Use the new way of silencing this warning.
[llvm.git] / lib / Transforms / Utils / Local.cpp
blob383efcec10cda894c220315a2892829966630e83
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/GlobalAlias.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/IntrinsicInst.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/ProfileInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Support/CFG.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/ValueHandle.h"
34 #include "llvm/Support/raw_ostream.h"
35 using namespace llvm;
37 //===----------------------------------------------------------------------===//
38 // Local constant propagation.
41 // ConstantFoldTerminator - If a terminator instruction is predicated on a
42 // constant value, convert it into an unconditional branch to the constant
43 // destination.
45 bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
46 TerminatorInst *T = BB->getTerminator();
48 // Branch - See if we are conditional jumping on constant
49 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
50 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
51 BasicBlock *Dest1 = BI->getSuccessor(0);
52 BasicBlock *Dest2 = BI->getSuccessor(1);
54 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
55 // Are we branching on constant?
56 // YES. Change to unconditional branch...
57 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
58 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
60 //cerr << "Function: " << T->getParent()->getParent()
61 // << "\nRemoving branch from " << T->getParent()
62 // << "\n\nTo: " << OldDest << endl;
64 // Let the basic block know that we are letting go of it. Based on this,
65 // it will adjust it's PHI nodes.
66 assert(BI->getParent() && "Terminator not inserted in block!");
67 OldDest->removePredecessor(BI->getParent());
69 // Set the unconditional destination, and change the insn to be an
70 // unconditional branch.
71 BI->setUnconditionalDest(Destination);
72 return true;
75 if (Dest2 == Dest1) { // Conditional branch to same location?
76 // This branch matches something like this:
77 // br bool %cond, label %Dest, label %Dest
78 // and changes it into: br label %Dest
80 // Let the basic block know that we are letting go of one copy of it.
81 assert(BI->getParent() && "Terminator not inserted in block!");
82 Dest1->removePredecessor(BI->getParent());
84 // Change a conditional branch to unconditional.
85 BI->setUnconditionalDest(Dest1);
86 return true;
88 return false;
91 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
92 // If we are switching on a constant, we can convert the switch into a
93 // single branch instruction!
94 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
95 BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest
96 BasicBlock *DefaultDest = TheOnlyDest;
97 assert(TheOnlyDest == SI->getDefaultDest() &&
98 "Default destination is not successor #0?");
100 // Figure out which case it goes to.
101 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
102 // Found case matching a constant operand?
103 if (SI->getSuccessorValue(i) == CI) {
104 TheOnlyDest = SI->getSuccessor(i);
105 break;
108 // Check to see if this branch is going to the same place as the default
109 // dest. If so, eliminate it as an explicit compare.
110 if (SI->getSuccessor(i) == DefaultDest) {
111 // Remove this entry.
112 DefaultDest->removePredecessor(SI->getParent());
113 SI->removeCase(i);
114 --i; --e; // Don't skip an entry...
115 continue;
118 // Otherwise, check to see if the switch only branches to one destination.
119 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
120 // destinations.
121 if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
124 if (CI && !TheOnlyDest) {
125 // Branching on a constant, but not any of the cases, go to the default
126 // successor.
127 TheOnlyDest = SI->getDefaultDest();
130 // If we found a single destination that we can fold the switch into, do so
131 // now.
132 if (TheOnlyDest) {
133 // Insert the new branch.
134 BranchInst::Create(TheOnlyDest, SI);
135 BasicBlock *BB = SI->getParent();
137 // Remove entries from PHI nodes which we no longer branch to...
138 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
139 // Found case matching a constant operand?
140 BasicBlock *Succ = SI->getSuccessor(i);
141 if (Succ == TheOnlyDest)
142 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
143 else
144 Succ->removePredecessor(BB);
147 // Delete the old switch.
148 BB->getInstList().erase(SI);
149 return true;
152 if (SI->getNumSuccessors() == 2) {
153 // Otherwise, we can fold this switch into a conditional branch
154 // instruction if it has only one non-default destination.
155 Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
156 SI->getSuccessorValue(1), "cond");
157 // Insert the new branch.
158 BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
160 // Delete the old switch.
161 SI->eraseFromParent();
162 return true;
164 return false;
167 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
168 // indirectbr blockaddress(@F, @BB) -> br label @BB
169 if (BlockAddress *BA =
170 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
171 BasicBlock *TheOnlyDest = BA->getBasicBlock();
172 // Insert the new branch.
173 BranchInst::Create(TheOnlyDest, IBI);
175 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
176 if (IBI->getDestination(i) == TheOnlyDest)
177 TheOnlyDest = 0;
178 else
179 IBI->getDestination(i)->removePredecessor(IBI->getParent());
181 IBI->eraseFromParent();
183 // If we didn't find our destination in the IBI successor list, then we
184 // have undefined behavior. Replace the unconditional branch with an
185 // 'unreachable' instruction.
186 if (TheOnlyDest) {
187 BB->getTerminator()->eraseFromParent();
188 new UnreachableInst(BB->getContext(), BB);
191 return true;
195 return false;
199 //===----------------------------------------------------------------------===//
200 // Local dead code elimination.
203 /// isInstructionTriviallyDead - Return true if the result produced by the
204 /// instruction is not used, and the instruction has no side effects.
206 bool llvm::isInstructionTriviallyDead(Instruction *I) {
207 if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
209 // We don't want debug info removed by anything this general.
210 if (isa<DbgInfoIntrinsic>(I)) return false;
212 if (!I->mayHaveSideEffects()) return true;
214 // Special case intrinsics that "may have side effects" but can be deleted
215 // when dead.
216 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
217 // Safe to delete llvm.stacksave if dead.
218 if (II->getIntrinsicID() == Intrinsic::stacksave)
219 return true;
220 return false;
223 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
224 /// trivially dead instruction, delete it. If that makes any of its operands
225 /// trivially dead, delete them too, recursively. Return true if any
226 /// instructions were deleted.
227 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
228 Instruction *I = dyn_cast<Instruction>(V);
229 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
230 return false;
232 SmallVector<Instruction*, 16> DeadInsts;
233 DeadInsts.push_back(I);
235 do {
236 I = DeadInsts.pop_back_val();
238 // Null out all of the instruction's operands to see if any operand becomes
239 // dead as we go.
240 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
241 Value *OpV = I->getOperand(i);
242 I->setOperand(i, 0);
244 if (!OpV->use_empty()) continue;
246 // If the operand is an instruction that became dead as we nulled out the
247 // operand, and if it is 'trivially' dead, delete it in a future loop
248 // iteration.
249 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
250 if (isInstructionTriviallyDead(OpI))
251 DeadInsts.push_back(OpI);
254 I->eraseFromParent();
255 } while (!DeadInsts.empty());
257 return true;
260 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
261 /// dead PHI node, due to being a def-use chain of single-use nodes that
262 /// either forms a cycle or is terminated by a trivially dead instruction,
263 /// delete it. If that makes any of its operands trivially dead, delete them
264 /// too, recursively. Return true if the PHI node is actually deleted.
265 bool
266 llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
267 // We can remove a PHI if it is on a cycle in the def-use graph
268 // where each node in the cycle has degree one, i.e. only one use,
269 // and is an instruction with no side effects.
270 if (!PN->hasOneUse())
271 return false;
273 bool Changed = false;
274 SmallPtrSet<PHINode *, 4> PHIs;
275 PHIs.insert(PN);
276 for (Instruction *J = cast<Instruction>(*PN->use_begin());
277 J->hasOneUse() && !J->mayHaveSideEffects();
278 J = cast<Instruction>(*J->use_begin()))
279 // If we find a PHI more than once, we're on a cycle that
280 // won't prove fruitful.
281 if (PHINode *JP = dyn_cast<PHINode>(J))
282 if (!PHIs.insert(cast<PHINode>(JP))) {
283 // Break the cycle and delete the PHI and its operands.
284 JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
285 (void)RecursivelyDeleteTriviallyDeadInstructions(JP);
286 Changed = true;
287 break;
289 return Changed;
292 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
293 /// simplify any instructions in it and recursively delete dead instructions.
295 /// This returns true if it changed the code, note that it can delete
296 /// instructions in other blocks as well in this block.
297 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
298 bool MadeChange = false;
299 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
300 Instruction *Inst = BI++;
302 if (Value *V = SimplifyInstruction(Inst, TD)) {
303 WeakVH BIHandle(BI);
304 ReplaceAndSimplifyAllUses(Inst, V, TD);
305 MadeChange = true;
306 if (BIHandle != BI)
307 BI = BB->begin();
308 continue;
311 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
313 return MadeChange;
316 //===----------------------------------------------------------------------===//
317 // Control Flow Graph Restructuring.
321 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
322 /// method is called when we're about to delete Pred as a predecessor of BB. If
323 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
325 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
326 /// nodes that collapse into identity values. For example, if we have:
327 /// x = phi(1, 0, 0, 0)
328 /// y = and x, z
330 /// .. and delete the predecessor corresponding to the '1', this will attempt to
331 /// recursively fold the and to 0.
332 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
333 TargetData *TD) {
334 // This only adjusts blocks with PHI nodes.
335 if (!isa<PHINode>(BB->begin()))
336 return;
338 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
339 // them down. This will leave us with single entry phi nodes and other phis
340 // that can be removed.
341 BB->removePredecessor(Pred, true);
343 WeakVH PhiIt = &BB->front();
344 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
345 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
347 Value *PNV = SimplifyInstruction(PN, TD);
348 if (PNV == 0) continue;
350 // If we're able to simplify the phi to a single value, substitute the new
351 // value into all of its uses.
352 assert(PNV != PN && "SimplifyInstruction broken!");
354 Value *OldPhiIt = PhiIt;
355 ReplaceAndSimplifyAllUses(PN, PNV, TD);
357 // If recursive simplification ended up deleting the next PHI node we would
358 // iterate to, then our iterator is invalid, restart scanning from the top
359 // of the block.
360 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
365 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
366 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
367 /// between them, moving the instructions in the predecessor into DestBB and
368 /// deleting the predecessor block.
370 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
371 // If BB has single-entry PHI nodes, fold them.
372 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
373 Value *NewVal = PN->getIncomingValue(0);
374 // Replace self referencing PHI with undef, it must be dead.
375 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
376 PN->replaceAllUsesWith(NewVal);
377 PN->eraseFromParent();
380 BasicBlock *PredBB = DestBB->getSinglePredecessor();
381 assert(PredBB && "Block doesn't have a single predecessor!");
383 // Splice all the instructions from PredBB to DestBB.
384 PredBB->getTerminator()->eraseFromParent();
385 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
387 // Zap anything that took the address of DestBB. Not doing this will give the
388 // address an invalid value.
389 if (DestBB->hasAddressTaken()) {
390 BlockAddress *BA = BlockAddress::get(DestBB);
391 Constant *Replacement =
392 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
393 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
394 BA->getType()));
395 BA->destroyConstant();
398 // Anything that branched to PredBB now branches to DestBB.
399 PredBB->replaceAllUsesWith(DestBB);
401 if (P) {
402 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
403 if (PI) {
404 PI->replaceAllUses(PredBB, DestBB);
405 PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
408 // Nuke BB.
409 PredBB->eraseFromParent();
412 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
413 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
415 /// Assumption: Succ is the single successor for BB.
417 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
418 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
420 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
421 << Succ->getName() << "\n");
422 // Shortcut, if there is only a single predecessor it must be BB and merging
423 // is always safe
424 if (Succ->getSinglePredecessor()) return true;
426 // Make a list of the predecessors of BB
427 typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
428 BlockSet BBPreds(pred_begin(BB), pred_end(BB));
430 // Use that list to make another list of common predecessors of BB and Succ
431 BlockSet CommonPreds;
432 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
433 PI != PE; ++PI) {
434 BasicBlock *P = *PI;
435 if (BBPreds.count(P))
436 CommonPreds.insert(P);
439 // Shortcut, if there are no common predecessors, merging is always safe
440 if (CommonPreds.empty())
441 return true;
443 // Look at all the phi nodes in Succ, to see if they present a conflict when
444 // merging these blocks
445 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
446 PHINode *PN = cast<PHINode>(I);
448 // If the incoming value from BB is again a PHINode in
449 // BB which has the same incoming value for *PI as PN does, we can
450 // merge the phi nodes and then the blocks can still be merged
451 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
452 if (BBPN && BBPN->getParent() == BB) {
453 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
454 PI != PE; PI++) {
455 if (BBPN->getIncomingValueForBlock(*PI)
456 != PN->getIncomingValueForBlock(*PI)) {
457 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
458 << Succ->getName() << " is conflicting with "
459 << BBPN->getName() << " with regard to common predecessor "
460 << (*PI)->getName() << "\n");
461 return false;
464 } else {
465 Value* Val = PN->getIncomingValueForBlock(BB);
466 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
467 PI != PE; PI++) {
468 // See if the incoming value for the common predecessor is equal to the
469 // one for BB, in which case this phi node will not prevent the merging
470 // of the block.
471 if (Val != PN->getIncomingValueForBlock(*PI)) {
472 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
473 << Succ->getName() << " is conflicting with regard to common "
474 << "predecessor " << (*PI)->getName() << "\n");
475 return false;
481 return true;
484 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
485 /// unconditional branch, and contains no instructions other than PHI nodes,
486 /// potential debug intrinsics and the branch. If possible, eliminate BB by
487 /// rewriting all the predecessors to branch to the successor block and return
488 /// true. If we can't transform, return false.
489 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
490 assert(BB != &BB->getParent()->getEntryBlock() &&
491 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
493 // We can't eliminate infinite loops.
494 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
495 if (BB == Succ) return false;
497 // Check to see if merging these blocks would cause conflicts for any of the
498 // phi nodes in BB or Succ. If not, we can safely merge.
499 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
501 // Check for cases where Succ has multiple predecessors and a PHI node in BB
502 // has uses which will not disappear when the PHI nodes are merged. It is
503 // possible to handle such cases, but difficult: it requires checking whether
504 // BB dominates Succ, which is non-trivial to calculate in the case where
505 // Succ has multiple predecessors. Also, it requires checking whether
506 // constructing the necessary self-referential PHI node doesn't intoduce any
507 // conflicts; this isn't too difficult, but the previous code for doing this
508 // was incorrect.
510 // Note that if this check finds a live use, BB dominates Succ, so BB is
511 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
512 // folding the branch isn't profitable in that case anyway.
513 if (!Succ->getSinglePredecessor()) {
514 BasicBlock::iterator BBI = BB->begin();
515 while (isa<PHINode>(*BBI)) {
516 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
517 UI != E; ++UI) {
518 if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
519 if (PN->getIncomingBlock(UI) != BB)
520 return false;
521 } else {
522 return false;
525 ++BBI;
529 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
531 if (isa<PHINode>(Succ->begin())) {
532 // If there is more than one pred of succ, and there are PHI nodes in
533 // the successor, then we need to add incoming edges for the PHI nodes
535 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
537 // Loop over all of the PHI nodes in the successor of BB.
538 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
539 PHINode *PN = cast<PHINode>(I);
540 Value *OldVal = PN->removeIncomingValue(BB, false);
541 assert(OldVal && "No entry in PHI for Pred BB!");
543 // If this incoming value is one of the PHI nodes in BB, the new entries
544 // in the PHI node are the entries from the old PHI.
545 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
546 PHINode *OldValPN = cast<PHINode>(OldVal);
547 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
548 // Note that, since we are merging phi nodes and BB and Succ might
549 // have common predecessors, we could end up with a phi node with
550 // identical incoming branches. This will be cleaned up later (and
551 // will trigger asserts if we try to clean it up now, without also
552 // simplifying the corresponding conditional branch).
553 PN->addIncoming(OldValPN->getIncomingValue(i),
554 OldValPN->getIncomingBlock(i));
555 } else {
556 // Add an incoming value for each of the new incoming values.
557 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
558 PN->addIncoming(OldVal, BBPreds[i]);
563 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
564 if (Succ->getSinglePredecessor()) {
565 // BB is the only predecessor of Succ, so Succ will end up with exactly
566 // the same predecessors BB had.
567 Succ->getInstList().splice(Succ->begin(),
568 BB->getInstList(), BB->begin());
569 } else {
570 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
571 assert(PN->use_empty() && "There shouldn't be any uses here!");
572 PN->eraseFromParent();
576 // Everything that jumped to BB now goes to Succ.
577 BB->replaceAllUsesWith(Succ);
578 if (!Succ->hasName()) Succ->takeName(BB);
579 BB->eraseFromParent(); // Delete the old basic block.
580 return true;
583 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
584 /// nodes in this block. This doesn't try to be clever about PHI nodes
585 /// which differ only in the order of the incoming values, but instcombine
586 /// orders them so it usually won't matter.
588 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
589 bool Changed = false;
591 // This implementation doesn't currently consider undef operands
592 // specially. Theroetically, two phis which are identical except for
593 // one having an undef where the other doesn't could be collapsed.
595 // Map from PHI hash values to PHI nodes. If multiple PHIs have
596 // the same hash value, the element is the first PHI in the
597 // linked list in CollisionMap.
598 DenseMap<uintptr_t, PHINode *> HashMap;
600 // Maintain linked lists of PHI nodes with common hash values.
601 DenseMap<PHINode *, PHINode *> CollisionMap;
603 // Examine each PHI.
604 for (BasicBlock::iterator I = BB->begin();
605 PHINode *PN = dyn_cast<PHINode>(I++); ) {
606 // Compute a hash value on the operands. Instcombine will likely have sorted
607 // them, which helps expose duplicates, but we have to check all the
608 // operands to be safe in case instcombine hasn't run.
609 uintptr_t Hash = 0;
610 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
611 // This hash algorithm is quite weak as hash functions go, but it seems
612 // to do a good enough job for this particular purpose, and is very quick.
613 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
614 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
616 // If we've never seen this hash value before, it's a unique PHI.
617 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
618 HashMap.insert(std::make_pair(Hash, PN));
619 if (Pair.second) continue;
620 // Otherwise it's either a duplicate or a hash collision.
621 for (PHINode *OtherPN = Pair.first->second; ; ) {
622 if (OtherPN->isIdenticalTo(PN)) {
623 // A duplicate. Replace this PHI with its duplicate.
624 PN->replaceAllUsesWith(OtherPN);
625 PN->eraseFromParent();
626 Changed = true;
627 break;
629 // A non-duplicate hash collision.
630 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
631 if (I == CollisionMap.end()) {
632 // Set this PHI to be the head of the linked list of colliding PHIs.
633 PHINode *Old = Pair.first->second;
634 Pair.first->second = PN;
635 CollisionMap[PN] = Old;
636 break;
638 // Procede to the next PHI in the list.
639 OtherPN = I->second;
643 return Changed;