Remove includes of Support/Compiler.h that are no longer needed after the
[llvm.git] / lib / Target / X86 / X86FloatingPoint.cpp
bloba2fe9b095de419a28c74407b30fdffdbaef856d7
1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which converts floating point instructions from
11 // virtual registers into register stack instructions. This pass uses live
12 // variable information to indicate where the FPn registers are used and their
13 // lifetimes.
15 // This pass is hampered by the lack of decent CFG manipulation routines for
16 // machine code. In particular, this wants to be able to split critical edges
17 // as necessary, traverse the machine basic block CFG in depth-first order, and
18 // allow there to be multiple machine basic blocks for each LLVM basicblock
19 // (needed for critical edge splitting).
21 // In particular, this pass currently barfs on critical edges. Because of this,
22 // it requires the instruction selector to insert FP_REG_KILL instructions on
23 // the exits of any basic block that has critical edges going from it, or which
24 // branch to a critical basic block.
26 // FIXME: this is not implemented yet. The stackifier pass only works on local
27 // basic blocks.
29 //===----------------------------------------------------------------------===//
31 #define DEBUG_TYPE "x86-codegen"
32 #include "X86.h"
33 #include "X86InstrInfo.h"
34 #include "llvm/ADT/DepthFirstIterator.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/Passes.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include <algorithm>
49 using namespace llvm;
51 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
52 STATISTIC(NumFP , "Number of floating point instructions");
54 namespace {
55 struct FPS : public MachineFunctionPass {
56 static char ID;
57 FPS() : MachineFunctionPass(&ID) {}
59 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60 AU.setPreservesCFG();
61 AU.addPreservedID(MachineLoopInfoID);
62 AU.addPreservedID(MachineDominatorsID);
63 MachineFunctionPass::getAnalysisUsage(AU);
66 virtual bool runOnMachineFunction(MachineFunction &MF);
68 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
70 private:
71 const TargetInstrInfo *TII; // Machine instruction info.
72 MachineBasicBlock *MBB; // Current basic block
73 unsigned Stack[8]; // FP<n> Registers in each stack slot...
74 unsigned RegMap[8]; // Track which stack slot contains each register
75 unsigned StackTop; // The current top of the FP stack.
77 void dumpStack() const {
78 errs() << "Stack contents:";
79 for (unsigned i = 0; i != StackTop; ++i) {
80 errs() << " FP" << Stack[i];
81 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
83 errs() << "\n";
85 private:
86 /// isStackEmpty - Return true if the FP stack is empty.
87 bool isStackEmpty() const {
88 return StackTop == 0;
91 // getSlot - Return the stack slot number a particular register number is
92 // in.
93 unsigned getSlot(unsigned RegNo) const {
94 assert(RegNo < 8 && "Regno out of range!");
95 return RegMap[RegNo];
98 // getStackEntry - Return the X86::FP<n> register in register ST(i).
99 unsigned getStackEntry(unsigned STi) const {
100 assert(STi < StackTop && "Access past stack top!");
101 return Stack[StackTop-1-STi];
104 // getSTReg - Return the X86::ST(i) register which contains the specified
105 // FP<RegNo> register.
106 unsigned getSTReg(unsigned RegNo) const {
107 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
110 // pushReg - Push the specified FP<n> register onto the stack.
111 void pushReg(unsigned Reg) {
112 assert(Reg < 8 && "Register number out of range!");
113 assert(StackTop < 8 && "Stack overflow!");
114 Stack[StackTop] = Reg;
115 RegMap[Reg] = StackTop++;
118 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
119 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
120 MachineInstr *MI = I;
121 DebugLoc dl = MI->getDebugLoc();
122 if (isAtTop(RegNo)) return;
124 unsigned STReg = getSTReg(RegNo);
125 unsigned RegOnTop = getStackEntry(0);
127 // Swap the slots the regs are in.
128 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
130 // Swap stack slot contents.
131 assert(RegMap[RegOnTop] < StackTop);
132 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
134 // Emit an fxch to update the runtime processors version of the state.
135 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
136 NumFXCH++;
139 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
140 DebugLoc dl = I->getDebugLoc();
141 unsigned STReg = getSTReg(RegNo);
142 pushReg(AsReg); // New register on top of stack
144 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
147 // popStackAfter - Pop the current value off of the top of the FP stack
148 // after the specified instruction.
149 void popStackAfter(MachineBasicBlock::iterator &I);
151 // freeStackSlotAfter - Free the specified register from the register stack,
152 // so that it is no longer in a register. If the register is currently at
153 // the top of the stack, we just pop the current instruction, otherwise we
154 // store the current top-of-stack into the specified slot, then pop the top
155 // of stack.
156 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
158 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
160 void handleZeroArgFP(MachineBasicBlock::iterator &I);
161 void handleOneArgFP(MachineBasicBlock::iterator &I);
162 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
163 void handleTwoArgFP(MachineBasicBlock::iterator &I);
164 void handleCompareFP(MachineBasicBlock::iterator &I);
165 void handleCondMovFP(MachineBasicBlock::iterator &I);
166 void handleSpecialFP(MachineBasicBlock::iterator &I);
168 char FPS::ID = 0;
171 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
173 /// getFPReg - Return the X86::FPx register number for the specified operand.
174 /// For example, this returns 3 for X86::FP3.
175 static unsigned getFPReg(const MachineOperand &MO) {
176 assert(MO.isReg() && "Expected an FP register!");
177 unsigned Reg = MO.getReg();
178 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
179 return Reg - X86::FP0;
183 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
184 /// register references into FP stack references.
186 bool FPS::runOnMachineFunction(MachineFunction &MF) {
187 // We only need to run this pass if there are any FP registers used in this
188 // function. If it is all integer, there is nothing for us to do!
189 bool FPIsUsed = false;
191 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
192 for (unsigned i = 0; i <= 6; ++i)
193 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
194 FPIsUsed = true;
195 break;
198 // Early exit.
199 if (!FPIsUsed) return false;
201 TII = MF.getTarget().getInstrInfo();
202 StackTop = 0;
204 // Process the function in depth first order so that we process at least one
205 // of the predecessors for every reachable block in the function.
206 SmallPtrSet<MachineBasicBlock*, 8> Processed;
207 MachineBasicBlock *Entry = MF.begin();
209 bool Changed = false;
210 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
211 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
212 I != E; ++I)
213 Changed |= processBasicBlock(MF, **I);
215 // Process any unreachable blocks in arbitrary order now.
216 if (MF.size() == Processed.size())
217 return Changed;
219 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
220 if (Processed.insert(BB))
221 Changed |= processBasicBlock(MF, *BB);
223 return Changed;
226 /// processBasicBlock - Loop over all of the instructions in the basic block,
227 /// transforming FP instructions into their stack form.
229 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
230 bool Changed = false;
231 MBB = &BB;
233 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
234 MachineInstr *MI = I;
235 unsigned Flags = MI->getDesc().TSFlags;
237 unsigned FPInstClass = Flags & X86II::FPTypeMask;
238 if (MI->getOpcode() == TargetInstrInfo::INLINEASM)
239 FPInstClass = X86II::SpecialFP;
241 if (FPInstClass == X86II::NotFP)
242 continue; // Efficiently ignore non-fp insts!
244 MachineInstr *PrevMI = 0;
245 if (I != BB.begin())
246 PrevMI = prior(I);
248 ++NumFP; // Keep track of # of pseudo instrs
249 DEBUG(errs() << "\nFPInst:\t" << *MI);
251 // Get dead variables list now because the MI pointer may be deleted as part
252 // of processing!
253 SmallVector<unsigned, 8> DeadRegs;
254 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
255 const MachineOperand &MO = MI->getOperand(i);
256 if (MO.isReg() && MO.isDead())
257 DeadRegs.push_back(MO.getReg());
260 switch (FPInstClass) {
261 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
262 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
263 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
264 case X86II::TwoArgFP: handleTwoArgFP(I); break;
265 case X86II::CompareFP: handleCompareFP(I); break;
266 case X86II::CondMovFP: handleCondMovFP(I); break;
267 case X86II::SpecialFP: handleSpecialFP(I); break;
268 default: llvm_unreachable("Unknown FP Type!");
271 // Check to see if any of the values defined by this instruction are dead
272 // after definition. If so, pop them.
273 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
274 unsigned Reg = DeadRegs[i];
275 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
276 DEBUG(errs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
277 freeStackSlotAfter(I, Reg-X86::FP0);
281 // Print out all of the instructions expanded to if -debug
282 DEBUG(
283 MachineBasicBlock::iterator PrevI(PrevMI);
284 if (I == PrevI) {
285 errs() << "Just deleted pseudo instruction\n";
286 } else {
287 MachineBasicBlock::iterator Start = I;
288 // Rewind to first instruction newly inserted.
289 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
290 errs() << "Inserted instructions:\n\t";
291 Start->print(errs(), &MF.getTarget());
292 while (++Start != next(I)) {}
294 dumpStack();
297 Changed = true;
300 assert(isStackEmpty() && "Stack not empty at end of basic block?");
301 return Changed;
304 //===----------------------------------------------------------------------===//
305 // Efficient Lookup Table Support
306 //===----------------------------------------------------------------------===//
308 namespace {
309 struct TableEntry {
310 unsigned from;
311 unsigned to;
312 bool operator<(const TableEntry &TE) const { return from < TE.from; }
313 friend bool operator<(const TableEntry &TE, unsigned V) {
314 return TE.from < V;
316 friend bool operator<(unsigned V, const TableEntry &TE) {
317 return V < TE.from;
322 #ifndef NDEBUG
323 static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
324 for (unsigned i = 0; i != NumEntries-1; ++i)
325 if (!(Table[i] < Table[i+1])) return false;
326 return true;
328 #endif
330 static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
331 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
332 if (I != Table+N && I->from == Opcode)
333 return I->to;
334 return -1;
337 #ifdef NDEBUG
338 #define ASSERT_SORTED(TABLE)
339 #else
340 #define ASSERT_SORTED(TABLE) \
341 { static bool TABLE##Checked = false; \
342 if (!TABLE##Checked) { \
343 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
344 "All lookup tables must be sorted for efficient access!"); \
345 TABLE##Checked = true; \
348 #endif
350 //===----------------------------------------------------------------------===//
351 // Register File -> Register Stack Mapping Methods
352 //===----------------------------------------------------------------------===//
354 // OpcodeTable - Sorted map of register instructions to their stack version.
355 // The first element is an register file pseudo instruction, the second is the
356 // concrete X86 instruction which uses the register stack.
358 static const TableEntry OpcodeTable[] = {
359 { X86::ABS_Fp32 , X86::ABS_F },
360 { X86::ABS_Fp64 , X86::ABS_F },
361 { X86::ABS_Fp80 , X86::ABS_F },
362 { X86::ADD_Fp32m , X86::ADD_F32m },
363 { X86::ADD_Fp64m , X86::ADD_F64m },
364 { X86::ADD_Fp64m32 , X86::ADD_F32m },
365 { X86::ADD_Fp80m32 , X86::ADD_F32m },
366 { X86::ADD_Fp80m64 , X86::ADD_F64m },
367 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
368 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
369 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
370 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
371 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
372 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
373 { X86::CHS_Fp32 , X86::CHS_F },
374 { X86::CHS_Fp64 , X86::CHS_F },
375 { X86::CHS_Fp80 , X86::CHS_F },
376 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
377 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
378 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
379 { X86::CMOVB_Fp32 , X86::CMOVB_F },
380 { X86::CMOVB_Fp64 , X86::CMOVB_F },
381 { X86::CMOVB_Fp80 , X86::CMOVB_F },
382 { X86::CMOVE_Fp32 , X86::CMOVE_F },
383 { X86::CMOVE_Fp64 , X86::CMOVE_F },
384 { X86::CMOVE_Fp80 , X86::CMOVE_F },
385 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
386 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
387 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
388 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
389 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
390 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
391 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
392 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
393 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
394 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
395 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
396 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
397 { X86::CMOVP_Fp32 , X86::CMOVP_F },
398 { X86::CMOVP_Fp64 , X86::CMOVP_F },
399 { X86::CMOVP_Fp80 , X86::CMOVP_F },
400 { X86::COS_Fp32 , X86::COS_F },
401 { X86::COS_Fp64 , X86::COS_F },
402 { X86::COS_Fp80 , X86::COS_F },
403 { X86::DIVR_Fp32m , X86::DIVR_F32m },
404 { X86::DIVR_Fp64m , X86::DIVR_F64m },
405 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
406 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
407 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
408 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
409 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
410 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
411 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
412 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
413 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
414 { X86::DIV_Fp32m , X86::DIV_F32m },
415 { X86::DIV_Fp64m , X86::DIV_F64m },
416 { X86::DIV_Fp64m32 , X86::DIV_F32m },
417 { X86::DIV_Fp80m32 , X86::DIV_F32m },
418 { X86::DIV_Fp80m64 , X86::DIV_F64m },
419 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
420 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
421 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
422 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
423 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
424 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
425 { X86::ILD_Fp16m32 , X86::ILD_F16m },
426 { X86::ILD_Fp16m64 , X86::ILD_F16m },
427 { X86::ILD_Fp16m80 , X86::ILD_F16m },
428 { X86::ILD_Fp32m32 , X86::ILD_F32m },
429 { X86::ILD_Fp32m64 , X86::ILD_F32m },
430 { X86::ILD_Fp32m80 , X86::ILD_F32m },
431 { X86::ILD_Fp64m32 , X86::ILD_F64m },
432 { X86::ILD_Fp64m64 , X86::ILD_F64m },
433 { X86::ILD_Fp64m80 , X86::ILD_F64m },
434 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
435 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
436 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
437 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
438 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
439 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
440 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
441 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
442 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
443 { X86::IST_Fp16m32 , X86::IST_F16m },
444 { X86::IST_Fp16m64 , X86::IST_F16m },
445 { X86::IST_Fp16m80 , X86::IST_F16m },
446 { X86::IST_Fp32m32 , X86::IST_F32m },
447 { X86::IST_Fp32m64 , X86::IST_F32m },
448 { X86::IST_Fp32m80 , X86::IST_F32m },
449 { X86::IST_Fp64m32 , X86::IST_FP64m },
450 { X86::IST_Fp64m64 , X86::IST_FP64m },
451 { X86::IST_Fp64m80 , X86::IST_FP64m },
452 { X86::LD_Fp032 , X86::LD_F0 },
453 { X86::LD_Fp064 , X86::LD_F0 },
454 { X86::LD_Fp080 , X86::LD_F0 },
455 { X86::LD_Fp132 , X86::LD_F1 },
456 { X86::LD_Fp164 , X86::LD_F1 },
457 { X86::LD_Fp180 , X86::LD_F1 },
458 { X86::LD_Fp32m , X86::LD_F32m },
459 { X86::LD_Fp32m64 , X86::LD_F32m },
460 { X86::LD_Fp32m80 , X86::LD_F32m },
461 { X86::LD_Fp64m , X86::LD_F64m },
462 { X86::LD_Fp64m80 , X86::LD_F64m },
463 { X86::LD_Fp80m , X86::LD_F80m },
464 { X86::MUL_Fp32m , X86::MUL_F32m },
465 { X86::MUL_Fp64m , X86::MUL_F64m },
466 { X86::MUL_Fp64m32 , X86::MUL_F32m },
467 { X86::MUL_Fp80m32 , X86::MUL_F32m },
468 { X86::MUL_Fp80m64 , X86::MUL_F64m },
469 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
470 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
471 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
472 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
473 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
474 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
475 { X86::SIN_Fp32 , X86::SIN_F },
476 { X86::SIN_Fp64 , X86::SIN_F },
477 { X86::SIN_Fp80 , X86::SIN_F },
478 { X86::SQRT_Fp32 , X86::SQRT_F },
479 { X86::SQRT_Fp64 , X86::SQRT_F },
480 { X86::SQRT_Fp80 , X86::SQRT_F },
481 { X86::ST_Fp32m , X86::ST_F32m },
482 { X86::ST_Fp64m , X86::ST_F64m },
483 { X86::ST_Fp64m32 , X86::ST_F32m },
484 { X86::ST_Fp80m32 , X86::ST_F32m },
485 { X86::ST_Fp80m64 , X86::ST_F64m },
486 { X86::ST_FpP80m , X86::ST_FP80m },
487 { X86::SUBR_Fp32m , X86::SUBR_F32m },
488 { X86::SUBR_Fp64m , X86::SUBR_F64m },
489 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
490 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
491 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
492 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
493 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
494 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
495 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
496 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
497 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
498 { X86::SUB_Fp32m , X86::SUB_F32m },
499 { X86::SUB_Fp64m , X86::SUB_F64m },
500 { X86::SUB_Fp64m32 , X86::SUB_F32m },
501 { X86::SUB_Fp80m32 , X86::SUB_F32m },
502 { X86::SUB_Fp80m64 , X86::SUB_F64m },
503 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
504 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
505 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
506 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
507 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
508 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
509 { X86::TST_Fp32 , X86::TST_F },
510 { X86::TST_Fp64 , X86::TST_F },
511 { X86::TST_Fp80 , X86::TST_F },
512 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
513 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
514 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
515 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
516 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
517 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
520 static unsigned getConcreteOpcode(unsigned Opcode) {
521 ASSERT_SORTED(OpcodeTable);
522 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
523 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
524 return Opc;
527 //===----------------------------------------------------------------------===//
528 // Helper Methods
529 //===----------------------------------------------------------------------===//
531 // PopTable - Sorted map of instructions to their popping version. The first
532 // element is an instruction, the second is the version which pops.
534 static const TableEntry PopTable[] = {
535 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
537 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
538 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
540 { X86::IST_F16m , X86::IST_FP16m },
541 { X86::IST_F32m , X86::IST_FP32m },
543 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
545 { X86::ST_F32m , X86::ST_FP32m },
546 { X86::ST_F64m , X86::ST_FP64m },
547 { X86::ST_Frr , X86::ST_FPrr },
549 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
550 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
552 { X86::UCOM_FIr , X86::UCOM_FIPr },
554 { X86::UCOM_FPr , X86::UCOM_FPPr },
555 { X86::UCOM_Fr , X86::UCOM_FPr },
558 /// popStackAfter - Pop the current value off of the top of the FP stack after
559 /// the specified instruction. This attempts to be sneaky and combine the pop
560 /// into the instruction itself if possible. The iterator is left pointing to
561 /// the last instruction, be it a new pop instruction inserted, or the old
562 /// instruction if it was modified in place.
564 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
565 MachineInstr* MI = I;
566 DebugLoc dl = MI->getDebugLoc();
567 ASSERT_SORTED(PopTable);
568 assert(StackTop > 0 && "Cannot pop empty stack!");
569 RegMap[Stack[--StackTop]] = ~0; // Update state
571 // Check to see if there is a popping version of this instruction...
572 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
573 if (Opcode != -1) {
574 I->setDesc(TII->get(Opcode));
575 if (Opcode == X86::UCOM_FPPr)
576 I->RemoveOperand(0);
577 } else { // Insert an explicit pop
578 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
582 /// freeStackSlotAfter - Free the specified register from the register stack, so
583 /// that it is no longer in a register. If the register is currently at the top
584 /// of the stack, we just pop the current instruction, otherwise we store the
585 /// current top-of-stack into the specified slot, then pop the top of stack.
586 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
587 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
588 popStackAfter(I);
589 return;
592 // Otherwise, store the top of stack into the dead slot, killing the operand
593 // without having to add in an explicit xchg then pop.
595 unsigned STReg = getSTReg(FPRegNo);
596 unsigned OldSlot = getSlot(FPRegNo);
597 unsigned TopReg = Stack[StackTop-1];
598 Stack[OldSlot] = TopReg;
599 RegMap[TopReg] = OldSlot;
600 RegMap[FPRegNo] = ~0;
601 Stack[--StackTop] = ~0;
602 MachineInstr *MI = I;
603 DebugLoc dl = MI->getDebugLoc();
604 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(STReg);
608 //===----------------------------------------------------------------------===//
609 // Instruction transformation implementation
610 //===----------------------------------------------------------------------===//
612 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
614 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
615 MachineInstr *MI = I;
616 unsigned DestReg = getFPReg(MI->getOperand(0));
618 // Change from the pseudo instruction to the concrete instruction.
619 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
620 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
622 // Result gets pushed on the stack.
623 pushReg(DestReg);
626 /// handleOneArgFP - fst <mem>, ST(0)
628 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
629 MachineInstr *MI = I;
630 unsigned NumOps = MI->getDesc().getNumOperands();
631 assert((NumOps == X86AddrNumOperands + 1 || NumOps == 1) &&
632 "Can only handle fst* & ftst instructions!");
634 // Is this the last use of the source register?
635 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
636 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
638 // FISTP64m is strange because there isn't a non-popping versions.
639 // If we have one _and_ we don't want to pop the operand, duplicate the value
640 // on the stack instead of moving it. This ensure that popping the value is
641 // always ok.
642 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
644 if (!KillsSrc &&
645 (MI->getOpcode() == X86::IST_Fp64m32 ||
646 MI->getOpcode() == X86::ISTT_Fp16m32 ||
647 MI->getOpcode() == X86::ISTT_Fp32m32 ||
648 MI->getOpcode() == X86::ISTT_Fp64m32 ||
649 MI->getOpcode() == X86::IST_Fp64m64 ||
650 MI->getOpcode() == X86::ISTT_Fp16m64 ||
651 MI->getOpcode() == X86::ISTT_Fp32m64 ||
652 MI->getOpcode() == X86::ISTT_Fp64m64 ||
653 MI->getOpcode() == X86::IST_Fp64m80 ||
654 MI->getOpcode() == X86::ISTT_Fp16m80 ||
655 MI->getOpcode() == X86::ISTT_Fp32m80 ||
656 MI->getOpcode() == X86::ISTT_Fp64m80 ||
657 MI->getOpcode() == X86::ST_FpP80m)) {
658 duplicateToTop(Reg, 7 /*temp register*/, I);
659 } else {
660 moveToTop(Reg, I); // Move to the top of the stack...
663 // Convert from the pseudo instruction to the concrete instruction.
664 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
665 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
667 if (MI->getOpcode() == X86::IST_FP64m ||
668 MI->getOpcode() == X86::ISTT_FP16m ||
669 MI->getOpcode() == X86::ISTT_FP32m ||
670 MI->getOpcode() == X86::ISTT_FP64m ||
671 MI->getOpcode() == X86::ST_FP80m) {
672 assert(StackTop > 0 && "Stack empty??");
673 --StackTop;
674 } else if (KillsSrc) { // Last use of operand?
675 popStackAfter(I);
680 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
681 /// replace the value with a newly computed value. These instructions may have
682 /// non-fp operands after their FP operands.
684 /// Examples:
685 /// R1 = fchs R2
686 /// R1 = fadd R2, [mem]
688 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
689 MachineInstr *MI = I;
690 #ifndef NDEBUG
691 unsigned NumOps = MI->getDesc().getNumOperands();
692 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
693 #endif
695 // Is this the last use of the source register?
696 unsigned Reg = getFPReg(MI->getOperand(1));
697 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
699 if (KillsSrc) {
700 // If this is the last use of the source register, just make sure it's on
701 // the top of the stack.
702 moveToTop(Reg, I);
703 assert(StackTop > 0 && "Stack cannot be empty!");
704 --StackTop;
705 pushReg(getFPReg(MI->getOperand(0)));
706 } else {
707 // If this is not the last use of the source register, _copy_ it to the top
708 // of the stack.
709 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
712 // Change from the pseudo instruction to the concrete instruction.
713 MI->RemoveOperand(1); // Drop the source operand.
714 MI->RemoveOperand(0); // Drop the destination operand.
715 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
719 //===----------------------------------------------------------------------===//
720 // Define tables of various ways to map pseudo instructions
723 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
724 static const TableEntry ForwardST0Table[] = {
725 { X86::ADD_Fp32 , X86::ADD_FST0r },
726 { X86::ADD_Fp64 , X86::ADD_FST0r },
727 { X86::ADD_Fp80 , X86::ADD_FST0r },
728 { X86::DIV_Fp32 , X86::DIV_FST0r },
729 { X86::DIV_Fp64 , X86::DIV_FST0r },
730 { X86::DIV_Fp80 , X86::DIV_FST0r },
731 { X86::MUL_Fp32 , X86::MUL_FST0r },
732 { X86::MUL_Fp64 , X86::MUL_FST0r },
733 { X86::MUL_Fp80 , X86::MUL_FST0r },
734 { X86::SUB_Fp32 , X86::SUB_FST0r },
735 { X86::SUB_Fp64 , X86::SUB_FST0r },
736 { X86::SUB_Fp80 , X86::SUB_FST0r },
739 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
740 static const TableEntry ReverseST0Table[] = {
741 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
742 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
743 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
744 { X86::DIV_Fp32 , X86::DIVR_FST0r },
745 { X86::DIV_Fp64 , X86::DIVR_FST0r },
746 { X86::DIV_Fp80 , X86::DIVR_FST0r },
747 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
748 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
749 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
750 { X86::SUB_Fp32 , X86::SUBR_FST0r },
751 { X86::SUB_Fp64 , X86::SUBR_FST0r },
752 { X86::SUB_Fp80 , X86::SUBR_FST0r },
755 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
756 static const TableEntry ForwardSTiTable[] = {
757 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
758 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
759 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
760 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
761 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
762 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
763 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
764 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
765 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
766 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
767 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
768 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
771 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
772 static const TableEntry ReverseSTiTable[] = {
773 { X86::ADD_Fp32 , X86::ADD_FrST0 },
774 { X86::ADD_Fp64 , X86::ADD_FrST0 },
775 { X86::ADD_Fp80 , X86::ADD_FrST0 },
776 { X86::DIV_Fp32 , X86::DIV_FrST0 },
777 { X86::DIV_Fp64 , X86::DIV_FrST0 },
778 { X86::DIV_Fp80 , X86::DIV_FrST0 },
779 { X86::MUL_Fp32 , X86::MUL_FrST0 },
780 { X86::MUL_Fp64 , X86::MUL_FrST0 },
781 { X86::MUL_Fp80 , X86::MUL_FrST0 },
782 { X86::SUB_Fp32 , X86::SUB_FrST0 },
783 { X86::SUB_Fp64 , X86::SUB_FrST0 },
784 { X86::SUB_Fp80 , X86::SUB_FrST0 },
788 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
789 /// instructions which need to be simplified and possibly transformed.
791 /// Result: ST(0) = fsub ST(0), ST(i)
792 /// ST(i) = fsub ST(0), ST(i)
793 /// ST(0) = fsubr ST(0), ST(i)
794 /// ST(i) = fsubr ST(0), ST(i)
796 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
797 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
798 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
799 MachineInstr *MI = I;
801 unsigned NumOperands = MI->getDesc().getNumOperands();
802 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
803 unsigned Dest = getFPReg(MI->getOperand(0));
804 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
805 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
806 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
807 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
808 DebugLoc dl = MI->getDebugLoc();
810 unsigned TOS = getStackEntry(0);
812 // One of our operands must be on the top of the stack. If neither is yet, we
813 // need to move one.
814 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
815 // We can choose to move either operand to the top of the stack. If one of
816 // the operands is killed by this instruction, we want that one so that we
817 // can update right on top of the old version.
818 if (KillsOp0) {
819 moveToTop(Op0, I); // Move dead operand to TOS.
820 TOS = Op0;
821 } else if (KillsOp1) {
822 moveToTop(Op1, I);
823 TOS = Op1;
824 } else {
825 // All of the operands are live after this instruction executes, so we
826 // cannot update on top of any operand. Because of this, we must
827 // duplicate one of the stack elements to the top. It doesn't matter
828 // which one we pick.
830 duplicateToTop(Op0, Dest, I);
831 Op0 = TOS = Dest;
832 KillsOp0 = true;
834 } else if (!KillsOp0 && !KillsOp1) {
835 // If we DO have one of our operands at the top of the stack, but we don't
836 // have a dead operand, we must duplicate one of the operands to a new slot
837 // on the stack.
838 duplicateToTop(Op0, Dest, I);
839 Op0 = TOS = Dest;
840 KillsOp0 = true;
843 // Now we know that one of our operands is on the top of the stack, and at
844 // least one of our operands is killed by this instruction.
845 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
846 "Stack conditions not set up right!");
848 // We decide which form to use based on what is on the top of the stack, and
849 // which operand is killed by this instruction.
850 const TableEntry *InstTable;
851 bool isForward = TOS == Op0;
852 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
853 if (updateST0) {
854 if (isForward)
855 InstTable = ForwardST0Table;
856 else
857 InstTable = ReverseST0Table;
858 } else {
859 if (isForward)
860 InstTable = ForwardSTiTable;
861 else
862 InstTable = ReverseSTiTable;
865 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
866 MI->getOpcode());
867 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
869 // NotTOS - The register which is not on the top of stack...
870 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
872 // Replace the old instruction with a new instruction
873 MBB->remove(I++);
874 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
876 // If both operands are killed, pop one off of the stack in addition to
877 // overwriting the other one.
878 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
879 assert(!updateST0 && "Should have updated other operand!");
880 popStackAfter(I); // Pop the top of stack
883 // Update stack information so that we know the destination register is now on
884 // the stack.
885 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
886 assert(UpdatedSlot < StackTop && Dest < 7);
887 Stack[UpdatedSlot] = Dest;
888 RegMap[Dest] = UpdatedSlot;
889 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
892 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
893 /// register arguments and no explicit destinations.
895 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
896 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
897 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
898 MachineInstr *MI = I;
900 unsigned NumOperands = MI->getDesc().getNumOperands();
901 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
902 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
903 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
904 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
905 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
907 // Make sure the first operand is on the top of stack, the other one can be
908 // anywhere.
909 moveToTop(Op0, I);
911 // Change from the pseudo instruction to the concrete instruction.
912 MI->getOperand(0).setReg(getSTReg(Op1));
913 MI->RemoveOperand(1);
914 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
916 // If any of the operands are killed by this instruction, free them.
917 if (KillsOp0) freeStackSlotAfter(I, Op0);
918 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
921 /// handleCondMovFP - Handle two address conditional move instructions. These
922 /// instructions move a st(i) register to st(0) iff a condition is true. These
923 /// instructions require that the first operand is at the top of the stack, but
924 /// otherwise don't modify the stack at all.
925 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
926 MachineInstr *MI = I;
928 unsigned Op0 = getFPReg(MI->getOperand(0));
929 unsigned Op1 = getFPReg(MI->getOperand(2));
930 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
932 // The first operand *must* be on the top of the stack.
933 moveToTop(Op0, I);
935 // Change the second operand to the stack register that the operand is in.
936 // Change from the pseudo instruction to the concrete instruction.
937 MI->RemoveOperand(0);
938 MI->RemoveOperand(1);
939 MI->getOperand(0).setReg(getSTReg(Op1));
940 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
942 // If we kill the second operand, make sure to pop it from the stack.
943 if (Op0 != Op1 && KillsOp1) {
944 // Get this value off of the register stack.
945 freeStackSlotAfter(I, Op1);
950 /// handleSpecialFP - Handle special instructions which behave unlike other
951 /// floating point instructions. This is primarily intended for use by pseudo
952 /// instructions.
954 void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
955 MachineInstr *MI = I;
956 DebugLoc dl = MI->getDebugLoc();
957 switch (MI->getOpcode()) {
958 default: llvm_unreachable("Unknown SpecialFP instruction!");
959 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
960 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
961 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
962 assert(StackTop == 0 && "Stack should be empty after a call!");
963 pushReg(getFPReg(MI->getOperand(0)));
964 break;
965 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
966 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
967 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
968 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
969 // The pattern we expect is:
970 // CALL
971 // FP1 = FpGET_ST0
972 // FP4 = FpGET_ST1
974 // At this point, we've pushed FP1 on the top of stack, so it should be
975 // present if it isn't dead. If it was dead, we already emitted a pop to
976 // remove it from the stack and StackTop = 0.
978 // Push FP4 as top of stack next.
979 pushReg(getFPReg(MI->getOperand(0)));
981 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
982 // dead. In this case, the ST(1) value is the only thing that is live, so
983 // it should be on the TOS (after the pop that was emitted) and is. Just
984 // continue in this case.
985 if (StackTop == 1)
986 break;
988 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
989 // elements so that our accounting is correct.
990 unsigned RegOnTop = getStackEntry(0);
991 unsigned RegNo = getStackEntry(1);
993 // Swap the slots the regs are in.
994 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
996 // Swap stack slot contents.
997 assert(RegMap[RegOnTop] < StackTop);
998 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
999 break;
1001 case X86::FpSET_ST0_32:
1002 case X86::FpSET_ST0_64:
1003 case X86::FpSET_ST0_80: {
1004 unsigned Op0 = getFPReg(MI->getOperand(0));
1006 // FpSET_ST0_80 is generated by copyRegToReg for both function return
1007 // and inline assembly with the "st" constrain. In the latter case,
1008 // it is possible for ST(0) to be alive after this instruction.
1009 if (!MI->killsRegister(X86::FP0 + Op0)) {
1010 // Duplicate Op0
1011 duplicateToTop(0, 7 /*temp register*/, I);
1012 } else {
1013 moveToTop(Op0, I);
1015 --StackTop; // "Forget" we have something on the top of stack!
1016 break;
1018 case X86::FpSET_ST1_32:
1019 case X86::FpSET_ST1_64:
1020 case X86::FpSET_ST1_80:
1021 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1022 if (StackTop == 1) {
1023 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
1024 NumFXCH++;
1025 StackTop = 0;
1026 break;
1028 assert(StackTop == 2 && "Stack should have two element on it to return!");
1029 --StackTop; // "Forget" we have something on the top of stack!
1030 break;
1031 case X86::MOV_Fp3232:
1032 case X86::MOV_Fp3264:
1033 case X86::MOV_Fp6432:
1034 case X86::MOV_Fp6464:
1035 case X86::MOV_Fp3280:
1036 case X86::MOV_Fp6480:
1037 case X86::MOV_Fp8032:
1038 case X86::MOV_Fp8064:
1039 case X86::MOV_Fp8080: {
1040 const MachineOperand &MO1 = MI->getOperand(1);
1041 unsigned SrcReg = getFPReg(MO1);
1043 const MachineOperand &MO0 = MI->getOperand(0);
1044 // These can be created due to inline asm. Two address pass can introduce
1045 // copies from RFP registers to virtual registers.
1046 if (MO0.getReg() == X86::ST0 && SrcReg == 0) {
1047 assert(MO1.isKill());
1048 // Treat %ST0<def> = MOV_Fp8080 %FP0<kill>
1049 // like FpSET_ST0_80 %FP0<kill>, %ST0<imp-def>
1050 assert((StackTop == 1 || StackTop == 2)
1051 && "Stack should have one or two element on it to return!");
1052 --StackTop; // "Forget" we have something on the top of stack!
1053 break;
1054 } else if (MO0.getReg() == X86::ST1 && SrcReg == 1) {
1055 assert(MO1.isKill());
1056 // Treat %ST1<def> = MOV_Fp8080 %FP1<kill>
1057 // like FpSET_ST1_80 %FP0<kill>, %ST1<imp-def>
1058 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1059 if (StackTop == 1) {
1060 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
1061 NumFXCH++;
1062 StackTop = 0;
1063 break;
1065 assert(StackTop == 2 && "Stack should have two element on it to return!");
1066 --StackTop; // "Forget" we have something on the top of stack!
1067 break;
1070 unsigned DestReg = getFPReg(MO0);
1071 if (MI->killsRegister(X86::FP0+SrcReg)) {
1072 // If the input operand is killed, we can just change the owner of the
1073 // incoming stack slot into the result.
1074 unsigned Slot = getSlot(SrcReg);
1075 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1076 Stack[Slot] = DestReg;
1077 RegMap[DestReg] = Slot;
1079 } else {
1080 // For FMOV we just duplicate the specified value to a new stack slot.
1081 // This could be made better, but would require substantial changes.
1082 duplicateToTop(SrcReg, DestReg, I);
1085 break;
1086 case TargetInstrInfo::INLINEASM: {
1087 // The inline asm MachineInstr currently only *uses* FP registers for the
1088 // 'f' constraint. These should be turned into the current ST(x) register
1089 // in the machine instr. Also, any kills should be explicitly popped after
1090 // the inline asm.
1091 unsigned Kills[7];
1092 unsigned NumKills = 0;
1093 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1094 MachineOperand &Op = MI->getOperand(i);
1095 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1096 continue;
1097 assert(Op.isUse() && "Only handle inline asm uses right now");
1099 unsigned FPReg = getFPReg(Op);
1100 Op.setReg(getSTReg(FPReg));
1102 // If we kill this operand, make sure to pop it from the stack after the
1103 // asm. We just remember it for now, and pop them all off at the end in
1104 // a batch.
1105 if (Op.isKill())
1106 Kills[NumKills++] = FPReg;
1109 // If this asm kills any FP registers (is the last use of them) we must
1110 // explicitly emit pop instructions for them. Do this now after the asm has
1111 // executed so that the ST(x) numbers are not off (which would happen if we
1112 // did this inline with operand rewriting).
1114 // Note: this might be a non-optimal pop sequence. We might be able to do
1115 // better by trying to pop in stack order or something.
1116 MachineBasicBlock::iterator InsertPt = MI;
1117 while (NumKills)
1118 freeStackSlotAfter(InsertPt, Kills[--NumKills]);
1120 // Don't delete the inline asm!
1121 return;
1124 case X86::RET:
1125 case X86::RETI:
1126 // If RET has an FP register use operand, pass the first one in ST(0) and
1127 // the second one in ST(1).
1128 if (isStackEmpty()) return; // Quick check to see if any are possible.
1130 // Find the register operands.
1131 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1133 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1134 MachineOperand &Op = MI->getOperand(i);
1135 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1136 continue;
1137 // FP Register uses must be kills unless there are two uses of the same
1138 // register, in which case only one will be a kill.
1139 assert(Op.isUse() &&
1140 (Op.isKill() || // Marked kill.
1141 getFPReg(Op) == FirstFPRegOp || // Second instance.
1142 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1143 "Ret only defs operands, and values aren't live beyond it");
1145 if (FirstFPRegOp == ~0U)
1146 FirstFPRegOp = getFPReg(Op);
1147 else {
1148 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1149 SecondFPRegOp = getFPReg(Op);
1152 // Remove the operand so that later passes don't see it.
1153 MI->RemoveOperand(i);
1154 --i, --e;
1157 // There are only four possibilities here:
1158 // 1) we are returning a single FP value. In this case, it has to be in
1159 // ST(0) already, so just declare success by removing the value from the
1160 // FP Stack.
1161 if (SecondFPRegOp == ~0U) {
1162 // Assert that the top of stack contains the right FP register.
1163 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1164 "Top of stack not the right register for RET!");
1166 // Ok, everything is good, mark the value as not being on the stack
1167 // anymore so that our assertion about the stack being empty at end of
1168 // block doesn't fire.
1169 StackTop = 0;
1170 return;
1173 // Otherwise, we are returning two values:
1174 // 2) If returning the same value for both, we only have one thing in the FP
1175 // stack. Consider: RET FP1, FP1
1176 if (StackTop == 1) {
1177 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1178 "Stack misconfiguration for RET!");
1180 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1181 // register to hold it.
1182 unsigned NewReg = (FirstFPRegOp+1)%7;
1183 duplicateToTop(FirstFPRegOp, NewReg, MI);
1184 FirstFPRegOp = NewReg;
1187 /// Okay we know we have two different FPx operands now:
1188 assert(StackTop == 2 && "Must have two values live!");
1190 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1191 /// in ST(1). In this case, emit an fxch.
1192 if (getStackEntry(0) == SecondFPRegOp) {
1193 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1194 moveToTop(FirstFPRegOp, MI);
1197 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1198 /// ST(1). Just remove both from our understanding of the stack and return.
1199 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1200 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1201 StackTop = 0;
1202 return;
1205 I = MBB->erase(I); // Remove the pseudo instruction
1206 --I;