Remove includes of Support/Compiler.h that are no longer needed after the
[llvm.git] / lib / Target / ARM / ARMConstantIslandPass.cpp
blob0a27d179e907ba8678432c101b4e50d0e274fe84
1 //===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that splits the constant pool up into 'islands'
11 // which are scattered through-out the function. This is required due to the
12 // limited pc-relative displacements that ARM has.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "arm-cp-islands"
17 #include "ARM.h"
18 #include "ARMAddressingModes.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMInstrInfo.h"
21 #include "llvm/CodeGen/MachineConstantPool.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/Statistic.h"
34 #include <algorithm>
35 using namespace llvm;
37 STATISTIC(NumCPEs, "Number of constpool entries");
38 STATISTIC(NumSplit, "Number of uncond branches inserted");
39 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
40 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
41 STATISTIC(NumTBs, "Number of table branches generated");
42 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
43 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
45 namespace {
46 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
47 /// requires constant pool entries to be scattered among the instructions
48 /// inside a function. To do this, it completely ignores the normal LLVM
49 /// constant pool; instead, it places constants wherever it feels like with
50 /// special instructions.
51 ///
52 /// The terminology used in this pass includes:
53 /// Islands - Clumps of constants placed in the function.
54 /// Water - Potential places where an island could be formed.
55 /// CPE - A constant pool entry that has been placed somewhere, which
56 /// tracks a list of users.
57 class ARMConstantIslands : public MachineFunctionPass {
58 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
59 /// by MBB Number. The two-byte pads required for Thumb alignment are
60 /// counted as part of the following block (i.e., the offset and size for
61 /// a padded block will both be ==2 mod 4).
62 std::vector<unsigned> BBSizes;
64 /// BBOffsets - the offset of each MBB in bytes, starting from 0.
65 /// The two-byte pads required for Thumb alignment are counted as part of
66 /// the following block.
67 std::vector<unsigned> BBOffsets;
69 /// WaterList - A sorted list of basic blocks where islands could be placed
70 /// (i.e. blocks that don't fall through to the following block, due
71 /// to a return, unreachable, or unconditional branch).
72 std::vector<MachineBasicBlock*> WaterList;
74 /// NewWaterList - The subset of WaterList that was created since the
75 /// previous iteration by inserting unconditional branches.
76 SmallSet<MachineBasicBlock*, 4> NewWaterList;
78 typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
80 /// CPUser - One user of a constant pool, keeping the machine instruction
81 /// pointer, the constant pool being referenced, and the max displacement
82 /// allowed from the instruction to the CP. The HighWaterMark records the
83 /// highest basic block where a new CPEntry can be placed. To ensure this
84 /// pass terminates, the CP entries are initially placed at the end of the
85 /// function and then move monotonically to lower addresses. The
86 /// exception to this rule is when the current CP entry for a particular
87 /// CPUser is out of range, but there is another CP entry for the same
88 /// constant value in range. We want to use the existing in-range CP
89 /// entry, but if it later moves out of range, the search for new water
90 /// should resume where it left off. The HighWaterMark is used to record
91 /// that point.
92 struct CPUser {
93 MachineInstr *MI;
94 MachineInstr *CPEMI;
95 MachineBasicBlock *HighWaterMark;
96 unsigned MaxDisp;
97 bool NegOk;
98 bool IsSoImm;
99 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
100 bool neg, bool soimm)
101 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
102 HighWaterMark = CPEMI->getParent();
106 /// CPUsers - Keep track of all of the machine instructions that use various
107 /// constant pools and their max displacement.
108 std::vector<CPUser> CPUsers;
110 /// CPEntry - One per constant pool entry, keeping the machine instruction
111 /// pointer, the constpool index, and the number of CPUser's which
112 /// reference this entry.
113 struct CPEntry {
114 MachineInstr *CPEMI;
115 unsigned CPI;
116 unsigned RefCount;
117 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
118 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
121 /// CPEntries - Keep track of all of the constant pool entry machine
122 /// instructions. For each original constpool index (i.e. those that
123 /// existed upon entry to this pass), it keeps a vector of entries.
124 /// Original elements are cloned as we go along; the clones are
125 /// put in the vector of the original element, but have distinct CPIs.
126 std::vector<std::vector<CPEntry> > CPEntries;
128 /// ImmBranch - One per immediate branch, keeping the machine instruction
129 /// pointer, conditional or unconditional, the max displacement,
130 /// and (if isCond is true) the corresponding unconditional branch
131 /// opcode.
132 struct ImmBranch {
133 MachineInstr *MI;
134 unsigned MaxDisp : 31;
135 bool isCond : 1;
136 int UncondBr;
137 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
138 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
141 /// ImmBranches - Keep track of all the immediate branch instructions.
143 std::vector<ImmBranch> ImmBranches;
145 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
147 SmallVector<MachineInstr*, 4> PushPopMIs;
149 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
150 SmallVector<MachineInstr*, 4> T2JumpTables;
152 /// HasFarJump - True if any far jump instruction has been emitted during
153 /// the branch fix up pass.
154 bool HasFarJump;
156 const TargetInstrInfo *TII;
157 const ARMSubtarget *STI;
158 ARMFunctionInfo *AFI;
159 bool isThumb;
160 bool isThumb1;
161 bool isThumb2;
162 public:
163 static char ID;
164 ARMConstantIslands() : MachineFunctionPass(&ID) {}
166 virtual bool runOnMachineFunction(MachineFunction &MF);
168 virtual const char *getPassName() const {
169 return "ARM constant island placement and branch shortening pass";
172 private:
173 void DoInitialPlacement(MachineFunction &MF,
174 std::vector<MachineInstr*> &CPEMIs);
175 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
176 void InitialFunctionScan(MachineFunction &MF,
177 const std::vector<MachineInstr*> &CPEMIs);
178 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
179 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
180 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta);
181 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
182 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
183 bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter);
184 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
185 MachineBasicBlock *&NewMBB);
186 bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex);
187 void RemoveDeadCPEMI(MachineInstr *CPEMI);
188 bool RemoveUnusedCPEntries();
189 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
190 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
191 bool DoDump = false);
192 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
193 CPUser &U);
194 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
195 unsigned Disp, bool NegativeOK, bool IsSoImm = false);
196 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
197 bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br);
198 bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br);
199 bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br);
200 bool UndoLRSpillRestore();
201 bool OptimizeThumb2Instructions(MachineFunction &MF);
202 bool OptimizeThumb2Branches(MachineFunction &MF);
203 bool OptimizeThumb2JumpTables(MachineFunction &MF);
205 unsigned GetOffsetOf(MachineInstr *MI) const;
206 void dumpBBs();
207 void verify(MachineFunction &MF);
209 char ARMConstantIslands::ID = 0;
212 /// verify - check BBOffsets, BBSizes, alignment of islands
213 void ARMConstantIslands::verify(MachineFunction &MF) {
214 assert(BBOffsets.size() == BBSizes.size());
215 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i)
216 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]);
217 if (!isThumb)
218 return;
219 #ifndef NDEBUG
220 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
221 MBBI != E; ++MBBI) {
222 MachineBasicBlock *MBB = MBBI;
223 if (!MBB->empty() &&
224 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
225 unsigned MBBId = MBB->getNumber();
226 assert((BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) ||
227 (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0));
230 #endif
233 /// print block size and offset information - debugging
234 void ARMConstantIslands::dumpBBs() {
235 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) {
236 DEBUG(errs() << "block " << J << " offset " << BBOffsets[J]
237 << " size " << BBSizes[J] << "\n");
241 /// createARMConstantIslandPass - returns an instance of the constpool
242 /// island pass.
243 FunctionPass *llvm::createARMConstantIslandPass() {
244 return new ARMConstantIslands();
247 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) {
248 MachineConstantPool &MCP = *MF.getConstantPool();
250 TII = MF.getTarget().getInstrInfo();
251 AFI = MF.getInfo<ARMFunctionInfo>();
252 STI = &MF.getTarget().getSubtarget<ARMSubtarget>();
254 isThumb = AFI->isThumbFunction();
255 isThumb1 = AFI->isThumb1OnlyFunction();
256 isThumb2 = AFI->isThumb2Function();
258 HasFarJump = false;
260 // Renumber all of the machine basic blocks in the function, guaranteeing that
261 // the numbers agree with the position of the block in the function.
262 MF.RenumberBlocks();
264 // Thumb1 functions containing constant pools get 4-byte alignment.
265 // This is so we can keep exact track of where the alignment padding goes.
267 // Set default. Thumb1 function is 2-byte aligned, ARM and Thumb2 are 4-byte
268 // aligned.
269 AFI->setAlign(isThumb1 ? 1U : 2U);
271 // Perform the initial placement of the constant pool entries. To start with,
272 // we put them all at the end of the function.
273 std::vector<MachineInstr*> CPEMIs;
274 if (!MCP.isEmpty()) {
275 DoInitialPlacement(MF, CPEMIs);
276 if (isThumb1)
277 AFI->setAlign(2U);
280 /// The next UID to take is the first unused one.
281 AFI->initConstPoolEntryUId(CPEMIs.size());
283 // Do the initial scan of the function, building up information about the
284 // sizes of each block, the location of all the water, and finding all of the
285 // constant pool users.
286 InitialFunctionScan(MF, CPEMIs);
287 CPEMIs.clear();
289 /// Remove dead constant pool entries.
290 RemoveUnusedCPEntries();
292 // Iteratively place constant pool entries and fix up branches until there
293 // is no change.
294 bool MadeChange = false;
295 unsigned NoCPIters = 0, NoBRIters = 0;
296 while (true) {
297 bool CPChange = false;
298 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
299 CPChange |= HandleConstantPoolUser(MF, i);
300 if (CPChange && ++NoCPIters > 30)
301 llvm_unreachable("Constant Island pass failed to converge!");
302 DEBUG(dumpBBs());
304 // Clear NewWaterList now. If we split a block for branches, it should
305 // appear as "new water" for the next iteration of constant pool placement.
306 NewWaterList.clear();
308 bool BRChange = false;
309 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
310 BRChange |= FixUpImmediateBr(MF, ImmBranches[i]);
311 if (BRChange && ++NoBRIters > 30)
312 llvm_unreachable("Branch Fix Up pass failed to converge!");
313 DEBUG(dumpBBs());
315 if (!CPChange && !BRChange)
316 break;
317 MadeChange = true;
320 // Shrink 32-bit Thumb2 branch, load, and store instructions.
321 if (isThumb2)
322 MadeChange |= OptimizeThumb2Instructions(MF);
324 // After a while, this might be made debug-only, but it is not expensive.
325 verify(MF);
327 // If LR has been forced spilled and no far jumps (i.e. BL) has been issued.
328 // Undo the spill / restore of LR if possible.
329 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
330 MadeChange |= UndoLRSpillRestore();
332 BBSizes.clear();
333 BBOffsets.clear();
334 WaterList.clear();
335 CPUsers.clear();
336 CPEntries.clear();
337 ImmBranches.clear();
338 PushPopMIs.clear();
339 T2JumpTables.clear();
341 return MadeChange;
344 /// DoInitialPlacement - Perform the initial placement of the constant pool
345 /// entries. To start with, we put them all at the end of the function.
346 void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF,
347 std::vector<MachineInstr*> &CPEMIs) {
348 // Create the basic block to hold the CPE's.
349 MachineBasicBlock *BB = MF.CreateMachineBasicBlock();
350 MF.push_back(BB);
352 // Add all of the constants from the constant pool to the end block, use an
353 // identity mapping of CPI's to CPE's.
354 const std::vector<MachineConstantPoolEntry> &CPs =
355 MF.getConstantPool()->getConstants();
357 const TargetData &TD = *MF.getTarget().getTargetData();
358 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
359 unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
360 // Verify that all constant pool entries are a multiple of 4 bytes. If not,
361 // we would have to pad them out or something so that instructions stay
362 // aligned.
363 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
364 MachineInstr *CPEMI =
365 BuildMI(BB, DebugLoc::getUnknownLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
366 .addImm(i).addConstantPoolIndex(i).addImm(Size);
367 CPEMIs.push_back(CPEMI);
369 // Add a new CPEntry, but no corresponding CPUser yet.
370 std::vector<CPEntry> CPEs;
371 CPEs.push_back(CPEntry(CPEMI, i));
372 CPEntries.push_back(CPEs);
373 NumCPEs++;
374 DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i
375 << "\n");
379 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
380 /// into the block immediately after it.
381 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
382 // Get the next machine basic block in the function.
383 MachineFunction::iterator MBBI = MBB;
384 if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function.
385 return false;
387 MachineBasicBlock *NextBB = next(MBBI);
388 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
389 E = MBB->succ_end(); I != E; ++I)
390 if (*I == NextBB)
391 return true;
393 return false;
396 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
397 /// look up the corresponding CPEntry.
398 ARMConstantIslands::CPEntry
399 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
400 const MachineInstr *CPEMI) {
401 std::vector<CPEntry> &CPEs = CPEntries[CPI];
402 // Number of entries per constpool index should be small, just do a
403 // linear search.
404 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
405 if (CPEs[i].CPEMI == CPEMI)
406 return &CPEs[i];
408 return NULL;
411 /// InitialFunctionScan - Do the initial scan of the function, building up
412 /// information about the sizes of each block, the location of all the water,
413 /// and finding all of the constant pool users.
414 void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF,
415 const std::vector<MachineInstr*> &CPEMIs) {
416 unsigned Offset = 0;
417 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
418 MBBI != E; ++MBBI) {
419 MachineBasicBlock &MBB = *MBBI;
421 // If this block doesn't fall through into the next MBB, then this is
422 // 'water' that a constant pool island could be placed.
423 if (!BBHasFallthrough(&MBB))
424 WaterList.push_back(&MBB);
426 unsigned MBBSize = 0;
427 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
428 I != E; ++I) {
429 // Add instruction size to MBBSize.
430 MBBSize += TII->GetInstSizeInBytes(I);
432 int Opc = I->getOpcode();
433 if (I->getDesc().isBranch()) {
434 bool isCond = false;
435 unsigned Bits = 0;
436 unsigned Scale = 1;
437 int UOpc = Opc;
438 switch (Opc) {
439 default:
440 continue; // Ignore other JT branches
441 case ARM::tBR_JTr:
442 // A Thumb1 table jump may involve padding; for the offsets to
443 // be right, functions containing these must be 4-byte aligned.
444 AFI->setAlign(2U);
445 if ((Offset+MBBSize)%4 != 0)
446 // FIXME: Add a pseudo ALIGN instruction instead.
447 MBBSize += 2; // padding
448 continue; // Does not get an entry in ImmBranches
449 case ARM::t2BR_JT:
450 T2JumpTables.push_back(I);
451 continue; // Does not get an entry in ImmBranches
452 case ARM::Bcc:
453 isCond = true;
454 UOpc = ARM::B;
455 // Fallthrough
456 case ARM::B:
457 Bits = 24;
458 Scale = 4;
459 break;
460 case ARM::tBcc:
461 isCond = true;
462 UOpc = ARM::tB;
463 Bits = 8;
464 Scale = 2;
465 break;
466 case ARM::tB:
467 Bits = 11;
468 Scale = 2;
469 break;
470 case ARM::t2Bcc:
471 isCond = true;
472 UOpc = ARM::t2B;
473 Bits = 20;
474 Scale = 2;
475 break;
476 case ARM::t2B:
477 Bits = 24;
478 Scale = 2;
479 break;
482 // Record this immediate branch.
483 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
484 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
487 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
488 PushPopMIs.push_back(I);
490 if (Opc == ARM::CONSTPOOL_ENTRY)
491 continue;
493 // Scan the instructions for constant pool operands.
494 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
495 if (I->getOperand(op).isCPI()) {
496 // We found one. The addressing mode tells us the max displacement
497 // from the PC that this instruction permits.
499 // Basic size info comes from the TSFlags field.
500 unsigned Bits = 0;
501 unsigned Scale = 1;
502 bool NegOk = false;
503 bool IsSoImm = false;
505 switch (Opc) {
506 default:
507 llvm_unreachable("Unknown addressing mode for CP reference!");
508 break;
510 // Taking the address of a CP entry.
511 case ARM::LEApcrel:
512 // This takes a SoImm, which is 8 bit immediate rotated. We'll
513 // pretend the maximum offset is 255 * 4. Since each instruction
514 // 4 byte wide, this is always correct. We'llc heck for other
515 // displacements that fits in a SoImm as well.
516 Bits = 8;
517 Scale = 4;
518 NegOk = true;
519 IsSoImm = true;
520 break;
521 case ARM::t2LEApcrel:
522 Bits = 12;
523 NegOk = true;
524 break;
525 case ARM::tLEApcrel:
526 Bits = 8;
527 Scale = 4;
528 break;
530 case ARM::LDR:
531 case ARM::LDRcp:
532 case ARM::t2LDRpci:
533 Bits = 12; // +-offset_12
534 NegOk = true;
535 break;
537 case ARM::tLDRpci:
538 case ARM::tLDRcp:
539 Bits = 8;
540 Scale = 4; // +(offset_8*4)
541 break;
543 case ARM::FLDD:
544 case ARM::FLDS:
545 Bits = 8;
546 Scale = 4; // +-(offset_8*4)
547 NegOk = true;
548 break;
551 // Remember that this is a user of a CP entry.
552 unsigned CPI = I->getOperand(op).getIndex();
553 MachineInstr *CPEMI = CPEMIs[CPI];
554 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
555 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
557 // Increment corresponding CPEntry reference count.
558 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
559 assert(CPE && "Cannot find a corresponding CPEntry!");
560 CPE->RefCount++;
562 // Instructions can only use one CP entry, don't bother scanning the
563 // rest of the operands.
564 break;
568 // In thumb mode, if this block is a constpool island, we may need padding
569 // so it's aligned on 4 byte boundary.
570 if (isThumb &&
571 !MBB.empty() &&
572 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY &&
573 (Offset%4) != 0)
574 MBBSize += 2;
576 BBSizes.push_back(MBBSize);
577 BBOffsets.push_back(Offset);
578 Offset += MBBSize;
582 /// GetOffsetOf - Return the current offset of the specified machine instruction
583 /// from the start of the function. This offset changes as stuff is moved
584 /// around inside the function.
585 unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
586 MachineBasicBlock *MBB = MI->getParent();
588 // The offset is composed of two things: the sum of the sizes of all MBB's
589 // before this instruction's block, and the offset from the start of the block
590 // it is in.
591 unsigned Offset = BBOffsets[MBB->getNumber()];
593 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
594 // alignment padding, and compensate if so.
595 if (isThumb &&
596 MI->getOpcode() == ARM::CONSTPOOL_ENTRY &&
597 Offset%4 != 0)
598 Offset += 2;
600 // Sum instructions before MI in MBB.
601 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
602 assert(I != MBB->end() && "Didn't find MI in its own basic block?");
603 if (&*I == MI) return Offset;
604 Offset += TII->GetInstSizeInBytes(I);
608 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
609 /// ID.
610 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
611 const MachineBasicBlock *RHS) {
612 return LHS->getNumber() < RHS->getNumber();
615 /// UpdateForInsertedWaterBlock - When a block is newly inserted into the
616 /// machine function, it upsets all of the block numbers. Renumber the blocks
617 /// and update the arrays that parallel this numbering.
618 void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
619 // Renumber the MBB's to keep them consequtive.
620 NewBB->getParent()->RenumberBlocks(NewBB);
622 // Insert a size into BBSizes to align it properly with the (newly
623 // renumbered) block numbers.
624 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
626 // Likewise for BBOffsets.
627 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
629 // Next, update WaterList. Specifically, we need to add NewMBB as having
630 // available water after it.
631 water_iterator IP =
632 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
633 CompareMBBNumbers);
634 WaterList.insert(IP, NewBB);
638 /// Split the basic block containing MI into two blocks, which are joined by
639 /// an unconditional branch. Update data structures and renumber blocks to
640 /// account for this change and returns the newly created block.
641 MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
642 MachineBasicBlock *OrigBB = MI->getParent();
643 MachineFunction &MF = *OrigBB->getParent();
645 // Create a new MBB for the code after the OrigBB.
646 MachineBasicBlock *NewBB =
647 MF.CreateMachineBasicBlock(OrigBB->getBasicBlock());
648 MachineFunction::iterator MBBI = OrigBB; ++MBBI;
649 MF.insert(MBBI, NewBB);
651 // Splice the instructions starting with MI over to NewBB.
652 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
654 // Add an unconditional branch from OrigBB to NewBB.
655 // Note the new unconditional branch is not being recorded.
656 // There doesn't seem to be meaningful DebugInfo available; this doesn't
657 // correspond to anything in the source.
658 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
659 BuildMI(OrigBB, DebugLoc::getUnknownLoc(), TII->get(Opc)).addMBB(NewBB);
660 NumSplit++;
662 // Update the CFG. All succs of OrigBB are now succs of NewBB.
663 while (!OrigBB->succ_empty()) {
664 MachineBasicBlock *Succ = *OrigBB->succ_begin();
665 OrigBB->removeSuccessor(Succ);
666 NewBB->addSuccessor(Succ);
668 // This pass should be run after register allocation, so there should be no
669 // PHI nodes to update.
670 assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI)
671 && "PHI nodes should be eliminated by now!");
674 // OrigBB branches to NewBB.
675 OrigBB->addSuccessor(NewBB);
677 // Update internal data structures to account for the newly inserted MBB.
678 // This is almost the same as UpdateForInsertedWaterBlock, except that
679 // the Water goes after OrigBB, not NewBB.
680 MF.RenumberBlocks(NewBB);
682 // Insert a size into BBSizes to align it properly with the (newly
683 // renumbered) block numbers.
684 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
686 // Likewise for BBOffsets.
687 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
689 // Next, update WaterList. Specifically, we need to add OrigMBB as having
690 // available water after it (but not if it's already there, which happens
691 // when splitting before a conditional branch that is followed by an
692 // unconditional branch - in that case we want to insert NewBB).
693 water_iterator IP =
694 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
695 CompareMBBNumbers);
696 MachineBasicBlock* WaterBB = *IP;
697 if (WaterBB == OrigBB)
698 WaterList.insert(next(IP), NewBB);
699 else
700 WaterList.insert(IP, OrigBB);
701 NewWaterList.insert(OrigBB);
703 // Figure out how large the first NewMBB is. (It cannot
704 // contain a constpool_entry or tablejump.)
705 unsigned NewBBSize = 0;
706 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
707 I != E; ++I)
708 NewBBSize += TII->GetInstSizeInBytes(I);
710 unsigned OrigBBI = OrigBB->getNumber();
711 unsigned NewBBI = NewBB->getNumber();
712 // Set the size of NewBB in BBSizes.
713 BBSizes[NewBBI] = NewBBSize;
715 // We removed instructions from UserMBB, subtract that off from its size.
716 // Add 2 or 4 to the block to count the unconditional branch we added to it.
717 int delta = isThumb1 ? 2 : 4;
718 BBSizes[OrigBBI] -= NewBBSize - delta;
720 // ...and adjust BBOffsets for NewBB accordingly.
721 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI];
723 // All BBOffsets following these blocks must be modified.
724 AdjustBBOffsetsAfter(NewBB, delta);
726 return NewBB;
729 /// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
730 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
731 /// constant pool entry).
732 bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
733 unsigned TrialOffset, unsigned MaxDisp,
734 bool NegativeOK, bool IsSoImm) {
735 // On Thumb offsets==2 mod 4 are rounded down by the hardware for
736 // purposes of the displacement computation; compensate for that here.
737 // Effectively, the valid range of displacements is 2 bytes smaller for such
738 // references.
739 unsigned TotalAdj = 0;
740 if (isThumb && UserOffset%4 !=0) {
741 UserOffset -= 2;
742 TotalAdj = 2;
744 // CPEs will be rounded up to a multiple of 4.
745 if (isThumb && TrialOffset%4 != 0) {
746 TrialOffset += 2;
747 TotalAdj += 2;
750 // In Thumb2 mode, later branch adjustments can shift instructions up and
751 // cause alignment change. In the worst case scenario this can cause the
752 // user's effective address to be subtracted by 2 and the CPE's address to
753 // be plus 2.
754 if (isThumb2 && TotalAdj != 4)
755 MaxDisp -= (4 - TotalAdj);
757 if (UserOffset <= TrialOffset) {
758 // User before the Trial.
759 if (TrialOffset - UserOffset <= MaxDisp)
760 return true;
761 // FIXME: Make use full range of soimm values.
762 } else if (NegativeOK) {
763 if (UserOffset - TrialOffset <= MaxDisp)
764 return true;
765 // FIXME: Make use full range of soimm values.
767 return false;
770 /// WaterIsInRange - Returns true if a CPE placed after the specified
771 /// Water (a basic block) will be in range for the specific MI.
773 bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
774 MachineBasicBlock* Water, CPUser &U) {
775 unsigned MaxDisp = U.MaxDisp;
776 unsigned CPEOffset = BBOffsets[Water->getNumber()] +
777 BBSizes[Water->getNumber()];
779 // If the CPE is to be inserted before the instruction, that will raise
780 // the offset of the instruction.
781 if (CPEOffset < UserOffset)
782 UserOffset += U.CPEMI->getOperand(2).getImm();
784 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm);
787 /// CPEIsInRange - Returns true if the distance between specific MI and
788 /// specific ConstPool entry instruction can fit in MI's displacement field.
789 bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
790 MachineInstr *CPEMI, unsigned MaxDisp,
791 bool NegOk, bool DoDump) {
792 unsigned CPEOffset = GetOffsetOf(CPEMI);
793 assert(CPEOffset%4 == 0 && "Misaligned CPE");
795 if (DoDump) {
796 DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
797 << " max delta=" << MaxDisp
798 << " insn address=" << UserOffset
799 << " CPE address=" << CPEOffset
800 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI);
803 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
806 #ifndef NDEBUG
807 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
808 /// unconditionally branches to its only successor.
809 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
810 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
811 return false;
813 MachineBasicBlock *Succ = *MBB->succ_begin();
814 MachineBasicBlock *Pred = *MBB->pred_begin();
815 MachineInstr *PredMI = &Pred->back();
816 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
817 || PredMI->getOpcode() == ARM::t2B)
818 return PredMI->getOperand(0).getMBB() == Succ;
819 return false;
821 #endif // NDEBUG
823 void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB,
824 int delta) {
825 MachineFunction::iterator MBBI = BB; MBBI = next(MBBI);
826 for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs();
827 i < e; ++i) {
828 BBOffsets[i] += delta;
829 // If some existing blocks have padding, adjust the padding as needed, a
830 // bit tricky. delta can be negative so don't use % on that.
831 if (!isThumb)
832 continue;
833 MachineBasicBlock *MBB = MBBI;
834 if (!MBB->empty()) {
835 // Constant pool entries require padding.
836 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
837 unsigned OldOffset = BBOffsets[i] - delta;
838 if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) {
839 // add new padding
840 BBSizes[i] += 2;
841 delta += 2;
842 } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) {
843 // remove existing padding
844 BBSizes[i] -= 2;
845 delta -= 2;
848 // Thumb1 jump tables require padding. They should be at the end;
849 // following unconditional branches are removed by AnalyzeBranch.
850 MachineInstr *ThumbJTMI = prior(MBB->end());
851 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
852 unsigned NewMIOffset = GetOffsetOf(ThumbJTMI);
853 unsigned OldMIOffset = NewMIOffset - delta;
854 if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) {
855 // remove existing padding
856 BBSizes[i] -= 2;
857 delta -= 2;
858 } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) {
859 // add new padding
860 BBSizes[i] += 2;
861 delta += 2;
864 if (delta==0)
865 return;
867 MBBI = next(MBBI);
871 /// DecrementOldEntry - find the constant pool entry with index CPI
872 /// and instruction CPEMI, and decrement its refcount. If the refcount
873 /// becomes 0 remove the entry and instruction. Returns true if we removed
874 /// the entry, false if we didn't.
876 bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) {
877 // Find the old entry. Eliminate it if it is no longer used.
878 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
879 assert(CPE && "Unexpected!");
880 if (--CPE->RefCount == 0) {
881 RemoveDeadCPEMI(CPEMI);
882 CPE->CPEMI = NULL;
883 NumCPEs--;
884 return true;
886 return false;
889 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
890 /// if not, see if an in-range clone of the CPE is in range, and if so,
891 /// change the data structures so the user references the clone. Returns:
892 /// 0 = no existing entry found
893 /// 1 = entry found, and there were no code insertions or deletions
894 /// 2 = entry found, and there were code insertions or deletions
895 int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
897 MachineInstr *UserMI = U.MI;
898 MachineInstr *CPEMI = U.CPEMI;
900 // Check to see if the CPE is already in-range.
901 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) {
902 DEBUG(errs() << "In range\n");
903 return 1;
906 // No. Look for previously created clones of the CPE that are in range.
907 unsigned CPI = CPEMI->getOperand(1).getIndex();
908 std::vector<CPEntry> &CPEs = CPEntries[CPI];
909 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
910 // We already tried this one
911 if (CPEs[i].CPEMI == CPEMI)
912 continue;
913 // Removing CPEs can leave empty entries, skip
914 if (CPEs[i].CPEMI == NULL)
915 continue;
916 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) {
917 DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#"
918 << CPEs[i].CPI << "\n");
919 // Point the CPUser node to the replacement
920 U.CPEMI = CPEs[i].CPEMI;
921 // Change the CPI in the instruction operand to refer to the clone.
922 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
923 if (UserMI->getOperand(j).isCPI()) {
924 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
925 break;
927 // Adjust the refcount of the clone...
928 CPEs[i].RefCount++;
929 // ...and the original. If we didn't remove the old entry, none of the
930 // addresses changed, so we don't need another pass.
931 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1;
934 return 0;
937 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
938 /// the specific unconditional branch instruction.
939 static inline unsigned getUnconditionalBrDisp(int Opc) {
940 switch (Opc) {
941 case ARM::tB:
942 return ((1<<10)-1)*2;
943 case ARM::t2B:
944 return ((1<<23)-1)*2;
945 default:
946 break;
949 return ((1<<23)-1)*4;
952 /// LookForWater - Look for an existing entry in the WaterList in which
953 /// we can place the CPE referenced from U so it's within range of U's MI.
954 /// Returns true if found, false if not. If it returns true, WaterIter
955 /// is set to the WaterList entry. For Thumb, prefer water that will not
956 /// introduce padding to water that will. To ensure that this pass
957 /// terminates, the CPE location for a particular CPUser is only allowed to
958 /// move to a lower address, so search backward from the end of the list and
959 /// prefer the first water that is in range.
960 bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
961 water_iterator &WaterIter) {
962 if (WaterList.empty())
963 return false;
965 bool FoundWaterThatWouldPad = false;
966 water_iterator IPThatWouldPad;
967 for (water_iterator IP = prior(WaterList.end()),
968 B = WaterList.begin();; --IP) {
969 MachineBasicBlock* WaterBB = *IP;
970 // Check if water is in range and is either at a lower address than the
971 // current "high water mark" or a new water block that was created since
972 // the previous iteration by inserting an unconditional branch. In the
973 // latter case, we want to allow resetting the high water mark back to
974 // this new water since we haven't seen it before. Inserting branches
975 // should be relatively uncommon and when it does happen, we want to be
976 // sure to take advantage of it for all the CPEs near that block, so that
977 // we don't insert more branches than necessary.
978 if (WaterIsInRange(UserOffset, WaterBB, U) &&
979 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
980 NewWaterList.count(WaterBB))) {
981 unsigned WBBId = WaterBB->getNumber();
982 if (isThumb &&
983 (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) {
984 // This is valid Water, but would introduce padding. Remember
985 // it in case we don't find any Water that doesn't do this.
986 if (!FoundWaterThatWouldPad) {
987 FoundWaterThatWouldPad = true;
988 IPThatWouldPad = IP;
990 } else {
991 WaterIter = IP;
992 return true;
995 if (IP == B)
996 break;
998 if (FoundWaterThatWouldPad) {
999 WaterIter = IPThatWouldPad;
1000 return true;
1002 return false;
1005 /// CreateNewWater - No existing WaterList entry will work for
1006 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1007 /// block is used if in range, and the conditional branch munged so control
1008 /// flow is correct. Otherwise the block is split to create a hole with an
1009 /// unconditional branch around it. In either case NewMBB is set to a
1010 /// block following which the new island can be inserted (the WaterList
1011 /// is not adjusted).
1012 void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
1013 unsigned UserOffset,
1014 MachineBasicBlock *&NewMBB) {
1015 CPUser &U = CPUsers[CPUserIndex];
1016 MachineInstr *UserMI = U.MI;
1017 MachineInstr *CPEMI = U.CPEMI;
1018 MachineBasicBlock *UserMBB = UserMI->getParent();
1019 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] +
1020 BBSizes[UserMBB->getNumber()];
1021 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]);
1023 // If the block does not end in an unconditional branch already, and if the
1024 // end of the block is within range, make new water there. (The addition
1025 // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1026 // Thumb2, 2 on Thumb1. Possible Thumb1 alignment padding is allowed for
1027 // inside OffsetIsInRange.
1028 if (BBHasFallthrough(UserMBB) &&
1029 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4),
1030 U.MaxDisp, U.NegOk, U.IsSoImm)) {
1031 DEBUG(errs() << "Split at end of block\n");
1032 if (&UserMBB->back() == UserMI)
1033 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
1034 NewMBB = next(MachineFunction::iterator(UserMBB));
1035 // Add an unconditional branch from UserMBB to fallthrough block.
1036 // Record it for branch lengthening; this new branch will not get out of
1037 // range, but if the preceding conditional branch is out of range, the
1038 // targets will be exchanged, and the altered branch may be out of
1039 // range, so the machinery has to know about it.
1040 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1041 BuildMI(UserMBB, DebugLoc::getUnknownLoc(),
1042 TII->get(UncondBr)).addMBB(NewMBB);
1043 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1044 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1045 MaxDisp, false, UncondBr));
1046 int delta = isThumb1 ? 2 : 4;
1047 BBSizes[UserMBB->getNumber()] += delta;
1048 AdjustBBOffsetsAfter(UserMBB, delta);
1049 } else {
1050 // What a big block. Find a place within the block to split it.
1051 // This is a little tricky on Thumb1 since instructions are 2 bytes
1052 // and constant pool entries are 4 bytes: if instruction I references
1053 // island CPE, and instruction I+1 references CPE', it will
1054 // not work well to put CPE as far forward as possible, since then
1055 // CPE' cannot immediately follow it (that location is 2 bytes
1056 // farther away from I+1 than CPE was from I) and we'd need to create
1057 // a new island. So, we make a first guess, then walk through the
1058 // instructions between the one currently being looked at and the
1059 // possible insertion point, and make sure any other instructions
1060 // that reference CPEs will be able to use the same island area;
1061 // if not, we back up the insertion point.
1063 // The 4 in the following is for the unconditional branch we'll be
1064 // inserting (allows for long branch on Thumb1). Alignment of the
1065 // island is handled inside OffsetIsInRange.
1066 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
1067 // This could point off the end of the block if we've already got
1068 // constant pool entries following this block; only the last one is
1069 // in the water list. Back past any possible branches (allow for a
1070 // conditional and a maximally long unconditional).
1071 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1])
1072 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] -
1073 (isThumb1 ? 6 : 8);
1074 unsigned EndInsertOffset = BaseInsertOffset +
1075 CPEMI->getOperand(2).getImm();
1076 MachineBasicBlock::iterator MI = UserMI;
1077 ++MI;
1078 unsigned CPUIndex = CPUserIndex+1;
1079 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1080 Offset < BaseInsertOffset;
1081 Offset += TII->GetInstSizeInBytes(MI),
1082 MI = next(MI)) {
1083 if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) {
1084 CPUser &U = CPUsers[CPUIndex];
1085 if (!OffsetIsInRange(Offset, EndInsertOffset,
1086 U.MaxDisp, U.NegOk, U.IsSoImm)) {
1087 BaseInsertOffset -= (isThumb1 ? 2 : 4);
1088 EndInsertOffset -= (isThumb1 ? 2 : 4);
1090 // This is overly conservative, as we don't account for CPEMIs
1091 // being reused within the block, but it doesn't matter much.
1092 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm();
1093 CPUIndex++;
1096 DEBUG(errs() << "Split in middle of big block\n");
1097 NewMBB = SplitBlockBeforeInstr(prior(MI));
1101 /// HandleConstantPoolUser - Analyze the specified user, checking to see if it
1102 /// is out-of-range. If so, pick up the constant pool value and move it some
1103 /// place in-range. Return true if we changed any addresses (thus must run
1104 /// another pass of branch lengthening), false otherwise.
1105 bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF,
1106 unsigned CPUserIndex) {
1107 CPUser &U = CPUsers[CPUserIndex];
1108 MachineInstr *UserMI = U.MI;
1109 MachineInstr *CPEMI = U.CPEMI;
1110 unsigned CPI = CPEMI->getOperand(1).getIndex();
1111 unsigned Size = CPEMI->getOperand(2).getImm();
1112 // Compute this only once, it's expensive. The 4 or 8 is the value the
1113 // hardware keeps in the PC.
1114 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);
1116 // See if the current entry is within range, or there is a clone of it
1117 // in range.
1118 int result = LookForExistingCPEntry(U, UserOffset);
1119 if (result==1) return false;
1120 else if (result==2) return true;
1122 // No existing clone of this CPE is within range.
1123 // We will be generating a new clone. Get a UID for it.
1124 unsigned ID = AFI->createConstPoolEntryUId();
1126 // Look for water where we can place this CPE.
1127 MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock();
1128 MachineBasicBlock *NewMBB;
1129 water_iterator IP;
1130 if (LookForWater(U, UserOffset, IP)) {
1131 DEBUG(errs() << "found water in range\n");
1132 MachineBasicBlock *WaterBB = *IP;
1134 // If the original WaterList entry was "new water" on this iteration,
1135 // propagate that to the new island. This is just keeping NewWaterList
1136 // updated to match the WaterList, which will be updated below.
1137 if (NewWaterList.count(WaterBB)) {
1138 NewWaterList.erase(WaterBB);
1139 NewWaterList.insert(NewIsland);
1141 // The new CPE goes before the following block (NewMBB).
1142 NewMBB = next(MachineFunction::iterator(WaterBB));
1144 } else {
1145 // No water found.
1146 DEBUG(errs() << "No water found\n");
1147 CreateNewWater(CPUserIndex, UserOffset, NewMBB);
1149 // SplitBlockBeforeInstr adds to WaterList, which is important when it is
1150 // called while handling branches so that the water will be seen on the
1151 // next iteration for constant pools, but in this context, we don't want
1152 // it. Check for this so it will be removed from the WaterList.
1153 // Also remove any entry from NewWaterList.
1154 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
1155 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1156 if (IP != WaterList.end())
1157 NewWaterList.erase(WaterBB);
1159 // We are adding new water. Update NewWaterList.
1160 NewWaterList.insert(NewIsland);
1163 // Remove the original WaterList entry; we want subsequent insertions in
1164 // this vicinity to go after the one we're about to insert. This
1165 // considerably reduces the number of times we have to move the same CPE
1166 // more than once and is also important to ensure the algorithm terminates.
1167 if (IP != WaterList.end())
1168 WaterList.erase(IP);
1170 // Okay, we know we can put an island before NewMBB now, do it!
1171 MF.insert(NewMBB, NewIsland);
1173 // Update internal data structures to account for the newly inserted MBB.
1174 UpdateForInsertedWaterBlock(NewIsland);
1176 // Decrement the old entry, and remove it if refcount becomes 0.
1177 DecrementOldEntry(CPI, CPEMI);
1179 // Now that we have an island to add the CPE to, clone the original CPE and
1180 // add it to the island.
1181 U.HighWaterMark = NewIsland;
1182 U.CPEMI = BuildMI(NewIsland, DebugLoc::getUnknownLoc(),
1183 TII->get(ARM::CONSTPOOL_ENTRY))
1184 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1185 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1186 NumCPEs++;
1188 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()];
1189 // Compensate for .align 2 in thumb mode.
1190 if (isThumb && BBOffsets[NewIsland->getNumber()]%4 != 0)
1191 Size += 2;
1192 // Increase the size of the island block to account for the new entry.
1193 BBSizes[NewIsland->getNumber()] += Size;
1194 AdjustBBOffsetsAfter(NewIsland, Size);
1196 // Finally, change the CPI in the instruction operand to be ID.
1197 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1198 if (UserMI->getOperand(i).isCPI()) {
1199 UserMI->getOperand(i).setIndex(ID);
1200 break;
1203 DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI
1204 << '\t' << *UserMI);
1206 return true;
1209 /// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
1210 /// sizes and offsets of impacted basic blocks.
1211 void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
1212 MachineBasicBlock *CPEBB = CPEMI->getParent();
1213 unsigned Size = CPEMI->getOperand(2).getImm();
1214 CPEMI->eraseFromParent();
1215 BBSizes[CPEBB->getNumber()] -= Size;
1216 // All succeeding offsets have the current size value added in, fix this.
1217 if (CPEBB->empty()) {
1218 // In thumb1 mode, the size of island may be padded by two to compensate for
1219 // the alignment requirement. Then it will now be 2 when the block is
1220 // empty, so fix this.
1221 // All succeeding offsets have the current size value added in, fix this.
1222 if (BBSizes[CPEBB->getNumber()] != 0) {
1223 Size += BBSizes[CPEBB->getNumber()];
1224 BBSizes[CPEBB->getNumber()] = 0;
1227 AdjustBBOffsetsAfter(CPEBB, -Size);
1228 // An island has only one predecessor BB and one successor BB. Check if
1229 // this BB's predecessor jumps directly to this BB's successor. This
1230 // shouldn't happen currently.
1231 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1232 // FIXME: remove the empty blocks after all the work is done?
1235 /// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
1236 /// are zero.
1237 bool ARMConstantIslands::RemoveUnusedCPEntries() {
1238 unsigned MadeChange = false;
1239 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1240 std::vector<CPEntry> &CPEs = CPEntries[i];
1241 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1242 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1243 RemoveDeadCPEMI(CPEs[j].CPEMI);
1244 CPEs[j].CPEMI = NULL;
1245 MadeChange = true;
1249 return MadeChange;
1252 /// BBIsInRange - Returns true if the distance between specific MI and
1253 /// specific BB can fit in MI's displacement field.
1254 bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1255 unsigned MaxDisp) {
1256 unsigned PCAdj = isThumb ? 4 : 8;
1257 unsigned BrOffset = GetOffsetOf(MI) + PCAdj;
1258 unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1260 DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber()
1261 << " from BB#" << MI->getParent()->getNumber()
1262 << " max delta=" << MaxDisp
1263 << " from " << GetOffsetOf(MI) << " to " << DestOffset
1264 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1266 if (BrOffset <= DestOffset) {
1267 // Branch before the Dest.
1268 if (DestOffset-BrOffset <= MaxDisp)
1269 return true;
1270 } else {
1271 if (BrOffset-DestOffset <= MaxDisp)
1272 return true;
1274 return false;
1277 /// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
1278 /// away to fit in its displacement field.
1279 bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) {
1280 MachineInstr *MI = Br.MI;
1281 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1283 // Check to see if the DestBB is already in-range.
1284 if (BBIsInRange(MI, DestBB, Br.MaxDisp))
1285 return false;
1287 if (!Br.isCond)
1288 return FixUpUnconditionalBr(MF, Br);
1289 return FixUpConditionalBr(MF, Br);
1292 /// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
1293 /// too far away to fit in its displacement field. If the LR register has been
1294 /// spilled in the epilogue, then we can use BL to implement a far jump.
1295 /// Otherwise, add an intermediate branch instruction to a branch.
1296 bool
1297 ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) {
1298 MachineInstr *MI = Br.MI;
1299 MachineBasicBlock *MBB = MI->getParent();
1300 if (!isThumb1)
1301 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
1303 // Use BL to implement far jump.
1304 Br.MaxDisp = (1 << 21) * 2;
1305 MI->setDesc(TII->get(ARM::tBfar));
1306 BBSizes[MBB->getNumber()] += 2;
1307 AdjustBBOffsetsAfter(MBB, 2);
1308 HasFarJump = true;
1309 NumUBrFixed++;
1311 DEBUG(errs() << " Changed B to long jump " << *MI);
1313 return true;
1316 /// FixUpConditionalBr - Fix up a conditional branch whose destination is too
1317 /// far away to fit in its displacement field. It is converted to an inverse
1318 /// conditional branch + an unconditional branch to the destination.
1319 bool
1320 ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) {
1321 MachineInstr *MI = Br.MI;
1322 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1324 // Add an unconditional branch to the destination and invert the branch
1325 // condition to jump over it:
1326 // blt L1
1327 // =>
1328 // bge L2
1329 // b L1
1330 // L2:
1331 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1332 CC = ARMCC::getOppositeCondition(CC);
1333 unsigned CCReg = MI->getOperand(2).getReg();
1335 // If the branch is at the end of its MBB and that has a fall-through block,
1336 // direct the updated conditional branch to the fall-through block. Otherwise,
1337 // split the MBB before the next instruction.
1338 MachineBasicBlock *MBB = MI->getParent();
1339 MachineInstr *BMI = &MBB->back();
1340 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1342 NumCBrFixed++;
1343 if (BMI != MI) {
1344 if (next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1345 BMI->getOpcode() == Br.UncondBr) {
1346 // Last MI in the BB is an unconditional branch. Can we simply invert the
1347 // condition and swap destinations:
1348 // beq L1
1349 // b L2
1350 // =>
1351 // bne L2
1352 // b L1
1353 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1354 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
1355 DEBUG(errs() << " Invert Bcc condition and swap its destination with "
1356 << *BMI);
1357 BMI->getOperand(0).setMBB(DestBB);
1358 MI->getOperand(0).setMBB(NewDest);
1359 MI->getOperand(1).setImm(CC);
1360 return true;
1365 if (NeedSplit) {
1366 SplitBlockBeforeInstr(MI);
1367 // No need for the branch to the next block. We're adding an unconditional
1368 // branch to the destination.
1369 int delta = TII->GetInstSizeInBytes(&MBB->back());
1370 BBSizes[MBB->getNumber()] -= delta;
1371 MachineBasicBlock* SplitBB = next(MachineFunction::iterator(MBB));
1372 AdjustBBOffsetsAfter(SplitBB, -delta);
1373 MBB->back().eraseFromParent();
1374 // BBOffsets[SplitBB] is wrong temporarily, fixed below
1376 MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
1378 DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber()
1379 << " also invert condition and change dest. to BB#"
1380 << NextBB->getNumber() << "\n");
1382 // Insert a new conditional branch and a new unconditional branch.
1383 // Also update the ImmBranch as well as adding a new entry for the new branch.
1384 BuildMI(MBB, DebugLoc::getUnknownLoc(),
1385 TII->get(MI->getOpcode()))
1386 .addMBB(NextBB).addImm(CC).addReg(CCReg);
1387 Br.MI = &MBB->back();
1388 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1389 BuildMI(MBB, DebugLoc::getUnknownLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1390 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1391 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1392 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1394 // Remove the old conditional branch. It may or may not still be in MBB.
1395 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI);
1396 MI->eraseFromParent();
1398 // The net size change is an addition of one unconditional branch.
1399 int delta = TII->GetInstSizeInBytes(&MBB->back());
1400 AdjustBBOffsetsAfter(MBB, delta);
1401 return true;
1404 /// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1405 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1406 /// to do this if tBfar is not used.
1407 bool ARMConstantIslands::UndoLRSpillRestore() {
1408 bool MadeChange = false;
1409 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1410 MachineInstr *MI = PushPopMIs[i];
1411 // First two operands are predicates, the third is a zero since there
1412 // is no writeback.
1413 if (MI->getOpcode() == ARM::tPOP_RET &&
1414 MI->getOperand(3).getReg() == ARM::PC &&
1415 MI->getNumExplicitOperands() == 4) {
1416 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET));
1417 MI->eraseFromParent();
1418 MadeChange = true;
1421 return MadeChange;
1424 bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) {
1425 bool MadeChange = false;
1427 // Shrink ADR and LDR from constantpool.
1428 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1429 CPUser &U = CPUsers[i];
1430 unsigned Opcode = U.MI->getOpcode();
1431 unsigned NewOpc = 0;
1432 unsigned Scale = 1;
1433 unsigned Bits = 0;
1434 switch (Opcode) {
1435 default: break;
1436 case ARM::t2LEApcrel:
1437 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1438 NewOpc = ARM::tLEApcrel;
1439 Bits = 8;
1440 Scale = 4;
1442 break;
1443 case ARM::t2LDRpci:
1444 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1445 NewOpc = ARM::tLDRpci;
1446 Bits = 8;
1447 Scale = 4;
1449 break;
1452 if (!NewOpc)
1453 continue;
1455 unsigned UserOffset = GetOffsetOf(U.MI) + 4;
1456 unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1457 // FIXME: Check if offset is multiple of scale if scale is not 4.
1458 if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1459 U.MI->setDesc(TII->get(NewOpc));
1460 MachineBasicBlock *MBB = U.MI->getParent();
1461 BBSizes[MBB->getNumber()] -= 2;
1462 AdjustBBOffsetsAfter(MBB, -2);
1463 ++NumT2CPShrunk;
1464 MadeChange = true;
1468 MadeChange |= OptimizeThumb2Branches(MF);
1469 MadeChange |= OptimizeThumb2JumpTables(MF);
1470 return MadeChange;
1473 bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) {
1474 bool MadeChange = false;
1476 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
1477 ImmBranch &Br = ImmBranches[i];
1478 unsigned Opcode = Br.MI->getOpcode();
1479 unsigned NewOpc = 0;
1480 unsigned Scale = 1;
1481 unsigned Bits = 0;
1482 switch (Opcode) {
1483 default: break;
1484 case ARM::t2B:
1485 NewOpc = ARM::tB;
1486 Bits = 11;
1487 Scale = 2;
1488 break;
1489 case ARM::t2Bcc:
1490 NewOpc = ARM::tBcc;
1491 Bits = 8;
1492 Scale = 2;
1493 break;
1495 if (!NewOpc)
1496 continue;
1498 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1499 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1500 if (BBIsInRange(Br.MI, DestBB, MaxOffs)) {
1501 Br.MI->setDesc(TII->get(NewOpc));
1502 MachineBasicBlock *MBB = Br.MI->getParent();
1503 BBSizes[MBB->getNumber()] -= 2;
1504 AdjustBBOffsetsAfter(MBB, -2);
1505 ++NumT2BrShrunk;
1506 MadeChange = true;
1510 return MadeChange;
1514 /// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
1515 /// jumptables when it's possible.
1516 bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) {
1517 bool MadeChange = false;
1519 // FIXME: After the tables are shrunk, can we get rid some of the
1520 // constantpool tables?
1521 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1522 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1523 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1524 MachineInstr *MI = T2JumpTables[i];
1525 const TargetInstrDesc &TID = MI->getDesc();
1526 unsigned NumOps = TID.getNumOperands();
1527 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2);
1528 MachineOperand JTOP = MI->getOperand(JTOpIdx);
1529 unsigned JTI = JTOP.getIndex();
1530 assert(JTI < JT.size());
1532 bool ByteOk = true;
1533 bool HalfWordOk = true;
1534 unsigned JTOffset = GetOffsetOf(MI) + 4;
1535 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1536 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1537 MachineBasicBlock *MBB = JTBBs[j];
1538 unsigned DstOffset = BBOffsets[MBB->getNumber()];
1539 // Negative offset is not ok. FIXME: We should change BB layout to make
1540 // sure all the branches are forward.
1541 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
1542 ByteOk = false;
1543 unsigned TBHLimit = ((1<<16)-1)*2;
1544 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
1545 HalfWordOk = false;
1546 if (!ByteOk && !HalfWordOk)
1547 break;
1550 if (ByteOk || HalfWordOk) {
1551 MachineBasicBlock *MBB = MI->getParent();
1552 unsigned BaseReg = MI->getOperand(0).getReg();
1553 bool BaseRegKill = MI->getOperand(0).isKill();
1554 if (!BaseRegKill)
1555 continue;
1556 unsigned IdxReg = MI->getOperand(1).getReg();
1557 bool IdxRegKill = MI->getOperand(1).isKill();
1558 MachineBasicBlock::iterator PrevI = MI;
1559 if (PrevI == MBB->begin())
1560 continue;
1562 MachineInstr *AddrMI = --PrevI;
1563 bool OptOk = true;
1564 // Examine the instruction that calculate the jumptable entry address.
1565 // If it's not the one just before the t2BR_JT, we won't delete it, then
1566 // it's not worth doing the optimization.
1567 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
1568 const MachineOperand &MO = AddrMI->getOperand(k);
1569 if (!MO.isReg() || !MO.getReg())
1570 continue;
1571 if (MO.isDef() && MO.getReg() != BaseReg) {
1572 OptOk = false;
1573 break;
1575 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
1576 OptOk = false;
1577 break;
1580 if (!OptOk)
1581 continue;
1583 // The previous instruction should be a tLEApcrel or t2LEApcrelJT, we want
1584 // to delete it as well.
1585 MachineInstr *LeaMI = --PrevI;
1586 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
1587 LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
1588 LeaMI->getOperand(0).getReg() != BaseReg)
1589 OptOk = false;
1591 if (!OptOk)
1592 continue;
1594 unsigned Opc = ByteOk ? ARM::t2TBB : ARM::t2TBH;
1595 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
1596 .addReg(IdxReg, getKillRegState(IdxRegKill))
1597 .addJumpTableIndex(JTI, JTOP.getTargetFlags())
1598 .addImm(MI->getOperand(JTOpIdx+1).getImm());
1599 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
1600 // is 2-byte aligned. For now, asm printer will fix it up.
1601 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
1602 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
1603 OrigSize += TII->GetInstSizeInBytes(LeaMI);
1604 OrigSize += TII->GetInstSizeInBytes(MI);
1606 AddrMI->eraseFromParent();
1607 LeaMI->eraseFromParent();
1608 MI->eraseFromParent();
1610 int delta = OrigSize - NewSize;
1611 BBSizes[MBB->getNumber()] -= delta;
1612 AdjustBBOffsetsAfter(MBB, -delta);
1614 ++NumTBs;
1615 MadeChange = true;
1619 return MadeChange;