Use the new way of silencing this warning.
[llvm.git] / lib / Transforms / Utils / LoopSimplify.cpp
blobf77a58300f4a82dbe1a6485df8cfe70c5f9c4fc4
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header. This simplifies a
16 // number of analyses and transformations, such as LICM.
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header). This simplifies transformations such as store-sinking
22 // that are built into LICM.
24 // This pass also guarantees that loops will have exactly one backedge.
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
38 //===----------------------------------------------------------------------===//
40 #define DEBUG_TYPE "loopsimplify"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/Constants.h"
43 #include "llvm/Instructions.h"
44 #include "llvm/IntrinsicInst.h"
45 #include "llvm/Function.h"
46 #include "llvm/LLVMContext.h"
47 #include "llvm/Type.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/InstructionSimplify.h"
51 #include "llvm/Analysis/LoopPass.h"
52 #include "llvm/Analysis/ScalarEvolution.h"
53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
54 #include "llvm/Transforms/Utils/Local.h"
55 #include "llvm/Support/CFG.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/ADT/SetOperations.h"
58 #include "llvm/ADT/SetVector.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 using namespace llvm;
63 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
64 STATISTIC(NumNested , "Number of nested loops split out");
66 namespace {
67 struct LoopSimplify : public LoopPass {
68 static char ID; // Pass identification, replacement for typeid
69 LoopSimplify() : LoopPass(ID) {
70 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
73 // AA - If we have an alias analysis object to update, this is it, otherwise
74 // this is null.
75 AliasAnalysis *AA;
76 LoopInfo *LI;
77 DominatorTree *DT;
78 ScalarEvolution *SE;
79 Loop *L;
80 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
82 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83 // We need loop information to identify the loops...
84 AU.addRequired<DominatorTree>();
85 AU.addPreserved<DominatorTree>();
87 AU.addRequired<LoopInfo>();
88 AU.addPreserved<LoopInfo>();
90 AU.addPreserved<AliasAnalysis>();
91 AU.addPreserved<ScalarEvolution>();
92 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
93 AU.addPreserved<DominanceFrontier>();
94 AU.addPreservedID(LCSSAID);
97 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
98 void verifyAnalysis() const;
100 private:
101 bool ProcessLoop(Loop *L, LPPassManager &LPM);
102 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
103 BasicBlock *InsertPreheaderForLoop(Loop *L);
104 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM);
105 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
106 void PlaceSplitBlockCarefully(BasicBlock *NewBB,
107 SmallVectorImpl<BasicBlock*> &SplitPreds,
108 Loop *L);
112 char LoopSimplify::ID = 0;
113 INITIALIZE_PASS_BEGIN(LoopSimplify, "loopsimplify",
114 "Canonicalize natural loops", true, false)
115 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
116 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
117 INITIALIZE_PASS_END(LoopSimplify, "loopsimplify",
118 "Canonicalize natural loops", true, false)
120 // Publically exposed interface to pass...
121 char &llvm::LoopSimplifyID = LoopSimplify::ID;
122 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
124 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do
125 /// it in any convenient order) inserting preheaders...
127 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
128 L = l;
129 bool Changed = false;
130 LI = &getAnalysis<LoopInfo>();
131 AA = getAnalysisIfAvailable<AliasAnalysis>();
132 DT = &getAnalysis<DominatorTree>();
133 SE = getAnalysisIfAvailable<ScalarEvolution>();
135 Changed |= ProcessLoop(L, LPM);
137 return Changed;
140 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
141 /// all loops have preheaders.
143 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
144 bool Changed = false;
145 ReprocessLoop:
147 // Check to see that no blocks (other than the header) in this loop have
148 // predecessors that are not in the loop. This is not valid for natural
149 // loops, but can occur if the blocks are unreachable. Since they are
150 // unreachable we can just shamelessly delete those CFG edges!
151 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
152 BB != E; ++BB) {
153 if (*BB == L->getHeader()) continue;
155 SmallPtrSet<BasicBlock*, 4> BadPreds;
156 for (pred_iterator PI = pred_begin(*BB),
157 PE = pred_end(*BB); PI != PE; ++PI) {
158 BasicBlock *P = *PI;
159 if (!L->contains(P))
160 BadPreds.insert(P);
163 // Delete each unique out-of-loop (and thus dead) predecessor.
164 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
165 E = BadPreds.end(); I != E; ++I) {
167 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor ";
168 WriteAsOperand(dbgs(), *I, false);
169 dbgs() << "\n");
171 // Inform each successor of each dead pred.
172 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
173 (*SI)->removePredecessor(*I);
174 // Zap the dead pred's terminator and replace it with unreachable.
175 TerminatorInst *TI = (*I)->getTerminator();
176 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
177 (*I)->getTerminator()->eraseFromParent();
178 new UnreachableInst((*I)->getContext(), *I);
179 Changed = true;
183 // If there are exiting blocks with branches on undef, resolve the undef in
184 // the direction which will exit the loop. This will help simplify loop
185 // trip count computations.
186 SmallVector<BasicBlock*, 8> ExitingBlocks;
187 L->getExitingBlocks(ExitingBlocks);
188 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
189 E = ExitingBlocks.end(); I != E; ++I)
190 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
191 if (BI->isConditional()) {
192 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
194 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in ";
195 WriteAsOperand(dbgs(), *I, false);
196 dbgs() << "\n");
198 BI->setCondition(ConstantInt::get(Cond->getType(),
199 !L->contains(BI->getSuccessor(0))));
200 Changed = true;
204 // Does the loop already have a preheader? If so, don't insert one.
205 BasicBlock *Preheader = L->getLoopPreheader();
206 if (!Preheader) {
207 Preheader = InsertPreheaderForLoop(L);
208 if (Preheader) {
209 ++NumInserted;
210 Changed = true;
214 // Next, check to make sure that all exit nodes of the loop only have
215 // predecessors that are inside of the loop. This check guarantees that the
216 // loop preheader/header will dominate the exit blocks. If the exit block has
217 // predecessors from outside of the loop, split the edge now.
218 SmallVector<BasicBlock*, 8> ExitBlocks;
219 L->getExitBlocks(ExitBlocks);
221 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
222 ExitBlocks.end());
223 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
224 E = ExitBlockSet.end(); I != E; ++I) {
225 BasicBlock *ExitBlock = *I;
226 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
227 PI != PE; ++PI)
228 // Must be exactly this loop: no subloops, parent loops, or non-loop preds
229 // allowed.
230 if (!L->contains(*PI)) {
231 if (RewriteLoopExitBlock(L, ExitBlock)) {
232 ++NumInserted;
233 Changed = true;
235 break;
239 // If the header has more than two predecessors at this point (from the
240 // preheader and from multiple backedges), we must adjust the loop.
241 BasicBlock *LoopLatch = L->getLoopLatch();
242 if (!LoopLatch) {
243 // If this is really a nested loop, rip it out into a child loop. Don't do
244 // this for loops with a giant number of backedges, just factor them into a
245 // common backedge instead.
246 if (L->getNumBackEdges() < 8) {
247 if (SeparateNestedLoop(L, LPM)) {
248 ++NumNested;
249 // This is a big restructuring change, reprocess the whole loop.
250 Changed = true;
251 // GCC doesn't tail recursion eliminate this.
252 goto ReprocessLoop;
256 // If we either couldn't, or didn't want to, identify nesting of the loops,
257 // insert a new block that all backedges target, then make it jump to the
258 // loop header.
259 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
260 if (LoopLatch) {
261 ++NumInserted;
262 Changed = true;
266 // Scan over the PHI nodes in the loop header. Since they now have only two
267 // incoming values (the loop is canonicalized), we may have simplified the PHI
268 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
269 PHINode *PN;
270 for (BasicBlock::iterator I = L->getHeader()->begin();
271 (PN = dyn_cast<PHINode>(I++)); )
272 if (Value *V = SimplifyInstruction(PN, 0, DT))
273 if (LI->replacementPreservesLCSSAForm(PN, V)) {
274 if (AA) AA->deleteValue(PN);
275 PN->replaceAllUsesWith(V);
276 PN->eraseFromParent();
279 // If this loop has multiple exits and the exits all go to the same
280 // block, attempt to merge the exits. This helps several passes, such
281 // as LoopRotation, which do not support loops with multiple exits.
282 // SimplifyCFG also does this (and this code uses the same utility
283 // function), however this code is loop-aware, where SimplifyCFG is
284 // not. That gives it the advantage of being able to hoist
285 // loop-invariant instructions out of the way to open up more
286 // opportunities, and the disadvantage of having the responsibility
287 // to preserve dominator information.
288 bool UniqueExit = true;
289 if (!ExitBlocks.empty())
290 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
291 if (ExitBlocks[i] != ExitBlocks[0]) {
292 UniqueExit = false;
293 break;
295 if (UniqueExit) {
296 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
297 BasicBlock *ExitingBlock = ExitingBlocks[i];
298 if (!ExitingBlock->getSinglePredecessor()) continue;
299 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
300 if (!BI || !BI->isConditional()) continue;
301 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
302 if (!CI || CI->getParent() != ExitingBlock) continue;
304 // Attempt to hoist out all instructions except for the
305 // comparison and the branch.
306 bool AllInvariant = true;
307 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
308 Instruction *Inst = I++;
309 // Skip debug info intrinsics.
310 if (isa<DbgInfoIntrinsic>(Inst))
311 continue;
312 if (Inst == CI)
313 continue;
314 if (!L->makeLoopInvariant(Inst, Changed,
315 Preheader ? Preheader->getTerminator() : 0)) {
316 AllInvariant = false;
317 break;
320 if (!AllInvariant) continue;
322 // The block has now been cleared of all instructions except for
323 // a comparison and a conditional branch. SimplifyCFG may be able
324 // to fold it now.
325 if (!FoldBranchToCommonDest(BI)) continue;
327 // Success. The block is now dead, so remove it from the loop,
328 // update the dominator tree and dominance frontier, and delete it.
330 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block ";
331 WriteAsOperand(dbgs(), ExitingBlock, false);
332 dbgs() << "\n");
334 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
335 Changed = true;
336 LI->removeBlock(ExitingBlock);
338 DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>();
339 DomTreeNode *Node = DT->getNode(ExitingBlock);
340 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
341 Node->getChildren();
342 while (!Children.empty()) {
343 DomTreeNode *Child = Children.front();
344 DT->changeImmediateDominator(Child, Node->getIDom());
345 if (DF) DF->changeImmediateDominator(Child->getBlock(),
346 Node->getIDom()->getBlock(),
347 DT);
349 DT->eraseNode(ExitingBlock);
350 if (DF) DF->removeBlock(ExitingBlock);
352 BI->getSuccessor(0)->removePredecessor(ExitingBlock);
353 BI->getSuccessor(1)->removePredecessor(ExitingBlock);
354 ExitingBlock->eraseFromParent();
358 return Changed;
361 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
362 /// preheader, this method is called to insert one. This method has two phases:
363 /// preheader insertion and analysis updating.
365 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
366 BasicBlock *Header = L->getHeader();
368 // Compute the set of predecessors of the loop that are not in the loop.
369 SmallVector<BasicBlock*, 8> OutsideBlocks;
370 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
371 PI != PE; ++PI) {
372 BasicBlock *P = *PI;
373 if (!L->contains(P)) { // Coming in from outside the loop?
374 // If the loop is branched to from an indirect branch, we won't
375 // be able to fully transform the loop, because it prohibits
376 // edge splitting.
377 if (isa<IndirectBrInst>(P->getTerminator())) return 0;
379 // Keep track of it.
380 OutsideBlocks.push_back(P);
384 // Split out the loop pre-header.
385 BasicBlock *NewBB =
386 SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
387 ".preheader", this);
389 DEBUG(dbgs() << "LoopSimplify: Creating pre-header ";
390 WriteAsOperand(dbgs(), NewBB, false);
391 dbgs() << "\n");
393 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
394 // code layout too horribly.
395 PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
397 return NewBB;
400 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
401 /// blocks. This method is used to split exit blocks that have predecessors
402 /// outside of the loop.
403 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
404 SmallVector<BasicBlock*, 8> LoopBlocks;
405 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
406 BasicBlock *P = *I;
407 if (L->contains(P)) {
408 // Don't do this if the loop is exited via an indirect branch.
409 if (isa<IndirectBrInst>(P->getTerminator())) return 0;
411 LoopBlocks.push_back(P);
415 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
416 BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
417 LoopBlocks.size(), ".loopexit",
418 this);
420 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block ";
421 WriteAsOperand(dbgs(), NewBB, false);
422 dbgs() << "\n");
424 return NewBB;
427 /// AddBlockAndPredsToSet - Add the specified block, and all of its
428 /// predecessors, to the specified set, if it's not already in there. Stop
429 /// predecessor traversal when we reach StopBlock.
430 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
431 std::set<BasicBlock*> &Blocks) {
432 std::vector<BasicBlock *> WorkList;
433 WorkList.push_back(InputBB);
434 do {
435 BasicBlock *BB = WorkList.back(); WorkList.pop_back();
436 if (Blocks.insert(BB).second && BB != StopBlock)
437 // If BB is not already processed and it is not a stop block then
438 // insert its predecessor in the work list
439 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
440 BasicBlock *WBB = *I;
441 WorkList.push_back(WBB);
443 } while(!WorkList.empty());
446 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
447 /// PHI node that tells us how to partition the loops.
448 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
449 AliasAnalysis *AA, LoopInfo *LI) {
450 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
451 PHINode *PN = cast<PHINode>(I);
452 ++I;
453 if (Value *V = SimplifyInstruction(PN, 0, DT))
454 if (LI->replacementPreservesLCSSAForm(PN, V)) {
455 // This is a degenerate PHI already, don't modify it!
456 PN->replaceAllUsesWith(V);
457 if (AA) AA->deleteValue(PN);
458 PN->eraseFromParent();
459 continue;
462 // Scan this PHI node looking for a use of the PHI node by itself.
463 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
464 if (PN->getIncomingValue(i) == PN &&
465 L->contains(PN->getIncomingBlock(i)))
466 // We found something tasty to remove.
467 return PN;
469 return 0;
472 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to
473 // right after some 'outside block' block. This prevents the preheader from
474 // being placed inside the loop body, e.g. when the loop hasn't been rotated.
475 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
476 SmallVectorImpl<BasicBlock*> &SplitPreds,
477 Loop *L) {
478 // Check to see if NewBB is already well placed.
479 Function::iterator BBI = NewBB; --BBI;
480 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
481 if (&*BBI == SplitPreds[i])
482 return;
485 // If it isn't already after an outside block, move it after one. This is
486 // always good as it makes the uncond branch from the outside block into a
487 // fall-through.
489 // Figure out *which* outside block to put this after. Prefer an outside
490 // block that neighbors a BB actually in the loop.
491 BasicBlock *FoundBB = 0;
492 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
493 Function::iterator BBI = SplitPreds[i];
494 if (++BBI != NewBB->getParent()->end() &&
495 L->contains(BBI)) {
496 FoundBB = SplitPreds[i];
497 break;
501 // If our heuristic for a *good* bb to place this after doesn't find
502 // anything, just pick something. It's likely better than leaving it within
503 // the loop.
504 if (!FoundBB)
505 FoundBB = SplitPreds[0];
506 NewBB->moveAfter(FoundBB);
510 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
511 /// them out into a nested loop. This is important for code that looks like
512 /// this:
514 /// Loop:
515 /// ...
516 /// br cond, Loop, Next
517 /// ...
518 /// br cond2, Loop, Out
520 /// To identify this common case, we look at the PHI nodes in the header of the
521 /// loop. PHI nodes with unchanging values on one backedge correspond to values
522 /// that change in the "outer" loop, but not in the "inner" loop.
524 /// If we are able to separate out a loop, return the new outer loop that was
525 /// created.
527 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) {
528 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
529 if (PN == 0) return 0; // No known way to partition.
531 // Pull out all predecessors that have varying values in the loop. This
532 // handles the case when a PHI node has multiple instances of itself as
533 // arguments.
534 SmallVector<BasicBlock*, 8> OuterLoopPreds;
535 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
536 if (PN->getIncomingValue(i) != PN ||
537 !L->contains(PN->getIncomingBlock(i))) {
538 // We can't split indirectbr edges.
539 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
540 return 0;
542 OuterLoopPreds.push_back(PN->getIncomingBlock(i));
545 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
547 // If ScalarEvolution is around and knows anything about values in
548 // this loop, tell it to forget them, because we're about to
549 // substantially change it.
550 if (SE)
551 SE->forgetLoop(L);
553 BasicBlock *Header = L->getHeader();
554 BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
555 OuterLoopPreds.size(),
556 ".outer", this);
558 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
559 // code layout too horribly.
560 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
562 // Create the new outer loop.
563 Loop *NewOuter = new Loop();
565 // Change the parent loop to use the outer loop as its child now.
566 if (Loop *Parent = L->getParentLoop())
567 Parent->replaceChildLoopWith(L, NewOuter);
568 else
569 LI->changeTopLevelLoop(L, NewOuter);
571 // L is now a subloop of our outer loop.
572 NewOuter->addChildLoop(L);
574 // Add the new loop to the pass manager queue.
575 LPM.insertLoopIntoQueue(NewOuter);
577 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
578 I != E; ++I)
579 NewOuter->addBlockEntry(*I);
581 // Now reset the header in L, which had been moved by
582 // SplitBlockPredecessors for the outer loop.
583 L->moveToHeader(Header);
585 // Determine which blocks should stay in L and which should be moved out to
586 // the Outer loop now.
587 std::set<BasicBlock*> BlocksInL;
588 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
589 BasicBlock *P = *PI;
590 if (DT->dominates(Header, P))
591 AddBlockAndPredsToSet(P, Header, BlocksInL);
594 // Scan all of the loop children of L, moving them to OuterLoop if they are
595 // not part of the inner loop.
596 const std::vector<Loop*> &SubLoops = L->getSubLoops();
597 for (size_t I = 0; I != SubLoops.size(); )
598 if (BlocksInL.count(SubLoops[I]->getHeader()))
599 ++I; // Loop remains in L
600 else
601 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
603 // Now that we know which blocks are in L and which need to be moved to
604 // OuterLoop, move any blocks that need it.
605 for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
606 BasicBlock *BB = L->getBlocks()[i];
607 if (!BlocksInL.count(BB)) {
608 // Move this block to the parent, updating the exit blocks sets
609 L->removeBlockFromLoop(BB);
610 if ((*LI)[BB] == L)
611 LI->changeLoopFor(BB, NewOuter);
612 --i;
616 return NewOuter;
621 /// InsertUniqueBackedgeBlock - This method is called when the specified loop
622 /// has more than one backedge in it. If this occurs, revector all of these
623 /// backedges to target a new basic block and have that block branch to the loop
624 /// header. This ensures that loops have exactly one backedge.
626 BasicBlock *
627 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
628 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
630 // Get information about the loop
631 BasicBlock *Header = L->getHeader();
632 Function *F = Header->getParent();
634 // Unique backedge insertion currently depends on having a preheader.
635 if (!Preheader)
636 return 0;
638 // Figure out which basic blocks contain back-edges to the loop header.
639 std::vector<BasicBlock*> BackedgeBlocks;
640 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
641 BasicBlock *P = *I;
643 // Indirectbr edges cannot be split, so we must fail if we find one.
644 if (isa<IndirectBrInst>(P->getTerminator()))
645 return 0;
647 if (P != Preheader) BackedgeBlocks.push_back(P);
650 // Create and insert the new backedge block...
651 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
652 Header->getName()+".backedge", F);
653 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
655 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block ";
656 WriteAsOperand(dbgs(), BEBlock, false);
657 dbgs() << "\n");
659 // Move the new backedge block to right after the last backedge block.
660 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
661 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
663 // Now that the block has been inserted into the function, create PHI nodes in
664 // the backedge block which correspond to any PHI nodes in the header block.
665 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
666 PHINode *PN = cast<PHINode>(I);
667 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be",
668 BETerminator);
669 NewPN->reserveOperandSpace(BackedgeBlocks.size());
670 if (AA) AA->copyValue(PN, NewPN);
672 // Loop over the PHI node, moving all entries except the one for the
673 // preheader over to the new PHI node.
674 unsigned PreheaderIdx = ~0U;
675 bool HasUniqueIncomingValue = true;
676 Value *UniqueValue = 0;
677 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
678 BasicBlock *IBB = PN->getIncomingBlock(i);
679 Value *IV = PN->getIncomingValue(i);
680 if (IBB == Preheader) {
681 PreheaderIdx = i;
682 } else {
683 NewPN->addIncoming(IV, IBB);
684 if (HasUniqueIncomingValue) {
685 if (UniqueValue == 0)
686 UniqueValue = IV;
687 else if (UniqueValue != IV)
688 HasUniqueIncomingValue = false;
693 // Delete all of the incoming values from the old PN except the preheader's
694 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
695 if (PreheaderIdx != 0) {
696 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
697 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
699 // Nuke all entries except the zero'th.
700 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
701 PN->removeIncomingValue(e-i, false);
703 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
704 PN->addIncoming(NewPN, BEBlock);
706 // As an optimization, if all incoming values in the new PhiNode (which is a
707 // subset of the incoming values of the old PHI node) have the same value,
708 // eliminate the PHI Node.
709 if (HasUniqueIncomingValue) {
710 NewPN->replaceAllUsesWith(UniqueValue);
711 if (AA) AA->deleteValue(NewPN);
712 BEBlock->getInstList().erase(NewPN);
716 // Now that all of the PHI nodes have been inserted and adjusted, modify the
717 // backedge blocks to just to the BEBlock instead of the header.
718 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
719 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
720 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
721 if (TI->getSuccessor(Op) == Header)
722 TI->setSuccessor(Op, BEBlock);
725 //===--- Update all analyses which we must preserve now -----------------===//
727 // Update Loop Information - we know that this block is now in the current
728 // loop and all parent loops.
729 L->addBasicBlockToLoop(BEBlock, LI->getBase());
731 // Update dominator information
732 DT->splitBlock(BEBlock);
733 if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>())
734 DF->splitBlock(BEBlock);
736 return BEBlock;
739 void LoopSimplify::verifyAnalysis() const {
740 // It used to be possible to just assert L->isLoopSimplifyForm(), however
741 // with the introduction of indirectbr, there are now cases where it's
742 // not possible to transform a loop as necessary. We can at least check
743 // that there is an indirectbr near any time there's trouble.
745 // Indirectbr can interfere with preheader and unique backedge insertion.
746 if (!L->getLoopPreheader() || !L->getLoopLatch()) {
747 bool HasIndBrPred = false;
748 for (pred_iterator PI = pred_begin(L->getHeader()),
749 PE = pred_end(L->getHeader()); PI != PE; ++PI)
750 if (isa<IndirectBrInst>((*PI)->getTerminator())) {
751 HasIndBrPred = true;
752 break;
754 assert(HasIndBrPred &&
755 "LoopSimplify has no excuse for missing loop header info!");
758 // Indirectbr can interfere with exit block canonicalization.
759 if (!L->hasDedicatedExits()) {
760 bool HasIndBrExiting = false;
761 SmallVector<BasicBlock*, 8> ExitingBlocks;
762 L->getExitingBlocks(ExitingBlocks);
763 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i)
764 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
765 HasIndBrExiting = true;
766 break;
768 assert(HasIndBrExiting &&
769 "LoopSimplify has no excuse for missing exit block info!");