Remove includes of Support/Compiler.h that are no longer needed after the
[llvm.git] / lib / CodeGen / SelectionDAG / ScheduleDAGRRList.cpp
blob7e1015aff4b2af7aedd3961c6e11acada64f9089
1 //===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements bottom-up and top-down register pressure reduction list
11 // schedulers, using standard algorithms. The basic approach uses a priority
12 // queue of available nodes to schedule. One at a time, nodes are taken from
13 // the priority queue (thus in priority order), checked for legality to
14 // schedule, and emitted if legal.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "pre-RA-sched"
19 #include "ScheduleDAGSDNodes.h"
20 #include "llvm/CodeGen/SchedulerRegistry.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/ADT/PriorityQueue.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <climits>
34 using namespace llvm;
36 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
37 STATISTIC(NumUnfolds, "Number of nodes unfolded");
38 STATISTIC(NumDups, "Number of duplicated nodes");
39 STATISTIC(NumPRCopies, "Number of physical register copies");
41 static RegisterScheduler
42 burrListDAGScheduler("list-burr",
43 "Bottom-up register reduction list scheduling",
44 createBURRListDAGScheduler);
45 static RegisterScheduler
46 tdrListrDAGScheduler("list-tdrr",
47 "Top-down register reduction list scheduling",
48 createTDRRListDAGScheduler);
50 namespace {
51 //===----------------------------------------------------------------------===//
52 /// ScheduleDAGRRList - The actual register reduction list scheduler
53 /// implementation. This supports both top-down and bottom-up scheduling.
54 ///
55 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
56 private:
57 /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
58 /// it is top-down.
59 bool isBottomUp;
61 /// AvailableQueue - The priority queue to use for the available SUnits.
62 SchedulingPriorityQueue *AvailableQueue;
64 /// LiveRegDefs - A set of physical registers and their definition
65 /// that are "live". These nodes must be scheduled before any other nodes that
66 /// modifies the registers can be scheduled.
67 unsigned NumLiveRegs;
68 std::vector<SUnit*> LiveRegDefs;
69 std::vector<unsigned> LiveRegCycles;
71 /// Topo - A topological ordering for SUnits which permits fast IsReachable
72 /// and similar queries.
73 ScheduleDAGTopologicalSort Topo;
75 public:
76 ScheduleDAGRRList(MachineFunction &mf,
77 bool isbottomup,
78 SchedulingPriorityQueue *availqueue)
79 : ScheduleDAGSDNodes(mf), isBottomUp(isbottomup),
80 AvailableQueue(availqueue), Topo(SUnits) {
83 ~ScheduleDAGRRList() {
84 delete AvailableQueue;
87 void Schedule();
89 /// IsReachable - Checks if SU is reachable from TargetSU.
90 bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
91 return Topo.IsReachable(SU, TargetSU);
94 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
95 /// create a cycle.
96 bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
97 return Topo.WillCreateCycle(SU, TargetSU);
100 /// AddPred - adds a predecessor edge to SUnit SU.
101 /// This returns true if this is a new predecessor.
102 /// Updates the topological ordering if required.
103 void AddPred(SUnit *SU, const SDep &D) {
104 Topo.AddPred(SU, D.getSUnit());
105 SU->addPred(D);
108 /// RemovePred - removes a predecessor edge from SUnit SU.
109 /// This returns true if an edge was removed.
110 /// Updates the topological ordering if required.
111 void RemovePred(SUnit *SU, const SDep &D) {
112 Topo.RemovePred(SU, D.getSUnit());
113 SU->removePred(D);
116 private:
117 void ReleasePred(SUnit *SU, const SDep *PredEdge);
118 void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
119 void ReleaseSucc(SUnit *SU, const SDep *SuccEdge);
120 void ReleaseSuccessors(SUnit *SU);
121 void CapturePred(SDep *PredEdge);
122 void ScheduleNodeBottomUp(SUnit*, unsigned);
123 void ScheduleNodeTopDown(SUnit*, unsigned);
124 void UnscheduleNodeBottomUp(SUnit*);
125 void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
126 SUnit *CopyAndMoveSuccessors(SUnit*);
127 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
128 const TargetRegisterClass*,
129 const TargetRegisterClass*,
130 SmallVector<SUnit*, 2>&);
131 bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
132 void ListScheduleTopDown();
133 void ListScheduleBottomUp();
136 /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
137 /// Updates the topological ordering if required.
138 SUnit *CreateNewSUnit(SDNode *N) {
139 unsigned NumSUnits = SUnits.size();
140 SUnit *NewNode = NewSUnit(N);
141 // Update the topological ordering.
142 if (NewNode->NodeNum >= NumSUnits)
143 Topo.InitDAGTopologicalSorting();
144 return NewNode;
147 /// CreateClone - Creates a new SUnit from an existing one.
148 /// Updates the topological ordering if required.
149 SUnit *CreateClone(SUnit *N) {
150 unsigned NumSUnits = SUnits.size();
151 SUnit *NewNode = Clone(N);
152 // Update the topological ordering.
153 if (NewNode->NodeNum >= NumSUnits)
154 Topo.InitDAGTopologicalSorting();
155 return NewNode;
158 /// ForceUnitLatencies - Return true, since register-pressure-reducing
159 /// scheduling doesn't need actual latency information.
160 bool ForceUnitLatencies() const { return true; }
162 } // end anonymous namespace
165 /// Schedule - Schedule the DAG using list scheduling.
166 void ScheduleDAGRRList::Schedule() {
167 DEBUG(errs() << "********** List Scheduling **********\n");
169 NumLiveRegs = 0;
170 LiveRegDefs.resize(TRI->getNumRegs(), NULL);
171 LiveRegCycles.resize(TRI->getNumRegs(), 0);
173 // Build the scheduling graph.
174 BuildSchedGraph(NULL);
176 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
177 SUnits[su].dumpAll(this));
178 Topo.InitDAGTopologicalSorting();
180 AvailableQueue->initNodes(SUnits);
182 // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
183 if (isBottomUp)
184 ListScheduleBottomUp();
185 else
186 ListScheduleTopDown();
188 AvailableQueue->releaseState();
191 //===----------------------------------------------------------------------===//
192 // Bottom-Up Scheduling
193 //===----------------------------------------------------------------------===//
195 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
196 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
197 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
198 SUnit *PredSU = PredEdge->getSUnit();
200 #ifndef NDEBUG
201 if (PredSU->NumSuccsLeft == 0) {
202 errs() << "*** Scheduling failed! ***\n";
203 PredSU->dump(this);
204 errs() << " has been released too many times!\n";
205 llvm_unreachable(0);
207 #endif
208 --PredSU->NumSuccsLeft;
210 // If all the node's successors are scheduled, this node is ready
211 // to be scheduled. Ignore the special EntrySU node.
212 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
213 PredSU->isAvailable = true;
214 AvailableQueue->push(PredSU);
218 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
219 // Bottom up: release predecessors
220 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
221 I != E; ++I) {
222 ReleasePred(SU, &*I);
223 if (I->isAssignedRegDep()) {
224 // This is a physical register dependency and it's impossible or
225 // expensive to copy the register. Make sure nothing that can
226 // clobber the register is scheduled between the predecessor and
227 // this node.
228 if (!LiveRegDefs[I->getReg()]) {
229 ++NumLiveRegs;
230 LiveRegDefs[I->getReg()] = I->getSUnit();
231 LiveRegCycles[I->getReg()] = CurCycle;
237 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
238 /// count of its predecessors. If a predecessor pending count is zero, add it to
239 /// the Available queue.
240 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
241 DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
242 DEBUG(SU->dump(this));
244 assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
245 SU->setHeightToAtLeast(CurCycle);
246 Sequence.push_back(SU);
248 ReleasePredecessors(SU, CurCycle);
250 // Release all the implicit physical register defs that are live.
251 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
252 I != E; ++I) {
253 if (I->isAssignedRegDep()) {
254 if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
255 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
256 assert(LiveRegDefs[I->getReg()] == SU &&
257 "Physical register dependency violated?");
258 --NumLiveRegs;
259 LiveRegDefs[I->getReg()] = NULL;
260 LiveRegCycles[I->getReg()] = 0;
265 SU->isScheduled = true;
266 AvailableQueue->ScheduledNode(SU);
269 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
270 /// unscheduled, incrcease the succ left count of its predecessors. Remove
271 /// them from AvailableQueue if necessary.
272 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
273 SUnit *PredSU = PredEdge->getSUnit();
274 if (PredSU->isAvailable) {
275 PredSU->isAvailable = false;
276 if (!PredSU->isPending)
277 AvailableQueue->remove(PredSU);
280 assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
281 ++PredSU->NumSuccsLeft;
284 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
285 /// its predecessor states to reflect the change.
286 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
287 DEBUG(errs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
288 DEBUG(SU->dump(this));
290 AvailableQueue->UnscheduledNode(SU);
292 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
293 I != E; ++I) {
294 CapturePred(&*I);
295 if (I->isAssignedRegDep() && SU->getHeight() == LiveRegCycles[I->getReg()]) {
296 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
297 assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
298 "Physical register dependency violated?");
299 --NumLiveRegs;
300 LiveRegDefs[I->getReg()] = NULL;
301 LiveRegCycles[I->getReg()] = 0;
305 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
306 I != E; ++I) {
307 if (I->isAssignedRegDep()) {
308 if (!LiveRegDefs[I->getReg()]) {
309 LiveRegDefs[I->getReg()] = SU;
310 ++NumLiveRegs;
312 if (I->getSUnit()->getHeight() < LiveRegCycles[I->getReg()])
313 LiveRegCycles[I->getReg()] = I->getSUnit()->getHeight();
317 SU->setHeightDirty();
318 SU->isScheduled = false;
319 SU->isAvailable = true;
320 AvailableQueue->push(SU);
323 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
324 /// BTCycle in order to schedule a specific node.
325 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
326 unsigned &CurCycle) {
327 SUnit *OldSU = NULL;
328 while (CurCycle > BtCycle) {
329 OldSU = Sequence.back();
330 Sequence.pop_back();
331 if (SU->isSucc(OldSU))
332 // Don't try to remove SU from AvailableQueue.
333 SU->isAvailable = false;
334 UnscheduleNodeBottomUp(OldSU);
335 --CurCycle;
338 assert(!SU->isSucc(OldSU) && "Something is wrong!");
340 ++NumBacktracks;
343 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
344 /// successors to the newly created node.
345 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
346 if (SU->getNode()->getFlaggedNode())
347 return NULL;
349 SDNode *N = SU->getNode();
350 if (!N)
351 return NULL;
353 SUnit *NewSU;
354 bool TryUnfold = false;
355 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
356 EVT VT = N->getValueType(i);
357 if (VT == MVT::Flag)
358 return NULL;
359 else if (VT == MVT::Other)
360 TryUnfold = true;
362 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
363 const SDValue &Op = N->getOperand(i);
364 EVT VT = Op.getNode()->getValueType(Op.getResNo());
365 if (VT == MVT::Flag)
366 return NULL;
369 if (TryUnfold) {
370 SmallVector<SDNode*, 2> NewNodes;
371 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
372 return NULL;
374 DEBUG(errs() << "Unfolding SU # " << SU->NodeNum << "\n");
375 assert(NewNodes.size() == 2 && "Expected a load folding node!");
377 N = NewNodes[1];
378 SDNode *LoadNode = NewNodes[0];
379 unsigned NumVals = N->getNumValues();
380 unsigned OldNumVals = SU->getNode()->getNumValues();
381 for (unsigned i = 0; i != NumVals; ++i)
382 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
383 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
384 SDValue(LoadNode, 1));
386 // LoadNode may already exist. This can happen when there is another
387 // load from the same location and producing the same type of value
388 // but it has different alignment or volatileness.
389 bool isNewLoad = true;
390 SUnit *LoadSU;
391 if (LoadNode->getNodeId() != -1) {
392 LoadSU = &SUnits[LoadNode->getNodeId()];
393 isNewLoad = false;
394 } else {
395 LoadSU = CreateNewSUnit(LoadNode);
396 LoadNode->setNodeId(LoadSU->NodeNum);
397 ComputeLatency(LoadSU);
400 SUnit *NewSU = CreateNewSUnit(N);
401 assert(N->getNodeId() == -1 && "Node already inserted!");
402 N->setNodeId(NewSU->NodeNum);
404 const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
405 for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
406 if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
407 NewSU->isTwoAddress = true;
408 break;
411 if (TID.isCommutable())
412 NewSU->isCommutable = true;
413 ComputeLatency(NewSU);
415 // Record all the edges to and from the old SU, by category.
416 SmallVector<SDep, 4> ChainPreds;
417 SmallVector<SDep, 4> ChainSuccs;
418 SmallVector<SDep, 4> LoadPreds;
419 SmallVector<SDep, 4> NodePreds;
420 SmallVector<SDep, 4> NodeSuccs;
421 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
422 I != E; ++I) {
423 if (I->isCtrl())
424 ChainPreds.push_back(*I);
425 else if (I->getSUnit()->getNode() &&
426 I->getSUnit()->getNode()->isOperandOf(LoadNode))
427 LoadPreds.push_back(*I);
428 else
429 NodePreds.push_back(*I);
431 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
432 I != E; ++I) {
433 if (I->isCtrl())
434 ChainSuccs.push_back(*I);
435 else
436 NodeSuccs.push_back(*I);
439 // Now assign edges to the newly-created nodes.
440 for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
441 const SDep &Pred = ChainPreds[i];
442 RemovePred(SU, Pred);
443 if (isNewLoad)
444 AddPred(LoadSU, Pred);
446 for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
447 const SDep &Pred = LoadPreds[i];
448 RemovePred(SU, Pred);
449 if (isNewLoad)
450 AddPred(LoadSU, Pred);
452 for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
453 const SDep &Pred = NodePreds[i];
454 RemovePred(SU, Pred);
455 AddPred(NewSU, Pred);
457 for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
458 SDep D = NodeSuccs[i];
459 SUnit *SuccDep = D.getSUnit();
460 D.setSUnit(SU);
461 RemovePred(SuccDep, D);
462 D.setSUnit(NewSU);
463 AddPred(SuccDep, D);
465 for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
466 SDep D = ChainSuccs[i];
467 SUnit *SuccDep = D.getSUnit();
468 D.setSUnit(SU);
469 RemovePred(SuccDep, D);
470 if (isNewLoad) {
471 D.setSUnit(LoadSU);
472 AddPred(SuccDep, D);
476 // Add a data dependency to reflect that NewSU reads the value defined
477 // by LoadSU.
478 AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency));
480 if (isNewLoad)
481 AvailableQueue->addNode(LoadSU);
482 AvailableQueue->addNode(NewSU);
484 ++NumUnfolds;
486 if (NewSU->NumSuccsLeft == 0) {
487 NewSU->isAvailable = true;
488 return NewSU;
490 SU = NewSU;
493 DEBUG(errs() << "Duplicating SU # " << SU->NodeNum << "\n");
494 NewSU = CreateClone(SU);
496 // New SUnit has the exact same predecessors.
497 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
498 I != E; ++I)
499 if (!I->isArtificial())
500 AddPred(NewSU, *I);
502 // Only copy scheduled successors. Cut them from old node's successor
503 // list and move them over.
504 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
505 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
506 I != E; ++I) {
507 if (I->isArtificial())
508 continue;
509 SUnit *SuccSU = I->getSUnit();
510 if (SuccSU->isScheduled) {
511 SDep D = *I;
512 D.setSUnit(NewSU);
513 AddPred(SuccSU, D);
514 D.setSUnit(SU);
515 DelDeps.push_back(std::make_pair(SuccSU, D));
518 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
519 RemovePred(DelDeps[i].first, DelDeps[i].second);
521 AvailableQueue->updateNode(SU);
522 AvailableQueue->addNode(NewSU);
524 ++NumDups;
525 return NewSU;
528 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
529 /// scheduled successors of the given SUnit to the last copy.
530 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
531 const TargetRegisterClass *DestRC,
532 const TargetRegisterClass *SrcRC,
533 SmallVector<SUnit*, 2> &Copies) {
534 SUnit *CopyFromSU = CreateNewSUnit(NULL);
535 CopyFromSU->CopySrcRC = SrcRC;
536 CopyFromSU->CopyDstRC = DestRC;
538 SUnit *CopyToSU = CreateNewSUnit(NULL);
539 CopyToSU->CopySrcRC = DestRC;
540 CopyToSU->CopyDstRC = SrcRC;
542 // Only copy scheduled successors. Cut them from old node's successor
543 // list and move them over.
544 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
545 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
546 I != E; ++I) {
547 if (I->isArtificial())
548 continue;
549 SUnit *SuccSU = I->getSUnit();
550 if (SuccSU->isScheduled) {
551 SDep D = *I;
552 D.setSUnit(CopyToSU);
553 AddPred(SuccSU, D);
554 DelDeps.push_back(std::make_pair(SuccSU, *I));
557 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
558 RemovePred(DelDeps[i].first, DelDeps[i].second);
560 AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
561 AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
563 AvailableQueue->updateNode(SU);
564 AvailableQueue->addNode(CopyFromSU);
565 AvailableQueue->addNode(CopyToSU);
566 Copies.push_back(CopyFromSU);
567 Copies.push_back(CopyToSU);
569 ++NumPRCopies;
572 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
573 /// definition of the specified node.
574 /// FIXME: Move to SelectionDAG?
575 static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
576 const TargetInstrInfo *TII) {
577 const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
578 assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
579 unsigned NumRes = TID.getNumDefs();
580 for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
581 if (Reg == *ImpDef)
582 break;
583 ++NumRes;
585 return N->getValueType(NumRes);
588 /// CheckForLiveRegDef - Return true and update live register vector if the
589 /// specified register def of the specified SUnit clobbers any "live" registers.
590 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
591 std::vector<SUnit*> &LiveRegDefs,
592 SmallSet<unsigned, 4> &RegAdded,
593 SmallVector<unsigned, 4> &LRegs,
594 const TargetRegisterInfo *TRI) {
595 bool Added = false;
596 if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != SU) {
597 if (RegAdded.insert(Reg)) {
598 LRegs.push_back(Reg);
599 Added = true;
602 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
603 if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
604 if (RegAdded.insert(*Alias)) {
605 LRegs.push_back(*Alias);
606 Added = true;
609 return Added;
612 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
613 /// scheduling of the given node to satisfy live physical register dependencies.
614 /// If the specific node is the last one that's available to schedule, do
615 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
616 bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
617 SmallVector<unsigned, 4> &LRegs){
618 if (NumLiveRegs == 0)
619 return false;
621 SmallSet<unsigned, 4> RegAdded;
622 // If this node would clobber any "live" register, then it's not ready.
623 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
624 I != E; ++I) {
625 if (I->isAssignedRegDep())
626 CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
627 RegAdded, LRegs, TRI);
630 for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
631 if (Node->getOpcode() == ISD::INLINEASM) {
632 // Inline asm can clobber physical defs.
633 unsigned NumOps = Node->getNumOperands();
634 if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
635 --NumOps; // Ignore the flag operand.
637 for (unsigned i = 2; i != NumOps;) {
638 unsigned Flags =
639 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
640 unsigned NumVals = (Flags & 0xffff) >> 3;
642 ++i; // Skip the ID value.
643 if ((Flags & 7) == 2 || (Flags & 7) == 6) {
644 // Check for def of register or earlyclobber register.
645 for (; NumVals; --NumVals, ++i) {
646 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
647 if (TargetRegisterInfo::isPhysicalRegister(Reg))
648 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
650 } else
651 i += NumVals;
653 continue;
656 if (!Node->isMachineOpcode())
657 continue;
658 const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
659 if (!TID.ImplicitDefs)
660 continue;
661 for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg)
662 CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
664 return !LRegs.empty();
668 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
669 /// schedulers.
670 void ScheduleDAGRRList::ListScheduleBottomUp() {
671 unsigned CurCycle = 0;
673 // Release any predecessors of the special Exit node.
674 ReleasePredecessors(&ExitSU, CurCycle);
676 // Add root to Available queue.
677 if (!SUnits.empty()) {
678 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
679 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
680 RootSU->isAvailable = true;
681 AvailableQueue->push(RootSU);
684 // While Available queue is not empty, grab the node with the highest
685 // priority. If it is not ready put it back. Schedule the node.
686 SmallVector<SUnit*, 4> NotReady;
687 DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
688 Sequence.reserve(SUnits.size());
689 while (!AvailableQueue->empty()) {
690 bool Delayed = false;
691 LRegsMap.clear();
692 SUnit *CurSU = AvailableQueue->pop();
693 while (CurSU) {
694 SmallVector<unsigned, 4> LRegs;
695 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
696 break;
697 Delayed = true;
698 LRegsMap.insert(std::make_pair(CurSU, LRegs));
700 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
701 NotReady.push_back(CurSU);
702 CurSU = AvailableQueue->pop();
705 // All candidates are delayed due to live physical reg dependencies.
706 // Try backtracking, code duplication, or inserting cross class copies
707 // to resolve it.
708 if (Delayed && !CurSU) {
709 for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
710 SUnit *TrySU = NotReady[i];
711 SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
713 // Try unscheduling up to the point where it's safe to schedule
714 // this node.
715 unsigned LiveCycle = CurCycle;
716 for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
717 unsigned Reg = LRegs[j];
718 unsigned LCycle = LiveRegCycles[Reg];
719 LiveCycle = std::min(LiveCycle, LCycle);
721 SUnit *OldSU = Sequence[LiveCycle];
722 if (!WillCreateCycle(TrySU, OldSU)) {
723 BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
724 // Force the current node to be scheduled before the node that
725 // requires the physical reg dep.
726 if (OldSU->isAvailable) {
727 OldSU->isAvailable = false;
728 AvailableQueue->remove(OldSU);
730 AddPred(TrySU, SDep(OldSU, SDep::Order, /*Latency=*/1,
731 /*Reg=*/0, /*isNormalMemory=*/false,
732 /*isMustAlias=*/false, /*isArtificial=*/true));
733 // If one or more successors has been unscheduled, then the current
734 // node is no longer avaialable. Schedule a successor that's now
735 // available instead.
736 if (!TrySU->isAvailable)
737 CurSU = AvailableQueue->pop();
738 else {
739 CurSU = TrySU;
740 TrySU->isPending = false;
741 NotReady.erase(NotReady.begin()+i);
743 break;
747 if (!CurSU) {
748 // Can't backtrack. If it's too expensive to copy the value, then try
749 // duplicate the nodes that produces these "too expensive to copy"
750 // values to break the dependency. In case even that doesn't work,
751 // insert cross class copies.
752 // If it's not too expensive, i.e. cost != -1, issue copies.
753 SUnit *TrySU = NotReady[0];
754 SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
755 assert(LRegs.size() == 1 && "Can't handle this yet!");
756 unsigned Reg = LRegs[0];
757 SUnit *LRDef = LiveRegDefs[Reg];
758 EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
759 const TargetRegisterClass *RC =
760 TRI->getPhysicalRegisterRegClass(Reg, VT);
761 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
763 // If cross copy register class is null, then it must be possible copy
764 // the value directly. Do not try duplicate the def.
765 SUnit *NewDef = 0;
766 if (DestRC)
767 NewDef = CopyAndMoveSuccessors(LRDef);
768 else
769 DestRC = RC;
770 if (!NewDef) {
771 // Issue copies, these can be expensive cross register class copies.
772 SmallVector<SUnit*, 2> Copies;
773 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
774 DEBUG(errs() << "Adding an edge from SU #" << TrySU->NodeNum
775 << " to SU #" << Copies.front()->NodeNum << "\n");
776 AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
777 /*Reg=*/0, /*isNormalMemory=*/false,
778 /*isMustAlias=*/false,
779 /*isArtificial=*/true));
780 NewDef = Copies.back();
783 DEBUG(errs() << "Adding an edge from SU #" << NewDef->NodeNum
784 << " to SU #" << TrySU->NodeNum << "\n");
785 LiveRegDefs[Reg] = NewDef;
786 AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
787 /*Reg=*/0, /*isNormalMemory=*/false,
788 /*isMustAlias=*/false,
789 /*isArtificial=*/true));
790 TrySU->isAvailable = false;
791 CurSU = NewDef;
794 assert(CurSU && "Unable to resolve live physical register dependencies!");
797 // Add the nodes that aren't ready back onto the available list.
798 for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
799 NotReady[i]->isPending = false;
800 // May no longer be available due to backtracking.
801 if (NotReady[i]->isAvailable)
802 AvailableQueue->push(NotReady[i]);
804 NotReady.clear();
806 if (CurSU)
807 ScheduleNodeBottomUp(CurSU, CurCycle);
808 ++CurCycle;
811 // Reverse the order if it is bottom up.
812 std::reverse(Sequence.begin(), Sequence.end());
814 #ifndef NDEBUG
815 VerifySchedule(isBottomUp);
816 #endif
819 //===----------------------------------------------------------------------===//
820 // Top-Down Scheduling
821 //===----------------------------------------------------------------------===//
823 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
824 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
825 void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, const SDep *SuccEdge) {
826 SUnit *SuccSU = SuccEdge->getSUnit();
828 #ifndef NDEBUG
829 if (SuccSU->NumPredsLeft == 0) {
830 errs() << "*** Scheduling failed! ***\n";
831 SuccSU->dump(this);
832 errs() << " has been released too many times!\n";
833 llvm_unreachable(0);
835 #endif
836 --SuccSU->NumPredsLeft;
838 // If all the node's predecessors are scheduled, this node is ready
839 // to be scheduled. Ignore the special ExitSU node.
840 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
841 SuccSU->isAvailable = true;
842 AvailableQueue->push(SuccSU);
846 void ScheduleDAGRRList::ReleaseSuccessors(SUnit *SU) {
847 // Top down: release successors
848 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
849 I != E; ++I) {
850 assert(!I->isAssignedRegDep() &&
851 "The list-tdrr scheduler doesn't yet support physreg dependencies!");
853 ReleaseSucc(SU, &*I);
857 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
858 /// count of its successors. If a successor pending count is zero, add it to
859 /// the Available queue.
860 void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
861 DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
862 DEBUG(SU->dump(this));
864 assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
865 SU->setDepthToAtLeast(CurCycle);
866 Sequence.push_back(SU);
868 ReleaseSuccessors(SU);
869 SU->isScheduled = true;
870 AvailableQueue->ScheduledNode(SU);
873 /// ListScheduleTopDown - The main loop of list scheduling for top-down
874 /// schedulers.
875 void ScheduleDAGRRList::ListScheduleTopDown() {
876 unsigned CurCycle = 0;
878 // Release any successors of the special Entry node.
879 ReleaseSuccessors(&EntrySU);
881 // All leaves to Available queue.
882 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
883 // It is available if it has no predecessors.
884 if (SUnits[i].Preds.empty()) {
885 AvailableQueue->push(&SUnits[i]);
886 SUnits[i].isAvailable = true;
890 // While Available queue is not empty, grab the node with the highest
891 // priority. If it is not ready put it back. Schedule the node.
892 Sequence.reserve(SUnits.size());
893 while (!AvailableQueue->empty()) {
894 SUnit *CurSU = AvailableQueue->pop();
896 if (CurSU)
897 ScheduleNodeTopDown(CurSU, CurCycle);
898 ++CurCycle;
901 #ifndef NDEBUG
902 VerifySchedule(isBottomUp);
903 #endif
907 //===----------------------------------------------------------------------===//
908 // RegReductionPriorityQueue Implementation
909 //===----------------------------------------------------------------------===//
911 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
912 // to reduce register pressure.
914 namespace {
915 template<class SF>
916 class RegReductionPriorityQueue;
918 /// Sorting functions for the Available queue.
919 struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
920 RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
921 bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
922 bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
924 bool operator()(const SUnit* left, const SUnit* right) const;
927 struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
928 RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
929 td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
930 td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
932 bool operator()(const SUnit* left, const SUnit* right) const;
934 } // end anonymous namespace
936 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
937 /// Smaller number is the higher priority.
938 static unsigned
939 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
940 unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
941 if (SethiUllmanNumber != 0)
942 return SethiUllmanNumber;
944 unsigned Extra = 0;
945 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
946 I != E; ++I) {
947 if (I->isCtrl()) continue; // ignore chain preds
948 SUnit *PredSU = I->getSUnit();
949 unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
950 if (PredSethiUllman > SethiUllmanNumber) {
951 SethiUllmanNumber = PredSethiUllman;
952 Extra = 0;
953 } else if (PredSethiUllman == SethiUllmanNumber)
954 ++Extra;
957 SethiUllmanNumber += Extra;
959 if (SethiUllmanNumber == 0)
960 SethiUllmanNumber = 1;
962 return SethiUllmanNumber;
965 namespace {
966 template<class SF>
967 class RegReductionPriorityQueue : public SchedulingPriorityQueue {
968 PriorityQueue<SUnit*, std::vector<SUnit*>, SF> Queue;
969 unsigned currentQueueId;
971 protected:
972 // SUnits - The SUnits for the current graph.
973 std::vector<SUnit> *SUnits;
975 const TargetInstrInfo *TII;
976 const TargetRegisterInfo *TRI;
977 ScheduleDAGRRList *scheduleDAG;
979 // SethiUllmanNumbers - The SethiUllman number for each node.
980 std::vector<unsigned> SethiUllmanNumbers;
982 public:
983 RegReductionPriorityQueue(const TargetInstrInfo *tii,
984 const TargetRegisterInfo *tri) :
985 Queue(SF(this)), currentQueueId(0),
986 TII(tii), TRI(tri), scheduleDAG(NULL) {}
988 void initNodes(std::vector<SUnit> &sunits) {
989 SUnits = &sunits;
990 // Add pseudo dependency edges for two-address nodes.
991 AddPseudoTwoAddrDeps();
992 // Reroute edges to nodes with multiple uses.
993 PrescheduleNodesWithMultipleUses();
994 // Calculate node priorities.
995 CalculateSethiUllmanNumbers();
998 void addNode(const SUnit *SU) {
999 unsigned SUSize = SethiUllmanNumbers.size();
1000 if (SUnits->size() > SUSize)
1001 SethiUllmanNumbers.resize(SUSize*2, 0);
1002 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1005 void updateNode(const SUnit *SU) {
1006 SethiUllmanNumbers[SU->NodeNum] = 0;
1007 CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1010 void releaseState() {
1011 SUnits = 0;
1012 SethiUllmanNumbers.clear();
1015 unsigned getNodePriority(const SUnit *SU) const {
1016 assert(SU->NodeNum < SethiUllmanNumbers.size());
1017 unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1018 if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1019 // CopyToReg should be close to its uses to facilitate coalescing and
1020 // avoid spilling.
1021 return 0;
1022 if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
1023 Opc == TargetInstrInfo::SUBREG_TO_REG ||
1024 Opc == TargetInstrInfo::INSERT_SUBREG)
1025 // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1026 // close to their uses to facilitate coalescing.
1027 return 0;
1028 if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1029 // If SU does not have a register use, i.e. it doesn't produce a value
1030 // that would be consumed (e.g. store), then it terminates a chain of
1031 // computation. Give it a large SethiUllman number so it will be
1032 // scheduled right before its predecessors that it doesn't lengthen
1033 // their live ranges.
1034 return 0xffff;
1035 if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1036 // If SU does not have a register def, schedule it close to its uses
1037 // because it does not lengthen any live ranges.
1038 return 0;
1039 return SethiUllmanNumbers[SU->NodeNum];
1042 unsigned size() const { return Queue.size(); }
1044 bool empty() const { return Queue.empty(); }
1046 void push(SUnit *U) {
1047 assert(!U->NodeQueueId && "Node in the queue already");
1048 U->NodeQueueId = ++currentQueueId;
1049 Queue.push(U);
1052 void push_all(const std::vector<SUnit *> &Nodes) {
1053 for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
1054 push(Nodes[i]);
1057 SUnit *pop() {
1058 if (empty()) return NULL;
1059 SUnit *V = Queue.top();
1060 Queue.pop();
1061 V->NodeQueueId = 0;
1062 return V;
1065 void remove(SUnit *SU) {
1066 assert(!Queue.empty() && "Queue is empty!");
1067 assert(SU->NodeQueueId != 0 && "Not in queue!");
1068 Queue.erase_one(SU);
1069 SU->NodeQueueId = 0;
1072 void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1073 scheduleDAG = scheduleDag;
1076 protected:
1077 bool canClobber(const SUnit *SU, const SUnit *Op);
1078 void AddPseudoTwoAddrDeps();
1079 void PrescheduleNodesWithMultipleUses();
1080 void CalculateSethiUllmanNumbers();
1083 typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1084 BURegReductionPriorityQueue;
1086 typedef RegReductionPriorityQueue<td_ls_rr_sort>
1087 TDRegReductionPriorityQueue;
1090 /// closestSucc - Returns the scheduled cycle of the successor which is
1091 /// closest to the current cycle.
1092 static unsigned closestSucc(const SUnit *SU) {
1093 unsigned MaxHeight = 0;
1094 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1095 I != E; ++I) {
1096 if (I->isCtrl()) continue; // ignore chain succs
1097 unsigned Height = I->getSUnit()->getHeight();
1098 // If there are bunch of CopyToRegs stacked up, they should be considered
1099 // to be at the same position.
1100 if (I->getSUnit()->getNode() &&
1101 I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
1102 Height = closestSucc(I->getSUnit())+1;
1103 if (Height > MaxHeight)
1104 MaxHeight = Height;
1106 return MaxHeight;
1109 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
1110 /// for scratch registers, i.e. number of data dependencies.
1111 static unsigned calcMaxScratches(const SUnit *SU) {
1112 unsigned Scratches = 0;
1113 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1114 I != E; ++I) {
1115 if (I->isCtrl()) continue; // ignore chain preds
1116 Scratches++;
1118 return Scratches;
1121 // Bottom up
1122 bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1123 unsigned LPriority = SPQ->getNodePriority(left);
1124 unsigned RPriority = SPQ->getNodePriority(right);
1125 if (LPriority != RPriority)
1126 return LPriority > RPriority;
1128 // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1129 // e.g.
1130 // t1 = op t2, c1
1131 // t3 = op t4, c2
1133 // and the following instructions are both ready.
1134 // t2 = op c3
1135 // t4 = op c4
1137 // Then schedule t2 = op first.
1138 // i.e.
1139 // t4 = op c4
1140 // t2 = op c3
1141 // t1 = op t2, c1
1142 // t3 = op t4, c2
1144 // This creates more short live intervals.
1145 unsigned LDist = closestSucc(left);
1146 unsigned RDist = closestSucc(right);
1147 if (LDist != RDist)
1148 return LDist < RDist;
1150 // How many registers becomes live when the node is scheduled.
1151 unsigned LScratch = calcMaxScratches(left);
1152 unsigned RScratch = calcMaxScratches(right);
1153 if (LScratch != RScratch)
1154 return LScratch > RScratch;
1156 if (left->getHeight() != right->getHeight())
1157 return left->getHeight() > right->getHeight();
1159 if (left->getDepth() != right->getDepth())
1160 return left->getDepth() < right->getDepth();
1162 assert(left->NodeQueueId && right->NodeQueueId &&
1163 "NodeQueueId cannot be zero");
1164 return (left->NodeQueueId > right->NodeQueueId);
1167 template<class SF>
1168 bool
1169 RegReductionPriorityQueue<SF>::canClobber(const SUnit *SU, const SUnit *Op) {
1170 if (SU->isTwoAddress) {
1171 unsigned Opc = SU->getNode()->getMachineOpcode();
1172 const TargetInstrDesc &TID = TII->get(Opc);
1173 unsigned NumRes = TID.getNumDefs();
1174 unsigned NumOps = TID.getNumOperands() - NumRes;
1175 for (unsigned i = 0; i != NumOps; ++i) {
1176 if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
1177 SDNode *DU = SU->getNode()->getOperand(i).getNode();
1178 if (DU->getNodeId() != -1 &&
1179 Op->OrigNode == &(*SUnits)[DU->getNodeId()])
1180 return true;
1184 return false;
1188 /// hasCopyToRegUse - Return true if SU has a value successor that is a
1189 /// CopyToReg node.
1190 static bool hasCopyToRegUse(const SUnit *SU) {
1191 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1192 I != E; ++I) {
1193 if (I->isCtrl()) continue;
1194 const SUnit *SuccSU = I->getSUnit();
1195 if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg)
1196 return true;
1198 return false;
1201 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
1202 /// physical register defs.
1203 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
1204 const TargetInstrInfo *TII,
1205 const TargetRegisterInfo *TRI) {
1206 SDNode *N = SuccSU->getNode();
1207 unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1208 const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
1209 assert(ImpDefs && "Caller should check hasPhysRegDefs");
1210 for (const SDNode *SUNode = SU->getNode(); SUNode;
1211 SUNode = SUNode->getFlaggedNode()) {
1212 if (!SUNode->isMachineOpcode())
1213 continue;
1214 const unsigned *SUImpDefs =
1215 TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
1216 if (!SUImpDefs)
1217 return false;
1218 for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
1219 EVT VT = N->getValueType(i);
1220 if (VT == MVT::Flag || VT == MVT::Other)
1221 continue;
1222 if (!N->hasAnyUseOfValue(i))
1223 continue;
1224 unsigned Reg = ImpDefs[i - NumDefs];
1225 for (;*SUImpDefs; ++SUImpDefs) {
1226 unsigned SUReg = *SUImpDefs;
1227 if (TRI->regsOverlap(Reg, SUReg))
1228 return true;
1232 return false;
1235 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
1236 /// are not handled well by the general register pressure reduction
1237 /// heuristics. When presented with code like this:
1239 /// N
1240 /// / |
1241 /// / |
1242 /// U store
1243 /// |
1244 /// ...
1246 /// the heuristics tend to push the store up, but since the
1247 /// operand of the store has another use (U), this would increase
1248 /// the length of that other use (the U->N edge).
1250 /// This function transforms code like the above to route U's
1251 /// dependence through the store when possible, like this:
1253 /// N
1254 /// ||
1255 /// ||
1256 /// store
1257 /// |
1258 /// U
1259 /// |
1260 /// ...
1262 /// This results in the store being scheduled immediately
1263 /// after N, which shortens the U->N live range, reducing
1264 /// register pressure.
1266 template<class SF>
1267 void RegReductionPriorityQueue<SF>::PrescheduleNodesWithMultipleUses() {
1268 // Visit all the nodes in topological order, working top-down.
1269 for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1270 SUnit *SU = &(*SUnits)[i];
1271 // For now, only look at nodes with no data successors, such as stores.
1272 // These are especially important, due to the heuristics in
1273 // getNodePriority for nodes with no data successors.
1274 if (SU->NumSuccs != 0)
1275 continue;
1276 // For now, only look at nodes with exactly one data predecessor.
1277 if (SU->NumPreds != 1)
1278 continue;
1279 // Avoid prescheduling copies to virtual registers, which don't behave
1280 // like other nodes from the perspective of scheduling heuristics.
1281 if (SDNode *N = SU->getNode())
1282 if (N->getOpcode() == ISD::CopyToReg &&
1283 TargetRegisterInfo::isVirtualRegister
1284 (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
1285 continue;
1287 // Locate the single data predecessor.
1288 SUnit *PredSU = 0;
1289 for (SUnit::const_pred_iterator II = SU->Preds.begin(),
1290 EE = SU->Preds.end(); II != EE; ++II)
1291 if (!II->isCtrl()) {
1292 PredSU = II->getSUnit();
1293 break;
1295 assert(PredSU);
1297 // Don't rewrite edges that carry physregs, because that requires additional
1298 // support infrastructure.
1299 if (PredSU->hasPhysRegDefs)
1300 continue;
1301 // Short-circuit the case where SU is PredSU's only data successor.
1302 if (PredSU->NumSuccs == 1)
1303 continue;
1304 // Avoid prescheduling to copies from virtual registers, which don't behave
1305 // like other nodes from the perspective of scheduling // heuristics.
1306 if (SDNode *N = SU->getNode())
1307 if (N->getOpcode() == ISD::CopyFromReg &&
1308 TargetRegisterInfo::isVirtualRegister
1309 (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
1310 continue;
1312 // Perform checks on the successors of PredSU.
1313 for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
1314 EE = PredSU->Succs.end(); II != EE; ++II) {
1315 SUnit *PredSuccSU = II->getSUnit();
1316 if (PredSuccSU == SU) continue;
1317 // If PredSU has another successor with no data successors, for
1318 // now don't attempt to choose either over the other.
1319 if (PredSuccSU->NumSuccs == 0)
1320 goto outer_loop_continue;
1321 // Don't break physical register dependencies.
1322 if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
1323 if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
1324 goto outer_loop_continue;
1325 // Don't introduce graph cycles.
1326 if (scheduleDAG->IsReachable(SU, PredSuccSU))
1327 goto outer_loop_continue;
1330 // Ok, the transformation is safe and the heuristics suggest it is
1331 // profitable. Update the graph.
1332 DEBUG(errs() << "Prescheduling SU # " << SU->NodeNum
1333 << " next to PredSU # " << PredSU->NodeNum
1334 << " to guide scheduling in the presence of multiple uses\n");
1335 for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
1336 SDep Edge = PredSU->Succs[i];
1337 assert(!Edge.isAssignedRegDep());
1338 SUnit *SuccSU = Edge.getSUnit();
1339 if (SuccSU != SU) {
1340 Edge.setSUnit(PredSU);
1341 scheduleDAG->RemovePred(SuccSU, Edge);
1342 scheduleDAG->AddPred(SU, Edge);
1343 Edge.setSUnit(SU);
1344 scheduleDAG->AddPred(SuccSU, Edge);
1345 --i;
1348 outer_loop_continue:;
1352 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1353 /// it as a def&use operand. Add a pseudo control edge from it to the other
1354 /// node (if it won't create a cycle) so the two-address one will be scheduled
1355 /// first (lower in the schedule). If both nodes are two-address, favor the
1356 /// one that has a CopyToReg use (more likely to be a loop induction update).
1357 /// If both are two-address, but one is commutable while the other is not
1358 /// commutable, favor the one that's not commutable.
1359 template<class SF>
1360 void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
1361 for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1362 SUnit *SU = &(*SUnits)[i];
1363 if (!SU->isTwoAddress)
1364 continue;
1366 SDNode *Node = SU->getNode();
1367 if (!Node || !Node->isMachineOpcode() || SU->getNode()->getFlaggedNode())
1368 continue;
1370 unsigned Opc = Node->getMachineOpcode();
1371 const TargetInstrDesc &TID = TII->get(Opc);
1372 unsigned NumRes = TID.getNumDefs();
1373 unsigned NumOps = TID.getNumOperands() - NumRes;
1374 for (unsigned j = 0; j != NumOps; ++j) {
1375 if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
1376 continue;
1377 SDNode *DU = SU->getNode()->getOperand(j).getNode();
1378 if (DU->getNodeId() == -1)
1379 continue;
1380 const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
1381 if (!DUSU) continue;
1382 for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
1383 E = DUSU->Succs.end(); I != E; ++I) {
1384 if (I->isCtrl()) continue;
1385 SUnit *SuccSU = I->getSUnit();
1386 if (SuccSU == SU)
1387 continue;
1388 // Be conservative. Ignore if nodes aren't at roughly the same
1389 // depth and height.
1390 if (SuccSU->getHeight() < SU->getHeight() &&
1391 (SU->getHeight() - SuccSU->getHeight()) > 1)
1392 continue;
1393 // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
1394 // constrains whatever is using the copy, instead of the copy
1395 // itself. In the case that the copy is coalesced, this
1396 // preserves the intent of the pseudo two-address heurietics.
1397 while (SuccSU->Succs.size() == 1 &&
1398 SuccSU->getNode()->isMachineOpcode() &&
1399 SuccSU->getNode()->getMachineOpcode() ==
1400 TargetInstrInfo::COPY_TO_REGCLASS)
1401 SuccSU = SuccSU->Succs.front().getSUnit();
1402 // Don't constrain non-instruction nodes.
1403 if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
1404 continue;
1405 // Don't constrain nodes with physical register defs if the
1406 // predecessor can clobber them.
1407 if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
1408 if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
1409 continue;
1411 // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
1412 // these may be coalesced away. We want them close to their uses.
1413 unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
1414 if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
1415 SuccOpc == TargetInstrInfo::INSERT_SUBREG ||
1416 SuccOpc == TargetInstrInfo::SUBREG_TO_REG)
1417 continue;
1418 if ((!canClobber(SuccSU, DUSU) ||
1419 (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
1420 (!SU->isCommutable && SuccSU->isCommutable)) &&
1421 !scheduleDAG->IsReachable(SuccSU, SU)) {
1422 DEBUG(errs() << "Adding a pseudo-two-addr edge from SU # "
1423 << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
1424 scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
1425 /*Reg=*/0, /*isNormalMemory=*/false,
1426 /*isMustAlias=*/false,
1427 /*isArtificial=*/true));
1434 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1435 /// scheduling units.
1436 template<class SF>
1437 void RegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1438 SethiUllmanNumbers.assign(SUnits->size(), 0);
1440 for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1441 CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1444 /// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
1445 /// predecessors of the successors of the SUnit SU. Stop when the provided
1446 /// limit is exceeded.
1447 static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
1448 unsigned Limit) {
1449 unsigned Sum = 0;
1450 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1451 I != E; ++I) {
1452 const SUnit *SuccSU = I->getSUnit();
1453 for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
1454 EE = SuccSU->Preds.end(); II != EE; ++II) {
1455 SUnit *PredSU = II->getSUnit();
1456 if (!PredSU->isScheduled)
1457 if (++Sum > Limit)
1458 return Sum;
1461 return Sum;
1465 // Top down
1466 bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1467 unsigned LPriority = SPQ->getNodePriority(left);
1468 unsigned RPriority = SPQ->getNodePriority(right);
1469 bool LIsTarget = left->getNode() && left->getNode()->isMachineOpcode();
1470 bool RIsTarget = right->getNode() && right->getNode()->isMachineOpcode();
1471 bool LIsFloater = LIsTarget && left->NumPreds == 0;
1472 bool RIsFloater = RIsTarget && right->NumPreds == 0;
1473 unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
1474 unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
1476 if (left->NumSuccs == 0 && right->NumSuccs != 0)
1477 return false;
1478 else if (left->NumSuccs != 0 && right->NumSuccs == 0)
1479 return true;
1481 if (LIsFloater)
1482 LBonus -= 2;
1483 if (RIsFloater)
1484 RBonus -= 2;
1485 if (left->NumSuccs == 1)
1486 LBonus += 2;
1487 if (right->NumSuccs == 1)
1488 RBonus += 2;
1490 if (LPriority+LBonus != RPriority+RBonus)
1491 return LPriority+LBonus < RPriority+RBonus;
1493 if (left->getDepth() != right->getDepth())
1494 return left->getDepth() < right->getDepth();
1496 if (left->NumSuccsLeft != right->NumSuccsLeft)
1497 return left->NumSuccsLeft > right->NumSuccsLeft;
1499 assert(left->NodeQueueId && right->NodeQueueId &&
1500 "NodeQueueId cannot be zero");
1501 return (left->NodeQueueId > right->NodeQueueId);
1504 //===----------------------------------------------------------------------===//
1505 // Public Constructor Functions
1506 //===----------------------------------------------------------------------===//
1508 llvm::ScheduleDAGSDNodes *
1509 llvm::createBURRListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
1510 const TargetMachine &TM = IS->TM;
1511 const TargetInstrInfo *TII = TM.getInstrInfo();
1512 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
1514 BURegReductionPriorityQueue *PQ = new BURegReductionPriorityQueue(TII, TRI);
1516 ScheduleDAGRRList *SD =
1517 new ScheduleDAGRRList(*IS->MF, true, PQ);
1518 PQ->setScheduleDAG(SD);
1519 return SD;
1522 llvm::ScheduleDAGSDNodes *
1523 llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
1524 const TargetMachine &TM = IS->TM;
1525 const TargetInstrInfo *TII = TM.getInstrInfo();
1526 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
1528 TDRegReductionPriorityQueue *PQ = new TDRegReductionPriorityQueue(TII, TRI);
1530 ScheduleDAGRRList *SD =
1531 new ScheduleDAGRRList(*IS->MF, false, PQ);
1532 PQ->setScheduleDAG(SD);
1533 return SD;