Remove includes of Support/Compiler.h that are no longer needed after the
[llvm.git] / lib / CodeGen / RegAllocLinearScan.cpp
blob836a3f02aaba853caf39da31c3daea894a3157a7
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "VirtRegMap.h"
16 #include "VirtRegRewriter.h"
17 #include "Spiller.h"
18 #include "llvm/Function.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/LiveStackAnalysis.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/RegAllocRegistry.h"
27 #include "llvm/CodeGen/RegisterCoalescer.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/ADT/EquivalenceClasses.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <set>
41 #include <queue>
42 #include <memory>
43 #include <cmath>
45 using namespace llvm;
47 STATISTIC(NumIters , "Number of iterations performed");
48 STATISTIC(NumBacktracks, "Number of times we had to backtrack");
49 STATISTIC(NumCoalesce, "Number of copies coalesced");
50 STATISTIC(NumDowngrade, "Number of registers downgraded");
52 static cl::opt<bool>
53 NewHeuristic("new-spilling-heuristic",
54 cl::desc("Use new spilling heuristic"),
55 cl::init(false), cl::Hidden);
57 static cl::opt<bool>
58 PreSplitIntervals("pre-alloc-split",
59 cl::desc("Pre-register allocation live interval splitting"),
60 cl::init(false), cl::Hidden);
62 static cl::opt<bool>
63 NewSpillFramework("new-spill-framework",
64 cl::desc("New spilling framework"),
65 cl::init(false), cl::Hidden);
67 static RegisterRegAlloc
68 linearscanRegAlloc("linearscan", "linear scan register allocator",
69 createLinearScanRegisterAllocator);
71 namespace {
72 struct RALinScan : public MachineFunctionPass {
73 static char ID;
74 RALinScan() : MachineFunctionPass(&ID) {}
76 typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
77 typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
78 private:
79 /// RelatedRegClasses - This structure is built the first time a function is
80 /// compiled, and keeps track of which register classes have registers that
81 /// belong to multiple classes or have aliases that are in other classes.
82 EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
83 DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
85 // NextReloadMap - For each register in the map, it maps to the another
86 // register which is defined by a reload from the same stack slot and
87 // both reloads are in the same basic block.
88 DenseMap<unsigned, unsigned> NextReloadMap;
90 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
91 // un-favored for allocation.
92 SmallSet<unsigned, 8> DowngradedRegs;
94 // DowngradeMap - A map from virtual registers to physical registers being
95 // downgraded for the virtual registers.
96 DenseMap<unsigned, unsigned> DowngradeMap;
98 MachineFunction* mf_;
99 MachineRegisterInfo* mri_;
100 const TargetMachine* tm_;
101 const TargetRegisterInfo* tri_;
102 const TargetInstrInfo* tii_;
103 BitVector allocatableRegs_;
104 LiveIntervals* li_;
105 LiveStacks* ls_;
106 const MachineLoopInfo *loopInfo;
108 /// handled_ - Intervals are added to the handled_ set in the order of their
109 /// start value. This is uses for backtracking.
110 std::vector<LiveInterval*> handled_;
112 /// fixed_ - Intervals that correspond to machine registers.
114 IntervalPtrs fixed_;
116 /// active_ - Intervals that are currently being processed, and which have a
117 /// live range active for the current point.
118 IntervalPtrs active_;
120 /// inactive_ - Intervals that are currently being processed, but which have
121 /// a hold at the current point.
122 IntervalPtrs inactive_;
124 typedef std::priority_queue<LiveInterval*,
125 SmallVector<LiveInterval*, 64>,
126 greater_ptr<LiveInterval> > IntervalHeap;
127 IntervalHeap unhandled_;
129 /// regUse_ - Tracks register usage.
130 SmallVector<unsigned, 32> regUse_;
131 SmallVector<unsigned, 32> regUseBackUp_;
133 /// vrm_ - Tracks register assignments.
134 VirtRegMap* vrm_;
136 std::auto_ptr<VirtRegRewriter> rewriter_;
138 std::auto_ptr<Spiller> spiller_;
140 public:
141 virtual const char* getPassName() const {
142 return "Linear Scan Register Allocator";
145 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
146 AU.setPreservesCFG();
147 AU.addRequired<LiveIntervals>();
148 if (StrongPHIElim)
149 AU.addRequiredID(StrongPHIEliminationID);
150 // Make sure PassManager knows which analyses to make available
151 // to coalescing and which analyses coalescing invalidates.
152 AU.addRequiredTransitive<RegisterCoalescer>();
153 if (PreSplitIntervals)
154 AU.addRequiredID(PreAllocSplittingID);
155 AU.addRequired<LiveStacks>();
156 AU.addPreserved<LiveStacks>();
157 AU.addRequired<MachineLoopInfo>();
158 AU.addPreserved<MachineLoopInfo>();
159 AU.addRequired<VirtRegMap>();
160 AU.addPreserved<VirtRegMap>();
161 AU.addPreservedID(MachineDominatorsID);
162 MachineFunctionPass::getAnalysisUsage(AU);
165 /// runOnMachineFunction - register allocate the whole function
166 bool runOnMachineFunction(MachineFunction&);
168 private:
169 /// linearScan - the linear scan algorithm
170 void linearScan();
172 /// initIntervalSets - initialize the interval sets.
174 void initIntervalSets();
176 /// processActiveIntervals - expire old intervals and move non-overlapping
177 /// ones to the inactive list.
178 void processActiveIntervals(LiveIndex CurPoint);
180 /// processInactiveIntervals - expire old intervals and move overlapping
181 /// ones to the active list.
182 void processInactiveIntervals(LiveIndex CurPoint);
184 /// hasNextReloadInterval - Return the next liveinterval that's being
185 /// defined by a reload from the same SS as the specified one.
186 LiveInterval *hasNextReloadInterval(LiveInterval *cur);
188 /// DowngradeRegister - Downgrade a register for allocation.
189 void DowngradeRegister(LiveInterval *li, unsigned Reg);
191 /// UpgradeRegister - Upgrade a register for allocation.
192 void UpgradeRegister(unsigned Reg);
194 /// assignRegOrStackSlotAtInterval - assign a register if one
195 /// is available, or spill.
196 void assignRegOrStackSlotAtInterval(LiveInterval* cur);
198 void updateSpillWeights(std::vector<float> &Weights,
199 unsigned reg, float weight,
200 const TargetRegisterClass *RC);
202 /// findIntervalsToSpill - Determine the intervals to spill for the
203 /// specified interval. It's passed the physical registers whose spill
204 /// weight is the lowest among all the registers whose live intervals
205 /// conflict with the interval.
206 void findIntervalsToSpill(LiveInterval *cur,
207 std::vector<std::pair<unsigned,float> > &Candidates,
208 unsigned NumCands,
209 SmallVector<LiveInterval*, 8> &SpillIntervals);
211 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
212 /// try allocate the definition the same register as the source register
213 /// if the register is not defined during live time of the interval. This
214 /// eliminate a copy. This is used to coalesce copies which were not
215 /// coalesced away before allocation either due to dest and src being in
216 /// different register classes or because the coalescer was overly
217 /// conservative.
218 unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
221 /// Register usage / availability tracking helpers.
224 void initRegUses() {
225 regUse_.resize(tri_->getNumRegs(), 0);
226 regUseBackUp_.resize(tri_->getNumRegs(), 0);
229 void finalizeRegUses() {
230 #ifndef NDEBUG
231 // Verify all the registers are "freed".
232 bool Error = false;
233 for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
234 if (regUse_[i] != 0) {
235 errs() << tri_->getName(i) << " is still in use!\n";
236 Error = true;
239 if (Error)
240 llvm_unreachable(0);
241 #endif
242 regUse_.clear();
243 regUseBackUp_.clear();
246 void addRegUse(unsigned physReg) {
247 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
248 "should be physical register!");
249 ++regUse_[physReg];
250 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
251 ++regUse_[*as];
254 void delRegUse(unsigned physReg) {
255 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
256 "should be physical register!");
257 assert(regUse_[physReg] != 0);
258 --regUse_[physReg];
259 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
260 assert(regUse_[*as] != 0);
261 --regUse_[*as];
265 bool isRegAvail(unsigned physReg) const {
266 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
267 "should be physical register!");
268 return regUse_[physReg] == 0;
271 void backUpRegUses() {
272 regUseBackUp_ = regUse_;
275 void restoreRegUses() {
276 regUse_ = regUseBackUp_;
280 /// Register handling helpers.
283 /// getFreePhysReg - return a free physical register for this virtual
284 /// register interval if we have one, otherwise return 0.
285 unsigned getFreePhysReg(LiveInterval* cur);
286 unsigned getFreePhysReg(LiveInterval* cur,
287 const TargetRegisterClass *RC,
288 unsigned MaxInactiveCount,
289 SmallVector<unsigned, 256> &inactiveCounts,
290 bool SkipDGRegs);
292 /// assignVirt2StackSlot - assigns this virtual register to a
293 /// stack slot. returns the stack slot
294 int assignVirt2StackSlot(unsigned virtReg);
296 void ComputeRelatedRegClasses();
298 template <typename ItTy>
299 void printIntervals(const char* const str, ItTy i, ItTy e) const {
300 DEBUG({
301 if (str)
302 errs() << str << " intervals:\n";
304 for (; i != e; ++i) {
305 errs() << "\t" << *i->first << " -> ";
307 unsigned reg = i->first->reg;
308 if (TargetRegisterInfo::isVirtualRegister(reg))
309 reg = vrm_->getPhys(reg);
311 errs() << tri_->getName(reg) << '\n';
316 char RALinScan::ID = 0;
319 static RegisterPass<RALinScan>
320 X("linearscan-regalloc", "Linear Scan Register Allocator");
322 void RALinScan::ComputeRelatedRegClasses() {
323 // First pass, add all reg classes to the union, and determine at least one
324 // reg class that each register is in.
325 bool HasAliases = false;
326 for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
327 E = tri_->regclass_end(); RCI != E; ++RCI) {
328 RelatedRegClasses.insert(*RCI);
329 for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
330 I != E; ++I) {
331 HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
333 const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
334 if (PRC) {
335 // Already processed this register. Just make sure we know that
336 // multiple register classes share a register.
337 RelatedRegClasses.unionSets(PRC, *RCI);
338 } else {
339 PRC = *RCI;
344 // Second pass, now that we know conservatively what register classes each reg
345 // belongs to, add info about aliases. We don't need to do this for targets
346 // without register aliases.
347 if (HasAliases)
348 for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
349 I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
350 I != E; ++I)
351 for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS)
352 RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]);
355 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
356 /// try allocate the definition the same register as the source register
357 /// if the register is not defined during live time of the interval. This
358 /// eliminate a copy. This is used to coalesce copies which were not
359 /// coalesced away before allocation either due to dest and src being in
360 /// different register classes or because the coalescer was overly
361 /// conservative.
362 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
363 unsigned Preference = vrm_->getRegAllocPref(cur.reg);
364 if ((Preference && Preference == Reg) || !cur.containsOneValue())
365 return Reg;
367 VNInfo *vni = cur.begin()->valno;
368 if ((vni->def == LiveIndex()) ||
369 vni->isUnused() || !vni->isDefAccurate())
370 return Reg;
371 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
372 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg, PhysReg;
373 if (!CopyMI ||
374 !tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg))
375 return Reg;
376 PhysReg = SrcReg;
377 if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
378 if (!vrm_->isAssignedReg(SrcReg))
379 return Reg;
380 PhysReg = vrm_->getPhys(SrcReg);
382 if (Reg == PhysReg)
383 return Reg;
385 const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
386 if (!RC->contains(PhysReg))
387 return Reg;
389 // Try to coalesce.
390 if (!li_->conflictsWithPhysRegDef(cur, *vrm_, PhysReg)) {
391 DEBUG(errs() << "Coalescing: " << cur << " -> " << tri_->getName(PhysReg)
392 << '\n');
393 vrm_->clearVirt(cur.reg);
394 vrm_->assignVirt2Phys(cur.reg, PhysReg);
396 // Remove unnecessary kills since a copy does not clobber the register.
397 if (li_->hasInterval(SrcReg)) {
398 LiveInterval &SrcLI = li_->getInterval(SrcReg);
399 for (MachineRegisterInfo::use_iterator I = mri_->use_begin(cur.reg),
400 E = mri_->use_end(); I != E; ++I) {
401 MachineOperand &O = I.getOperand();
402 if (!O.isKill())
403 continue;
404 MachineInstr *MI = &*I;
405 if (SrcLI.liveAt(li_->getDefIndex(li_->getInstructionIndex(MI))))
406 O.setIsKill(false);
410 ++NumCoalesce;
411 return PhysReg;
414 return Reg;
417 bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
418 mf_ = &fn;
419 mri_ = &fn.getRegInfo();
420 tm_ = &fn.getTarget();
421 tri_ = tm_->getRegisterInfo();
422 tii_ = tm_->getInstrInfo();
423 allocatableRegs_ = tri_->getAllocatableSet(fn);
424 li_ = &getAnalysis<LiveIntervals>();
425 ls_ = &getAnalysis<LiveStacks>();
426 loopInfo = &getAnalysis<MachineLoopInfo>();
428 // We don't run the coalescer here because we have no reason to
429 // interact with it. If the coalescer requires interaction, it
430 // won't do anything. If it doesn't require interaction, we assume
431 // it was run as a separate pass.
433 // If this is the first function compiled, compute the related reg classes.
434 if (RelatedRegClasses.empty())
435 ComputeRelatedRegClasses();
437 // Also resize register usage trackers.
438 initRegUses();
440 vrm_ = &getAnalysis<VirtRegMap>();
441 if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
443 if (NewSpillFramework) {
444 spiller_.reset(createSpiller(mf_, li_, ls_, vrm_));
447 initIntervalSets();
449 linearScan();
451 // Rewrite spill code and update the PhysRegsUsed set.
452 rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
454 assert(unhandled_.empty() && "Unhandled live intervals remain!");
456 finalizeRegUses();
458 fixed_.clear();
459 active_.clear();
460 inactive_.clear();
461 handled_.clear();
462 NextReloadMap.clear();
463 DowngradedRegs.clear();
464 DowngradeMap.clear();
465 spiller_.reset(0);
467 return true;
470 /// initIntervalSets - initialize the interval sets.
472 void RALinScan::initIntervalSets()
474 assert(unhandled_.empty() && fixed_.empty() &&
475 active_.empty() && inactive_.empty() &&
476 "interval sets should be empty on initialization");
478 handled_.reserve(li_->getNumIntervals());
480 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
481 if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
482 mri_->setPhysRegUsed(i->second->reg);
483 fixed_.push_back(std::make_pair(i->second, i->second->begin()));
484 } else
485 unhandled_.push(i->second);
489 void RALinScan::linearScan() {
490 // linear scan algorithm
491 DEBUG({
492 errs() << "********** LINEAR SCAN **********\n"
493 << "********** Function: "
494 << mf_->getFunction()->getName() << '\n';
495 printIntervals("fixed", fixed_.begin(), fixed_.end());
498 while (!unhandled_.empty()) {
499 // pick the interval with the earliest start point
500 LiveInterval* cur = unhandled_.top();
501 unhandled_.pop();
502 ++NumIters;
503 DEBUG(errs() << "\n*** CURRENT ***: " << *cur << '\n');
505 if (!cur->empty()) {
506 processActiveIntervals(cur->beginIndex());
507 processInactiveIntervals(cur->beginIndex());
509 assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
510 "Can only allocate virtual registers!");
513 // Allocating a virtual register. try to find a free
514 // physical register or spill an interval (possibly this one) in order to
515 // assign it one.
516 assignRegOrStackSlotAtInterval(cur);
518 DEBUG({
519 printIntervals("active", active_.begin(), active_.end());
520 printIntervals("inactive", inactive_.begin(), inactive_.end());
524 // Expire any remaining active intervals
525 while (!active_.empty()) {
526 IntervalPtr &IP = active_.back();
527 unsigned reg = IP.first->reg;
528 DEBUG(errs() << "\tinterval " << *IP.first << " expired\n");
529 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
530 "Can only allocate virtual registers!");
531 reg = vrm_->getPhys(reg);
532 delRegUse(reg);
533 active_.pop_back();
536 // Expire any remaining inactive intervals
537 DEBUG({
538 for (IntervalPtrs::reverse_iterator
539 i = inactive_.rbegin(); i != inactive_.rend(); ++i)
540 errs() << "\tinterval " << *i->first << " expired\n";
542 inactive_.clear();
544 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
545 MachineFunction::iterator EntryMBB = mf_->begin();
546 SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
547 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
548 LiveInterval &cur = *i->second;
549 unsigned Reg = 0;
550 bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
551 if (isPhys)
552 Reg = cur.reg;
553 else if (vrm_->isAssignedReg(cur.reg))
554 Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
555 if (!Reg)
556 continue;
557 // Ignore splited live intervals.
558 if (!isPhys && vrm_->getPreSplitReg(cur.reg))
559 continue;
561 for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
562 I != E; ++I) {
563 const LiveRange &LR = *I;
564 if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
565 for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
566 if (LiveInMBBs[i] != EntryMBB) {
567 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
568 "Adding a virtual register to livein set?");
569 LiveInMBBs[i]->addLiveIn(Reg);
571 LiveInMBBs.clear();
576 DEBUG(errs() << *vrm_);
578 // Look for physical registers that end up not being allocated even though
579 // register allocator had to spill other registers in its register class.
580 if (ls_->getNumIntervals() == 0)
581 return;
582 if (!vrm_->FindUnusedRegisters(li_))
583 return;
586 /// processActiveIntervals - expire old intervals and move non-overlapping ones
587 /// to the inactive list.
588 void RALinScan::processActiveIntervals(LiveIndex CurPoint)
590 DEBUG(errs() << "\tprocessing active intervals:\n");
592 for (unsigned i = 0, e = active_.size(); i != e; ++i) {
593 LiveInterval *Interval = active_[i].first;
594 LiveInterval::iterator IntervalPos = active_[i].second;
595 unsigned reg = Interval->reg;
597 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
599 if (IntervalPos == Interval->end()) { // Remove expired intervals.
600 DEBUG(errs() << "\t\tinterval " << *Interval << " expired\n");
601 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
602 "Can only allocate virtual registers!");
603 reg = vrm_->getPhys(reg);
604 delRegUse(reg);
606 // Pop off the end of the list.
607 active_[i] = active_.back();
608 active_.pop_back();
609 --i; --e;
611 } else if (IntervalPos->start > CurPoint) {
612 // Move inactive intervals to inactive list.
613 DEBUG(errs() << "\t\tinterval " << *Interval << " inactive\n");
614 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
615 "Can only allocate virtual registers!");
616 reg = vrm_->getPhys(reg);
617 delRegUse(reg);
618 // add to inactive.
619 inactive_.push_back(std::make_pair(Interval, IntervalPos));
621 // Pop off the end of the list.
622 active_[i] = active_.back();
623 active_.pop_back();
624 --i; --e;
625 } else {
626 // Otherwise, just update the iterator position.
627 active_[i].second = IntervalPos;
632 /// processInactiveIntervals - expire old intervals and move overlapping
633 /// ones to the active list.
634 void RALinScan::processInactiveIntervals(LiveIndex CurPoint)
636 DEBUG(errs() << "\tprocessing inactive intervals:\n");
638 for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
639 LiveInterval *Interval = inactive_[i].first;
640 LiveInterval::iterator IntervalPos = inactive_[i].second;
641 unsigned reg = Interval->reg;
643 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
645 if (IntervalPos == Interval->end()) { // remove expired intervals.
646 DEBUG(errs() << "\t\tinterval " << *Interval << " expired\n");
648 // Pop off the end of the list.
649 inactive_[i] = inactive_.back();
650 inactive_.pop_back();
651 --i; --e;
652 } else if (IntervalPos->start <= CurPoint) {
653 // move re-activated intervals in active list
654 DEBUG(errs() << "\t\tinterval " << *Interval << " active\n");
655 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
656 "Can only allocate virtual registers!");
657 reg = vrm_->getPhys(reg);
658 addRegUse(reg);
659 // add to active
660 active_.push_back(std::make_pair(Interval, IntervalPos));
662 // Pop off the end of the list.
663 inactive_[i] = inactive_.back();
664 inactive_.pop_back();
665 --i; --e;
666 } else {
667 // Otherwise, just update the iterator position.
668 inactive_[i].second = IntervalPos;
673 /// updateSpillWeights - updates the spill weights of the specifed physical
674 /// register and its weight.
675 void RALinScan::updateSpillWeights(std::vector<float> &Weights,
676 unsigned reg, float weight,
677 const TargetRegisterClass *RC) {
678 SmallSet<unsigned, 4> Processed;
679 SmallSet<unsigned, 4> SuperAdded;
680 SmallVector<unsigned, 4> Supers;
681 Weights[reg] += weight;
682 Processed.insert(reg);
683 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
684 Weights[*as] += weight;
685 Processed.insert(*as);
686 if (tri_->isSubRegister(*as, reg) &&
687 SuperAdded.insert(*as) &&
688 RC->contains(*as)) {
689 Supers.push_back(*as);
693 // If the alias is a super-register, and the super-register is in the
694 // register class we are trying to allocate. Then add the weight to all
695 // sub-registers of the super-register even if they are not aliases.
696 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
697 // bl should get the same spill weight otherwise it will be choosen
698 // as a spill candidate since spilling bh doesn't make ebx available.
699 for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
700 for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
701 if (!Processed.count(*sr))
702 Weights[*sr] += weight;
706 static
707 RALinScan::IntervalPtrs::iterator
708 FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
709 for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
710 I != E; ++I)
711 if (I->first == LI) return I;
712 return IP.end();
715 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, LiveIndex Point){
716 for (unsigned i = 0, e = V.size(); i != e; ++i) {
717 RALinScan::IntervalPtr &IP = V[i];
718 LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
719 IP.second, Point);
720 if (I != IP.first->begin()) --I;
721 IP.second = I;
725 /// addStackInterval - Create a LiveInterval for stack if the specified live
726 /// interval has been spilled.
727 static void addStackInterval(LiveInterval *cur, LiveStacks *ls_,
728 LiveIntervals *li_,
729 MachineRegisterInfo* mri_, VirtRegMap &vrm_) {
730 int SS = vrm_.getStackSlot(cur->reg);
731 if (SS == VirtRegMap::NO_STACK_SLOT)
732 return;
734 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
735 LiveInterval &SI = ls_->getOrCreateInterval(SS, RC);
737 VNInfo *VNI;
738 if (SI.hasAtLeastOneValue())
739 VNI = SI.getValNumInfo(0);
740 else
741 VNI = SI.getNextValue(LiveIndex(), 0, false,
742 ls_->getVNInfoAllocator());
744 LiveInterval &RI = li_->getInterval(cur->reg);
745 // FIXME: This may be overly conservative.
746 SI.MergeRangesInAsValue(RI, VNI);
749 /// getConflictWeight - Return the number of conflicts between cur
750 /// live interval and defs and uses of Reg weighted by loop depthes.
751 static
752 float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
753 MachineRegisterInfo *mri_,
754 const MachineLoopInfo *loopInfo) {
755 float Conflicts = 0;
756 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
757 E = mri_->reg_end(); I != E; ++I) {
758 MachineInstr *MI = &*I;
759 if (cur->liveAt(li_->getInstructionIndex(MI))) {
760 unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
761 Conflicts += powf(10.0f, (float)loopDepth);
764 return Conflicts;
767 /// findIntervalsToSpill - Determine the intervals to spill for the
768 /// specified interval. It's passed the physical registers whose spill
769 /// weight is the lowest among all the registers whose live intervals
770 /// conflict with the interval.
771 void RALinScan::findIntervalsToSpill(LiveInterval *cur,
772 std::vector<std::pair<unsigned,float> > &Candidates,
773 unsigned NumCands,
774 SmallVector<LiveInterval*, 8> &SpillIntervals) {
775 // We have figured out the *best* register to spill. But there are other
776 // registers that are pretty good as well (spill weight within 3%). Spill
777 // the one that has fewest defs and uses that conflict with cur.
778 float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
779 SmallVector<LiveInterval*, 8> SLIs[3];
781 DEBUG({
782 errs() << "\tConsidering " << NumCands << " candidates: ";
783 for (unsigned i = 0; i != NumCands; ++i)
784 errs() << tri_->getName(Candidates[i].first) << " ";
785 errs() << "\n";
788 // Calculate the number of conflicts of each candidate.
789 for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
790 unsigned Reg = i->first->reg;
791 unsigned PhysReg = vrm_->getPhys(Reg);
792 if (!cur->overlapsFrom(*i->first, i->second))
793 continue;
794 for (unsigned j = 0; j < NumCands; ++j) {
795 unsigned Candidate = Candidates[j].first;
796 if (tri_->regsOverlap(PhysReg, Candidate)) {
797 if (NumCands > 1)
798 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
799 SLIs[j].push_back(i->first);
804 for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
805 unsigned Reg = i->first->reg;
806 unsigned PhysReg = vrm_->getPhys(Reg);
807 if (!cur->overlapsFrom(*i->first, i->second-1))
808 continue;
809 for (unsigned j = 0; j < NumCands; ++j) {
810 unsigned Candidate = Candidates[j].first;
811 if (tri_->regsOverlap(PhysReg, Candidate)) {
812 if (NumCands > 1)
813 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
814 SLIs[j].push_back(i->first);
819 // Which is the best candidate?
820 unsigned BestCandidate = 0;
821 float MinConflicts = Conflicts[0];
822 for (unsigned i = 1; i != NumCands; ++i) {
823 if (Conflicts[i] < MinConflicts) {
824 BestCandidate = i;
825 MinConflicts = Conflicts[i];
829 std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
830 std::back_inserter(SpillIntervals));
833 namespace {
834 struct WeightCompare {
835 typedef std::pair<unsigned, float> RegWeightPair;
836 bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
837 return LHS.second < RHS.second;
842 static bool weightsAreClose(float w1, float w2) {
843 if (!NewHeuristic)
844 return false;
846 float diff = w1 - w2;
847 if (diff <= 0.02f) // Within 0.02f
848 return true;
849 return (diff / w2) <= 0.05f; // Within 5%.
852 LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
853 DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
854 if (I == NextReloadMap.end())
855 return 0;
856 return &li_->getInterval(I->second);
859 void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
860 bool isNew = DowngradedRegs.insert(Reg);
861 isNew = isNew; // Silence compiler warning.
862 assert(isNew && "Multiple reloads holding the same register?");
863 DowngradeMap.insert(std::make_pair(li->reg, Reg));
864 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) {
865 isNew = DowngradedRegs.insert(*AS);
866 isNew = isNew; // Silence compiler warning.
867 assert(isNew && "Multiple reloads holding the same register?");
868 DowngradeMap.insert(std::make_pair(li->reg, *AS));
870 ++NumDowngrade;
873 void RALinScan::UpgradeRegister(unsigned Reg) {
874 if (Reg) {
875 DowngradedRegs.erase(Reg);
876 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
877 DowngradedRegs.erase(*AS);
881 namespace {
882 struct LISorter {
883 bool operator()(LiveInterval* A, LiveInterval* B) {
884 return A->beginIndex() < B->beginIndex();
889 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
890 /// spill.
891 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
892 DEBUG(errs() << "\tallocating current interval: ");
894 // This is an implicitly defined live interval, just assign any register.
895 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
896 if (cur->empty()) {
897 unsigned physReg = vrm_->getRegAllocPref(cur->reg);
898 if (!physReg)
899 physReg = *RC->allocation_order_begin(*mf_);
900 DEBUG(errs() << tri_->getName(physReg) << '\n');
901 // Note the register is not really in use.
902 vrm_->assignVirt2Phys(cur->reg, physReg);
903 return;
906 backUpRegUses();
908 std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
909 LiveIndex StartPosition = cur->beginIndex();
910 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
912 // If start of this live interval is defined by a move instruction and its
913 // source is assigned a physical register that is compatible with the target
914 // register class, then we should try to assign it the same register.
915 // This can happen when the move is from a larger register class to a smaller
916 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
917 if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
918 VNInfo *vni = cur->begin()->valno;
919 if ((vni->def != LiveIndex()) && !vni->isUnused() &&
920 vni->isDefAccurate()) {
921 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
922 unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
923 if (CopyMI &&
924 tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg)) {
925 unsigned Reg = 0;
926 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
927 Reg = SrcReg;
928 else if (vrm_->isAssignedReg(SrcReg))
929 Reg = vrm_->getPhys(SrcReg);
930 if (Reg) {
931 if (SrcSubReg)
932 Reg = tri_->getSubReg(Reg, SrcSubReg);
933 if (DstSubReg)
934 Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
935 if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
936 mri_->setRegAllocationHint(cur->reg, 0, Reg);
942 // For every interval in inactive we overlap with, mark the
943 // register as not free and update spill weights.
944 for (IntervalPtrs::const_iterator i = inactive_.begin(),
945 e = inactive_.end(); i != e; ++i) {
946 unsigned Reg = i->first->reg;
947 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
948 "Can only allocate virtual registers!");
949 const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
950 // If this is not in a related reg class to the register we're allocating,
951 // don't check it.
952 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
953 cur->overlapsFrom(*i->first, i->second-1)) {
954 Reg = vrm_->getPhys(Reg);
955 addRegUse(Reg);
956 SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
960 // Speculatively check to see if we can get a register right now. If not,
961 // we know we won't be able to by adding more constraints. If so, we can
962 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
963 // is very bad (it contains all callee clobbered registers for any functions
964 // with a call), so we want to avoid doing that if possible.
965 unsigned physReg = getFreePhysReg(cur);
966 unsigned BestPhysReg = physReg;
967 if (physReg) {
968 // We got a register. However, if it's in the fixed_ list, we might
969 // conflict with it. Check to see if we conflict with it or any of its
970 // aliases.
971 SmallSet<unsigned, 8> RegAliases;
972 for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
973 RegAliases.insert(*AS);
975 bool ConflictsWithFixed = false;
976 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
977 IntervalPtr &IP = fixed_[i];
978 if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
979 // Okay, this reg is on the fixed list. Check to see if we actually
980 // conflict.
981 LiveInterval *I = IP.first;
982 if (I->endIndex() > StartPosition) {
983 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
984 IP.second = II;
985 if (II != I->begin() && II->start > StartPosition)
986 --II;
987 if (cur->overlapsFrom(*I, II)) {
988 ConflictsWithFixed = true;
989 break;
995 // Okay, the register picked by our speculative getFreePhysReg call turned
996 // out to be in use. Actually add all of the conflicting fixed registers to
997 // regUse_ so we can do an accurate query.
998 if (ConflictsWithFixed) {
999 // For every interval in fixed we overlap with, mark the register as not
1000 // free and update spill weights.
1001 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1002 IntervalPtr &IP = fixed_[i];
1003 LiveInterval *I = IP.first;
1005 const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
1006 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1007 I->endIndex() > StartPosition) {
1008 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1009 IP.second = II;
1010 if (II != I->begin() && II->start > StartPosition)
1011 --II;
1012 if (cur->overlapsFrom(*I, II)) {
1013 unsigned reg = I->reg;
1014 addRegUse(reg);
1015 SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
1020 // Using the newly updated regUse_ object, which includes conflicts in the
1021 // future, see if there are any registers available.
1022 physReg = getFreePhysReg(cur);
1026 // Restore the physical register tracker, removing information about the
1027 // future.
1028 restoreRegUses();
1030 // If we find a free register, we are done: assign this virtual to
1031 // the free physical register and add this interval to the active
1032 // list.
1033 if (physReg) {
1034 DEBUG(errs() << tri_->getName(physReg) << '\n');
1035 vrm_->assignVirt2Phys(cur->reg, physReg);
1036 addRegUse(physReg);
1037 active_.push_back(std::make_pair(cur, cur->begin()));
1038 handled_.push_back(cur);
1040 // "Upgrade" the physical register since it has been allocated.
1041 UpgradeRegister(physReg);
1042 if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
1043 // "Downgrade" physReg to try to keep physReg from being allocated until
1044 // the next reload from the same SS is allocated.
1045 mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
1046 DowngradeRegister(cur, physReg);
1048 return;
1050 DEBUG(errs() << "no free registers\n");
1052 // Compile the spill weights into an array that is better for scanning.
1053 std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
1054 for (std::vector<std::pair<unsigned, float> >::iterator
1055 I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
1056 updateSpillWeights(SpillWeights, I->first, I->second, RC);
1058 // for each interval in active, update spill weights.
1059 for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
1060 i != e; ++i) {
1061 unsigned reg = i->first->reg;
1062 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1063 "Can only allocate virtual registers!");
1064 reg = vrm_->getPhys(reg);
1065 updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
1068 DEBUG(errs() << "\tassigning stack slot at interval "<< *cur << ":\n");
1070 // Find a register to spill.
1071 float minWeight = HUGE_VALF;
1072 unsigned minReg = 0;
1074 bool Found = false;
1075 std::vector<std::pair<unsigned,float> > RegsWeights;
1076 if (!minReg || SpillWeights[minReg] == HUGE_VALF)
1077 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1078 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1079 unsigned reg = *i;
1080 float regWeight = SpillWeights[reg];
1081 if (minWeight > regWeight)
1082 Found = true;
1083 RegsWeights.push_back(std::make_pair(reg, regWeight));
1086 // If we didn't find a register that is spillable, try aliases?
1087 if (!Found) {
1088 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1089 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1090 unsigned reg = *i;
1091 // No need to worry about if the alias register size < regsize of RC.
1092 // We are going to spill all registers that alias it anyway.
1093 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
1094 RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
1098 // Sort all potential spill candidates by weight.
1099 std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare());
1100 minReg = RegsWeights[0].first;
1101 minWeight = RegsWeights[0].second;
1102 if (minWeight == HUGE_VALF) {
1103 // All registers must have inf weight. Just grab one!
1104 minReg = BestPhysReg ? BestPhysReg : *RC->allocation_order_begin(*mf_);
1105 if (cur->weight == HUGE_VALF ||
1106 li_->getApproximateInstructionCount(*cur) == 0) {
1107 // Spill a physical register around defs and uses.
1108 if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
1109 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1110 // in fixed_. Reset them.
1111 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1112 IntervalPtr &IP = fixed_[i];
1113 LiveInterval *I = IP.first;
1114 if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
1115 IP.second = I->advanceTo(I->begin(), StartPosition);
1118 DowngradedRegs.clear();
1119 assignRegOrStackSlotAtInterval(cur);
1120 } else {
1121 llvm_report_error("Ran out of registers during register allocation!");
1123 return;
1127 // Find up to 3 registers to consider as spill candidates.
1128 unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
1129 while (LastCandidate > 1) {
1130 if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
1131 break;
1132 --LastCandidate;
1135 DEBUG({
1136 errs() << "\t\tregister(s) with min weight(s): ";
1138 for (unsigned i = 0; i != LastCandidate; ++i)
1139 errs() << tri_->getName(RegsWeights[i].first)
1140 << " (" << RegsWeights[i].second << ")\n";
1143 // If the current has the minimum weight, we need to spill it and
1144 // add any added intervals back to unhandled, and restart
1145 // linearscan.
1146 if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
1147 DEBUG(errs() << "\t\t\tspilling(c): " << *cur << '\n');
1148 SmallVector<LiveInterval*, 8> spillIs;
1149 std::vector<LiveInterval*> added;
1151 if (!NewSpillFramework) {
1152 added = li_->addIntervalsForSpills(*cur, spillIs, loopInfo, *vrm_);
1153 } else {
1154 added = spiller_->spill(cur);
1157 std::sort(added.begin(), added.end(), LISorter());
1158 addStackInterval(cur, ls_, li_, mri_, *vrm_);
1159 if (added.empty())
1160 return; // Early exit if all spills were folded.
1162 // Merge added with unhandled. Note that we have already sorted
1163 // intervals returned by addIntervalsForSpills by their starting
1164 // point.
1165 // This also update the NextReloadMap. That is, it adds mapping from a
1166 // register defined by a reload from SS to the next reload from SS in the
1167 // same basic block.
1168 MachineBasicBlock *LastReloadMBB = 0;
1169 LiveInterval *LastReload = 0;
1170 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1171 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1172 LiveInterval *ReloadLi = added[i];
1173 if (ReloadLi->weight == HUGE_VALF &&
1174 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1175 LiveIndex ReloadIdx = ReloadLi->beginIndex();
1176 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1177 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1178 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1179 // Last reload of same SS is in the same MBB. We want to try to
1180 // allocate both reloads the same register and make sure the reg
1181 // isn't clobbered in between if at all possible.
1182 assert(LastReload->beginIndex() < ReloadIdx);
1183 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1185 LastReloadMBB = ReloadMBB;
1186 LastReload = ReloadLi;
1187 LastReloadSS = ReloadSS;
1189 unhandled_.push(ReloadLi);
1191 return;
1194 ++NumBacktracks;
1196 // Push the current interval back to unhandled since we are going
1197 // to re-run at least this iteration. Since we didn't modify it it
1198 // should go back right in the front of the list
1199 unhandled_.push(cur);
1201 assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
1202 "did not choose a register to spill?");
1204 // We spill all intervals aliasing the register with
1205 // minimum weight, rollback to the interval with the earliest
1206 // start point and let the linear scan algorithm run again
1207 SmallVector<LiveInterval*, 8> spillIs;
1209 // Determine which intervals have to be spilled.
1210 findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
1212 // Set of spilled vregs (used later to rollback properly)
1213 SmallSet<unsigned, 8> spilled;
1215 // The earliest start of a Spilled interval indicates up to where
1216 // in handled we need to roll back
1218 LiveInterval *earliestStartInterval = cur;
1220 // Spill live intervals of virtual regs mapped to the physical register we
1221 // want to clear (and its aliases). We only spill those that overlap with the
1222 // current interval as the rest do not affect its allocation. we also keep
1223 // track of the earliest start of all spilled live intervals since this will
1224 // mark our rollback point.
1225 std::vector<LiveInterval*> added;
1226 while (!spillIs.empty()) {
1227 LiveInterval *sli = spillIs.back();
1228 spillIs.pop_back();
1229 DEBUG(errs() << "\t\t\tspilling(a): " << *sli << '\n');
1230 earliestStartInterval =
1231 (earliestStartInterval->beginIndex() < sli->beginIndex()) ?
1232 earliestStartInterval : sli;
1234 std::vector<LiveInterval*> newIs;
1235 if (!NewSpillFramework) {
1236 newIs = li_->addIntervalsForSpills(*sli, spillIs, loopInfo, *vrm_);
1237 } else {
1238 newIs = spiller_->spill(sli);
1240 addStackInterval(sli, ls_, li_, mri_, *vrm_);
1241 std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
1242 spilled.insert(sli->reg);
1245 LiveIndex earliestStart = earliestStartInterval->beginIndex();
1247 DEBUG(errs() << "\t\trolling back to: " << earliestStart << '\n');
1249 // Scan handled in reverse order up to the earliest start of a
1250 // spilled live interval and undo each one, restoring the state of
1251 // unhandled.
1252 while (!handled_.empty()) {
1253 LiveInterval* i = handled_.back();
1254 // If this interval starts before t we are done.
1255 if (i->beginIndex() < earliestStart)
1256 break;
1257 DEBUG(errs() << "\t\t\tundo changes for: " << *i << '\n');
1258 handled_.pop_back();
1260 // When undoing a live interval allocation we must know if it is active or
1261 // inactive to properly update regUse_ and the VirtRegMap.
1262 IntervalPtrs::iterator it;
1263 if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
1264 active_.erase(it);
1265 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1266 if (!spilled.count(i->reg))
1267 unhandled_.push(i);
1268 delRegUse(vrm_->getPhys(i->reg));
1269 vrm_->clearVirt(i->reg);
1270 } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
1271 inactive_.erase(it);
1272 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1273 if (!spilled.count(i->reg))
1274 unhandled_.push(i);
1275 vrm_->clearVirt(i->reg);
1276 } else {
1277 assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
1278 "Can only allocate virtual registers!");
1279 vrm_->clearVirt(i->reg);
1280 unhandled_.push(i);
1283 DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
1284 if (ii == DowngradeMap.end())
1285 // It interval has a preference, it must be defined by a copy. Clear the
1286 // preference now since the source interval allocation may have been
1287 // undone as well.
1288 mri_->setRegAllocationHint(i->reg, 0, 0);
1289 else {
1290 UpgradeRegister(ii->second);
1294 // Rewind the iterators in the active, inactive, and fixed lists back to the
1295 // point we reverted to.
1296 RevertVectorIteratorsTo(active_, earliestStart);
1297 RevertVectorIteratorsTo(inactive_, earliestStart);
1298 RevertVectorIteratorsTo(fixed_, earliestStart);
1300 // Scan the rest and undo each interval that expired after t and
1301 // insert it in active (the next iteration of the algorithm will
1302 // put it in inactive if required)
1303 for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
1304 LiveInterval *HI = handled_[i];
1305 if (!HI->expiredAt(earliestStart) &&
1306 HI->expiredAt(cur->beginIndex())) {
1307 DEBUG(errs() << "\t\t\tundo changes for: " << *HI << '\n');
1308 active_.push_back(std::make_pair(HI, HI->begin()));
1309 assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
1310 addRegUse(vrm_->getPhys(HI->reg));
1314 // Merge added with unhandled.
1315 // This also update the NextReloadMap. That is, it adds mapping from a
1316 // register defined by a reload from SS to the next reload from SS in the
1317 // same basic block.
1318 MachineBasicBlock *LastReloadMBB = 0;
1319 LiveInterval *LastReload = 0;
1320 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1321 std::sort(added.begin(), added.end(), LISorter());
1322 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1323 LiveInterval *ReloadLi = added[i];
1324 if (ReloadLi->weight == HUGE_VALF &&
1325 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1326 LiveIndex ReloadIdx = ReloadLi->beginIndex();
1327 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1328 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1329 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1330 // Last reload of same SS is in the same MBB. We want to try to
1331 // allocate both reloads the same register and make sure the reg
1332 // isn't clobbered in between if at all possible.
1333 assert(LastReload->beginIndex() < ReloadIdx);
1334 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1336 LastReloadMBB = ReloadMBB;
1337 LastReload = ReloadLi;
1338 LastReloadSS = ReloadSS;
1340 unhandled_.push(ReloadLi);
1344 unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
1345 const TargetRegisterClass *RC,
1346 unsigned MaxInactiveCount,
1347 SmallVector<unsigned, 256> &inactiveCounts,
1348 bool SkipDGRegs) {
1349 unsigned FreeReg = 0;
1350 unsigned FreeRegInactiveCount = 0;
1352 std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
1353 // Resolve second part of the hint (if possible) given the current allocation.
1354 unsigned physReg = Hint.second;
1355 if (physReg &&
1356 TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
1357 physReg = vrm_->getPhys(physReg);
1359 TargetRegisterClass::iterator I, E;
1360 tie(I, E) = tri_->getAllocationOrder(RC, Hint.first, physReg, *mf_);
1361 assert(I != E && "No allocatable register in this register class!");
1363 // Scan for the first available register.
1364 for (; I != E; ++I) {
1365 unsigned Reg = *I;
1366 // Ignore "downgraded" registers.
1367 if (SkipDGRegs && DowngradedRegs.count(Reg))
1368 continue;
1369 if (isRegAvail(Reg)) {
1370 FreeReg = Reg;
1371 if (FreeReg < inactiveCounts.size())
1372 FreeRegInactiveCount = inactiveCounts[FreeReg];
1373 else
1374 FreeRegInactiveCount = 0;
1375 break;
1379 // If there are no free regs, or if this reg has the max inactive count,
1380 // return this register.
1381 if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount)
1382 return FreeReg;
1384 // Continue scanning the registers, looking for the one with the highest
1385 // inactive count. Alkis found that this reduced register pressure very
1386 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1387 // reevaluated now.
1388 for (; I != E; ++I) {
1389 unsigned Reg = *I;
1390 // Ignore "downgraded" registers.
1391 if (SkipDGRegs && DowngradedRegs.count(Reg))
1392 continue;
1393 if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
1394 FreeRegInactiveCount < inactiveCounts[Reg]) {
1395 FreeReg = Reg;
1396 FreeRegInactiveCount = inactiveCounts[Reg];
1397 if (FreeRegInactiveCount == MaxInactiveCount)
1398 break; // We found the one with the max inactive count.
1402 return FreeReg;
1405 /// getFreePhysReg - return a free physical register for this virtual register
1406 /// interval if we have one, otherwise return 0.
1407 unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
1408 SmallVector<unsigned, 256> inactiveCounts;
1409 unsigned MaxInactiveCount = 0;
1411 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
1412 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
1414 for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
1415 i != e; ++i) {
1416 unsigned reg = i->first->reg;
1417 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1418 "Can only allocate virtual registers!");
1420 // If this is not in a related reg class to the register we're allocating,
1421 // don't check it.
1422 const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
1423 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
1424 reg = vrm_->getPhys(reg);
1425 if (inactiveCounts.size() <= reg)
1426 inactiveCounts.resize(reg+1);
1427 ++inactiveCounts[reg];
1428 MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
1432 // If copy coalescer has assigned a "preferred" register, check if it's
1433 // available first.
1434 unsigned Preference = vrm_->getRegAllocPref(cur->reg);
1435 if (Preference) {
1436 DEBUG(errs() << "(preferred: " << tri_->getName(Preference) << ") ");
1437 if (isRegAvail(Preference) &&
1438 RC->contains(Preference))
1439 return Preference;
1442 if (!DowngradedRegs.empty()) {
1443 unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
1444 true);
1445 if (FreeReg)
1446 return FreeReg;
1448 return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
1451 FunctionPass* llvm::createLinearScanRegisterAllocator() {
1452 return new RALinScan();