Remove includes of Support/Compiler.h that are no longer needed after the
[llvm.git] / lib / CodeGen / ShadowStackGC.cpp
blob0e6d4796e22ccfab8c454e581a8f5228a1be554f
1 //===-- ShadowStackGC.cpp - GC support for uncooperative targets ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements lowering for the llvm.gc* intrinsics for targets that do
11 // not natively support them (which includes the C backend). Note that the code
12 // generated is not quite as efficient as algorithms which generate stack maps
13 // to identify roots.
15 // This pass implements the code transformation described in this paper:
16 // "Accurate Garbage Collection in an Uncooperative Environment"
17 // Fergus Henderson, ISMM, 2002
19 // In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with
20 // ShadowStackGC.
22 // In order to support this particular transformation, all stack roots are
23 // coallocated in the stack. This allows a fully target-independent stack map
24 // while introducing only minor runtime overhead.
26 //===----------------------------------------------------------------------===//
28 #define DEBUG_TYPE "shadowstackgc"
29 #include "llvm/CodeGen/GCs.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/IntrinsicInst.h"
33 #include "llvm/Module.h"
34 #include "llvm/Support/IRBuilder.h"
36 using namespace llvm;
38 namespace {
40 class ShadowStackGC : public GCStrategy {
41 /// RootChain - This is the global linked-list that contains the chain of GC
42 /// roots.
43 GlobalVariable *Head;
45 /// StackEntryTy - Abstract type of a link in the shadow stack.
46 ///
47 const StructType *StackEntryTy;
49 /// Roots - GC roots in the current function. Each is a pair of the
50 /// intrinsic call and its corresponding alloca.
51 std::vector<std::pair<CallInst*,AllocaInst*> > Roots;
53 public:
54 ShadowStackGC();
56 bool initializeCustomLowering(Module &M);
57 bool performCustomLowering(Function &F);
59 private:
60 bool IsNullValue(Value *V);
61 Constant *GetFrameMap(Function &F);
62 const Type* GetConcreteStackEntryType(Function &F);
63 void CollectRoots(Function &F);
64 static GetElementPtrInst *CreateGEP(LLVMContext &Context,
65 IRBuilder<> &B, Value *BasePtr,
66 int Idx1, const char *Name);
67 static GetElementPtrInst *CreateGEP(LLVMContext &Context,
68 IRBuilder<> &B, Value *BasePtr,
69 int Idx1, int Idx2, const char *Name);
74 static GCRegistry::Add<ShadowStackGC>
75 X("shadow-stack", "Very portable GC for uncooperative code generators");
77 namespace {
78 /// EscapeEnumerator - This is a little algorithm to find all escape points
79 /// from a function so that "finally"-style code can be inserted. In addition
80 /// to finding the existing return and unwind instructions, it also (if
81 /// necessary) transforms any call instructions into invokes and sends them to
82 /// a landing pad.
83 ///
84 /// It's wrapped up in a state machine using the same transform C# uses for
85 /// 'yield return' enumerators, This transform allows it to be non-allocating.
86 class EscapeEnumerator {
87 Function &F;
88 const char *CleanupBBName;
90 // State.
91 int State;
92 Function::iterator StateBB, StateE;
93 IRBuilder<> Builder;
95 public:
96 EscapeEnumerator(Function &F, const char *N = "cleanup")
97 : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
99 IRBuilder<> *Next() {
100 switch (State) {
101 default:
102 return 0;
104 case 0:
105 StateBB = F.begin();
106 StateE = F.end();
107 State = 1;
109 case 1:
110 // Find all 'return' and 'unwind' instructions.
111 while (StateBB != StateE) {
112 BasicBlock *CurBB = StateBB++;
114 // Branches and invokes do not escape, only unwind and return do.
115 TerminatorInst *TI = CurBB->getTerminator();
116 if (!isa<UnwindInst>(TI) && !isa<ReturnInst>(TI))
117 continue;
119 Builder.SetInsertPoint(TI->getParent(), TI);
120 return &Builder;
123 State = 2;
125 // Find all 'call' instructions.
126 SmallVector<Instruction*,16> Calls;
127 for (Function::iterator BB = F.begin(),
128 E = F.end(); BB != E; ++BB)
129 for (BasicBlock::iterator II = BB->begin(),
130 EE = BB->end(); II != EE; ++II)
131 if (CallInst *CI = dyn_cast<CallInst>(II))
132 if (!CI->getCalledFunction() ||
133 !CI->getCalledFunction()->getIntrinsicID())
134 Calls.push_back(CI);
136 if (Calls.empty())
137 return 0;
139 // Create a cleanup block.
140 BasicBlock *CleanupBB = BasicBlock::Create(F.getContext(),
141 CleanupBBName, &F);
142 UnwindInst *UI = new UnwindInst(F.getContext(), CleanupBB);
144 // Transform the 'call' instructions into 'invoke's branching to the
145 // cleanup block. Go in reverse order to make prettier BB names.
146 SmallVector<Value*,16> Args;
147 for (unsigned I = Calls.size(); I != 0; ) {
148 CallInst *CI = cast<CallInst>(Calls[--I]);
150 // Split the basic block containing the function call.
151 BasicBlock *CallBB = CI->getParent();
152 BasicBlock *NewBB =
153 CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont");
155 // Remove the unconditional branch inserted at the end of CallBB.
156 CallBB->getInstList().pop_back();
157 NewBB->getInstList().remove(CI);
159 // Create a new invoke instruction.
160 Args.clear();
161 Args.append(CI->op_begin() + 1, CI->op_end());
163 InvokeInst *II = InvokeInst::Create(CI->getOperand(0),
164 NewBB, CleanupBB,
165 Args.begin(), Args.end(),
166 CI->getName(), CallBB);
167 II->setCallingConv(CI->getCallingConv());
168 II->setAttributes(CI->getAttributes());
169 CI->replaceAllUsesWith(II);
170 delete CI;
173 Builder.SetInsertPoint(UI->getParent(), UI);
174 return &Builder;
180 // -----------------------------------------------------------------------------
182 void llvm::linkShadowStackGC() { }
184 ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) {
185 InitRoots = true;
186 CustomRoots = true;
189 Constant *ShadowStackGC::GetFrameMap(Function &F) {
190 // doInitialization creates the abstract type of this value.
191 const Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
193 // Truncate the ShadowStackDescriptor if some metadata is null.
194 unsigned NumMeta = 0;
195 SmallVector<Constant*,16> Metadata;
196 for (unsigned I = 0; I != Roots.size(); ++I) {
197 Constant *C = cast<Constant>(Roots[I].first->getOperand(2));
198 if (!C->isNullValue())
199 NumMeta = I + 1;
200 Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
203 Constant *BaseElts[] = {
204 ConstantInt::get(Type::getInt32Ty(F.getContext()), Roots.size(), false),
205 ConstantInt::get(Type::getInt32Ty(F.getContext()), NumMeta, false),
208 Constant *DescriptorElts[] = {
209 ConstantStruct::get(F.getContext(), BaseElts, 2, false),
210 ConstantArray::get(ArrayType::get(VoidPtr, NumMeta),
211 Metadata.begin(), NumMeta)
214 Constant *FrameMap = ConstantStruct::get(F.getContext(), DescriptorElts, 2,
215 false);
217 std::string TypeName("gc_map.");
218 TypeName += utostr(NumMeta);
219 F.getParent()->addTypeName(TypeName, FrameMap->getType());
221 // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
222 // that, short of multithreaded LLVM, it should be safe; all that is
223 // necessary is that a simple Module::iterator loop not be invalidated.
224 // Appending to the GlobalVariable list is safe in that sense.
226 // All of the output passes emit globals last. The ExecutionEngine
227 // explicitly supports adding globals to the module after
228 // initialization.
230 // Still, if it isn't deemed acceptable, then this transformation needs
231 // to be a ModulePass (which means it cannot be in the 'llc' pipeline
232 // (which uses a FunctionPassManager (which segfaults (not asserts) if
233 // provided a ModulePass))).
234 Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
235 GlobalVariable::InternalLinkage,
236 FrameMap, "__gc_" + F.getName());
238 Constant *GEPIndices[2] = {
239 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
240 ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)
242 return ConstantExpr::getGetElementPtr(GV, GEPIndices, 2);
245 const Type* ShadowStackGC::GetConcreteStackEntryType(Function &F) {
246 // doInitialization creates the generic version of this type.
247 std::vector<const Type*> EltTys;
248 EltTys.push_back(StackEntryTy);
249 for (size_t I = 0; I != Roots.size(); I++)
250 EltTys.push_back(Roots[I].second->getAllocatedType());
251 Type *Ty = StructType::get(F.getContext(), EltTys);
253 std::string TypeName("gc_stackentry.");
254 TypeName += F.getName();
255 F.getParent()->addTypeName(TypeName, Ty);
257 return Ty;
260 /// doInitialization - If this module uses the GC intrinsics, find them now. If
261 /// not, exit fast.
262 bool ShadowStackGC::initializeCustomLowering(Module &M) {
263 // struct FrameMap {
264 // int32_t NumRoots; // Number of roots in stack frame.
265 // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots.
266 // void *Meta[]; // May be absent for roots without metadata.
267 // };
268 std::vector<const Type*> EltTys;
269 // 32 bits is ok up to a 32GB stack frame. :)
270 EltTys.push_back(Type::getInt32Ty(M.getContext()));
271 // Specifies length of variable length array.
272 EltTys.push_back(Type::getInt32Ty(M.getContext()));
273 StructType *FrameMapTy = StructType::get(M.getContext(), EltTys);
274 M.addTypeName("gc_map", FrameMapTy);
275 PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
277 // struct StackEntry {
278 // ShadowStackEntry *Next; // Caller's stack entry.
279 // FrameMap *Map; // Pointer to constant FrameMap.
280 // void *Roots[]; // Stack roots (in-place array, so we pretend).
281 // };
282 OpaqueType *RecursiveTy = OpaqueType::get(M.getContext());
284 EltTys.clear();
285 EltTys.push_back(PointerType::getUnqual(RecursiveTy));
286 EltTys.push_back(FrameMapPtrTy);
287 PATypeHolder LinkTyH = StructType::get(M.getContext(), EltTys);
289 RecursiveTy->refineAbstractTypeTo(LinkTyH.get());
290 StackEntryTy = cast<StructType>(LinkTyH.get());
291 const PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
292 M.addTypeName("gc_stackentry", LinkTyH.get()); // FIXME: Is this safe from
293 // a FunctionPass?
295 // Get the root chain if it already exists.
296 Head = M.getGlobalVariable("llvm_gc_root_chain");
297 if (!Head) {
298 // If the root chain does not exist, insert a new one with linkonce
299 // linkage!
300 Head = new GlobalVariable(M, StackEntryPtrTy, false,
301 GlobalValue::LinkOnceAnyLinkage,
302 Constant::getNullValue(StackEntryPtrTy),
303 "llvm_gc_root_chain");
304 } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
305 Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
306 Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
309 return true;
312 bool ShadowStackGC::IsNullValue(Value *V) {
313 if (Constant *C = dyn_cast<Constant>(V))
314 return C->isNullValue();
315 return false;
318 void ShadowStackGC::CollectRoots(Function &F) {
319 // FIXME: Account for original alignment. Could fragment the root array.
320 // Approach 1: Null initialize empty slots at runtime. Yuck.
321 // Approach 2: Emit a map of the array instead of just a count.
323 assert(Roots.empty() && "Not cleaned up?");
325 SmallVector<std::pair<CallInst*,AllocaInst*>,16> MetaRoots;
327 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
328 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
329 if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
330 if (Function *F = CI->getCalledFunction())
331 if (F->getIntrinsicID() == Intrinsic::gcroot) {
332 std::pair<CallInst*,AllocaInst*> Pair = std::make_pair(
333 CI, cast<AllocaInst>(CI->getOperand(1)->stripPointerCasts()));
334 if (IsNullValue(CI->getOperand(2)))
335 Roots.push_back(Pair);
336 else
337 MetaRoots.push_back(Pair);
340 // Number roots with metadata (usually empty) at the beginning, so that the
341 // FrameMap::Meta array can be elided.
342 Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
345 GetElementPtrInst *
346 ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
347 int Idx, int Idx2, const char *Name) {
348 Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
349 ConstantInt::get(Type::getInt32Ty(Context), Idx),
350 ConstantInt::get(Type::getInt32Ty(Context), Idx2) };
351 Value* Val = B.CreateGEP(BasePtr, Indices, Indices + 3, Name);
353 assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
355 return dyn_cast<GetElementPtrInst>(Val);
358 GetElementPtrInst *
359 ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
360 int Idx, const char *Name) {
361 Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
362 ConstantInt::get(Type::getInt32Ty(Context), Idx) };
363 Value *Val = B.CreateGEP(BasePtr, Indices, Indices + 2, Name);
365 assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
367 return dyn_cast<GetElementPtrInst>(Val);
370 /// runOnFunction - Insert code to maintain the shadow stack.
371 bool ShadowStackGC::performCustomLowering(Function &F) {
372 LLVMContext &Context = F.getContext();
374 // Find calls to llvm.gcroot.
375 CollectRoots(F);
377 // If there are no roots in this function, then there is no need to add a
378 // stack map entry for it.
379 if (Roots.empty())
380 return false;
382 // Build the constant map and figure the type of the shadow stack entry.
383 Value *FrameMap = GetFrameMap(F);
384 const Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
386 // Build the shadow stack entry at the very start of the function.
387 BasicBlock::iterator IP = F.getEntryBlock().begin();
388 IRBuilder<> AtEntry(IP->getParent(), IP);
390 Instruction *StackEntry = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0,
391 "gc_frame");
393 while (isa<AllocaInst>(IP)) ++IP;
394 AtEntry.SetInsertPoint(IP->getParent(), IP);
396 // Initialize the map pointer and load the current head of the shadow stack.
397 Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead");
398 Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, StackEntry,
399 0,1,"gc_frame.map");
400 AtEntry.CreateStore(FrameMap, EntryMapPtr);
402 // After all the allocas...
403 for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
404 // For each root, find the corresponding slot in the aggregate...
405 Value *SlotPtr = CreateGEP(Context, AtEntry, StackEntry, 1 + I, "gc_root");
407 // And use it in lieu of the alloca.
408 AllocaInst *OriginalAlloca = Roots[I].second;
409 SlotPtr->takeName(OriginalAlloca);
410 OriginalAlloca->replaceAllUsesWith(SlotPtr);
413 // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
414 // really necessary (the collector would never see the intermediate state at
415 // runtime), but it's nicer not to push the half-initialized entry onto the
416 // shadow stack.
417 while (isa<StoreInst>(IP)) ++IP;
418 AtEntry.SetInsertPoint(IP->getParent(), IP);
420 // Push the entry onto the shadow stack.
421 Instruction *EntryNextPtr = CreateGEP(Context, AtEntry,
422 StackEntry,0,0,"gc_frame.next");
423 Instruction *NewHeadVal = CreateGEP(Context, AtEntry,
424 StackEntry, 0, "gc_newhead");
425 AtEntry.CreateStore(CurrentHead, EntryNextPtr);
426 AtEntry.CreateStore(NewHeadVal, Head);
428 // For each instruction that escapes...
429 EscapeEnumerator EE(F, "gc_cleanup");
430 while (IRBuilder<> *AtExit = EE.Next()) {
431 // Pop the entry from the shadow stack. Don't reuse CurrentHead from
432 // AtEntry, since that would make the value live for the entire function.
433 Instruction *EntryNextPtr2 = CreateGEP(Context, *AtExit, StackEntry, 0, 0,
434 "gc_frame.next");
435 Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
436 AtExit->CreateStore(SavedHead, Head);
439 // Delete the original allocas (which are no longer used) and the intrinsic
440 // calls (which are no longer valid). Doing this last avoids invalidating
441 // iterators.
442 for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
443 Roots[I].first->eraseFromParent();
444 Roots[I].second->eraseFromParent();
447 Roots.clear();
448 return true;