Add the select optimization recently added to instcombine to constant folding.
[llvm.git] / utils / TableGen / CodeGenDAGPatterns.h
blob946dceed66c0add37d0cadc471255626fc51ca0f
1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
13 //===----------------------------------------------------------------------===//
15 #ifndef CODEGEN_DAGPATTERNS_H
16 #define CODEGEN_DAGPATTERNS_H
18 #include "CodeGenTarget.h"
19 #include "CodeGenIntrinsics.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringMap.h"
22 #include <set>
23 #include <algorithm>
24 #include <vector>
25 #include <map>
27 namespace llvm {
28 class Record;
29 struct Init;
30 class ListInit;
31 class DagInit;
32 class SDNodeInfo;
33 class TreePattern;
34 class TreePatternNode;
35 class CodeGenDAGPatterns;
36 class ComplexPattern;
38 /// EEVT::DAGISelGenValueType - These are some extended forms of
39 /// MVT::SimpleValueType that we use as lattice values during type inference.
40 /// The existing MVT iAny, fAny and vAny types suffice to represent
41 /// arbitrary integer, floating-point, and vector types, so only an unknown
42 /// value is needed.
43 namespace EEVT {
44 /// TypeSet - This is either empty if it's completely unknown, or holds a set
45 /// of types. It is used during type inference because register classes can
46 /// have multiple possible types and we don't know which one they get until
47 /// type inference is complete.
48 ///
49 /// TypeSet can have three states:
50 /// Vector is empty: The type is completely unknown, it can be any valid
51 /// target type.
52 /// Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one
53 /// of those types only.
54 /// Vector has one concrete type: The type is completely known.
55 ///
56 class TypeSet {
57 SmallVector<MVT::SimpleValueType, 4> TypeVec;
58 public:
59 TypeSet() {}
60 TypeSet(MVT::SimpleValueType VT, TreePattern &TP);
61 TypeSet(const std::vector<MVT::SimpleValueType> &VTList);
63 bool isCompletelyUnknown() const { return TypeVec.empty(); }
65 bool isConcrete() const {
66 if (TypeVec.size() != 1) return false;
67 unsigned char T = TypeVec[0]; (void)T;
68 assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny);
69 return true;
72 MVT::SimpleValueType getConcrete() const {
73 assert(isConcrete() && "Type isn't concrete yet");
74 return (MVT::SimpleValueType)TypeVec[0];
77 bool isDynamicallyResolved() const {
78 return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny;
81 const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const {
82 assert(!TypeVec.empty() && "Not a type list!");
83 return TypeVec;
86 bool isVoid() const {
87 return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid;
90 /// hasIntegerTypes - Return true if this TypeSet contains any integer value
91 /// types.
92 bool hasIntegerTypes() const;
94 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
95 /// a floating point value type.
96 bool hasFloatingPointTypes() const;
98 /// hasVectorTypes - Return true if this TypeSet contains a vector value
99 /// type.
100 bool hasVectorTypes() const;
102 /// getName() - Return this TypeSet as a string.
103 std::string getName() const;
105 /// MergeInTypeInfo - This merges in type information from the specified
106 /// argument. If 'this' changes, it returns true. If the two types are
107 /// contradictory (e.g. merge f32 into i32) then this throws an exception.
108 bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP);
110 bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) {
111 return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP);
114 /// Force this type list to only contain integer types.
115 bool EnforceInteger(TreePattern &TP);
117 /// Force this type list to only contain floating point types.
118 bool EnforceFloatingPoint(TreePattern &TP);
120 /// EnforceScalar - Remove all vector types from this type list.
121 bool EnforceScalar(TreePattern &TP);
123 /// EnforceVector - Remove all non-vector types from this type list.
124 bool EnforceVector(TreePattern &TP);
126 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
127 /// this an other based on this information.
128 bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP);
130 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
131 /// whose element is VT.
132 bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
134 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to
135 /// be a vector type VT.
136 bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
138 bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; }
139 bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; }
141 private:
142 /// FillWithPossibleTypes - Set to all legal types and return true, only
143 /// valid on completely unknown type sets. If Pred is non-null, only MVTs
144 /// that pass the predicate are added.
145 bool FillWithPossibleTypes(TreePattern &TP,
146 bool (*Pred)(MVT::SimpleValueType) = 0,
147 const char *PredicateName = 0);
151 /// Set type used to track multiply used variables in patterns
152 typedef std::set<std::string> MultipleUseVarSet;
154 /// SDTypeConstraint - This is a discriminated union of constraints,
155 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
156 struct SDTypeConstraint {
157 SDTypeConstraint(Record *R);
159 unsigned OperandNo; // The operand # this constraint applies to.
160 enum {
161 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
162 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
163 SDTCisSubVecOfVec
164 } ConstraintType;
166 union { // The discriminated union.
167 struct {
168 MVT::SimpleValueType VT;
169 } SDTCisVT_Info;
170 struct {
171 unsigned OtherOperandNum;
172 } SDTCisSameAs_Info;
173 struct {
174 unsigned OtherOperandNum;
175 } SDTCisVTSmallerThanOp_Info;
176 struct {
177 unsigned BigOperandNum;
178 } SDTCisOpSmallerThanOp_Info;
179 struct {
180 unsigned OtherOperandNum;
181 } SDTCisEltOfVec_Info;
182 struct {
183 unsigned OtherOperandNum;
184 } SDTCisSubVecOfVec_Info;
185 } x;
187 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
188 /// constraint to the nodes operands. This returns true if it makes a
189 /// change, false otherwise. If a type contradiction is found, throw an
190 /// exception.
191 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
192 TreePattern &TP) const;
195 /// SDNodeInfo - One of these records is created for each SDNode instance in
196 /// the target .td file. This represents the various dag nodes we will be
197 /// processing.
198 class SDNodeInfo {
199 Record *Def;
200 std::string EnumName;
201 std::string SDClassName;
202 unsigned Properties;
203 unsigned NumResults;
204 int NumOperands;
205 std::vector<SDTypeConstraint> TypeConstraints;
206 public:
207 SDNodeInfo(Record *R); // Parse the specified record.
209 unsigned getNumResults() const { return NumResults; }
211 /// getNumOperands - This is the number of operands required or -1 if
212 /// variadic.
213 int getNumOperands() const { return NumOperands; }
214 Record *getRecord() const { return Def; }
215 const std::string &getEnumName() const { return EnumName; }
216 const std::string &getSDClassName() const { return SDClassName; }
218 const std::vector<SDTypeConstraint> &getTypeConstraints() const {
219 return TypeConstraints;
222 /// getKnownType - If the type constraints on this node imply a fixed type
223 /// (e.g. all stores return void, etc), then return it as an
224 /// MVT::SimpleValueType. Otherwise, return MVT::Other.
225 MVT::SimpleValueType getKnownType(unsigned ResNo) const;
227 /// hasProperty - Return true if this node has the specified property.
229 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
231 /// ApplyTypeConstraints - Given a node in a pattern, apply the type
232 /// constraints for this node to the operands of the node. This returns
233 /// true if it makes a change, false otherwise. If a type contradiction is
234 /// found, throw an exception.
235 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
236 bool MadeChange = false;
237 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
238 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
239 return MadeChange;
243 /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
244 /// patterns), and as such should be ref counted. We currently just leak all
245 /// TreePatternNode objects!
246 class TreePatternNode {
247 /// The type of each node result. Before and during type inference, each
248 /// result may be a set of possible types. After (successful) type inference,
249 /// each is a single concrete type.
250 SmallVector<EEVT::TypeSet, 1> Types;
252 /// Operator - The Record for the operator if this is an interior node (not
253 /// a leaf).
254 Record *Operator;
256 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
258 Init *Val;
260 /// Name - The name given to this node with the :$foo notation.
262 std::string Name;
264 /// PredicateFns - The predicate functions to execute on this node to check
265 /// for a match. If this list is empty, no predicate is involved.
266 std::vector<std::string> PredicateFns;
268 /// TransformFn - The transformation function to execute on this node before
269 /// it can be substituted into the resulting instruction on a pattern match.
270 Record *TransformFn;
272 std::vector<TreePatternNode*> Children;
273 public:
274 TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch,
275 unsigned NumResults)
276 : Operator(Op), Val(0), TransformFn(0), Children(Ch) {
277 Types.resize(NumResults);
279 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor
280 : Operator(0), Val(val), TransformFn(0) {
281 Types.resize(NumResults);
283 ~TreePatternNode();
285 const std::string &getName() const { return Name; }
286 void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
288 bool isLeaf() const { return Val != 0; }
290 // Type accessors.
291 unsigned getNumTypes() const { return Types.size(); }
292 MVT::SimpleValueType getType(unsigned ResNo) const {
293 return Types[ResNo].getConcrete();
295 const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; }
296 const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; }
297 EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; }
298 void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; }
300 bool hasTypeSet(unsigned ResNo) const {
301 return Types[ResNo].isConcrete();
303 bool isTypeCompletelyUnknown(unsigned ResNo) const {
304 return Types[ResNo].isCompletelyUnknown();
306 bool isTypeDynamicallyResolved(unsigned ResNo) const {
307 return Types[ResNo].isDynamicallyResolved();
310 Init *getLeafValue() const { assert(isLeaf()); return Val; }
311 Record *getOperator() const { assert(!isLeaf()); return Operator; }
313 unsigned getNumChildren() const { return Children.size(); }
314 TreePatternNode *getChild(unsigned N) const { return Children[N]; }
315 void setChild(unsigned i, TreePatternNode *N) {
316 Children[i] = N;
319 /// hasChild - Return true if N is any of our children.
320 bool hasChild(const TreePatternNode *N) const {
321 for (unsigned i = 0, e = Children.size(); i != e; ++i)
322 if (Children[i] == N) return true;
323 return false;
326 const std::vector<std::string> &getPredicateFns() const {return PredicateFns;}
327 void clearPredicateFns() { PredicateFns.clear(); }
328 void setPredicateFns(const std::vector<std::string> &Fns) {
329 assert(PredicateFns.empty() && "Overwriting non-empty predicate list!");
330 PredicateFns = Fns;
332 void addPredicateFn(const std::string &Fn) {
333 assert(!Fn.empty() && "Empty predicate string!");
334 if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) ==
335 PredicateFns.end())
336 PredicateFns.push_back(Fn);
339 Record *getTransformFn() const { return TransformFn; }
340 void setTransformFn(Record *Fn) { TransformFn = Fn; }
342 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
343 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
344 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
346 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
347 /// return the ComplexPattern information, otherwise return null.
348 const ComplexPattern *
349 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
351 /// NodeHasProperty - Return true if this node has the specified property.
352 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
354 /// TreeHasProperty - Return true if any node in this tree has the specified
355 /// property.
356 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
358 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
359 /// marked isCommutative.
360 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
362 void print(raw_ostream &OS) const;
363 void dump() const;
365 public: // Higher level manipulation routines.
367 /// clone - Return a new copy of this tree.
369 TreePatternNode *clone() const;
371 /// RemoveAllTypes - Recursively strip all the types of this tree.
372 void RemoveAllTypes();
374 /// isIsomorphicTo - Return true if this node is recursively isomorphic to
375 /// the specified node. For this comparison, all of the state of the node
376 /// is considered, except for the assigned name. Nodes with differing names
377 /// that are otherwise identical are considered isomorphic.
378 bool isIsomorphicTo(const TreePatternNode *N,
379 const MultipleUseVarSet &DepVars) const;
381 /// SubstituteFormalArguments - Replace the formal arguments in this tree
382 /// with actual values specified by ArgMap.
383 void SubstituteFormalArguments(std::map<std::string,
384 TreePatternNode*> &ArgMap);
386 /// InlinePatternFragments - If this pattern refers to any pattern
387 /// fragments, inline them into place, giving us a pattern without any
388 /// PatFrag references.
389 TreePatternNode *InlinePatternFragments(TreePattern &TP);
391 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
392 /// this node and its children in the tree. This returns true if it makes a
393 /// change, false otherwise. If a type contradiction is found, throw an
394 /// exception.
395 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
397 /// UpdateNodeType - Set the node type of N to VT if VT contains
398 /// information. If N already contains a conflicting type, then throw an
399 /// exception. This returns true if any information was updated.
401 bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy,
402 TreePattern &TP) {
403 return Types[ResNo].MergeInTypeInfo(InTy, TP);
406 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
407 TreePattern &TP) {
408 return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP);
411 /// ContainsUnresolvedType - Return true if this tree contains any
412 /// unresolved types.
413 bool ContainsUnresolvedType() const {
414 for (unsigned i = 0, e = Types.size(); i != e; ++i)
415 if (!Types[i].isConcrete()) return true;
417 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
418 if (getChild(i)->ContainsUnresolvedType()) return true;
419 return false;
422 /// canPatternMatch - If it is impossible for this pattern to match on this
423 /// target, fill in Reason and return false. Otherwise, return true.
424 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
427 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
428 TPN.print(OS);
429 return OS;
433 /// TreePattern - Represent a pattern, used for instructions, pattern
434 /// fragments, etc.
436 class TreePattern {
437 /// Trees - The list of pattern trees which corresponds to this pattern.
438 /// Note that PatFrag's only have a single tree.
440 std::vector<TreePatternNode*> Trees;
442 /// NamedNodes - This is all of the nodes that have names in the trees in this
443 /// pattern.
444 StringMap<SmallVector<TreePatternNode*,1> > NamedNodes;
446 /// TheRecord - The actual TableGen record corresponding to this pattern.
448 Record *TheRecord;
450 /// Args - This is a list of all of the arguments to this pattern (for
451 /// PatFrag patterns), which are the 'node' markers in this pattern.
452 std::vector<std::string> Args;
454 /// CDP - the top-level object coordinating this madness.
456 CodeGenDAGPatterns &CDP;
458 /// isInputPattern - True if this is an input pattern, something to match.
459 /// False if this is an output pattern, something to emit.
460 bool isInputPattern;
461 public:
463 /// TreePattern constructor - Parse the specified DagInits into the
464 /// current record.
465 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
466 CodeGenDAGPatterns &ise);
467 TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
468 CodeGenDAGPatterns &ise);
469 TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
470 CodeGenDAGPatterns &ise);
472 /// getTrees - Return the tree patterns which corresponds to this pattern.
474 const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
475 unsigned getNumTrees() const { return Trees.size(); }
476 TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
477 TreePatternNode *getOnlyTree() const {
478 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
479 return Trees[0];
482 const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() {
483 if (NamedNodes.empty())
484 ComputeNamedNodes();
485 return NamedNodes;
488 /// getRecord - Return the actual TableGen record corresponding to this
489 /// pattern.
491 Record *getRecord() const { return TheRecord; }
493 unsigned getNumArgs() const { return Args.size(); }
494 const std::string &getArgName(unsigned i) const {
495 assert(i < Args.size() && "Argument reference out of range!");
496 return Args[i];
498 std::vector<std::string> &getArgList() { return Args; }
500 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
502 /// InlinePatternFragments - If this pattern refers to any pattern
503 /// fragments, inline them into place, giving us a pattern without any
504 /// PatFrag references.
505 void InlinePatternFragments() {
506 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
507 Trees[i] = Trees[i]->InlinePatternFragments(*this);
510 /// InferAllTypes - Infer/propagate as many types throughout the expression
511 /// patterns as possible. Return true if all types are inferred, false
512 /// otherwise. Throw an exception if a type contradiction is found.
513 bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> >
514 *NamedTypes=0);
516 /// error - Throw an exception, prefixing it with information about this
517 /// pattern.
518 void error(const std::string &Msg) const;
520 void print(raw_ostream &OS) const;
521 void dump() const;
523 private:
524 TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName);
525 void ComputeNamedNodes();
526 void ComputeNamedNodes(TreePatternNode *N);
529 /// DAGDefaultOperand - One of these is created for each PredicateOperand
530 /// or OptionalDefOperand that has a set ExecuteAlways / DefaultOps field.
531 struct DAGDefaultOperand {
532 std::vector<TreePatternNode*> DefaultOps;
535 class DAGInstruction {
536 TreePattern *Pattern;
537 std::vector<Record*> Results;
538 std::vector<Record*> Operands;
539 std::vector<Record*> ImpResults;
540 TreePatternNode *ResultPattern;
541 public:
542 DAGInstruction(TreePattern *TP,
543 const std::vector<Record*> &results,
544 const std::vector<Record*> &operands,
545 const std::vector<Record*> &impresults)
546 : Pattern(TP), Results(results), Operands(operands),
547 ImpResults(impresults), ResultPattern(0) {}
549 const TreePattern *getPattern() const { return Pattern; }
550 unsigned getNumResults() const { return Results.size(); }
551 unsigned getNumOperands() const { return Operands.size(); }
552 unsigned getNumImpResults() const { return ImpResults.size(); }
553 const std::vector<Record*>& getImpResults() const { return ImpResults; }
555 void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
557 Record *getResult(unsigned RN) const {
558 assert(RN < Results.size());
559 return Results[RN];
562 Record *getOperand(unsigned ON) const {
563 assert(ON < Operands.size());
564 return Operands[ON];
567 Record *getImpResult(unsigned RN) const {
568 assert(RN < ImpResults.size());
569 return ImpResults[RN];
572 TreePatternNode *getResultPattern() const { return ResultPattern; }
575 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
576 /// processed to produce isel.
577 class PatternToMatch {
578 public:
579 PatternToMatch(Record *srcrecord, ListInit *preds,
580 TreePatternNode *src, TreePatternNode *dst,
581 const std::vector<Record*> &dstregs,
582 unsigned complexity, unsigned uid)
583 : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst),
584 Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {}
586 Record *SrcRecord; // Originating Record for the pattern.
587 ListInit *Predicates; // Top level predicate conditions to match.
588 TreePatternNode *SrcPattern; // Source pattern to match.
589 TreePatternNode *DstPattern; // Resulting pattern.
590 std::vector<Record*> Dstregs; // Physical register defs being matched.
591 unsigned AddedComplexity; // Add to matching pattern complexity.
592 unsigned ID; // Unique ID for the record.
594 Record *getSrcRecord() const { return SrcRecord; }
595 ListInit *getPredicates() const { return Predicates; }
596 TreePatternNode *getSrcPattern() const { return SrcPattern; }
597 TreePatternNode *getDstPattern() const { return DstPattern; }
598 const std::vector<Record*> &getDstRegs() const { return Dstregs; }
599 unsigned getAddedComplexity() const { return AddedComplexity; }
601 std::string getPredicateCheck() const;
603 /// Compute the complexity metric for the input pattern. This roughly
604 /// corresponds to the number of nodes that are covered.
605 unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
608 // Deterministic comparison of Record*.
609 struct RecordPtrCmp {
610 bool operator()(const Record *LHS, const Record *RHS) const;
613 class CodeGenDAGPatterns {
614 RecordKeeper &Records;
615 CodeGenTarget Target;
616 std::vector<CodeGenIntrinsic> Intrinsics;
617 std::vector<CodeGenIntrinsic> TgtIntrinsics;
619 std::map<Record*, SDNodeInfo, RecordPtrCmp> SDNodes;
620 std::map<Record*, std::pair<Record*, std::string>, RecordPtrCmp> SDNodeXForms;
621 std::map<Record*, ComplexPattern, RecordPtrCmp> ComplexPatterns;
622 std::map<Record*, TreePattern*, RecordPtrCmp> PatternFragments;
623 std::map<Record*, DAGDefaultOperand, RecordPtrCmp> DefaultOperands;
624 std::map<Record*, DAGInstruction, RecordPtrCmp> Instructions;
626 // Specific SDNode definitions:
627 Record *intrinsic_void_sdnode;
628 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
630 /// PatternsToMatch - All of the things we are matching on the DAG. The first
631 /// value is the pattern to match, the second pattern is the result to
632 /// emit.
633 std::vector<PatternToMatch> PatternsToMatch;
634 public:
635 CodeGenDAGPatterns(RecordKeeper &R);
636 ~CodeGenDAGPatterns();
638 CodeGenTarget &getTargetInfo() { return Target; }
639 const CodeGenTarget &getTargetInfo() const { return Target; }
641 Record *getSDNodeNamed(const std::string &Name) const;
643 const SDNodeInfo &getSDNodeInfo(Record *R) const {
644 assert(SDNodes.count(R) && "Unknown node!");
645 return SDNodes.find(R)->second;
648 // Node transformation lookups.
649 typedef std::pair<Record*, std::string> NodeXForm;
650 const NodeXForm &getSDNodeTransform(Record *R) const {
651 assert(SDNodeXForms.count(R) && "Invalid transform!");
652 return SDNodeXForms.find(R)->second;
655 typedef std::map<Record*, NodeXForm, RecordPtrCmp>::const_iterator
656 nx_iterator;
657 nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
658 nx_iterator nx_end() const { return SDNodeXForms.end(); }
661 const ComplexPattern &getComplexPattern(Record *R) const {
662 assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
663 return ComplexPatterns.find(R)->second;
666 const CodeGenIntrinsic &getIntrinsic(Record *R) const {
667 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
668 if (Intrinsics[i].TheDef == R) return Intrinsics[i];
669 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
670 if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
671 assert(0 && "Unknown intrinsic!");
672 abort();
675 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
676 if (IID-1 < Intrinsics.size())
677 return Intrinsics[IID-1];
678 if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
679 return TgtIntrinsics[IID-Intrinsics.size()-1];
680 assert(0 && "Bad intrinsic ID!");
681 abort();
684 unsigned getIntrinsicID(Record *R) const {
685 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
686 if (Intrinsics[i].TheDef == R) return i;
687 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
688 if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
689 assert(0 && "Unknown intrinsic!");
690 abort();
693 const DAGDefaultOperand &getDefaultOperand(Record *R) const {
694 assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
695 return DefaultOperands.find(R)->second;
698 // Pattern Fragment information.
699 TreePattern *getPatternFragment(Record *R) const {
700 assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
701 return PatternFragments.find(R)->second;
703 TreePattern *getPatternFragmentIfRead(Record *R) const {
704 if (!PatternFragments.count(R)) return 0;
705 return PatternFragments.find(R)->second;
708 typedef std::map<Record*, TreePattern*, RecordPtrCmp>::const_iterator
709 pf_iterator;
710 pf_iterator pf_begin() const { return PatternFragments.begin(); }
711 pf_iterator pf_end() const { return PatternFragments.end(); }
713 // Patterns to match information.
714 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
715 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
716 ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
720 const DAGInstruction &getInstruction(Record *R) const {
721 assert(Instructions.count(R) && "Unknown instruction!");
722 return Instructions.find(R)->second;
725 Record *get_intrinsic_void_sdnode() const {
726 return intrinsic_void_sdnode;
728 Record *get_intrinsic_w_chain_sdnode() const {
729 return intrinsic_w_chain_sdnode;
731 Record *get_intrinsic_wo_chain_sdnode() const {
732 return intrinsic_wo_chain_sdnode;
735 bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
737 private:
738 void ParseNodeInfo();
739 void ParseNodeTransforms();
740 void ParseComplexPatterns();
741 void ParsePatternFragments();
742 void ParseDefaultOperands();
743 void ParseInstructions();
744 void ParsePatterns();
745 void InferInstructionFlags();
746 void GenerateVariants();
748 void AddPatternToMatch(const TreePattern *Pattern, const PatternToMatch &PTM);
749 void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
750 std::map<std::string,
751 TreePatternNode*> &InstInputs,
752 std::map<std::string,
753 TreePatternNode*> &InstResults,
754 std::vector<Record*> &InstImpResults);
756 } // end namespace llvm
758 #endif