return ID == FP128TyID; }
207 /// isPPC_FP128Ty - Return true if this is powerpc long double.
208 bool isPPC_FP128Ty() const { return ID == PPC_FP128TyID; }
210 /// isFloatingPointTy - Return true if this is one of the five floating point
211 /// types
212 bool isFloatingPointTy() const { return ID == FloatTyID || ID == DoubleTyID ||
213 ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; }
215 /// isX86_MMXTy - Return true if this is X86 MMX.
216 bool isX86_MMXTy() const { return ID == X86_MMXTyID; }
218 /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP.
220 bool isFPOrFPVectorTy() const;
222 /// isLabelTy - Return true if this is 'label'.
223 bool isLabelTy() const { return ID == LabelTyID; }
225 /// isMetadataTy - Return true if this is 'metadata'.
226 bool isMetadataTy() const { return ID == MetadataTyID; }
228 /// isIntegerTy - True if this is an instance of IntegerType.
230 bool isIntegerTy() const { return ID == IntegerTyID; }
232 /// isIntegerTy - Return true if this is an IntegerType of the given width.
233 bool isIntegerTy(unsigned Bitwidth) const;
235 /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
236 /// integer types.
238 bool isIntOrIntVectorTy() const;
240 /// isFunctionTy - True if this is an instance of FunctionType.
242 bool isFunctionTy() const { return ID == FunctionTyID; }
244 /// isStructTy - True if this is an instance of StructType.
246 bool isStructTy() const { return ID == StructTyID; }
248 /// isArrayTy - True if this is an instance of ArrayType.
250 bool isArrayTy() const { return ID == ArrayTyID; }
252 /// isPointerTy - True if this is an instance of PointerType.
254 bool isPointerTy() const { return ID == PointerTyID; }
256 /// isOpaqueTy - True if this is an instance of OpaqueType.
258 bool isOpaqueTy() const { return ID == OpaqueTyID; }
260 /// isVectorTy - True if this is an instance of VectorType.
262 bool isVectorTy() const { return ID == VectorTyID; }
264 /// isAbstract - True if the type is either an Opaque type, or is a derived
265 /// type that includes an opaque type somewhere in it.
267 inline bool isAbstract() const { return Abstract; }
269 /// canLosslesslyBitCastTo - Return true if this type could be converted
270 /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts
271 /// are valid for types of the same size only where no re-interpretation of
272 /// the bits is done.
273 /// @brief Determine if this type could be losslessly bitcast to Ty
274 bool canLosslesslyBitCastTo(const Type *Ty) const;
277 /// Here are some useful little methods to query what type derived types are
278 /// Note that all other types can just compare to see if this == Type::xxxTy;
280 inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
281 inline bool isDerivedType() const { return ID >= FirstDerivedTyID; }
283 /// isFirstClassType - Return true if the type is "first class", meaning it
284 /// is a valid type for a Value.
286 inline bool isFirstClassType() const {
287 // There are more first-class kinds than non-first-class kinds, so a
288 // negative test is simpler than a positive one.
289 return ID != FunctionTyID && ID != VoidTyID && ID != OpaqueTyID;
292 /// isSingleValueType - Return true if the type is a valid type for a
293 /// virtual register in codegen. This includes all first-class types
294 /// except struct and array types.
296 inline bool isSingleValueType() const {
297 return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
298 ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID;
301 /// isAggregateType - Return true if the type is an aggregate type. This
302 /// means it is valid as the first operand of an insertvalue or
303 /// extractvalue instruction. This includes struct and array types, but
304 /// does not include vector types.
306 inline bool isAggregateType() const {
307 return ID == StructTyID || ID == ArrayTyID;
310 /// isSized - Return true if it makes sense to take the size of this type. To
311 /// get the actual size for a particular target, it is reasonable to use the
312 /// TargetData subsystem to do this.
314 bool isSized() const {
315 // If it's a primitive, it is always sized.
316 if (ID == IntegerTyID || isFloatingPointTy() || ID == PointerTyID ||
317 ID == X86_MMXTyID)
318 return true;
319 // If it is not something that can have a size (e.g. a function or label),
320 // it doesn't have a size.
321 if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID)
322 return false;
323 // If it is something that can have a size and it's concrete, it definitely
324 // has a size, otherwise we have to try harder to decide.
325 return !isAbstract() || isSizedDerivedType();
328 /// getPrimitiveSizeInBits - Return the basic size of this type if it is a
329 /// primitive type. These are fixed by LLVM and are not target dependent.
330 /// This will return zero if the type does not have a size or is not a
331 /// primitive type.
333 /// Note that this may not reflect the size of memory allocated for an
334 /// instance of the type or the number of bytes that are written when an
335 /// instance of the type is stored to memory. The TargetData class provides
336 /// additional query functions to provide this information.
338 unsigned getPrimitiveSizeInBits() const;
340 /// getScalarSizeInBits - If this is a vector type, return the
341 /// getPrimitiveSizeInBits value for the element type. Otherwise return the
342 /// getPrimitiveSizeInBits value for this type.
343 unsigned getScalarSizeInBits() const;
345 /// getFPMantissaWidth - Return the width of the mantissa of this type. This
346 /// is only valid on floating point types. If the FP type does not
347 /// have a stable mantissa (e.g. ppc long double), this method returns -1.
348 int getFPMantissaWidth() const;
350 /// getForwardedType - Return the type that this type has been resolved to if
351 /// it has been resolved to anything. This is used to implement the
352 /// union-find algorithm for type resolution, and shouldn't be used by general
353 /// purpose clients.
354 const Type *getForwardedType() const {
355 if (!ForwardType) return 0;
356 return getForwardedTypeInternal();
359 /// getVAArgsPromotedType - Return the type an argument of this type
360 /// will be promoted to if passed through a variable argument
361 /// function.
362 const Type *getVAArgsPromotedType(LLVMContext &C) const;
364 /// getScalarType - If this is a vector type, return the element type,
365 /// otherwise return this.
366 const Type *getScalarType() const;
368 //===--------------------------------------------------------------------===//
369 // Type Iteration support
371 typedef PATypeHandle *subtype_iterator;
372 subtype_iterator subtype_begin() const { return ContainedTys; }
373 subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
375 /// getContainedType - This method is used to implement the type iterator
376 /// (defined a the end of the file). For derived types, this returns the
377 /// types 'contained' in the derived type.
379 const Type *getContainedType(unsigned i) const {
380 assert(i < NumContainedTys && "Index out of range!");
381 return ContainedTys[i].get();
384 /// getNumContainedTypes - Return the number of types in the derived type.
386 unsigned getNumContainedTypes() const { return NumContainedTys; }
388 //===--------------------------------------------------------------------===//
389 // Static members exported by the Type class itself. Useful for getting
390 // instances of Type.
393 /// getPrimitiveType - Return a type based on an identifier.
394 static const Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
396 //===--------------------------------------------------------------------===//
397 // These are the builtin types that are always available...
399 static const Type *getVoidTy(LLVMContext &C);
400 static const Type *getLabelTy(LLVMContext &C);
401 static const Type *getFloatTy(LLVMContext &C);
402 static const Type *getDoubleTy(LLVMContext &C);
403 static const Type *getMetadataTy(LLVMContext &C);
404 static const Type *getX86_FP80Ty(LLVMContext &C);
405 static const Type *getFP128Ty(LLVMContext &C);
406 static const Type *getPPC_FP128Ty(LLVMContext &C);
407 static const Type *getX86_MMXTy(LLVMContext &C);
408 static const IntegerType *getIntNTy(LLVMContext &C, unsigned N);
409 static const IntegerType *getInt1Ty(LLVMContext &C);
410 static const IntegerType *getInt8Ty(LLVMContext &C);
411 static const IntegerType *getInt16Ty(LLVMContext &C);
412 static const IntegerType *getInt32Ty(LLVMContext &C);
413 static const IntegerType *getInt64Ty(LLVMContext &C);
415 //===--------------------------------------------------------------------===//
416 // Convenience methods for getting pointer types with one of the above builtin
417 // types as pointee.
419 static const PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
420 static const PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
421 static const PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
422 static const PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
423 static const PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
424 static const PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
425 static const PointerType *getIntNPtrTy(LLVMContext &C, unsigned N,
426 unsigned AS = 0);
427 static const PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
428 static const PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
429 static const PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
430 static const PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
431 static const PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
433 /// Methods for support type inquiry through isa, cast, and dyn_cast:
434 static inline bool classof(const Type *) { return true; }
436 void addRef() const {
437 assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
438 ++RefCount;
441 void dropRef() const {
442 assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
443 assert(RefCount && "No objects are currently referencing this object!");
445 // If this is the last PATypeHolder using this object, and there are no
446 // PATypeHandles using it, the type is dead, delete it now.
447 if (--RefCount == 0 && AbstractTypeUsers.empty())
448 this->destroy();
451 /// addAbstractTypeUser - Notify an abstract type that there is a new user of
452 /// it. This function is called primarily by the PATypeHandle class.
454 void addAbstractTypeUser(AbstractTypeUser *U) const;
456 /// removeAbstractTypeUser - Notify an abstract type that a user of the class
457 /// no longer has a handle to the type. This function is called primarily by
458 /// the PATypeHandle class. When there are no users of the abstract type, it
459 /// is annihilated, because there is no way to get a reference to it ever
460 /// again.
462 void removeAbstractTypeUser(AbstractTypeUser *U) const;
464 /// getPointerTo - Return a pointer to the current type. This is equivalent
465 /// to PointerType::get(Foo, AddrSpace).
466 const PointerType *getPointerTo(unsigned AddrSpace = 0) const;
468 private:
469 /// isSizedDerivedType - Derived types like structures and arrays are sized
470 /// iff all of the members of the type are sized as well. Since asking for
471 /// their size is relatively uncommon, move this operation out of line.
472 bool isSizedDerivedType() const;
474 virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
475 virtual void typeBecameConcrete(const DerivedType *AbsTy);
477 protected:
478 // PromoteAbstractToConcrete - This is an internal method used to calculate
479 // change "Abstract" from true to false when types are refined.
480 void PromoteAbstractToConcrete();
481 friend class TypeMapBase;
484 //===----------------------------------------------------------------------===//
485 // Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
486 // These are defined here because they MUST be inlined, yet are dependent on
487 // the definition of the Type class.
489 inline void PATypeHandle::addUser() {
490 assert(Ty && "Type Handle has a null type!");
491 if (Ty->isAbstract())
492 Ty->addAbstractTypeUser(User);
494 inline void PATypeHandle::removeUser() {
495 if (Ty->isAbstract())
496 Ty->removeAbstractTypeUser(User);
499 // Define inline methods for PATypeHolder.
501 /// get - This implements the forwarding part of the union-find algorithm for
502 /// abstract types. Before every access to the Type*, we check to see if the
503 /// type we are pointing to is forwarding to a new type. If so, we drop our
504 /// reference to the type.
506 inline Type* PATypeHolder::get() const {
507 if (Ty == 0) return 0;
508 const Type *NewTy = Ty->getForwardedType();
509 if (!NewTy) return const_cast<Type*>(Ty);
510 return *const_cast<PATypeHolder*>(this) = NewTy;
513 inline void PATypeHolder::addRef() {
514 if (Ty && Ty->isAbstract())
515 Ty->addRef();
518 inline void PATypeHolder::dropRef() {
519 if (Ty && Ty->isAbstract())
520 Ty->dropRef();
524 //===----------------------------------------------------------------------===//
525 // Provide specializations of GraphTraits to be able to treat a type as a
526 // graph of sub types...
528 template <> struct GraphTraits<Type*> {
529 typedef Type NodeType;
530 typedef Type::subtype_iterator ChildIteratorType;
532 static inline NodeType *getEntryNode(Type *T) { return T; }
533 static inline ChildIteratorType child_begin(NodeType *N) {
534 return N->subtype_begin();
536 static inline ChildIteratorType child_end(NodeType *N) {
537 return N->subtype_end();
541 template <> struct GraphTraits<const Type*> {
542 typedef const Type NodeType;
543 typedef Type::subtype_iterator ChildIteratorType;
545 static inline NodeType *getEntryNode(const Type *T) { return T; }
546 static inline ChildIteratorType child_begin(NodeType *N) {
547 return N->subtype_begin();
549 static inline ChildIteratorType child_end(NodeType *N) {
550 return N->subtype_end();
554 template <> struct isa_impl<PointerType, Type> {
555 static inline bool doit(const Type &Ty) {
556 return Ty.getTypeID() == Type::PointerTyID;
560 raw_ostream &operator<<(raw_ostream &OS, const Type &T);
562 } // End llvm namespace
564 #endif