Remove VISIBILITY_HIDDEN from the classes in this directory. Fixes bug 5507.
[llvm.git] / docs / Passes.html
blobbbf6b3dc943b217bdb50e8661d94e9b68faed3d6
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <title>LLVM's Analysis and Transform Passes</title>
6 <link rel="stylesheet" href="llvm.css" type="text/css">
7 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
8 </head>
9 <body>
11 <!--
13 If Passes.html is up to date, the following "one-liner" should print
14 an empty diff.
16 egrep -e '^<tr><td><a href="#.*">-.*</a></td><td>.*</td></tr>$' \
17 -e '^ <a name=".*">.*</a>$' < Passes.html >html; \
18 perl >help <<'EOT' && diff -u help html; rm -f help html
19 open HTML, "<Passes.html" or die "open: Passes.html: $!\n";
20 while (<HTML>) {
21 m:^<tr><td><a href="#(.*)">-.*</a></td><td>.*</td></tr>$: or next;
22 $order{$1} = sprintf("%03d", 1 + int %order);
24 open HELP, "../Release/bin/opt -help|" or die "open: opt -help: $!\n";
25 while (<HELP>) {
26 m:^ -([^ ]+) +- (.*)$: or next;
27 my $o = $order{$1};
28 $o = "000" unless defined $o;
29 push @x, "$o<tr><td><a href=\"#$1\">-$1</a></td><td>$2</td></tr>\n";
30 push @y, "$o <a name=\"$1\">$2</a>\n";
32 @x = map { s/^\d\d\d//; $_ } sort @x;
33 @y = map { s/^\d\d\d//; $_ } sort @y;
34 print @x, @y;
35 EOT
37 This (real) one-liner can also be helpful when converting comments to HTML:
39 perl -e '$/ = undef; for (split(/\n/, <>)) { s:^ *///? ?::; print " <p>\n" if !$on && $_ =~ /\S/; print " </p>\n" if $on && $_ =~ /^\s*$/; print " $_\n"; $on = ($_ =~ /\S/); } print " </p>\n" if $on'
41 -->
43 <div class="doc_title">LLVM's Analysis and Transform Passes</div>
45 <ol>
46 <li><a href="#intro">Introduction</a></li>
47 <li><a href="#analyses">Analysis Passes</a>
48 <li><a href="#transforms">Transform Passes</a></li>
49 <li><a href="#utilities">Utility Passes</a></li>
50 </ol>
52 <div class="doc_author">
53 <p>Written by <a href="mailto:rspencer@x10sys.com">Reid Spencer</a>
54 and Gordon Henriksen</p>
55 </div>
57 <!-- ======================================================================= -->
58 <div class="doc_section"> <a name="intro">Introduction</a> </div>
59 <div class="doc_text">
60 <p>This document serves as a high level summary of the optimization features
61 that LLVM provides. Optimizations are implemented as Passes that traverse some
62 portion of a program to either collect information or transform the program.
63 The table below divides the passes that LLVM provides into three categories.
64 Analysis passes compute information that other passes can use or for debugging
65 or program visualization purposes. Transform passes can use (or invalidate)
66 the analysis passes. Transform passes all mutate the program in some way.
67 Utility passes provides some utility but don't otherwise fit categorization.
68 For example passes to extract functions to bitcode or write a module to
69 bitcode are neither analysis nor transform passes.
70 <p>The table below provides a quick summary of each pass and links to the more
71 complete pass description later in the document.</p>
72 </div>
73 <div class="doc_text" >
74 <table>
75 <tr><th colspan="2"><b>ANALYSIS PASSES</b></th></tr>
76 <tr><th>Option</th><th>Name</th></tr>
77 <tr><td><a href="#aa-eval">-aa-eval</a></td><td>Exhaustive Alias Analysis Precision Evaluator</td></tr>
78 <tr><td><a href="#anders-aa">-anders-aa</a></td><td>Andersen's Interprocedural Alias Analysis</td></tr>
79 <tr><td><a href="#basicaa">-basicaa</a></td><td>Basic Alias Analysis (default AA impl)</td></tr>
80 <tr><td><a href="#basiccg">-basiccg</a></td><td>Basic CallGraph Construction</td></tr>
81 <tr><td><a href="#codegenprepare">-codegenprepare</a></td><td>Optimize for code generation</td></tr>
82 <tr><td><a href="#count-aa">-count-aa</a></td><td>Count Alias Analysis Query Responses</td></tr>
83 <tr><td><a href="#debug-aa">-debug-aa</a></td><td>AA use debugger</td></tr>
84 <tr><td><a href="#domfrontier">-domfrontier</a></td><td>Dominance Frontier Construction</td></tr>
85 <tr><td><a href="#domtree">-domtree</a></td><td>Dominator Tree Construction</td></tr>
86 <tr><td><a href="#dot-callgraph">-dot-callgraph</a></td><td>Print Call Graph to 'dot' file</td></tr>
87 <tr><td><a href="#dot-cfg">-dot-cfg</a></td><td>Print CFG of function to 'dot' file</td></tr>
88 <tr><td><a href="#dot-cfg-only">-dot-cfg-only</a></td><td>Print CFG of function to 'dot' file (with no function bodies)</td></tr>
89 <tr><td><a href="#globalsmodref-aa">-globalsmodref-aa</a></td><td>Simple mod/ref analysis for globals</td></tr>
90 <tr><td><a href="#instcount">-instcount</a></td><td>Counts the various types of Instructions</td></tr>
91 <tr><td><a href="#intervals">-intervals</a></td><td>Interval Partition Construction</td></tr>
92 <tr><td><a href="#loops">-loops</a></td><td>Natural Loop Construction</td></tr>
93 <tr><td><a href="#memdep">-memdep</a></td><td>Memory Dependence Analysis</td></tr>
94 <tr><td><a href="#no-aa">-no-aa</a></td><td>No Alias Analysis (always returns 'may' alias)</td></tr>
95 <tr><td><a href="#no-profile">-no-profile</a></td><td>No Profile Information</td></tr>
96 <tr><td><a href="#postdomfrontier">-postdomfrontier</a></td><td>Post-Dominance Frontier Construction</td></tr>
97 <tr><td><a href="#postdomtree">-postdomtree</a></td><td>Post-Dominator Tree Construction</td></tr>
98 <tr><td><a href="#print-alias-sets">-print-alias-sets</a></td><td>Alias Set Printer</td></tr>
99 <tr><td><a href="#print-callgraph">-print-callgraph</a></td><td>Print a call graph</td></tr>
100 <tr><td><a href="#print-callgraph-sccs">-print-callgraph-sccs</a></td><td>Print SCCs of the Call Graph</td></tr>
101 <tr><td><a href="#print-cfg-sccs">-print-cfg-sccs</a></td><td>Print SCCs of each function CFG</td></tr>
102 <tr><td><a href="#print-externalfnconstants">-print-externalfnconstants</a></td><td>Print external fn callsites passed constants</td></tr>
103 <tr><td><a href="#print-function">-print-function</a></td><td>Print function to stderr</td></tr>
104 <tr><td><a href="#print-module">-print-module</a></td><td>Print module to stderr</td></tr>
105 <tr><td><a href="#print-used-types">-print-used-types</a></td><td>Find Used Types</td></tr>
106 <tr><td><a href="#profile-loader">-profile-loader</a></td><td>Load profile information from llvmprof.out</td></tr>
107 <tr><td><a href="#scalar-evolution">-scalar-evolution</a></td><td>Scalar Evolution Analysis</td></tr>
108 <tr><td><a href="#targetdata">-targetdata</a></td><td>Target Data Layout</td></tr>
111 <tr><th colspan="2"><b>TRANSFORM PASSES</b></th></tr>
112 <tr><th>Option</th><th>Name</th></tr>
113 <tr><td><a href="#adce">-adce</a></td><td>Aggressive Dead Code Elimination</td></tr>
114 <tr><td><a href="#argpromotion">-argpromotion</a></td><td>Promote 'by reference' arguments to scalars</td></tr>
115 <tr><td><a href="#block-placement">-block-placement</a></td><td>Profile Guided Basic Block Placement</td></tr>
116 <tr><td><a href="#break-crit-edges">-break-crit-edges</a></td><td>Break critical edges in CFG</td></tr>
117 <tr><td><a href="#codegenprepare">-codegenprepare</a></td><td>Prepare a function for code generation </td></tr>
118 <tr><td><a href="#condprop">-condprop</a></td><td>Conditional Propagation</td></tr>
119 <tr><td><a href="#constmerge">-constmerge</a></td><td>Merge Duplicate Global Constants</td></tr>
120 <tr><td><a href="#constprop">-constprop</a></td><td>Simple constant propagation</td></tr>
121 <tr><td><a href="#dce">-dce</a></td><td>Dead Code Elimination</td></tr>
122 <tr><td><a href="#deadargelim">-deadargelim</a></td><td>Dead Argument Elimination</td></tr>
123 <tr><td><a href="#deadtypeelim">-deadtypeelim</a></td><td>Dead Type Elimination</td></tr>
124 <tr><td><a href="#die">-die</a></td><td>Dead Instruction Elimination</td></tr>
125 <tr><td><a href="#dse">-dse</a></td><td>Dead Store Elimination</td></tr>
126 <tr><td><a href="#globaldce">-globaldce</a></td><td>Dead Global Elimination</td></tr>
127 <tr><td><a href="#globalopt">-globalopt</a></td><td>Global Variable Optimizer</td></tr>
128 <tr><td><a href="#gvn">-gvn</a></td><td>Global Value Numbering</td></tr>
129 <tr><td><a href="#indmemrem">-indmemrem</a></td><td>Indirect Malloc and Free Removal</td></tr>
130 <tr><td><a href="#indvars">-indvars</a></td><td>Canonicalize Induction Variables</td></tr>
131 <tr><td><a href="#inline">-inline</a></td><td>Function Integration/Inlining</td></tr>
132 <tr><td><a href="#insert-block-profiling">-insert-block-profiling</a></td><td>Insert instrumentation for block profiling</td></tr>
133 <tr><td><a href="#insert-edge-profiling">-insert-edge-profiling</a></td><td>Insert instrumentation for edge profiling</td></tr>
134 <tr><td><a href="#insert-function-profiling">-insert-function-profiling</a></td><td>Insert instrumentation for function profiling</td></tr>
135 <tr><td><a href="#insert-null-profiling-rs">-insert-null-profiling-rs</a></td><td>Measure profiling framework overhead</td></tr>
136 <tr><td><a href="#insert-rs-profiling-framework">-insert-rs-profiling-framework</a></td><td>Insert random sampling instrumentation framework</td></tr>
137 <tr><td><a href="#instcombine">-instcombine</a></td><td>Combine redundant instructions</td></tr>
138 <tr><td><a href="#internalize">-internalize</a></td><td>Internalize Global Symbols</td></tr>
139 <tr><td><a href="#ipconstprop">-ipconstprop</a></td><td>Interprocedural constant propagation</td></tr>
140 <tr><td><a href="#ipsccp">-ipsccp</a></td><td>Interprocedural Sparse Conditional Constant Propagation</td></tr>
141 <tr><td><a href="#jump-threading">-jump-threading</a></td><td>Thread control through conditional blocks </td></tr>
142 <tr><td><a href="#lcssa">-lcssa</a></td><td>Loop-Closed SSA Form Pass</td></tr>
143 <tr><td><a href="#licm">-licm</a></td><td>Loop Invariant Code Motion</td></tr>
144 <tr><td><a href="#loop-deletion">-loop-deletion</a></td><td>Dead Loop Deletion Pass </td></tr>
145 <tr><td><a href="#loop-extract">-loop-extract</a></td><td>Extract loops into new functions</td></tr>
146 <tr><td><a href="#loop-extract-single">-loop-extract-single</a></td><td>Extract at most one loop into a new function</td></tr>
147 <tr><td><a href="#loop-index-split">-loop-index-split</a></td><td>Index Split Loops</td></tr>
148 <tr><td><a href="#loop-reduce">-loop-reduce</a></td><td>Loop Strength Reduction</td></tr>
149 <tr><td><a href="#loop-rotate">-loop-rotate</a></td><td>Rotate Loops</td></tr>
150 <tr><td><a href="#loop-unroll">-loop-unroll</a></td><td>Unroll loops</td></tr>
151 <tr><td><a href="#loop-unswitch">-loop-unswitch</a></td><td>Unswitch loops</td></tr>
152 <tr><td><a href="#loopsimplify">-loopsimplify</a></td><td>Canonicalize natural loops</td></tr>
153 <tr><td><a href="#lowerallocs">-lowerallocs</a></td><td>Lower allocations from instructions to calls</td></tr>
154 <tr><td><a href="#lowerinvoke">-lowerinvoke</a></td><td>Lower invoke and unwind, for unwindless code generators</td></tr>
155 <tr><td><a href="#lowersetjmp">-lowersetjmp</a></td><td>Lower Set Jump</td></tr>
156 <tr><td><a href="#lowerswitch">-lowerswitch</a></td><td>Lower SwitchInst's to branches</td></tr>
157 <tr><td><a href="#mem2reg">-mem2reg</a></td><td>Promote Memory to Register</td></tr>
158 <tr><td><a href="#memcpyopt">-memcpyopt</a></td><td>Optimize use of memcpy and friends</td></tr>
159 <tr><td><a href="#mergereturn">-mergereturn</a></td><td>Unify function exit nodes</td></tr>
160 <tr><td><a href="#prune-eh">-prune-eh</a></td><td>Remove unused exception handling info</td></tr>
161 <tr><td><a href="#reassociate">-reassociate</a></td><td>Reassociate expressions</td></tr>
162 <tr><td><a href="#reg2mem">-reg2mem</a></td><td>Demote all values to stack slots</td></tr>
163 <tr><td><a href="#scalarrepl">-scalarrepl</a></td><td>Scalar Replacement of Aggregates</td></tr>
164 <tr><td><a href="#sccp">-sccp</a></td><td>Sparse Conditional Constant Propagation</td></tr>
165 <tr><td><a href="#simplify-libcalls">-simplify-libcalls</a></td><td>Simplify well-known library calls</td></tr>
166 <tr><td><a href="#simplifycfg">-simplifycfg</a></td><td>Simplify the CFG</td></tr>
167 <tr><td><a href="#strip">-strip</a></td><td>Strip all symbols from a module</td></tr>
168 <tr><td><a href="#strip-dead-prototypes">-strip-dead-prototypes</a></td><td>Remove unused function declarations</td></tr>
169 <tr><td><a href="#sretpromotion">-sretpromotion</a></td><td>Promote sret arguments</td></tr>
170 <tr><td><a href="#tailcallelim">-tailcallelim</a></td><td>Tail Call Elimination</td></tr>
171 <tr><td><a href="#tailduplicate">-tailduplicate</a></td><td>Tail Duplication</td></tr>
174 <tr><th colspan="2"><b>UTILITY PASSES</b></th></tr>
175 <tr><th>Option</th><th>Name</th></tr>
176 <tr><td><a href="#deadarghaX0r">-deadarghaX0r</a></td><td>Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</td></tr>
177 <tr><td><a href="#extract-blocks">-extract-blocks</a></td><td>Extract Basic Blocks From Module (for bugpoint use)</td></tr>
178 <tr><td><a href="#preverify">-preverify</a></td><td>Preliminary module verification</td></tr>
179 <tr><td><a href="#verify">-verify</a></td><td>Module Verifier</td></tr>
180 <tr><td><a href="#view-cfg">-view-cfg</a></td><td>View CFG of function</td></tr>
181 <tr><td><a href="#view-cfg-only">-view-cfg-only</a></td><td>View CFG of function (with no function bodies)</td></tr>
182 </table>
183 </div>
185 <!-- ======================================================================= -->
186 <div class="doc_section"> <a name="example">Analysis Passes</a></div>
187 <div class="doc_text">
188 <p>This section describes the LLVM Analysis Passes.</p>
189 </div>
191 <!-------------------------------------------------------------------------- -->
192 <div class="doc_subsection">
193 <a name="aa-eval">Exhaustive Alias Analysis Precision Evaluator</a>
194 </div>
195 <div class="doc_text">
196 <p>This is a simple N^2 alias analysis accuracy evaluator.
197 Basically, for each function in the program, it simply queries to see how the
198 alias analysis implementation answers alias queries between each pair of
199 pointers in the function.</p>
201 <p>This is inspired and adapted from code by: Naveen Neelakantam, Francesco
202 Spadini, and Wojciech Stryjewski.</p>
203 </div>
205 <!-------------------------------------------------------------------------- -->
206 <div class="doc_subsection">
207 <a name="anders-aa">Andersen's Interprocedural Alias Analysis</a>
208 </div>
209 <div class="doc_text">
211 This is an implementation of Andersen's interprocedural alias
212 analysis
213 </p>
216 In pointer analysis terms, this is a subset-based, flow-insensitive,
217 field-sensitive, and context-insensitive algorithm pointer algorithm.
218 </p>
221 This algorithm is implemented as three stages:
222 </p>
224 <ol>
225 <li>Object identification.</li>
226 <li>Inclusion constraint identification.</li>
227 <li>Offline constraint graph optimization.</li>
228 <li>Inclusion constraint solving.</li>
229 </ol>
232 The object identification stage identifies all of the memory objects in the
233 program, which includes globals, heap allocated objects, and stack allocated
234 objects.
235 </p>
238 The inclusion constraint identification stage finds all inclusion constraints
239 in the program by scanning the program, looking for pointer assignments and
240 other statements that effect the points-to graph. For a statement like
241 <code><var>A</var> = <var>B</var></code>, this statement is processed to
242 indicate that <var>A</var> can point to anything that <var>B</var> can point
243 to. Constraints can handle copies, loads, and stores, and address taking.
244 </p>
247 The offline constraint graph optimization portion includes offline variable
248 substitution algorithms intended to computer pointer and location
249 equivalences. Pointer equivalences are those pointers that will have the
250 same points-to sets, and location equivalences are those variables that
251 always appear together in points-to sets.
252 </p>
255 The inclusion constraint solving phase iteratively propagates the inclusion
256 constraints until a fixed point is reached. This is an O(<var>n</var>³)
257 algorithm.
258 </p>
261 Function constraints are handled as if they were structs with <var>X</var>
262 fields. Thus, an access to argument <var>X</var> of function <var>Y</var> is
263 an access to node index <code>getNode(<var>Y</var>) + <var>X</var></code>.
264 This representation allows handling of indirect calls without any issues. To
265 wit, an indirect call <code><var>Y</var>(<var>a</var>,<var>b</var>)</code> is
266 equivalent to <code>*(<var>Y</var> + 1) = <var>a</var>, *(<var>Y</var> + 2) =
267 <var>b</var></code>. The return node for a function <var>F</var> is always
268 located at <code>getNode(<var>F</var>) + CallReturnPos</code>. The arguments
269 start at <code>getNode(<var>F</var>) + CallArgPos</code>.
270 </p>
273 Please keep in mind that the current andersen's pass has many known
274 problems and bugs. It should be considered "research quality".
275 </p>
277 </div>
279 <!-------------------------------------------------------------------------- -->
280 <div class="doc_subsection">
281 <a name="basicaa">Basic Alias Analysis (default AA impl)</a>
282 </div>
283 <div class="doc_text">
285 This is the default implementation of the Alias Analysis interface
286 that simply implements a few identities (two different globals cannot alias,
287 etc), but otherwise does no analysis.
288 </p>
289 </div>
291 <!-------------------------------------------------------------------------- -->
292 <div class="doc_subsection">
293 <a name="basiccg">Basic CallGraph Construction</a>
294 </div>
295 <div class="doc_text">
296 <p>Yet to be written.</p>
297 </div>
299 <!-------------------------------------------------------------------------- -->
300 <div class="doc_subsection">
301 <a name="codegenprepare">Optimize for code generation</a>
302 </div>
303 <div class="doc_text">
305 This pass munges the code in the input function to better prepare it for
306 SelectionDAG-based code generation. This works around limitations in it's
307 basic-block-at-a-time approach. It should eventually be removed.
308 </p>
309 </div>
311 <!-------------------------------------------------------------------------- -->
312 <div class="doc_subsection">
313 <a name="count-aa">Count Alias Analysis Query Responses</a>
314 </div>
315 <div class="doc_text">
317 A pass which can be used to count how many alias queries
318 are being made and how the alias analysis implementation being used responds.
319 </p>
320 </div>
322 <!-------------------------------------------------------------------------- -->
323 <div class="doc_subsection">
324 <a name="debug-aa">AA use debugger</a>
325 </div>
326 <div class="doc_text">
328 This simple pass checks alias analysis users to ensure that if they
329 create a new value, they do not query AA without informing it of the value.
330 It acts as a shim over any other AA pass you want.
331 </p>
334 Yes keeping track of every value in the program is expensive, but this is
335 a debugging pass.
336 </p>
337 </div>
339 <!-------------------------------------------------------------------------- -->
340 <div class="doc_subsection">
341 <a name="domfrontier">Dominance Frontier Construction</a>
342 </div>
343 <div class="doc_text">
345 This pass is a simple dominator construction algorithm for finding forward
346 dominator frontiers.
347 </p>
348 </div>
350 <!-------------------------------------------------------------------------- -->
351 <div class="doc_subsection">
352 <a name="domtree">Dominator Tree Construction</a>
353 </div>
354 <div class="doc_text">
356 This pass is a simple dominator construction algorithm for finding forward
357 dominators.
358 </p>
359 </div>
361 <!-------------------------------------------------------------------------- -->
362 <div class="doc_subsection">
363 <a name="dot-callgraph">Print Call Graph to 'dot' file</a>
364 </div>
365 <div class="doc_text">
367 This pass, only available in <code>opt</code>, prints the call graph into a
368 <code>.dot</code> graph. This graph can then be processed with the "dot" tool
369 to convert it to postscript or some other suitable format.
370 </p>
371 </div>
373 <!-------------------------------------------------------------------------- -->
374 <div class="doc_subsection">
375 <a name="dot-cfg">Print CFG of function to 'dot' file</a>
376 </div>
377 <div class="doc_text">
379 This pass, only available in <code>opt</code>, prints the control flow graph
380 into a <code>.dot</code> graph. This graph can then be processed with the
381 "dot" tool to convert it to postscript or some other suitable format.
382 </p>
383 </div>
385 <!-------------------------------------------------------------------------- -->
386 <div class="doc_subsection">
387 <a name="dot-cfg-only">Print CFG of function to 'dot' file (with no function bodies)</a>
388 </div>
389 <div class="doc_text">
391 This pass, only available in <code>opt</code>, prints the control flow graph
392 into a <code>.dot</code> graph, omitting the function bodies. This graph can
393 then be processed with the "dot" tool to convert it to postscript or some
394 other suitable format.
395 </p>
396 </div>
398 <!-------------------------------------------------------------------------- -->
399 <div class="doc_subsection">
400 <a name="globalsmodref-aa">Simple mod/ref analysis for globals</a>
401 </div>
402 <div class="doc_text">
404 This simple pass provides alias and mod/ref information for global values
405 that do not have their address taken, and keeps track of whether functions
406 read or write memory (are "pure"). For this simple (but very common) case,
407 we can provide pretty accurate and useful information.
408 </p>
409 </div>
411 <!-------------------------------------------------------------------------- -->
412 <div class="doc_subsection">
413 <a name="instcount">Counts the various types of Instructions</a>
414 </div>
415 <div class="doc_text">
417 This pass collects the count of all instructions and reports them
418 </p>
419 </div>
421 <!-------------------------------------------------------------------------- -->
422 <div class="doc_subsection">
423 <a name="intervals">Interval Partition Construction</a>
424 </div>
425 <div class="doc_text">
427 This analysis calculates and represents the interval partition of a function,
428 or a preexisting interval partition.
429 </p>
432 In this way, the interval partition may be used to reduce a flow graph down
433 to its degenerate single node interval partition (unless it is irreducible).
434 </p>
435 </div>
437 <!-------------------------------------------------------------------------- -->
438 <div class="doc_subsection">
439 <a name="loops">Natural Loop Construction</a>
440 </div>
441 <div class="doc_text">
443 This analysis is used to identify natural loops and determine the loop depth
444 of various nodes of the CFG. Note that the loops identified may actually be
445 several natural loops that share the same header node... not just a single
446 natural loop.
447 </p>
448 </div>
450 <!-------------------------------------------------------------------------- -->
451 <div class="doc_subsection">
452 <a name="memdep">Memory Dependence Analysis</a>
453 </div>
454 <div class="doc_text">
456 An analysis that determines, for a given memory operation, what preceding
457 memory operations it depends on. It builds on alias analysis information, and
458 tries to provide a lazy, caching interface to a common kind of alias
459 information query.
460 </p>
461 </div>
463 <!-------------------------------------------------------------------------- -->
464 <div class="doc_subsection">
465 <a name="no-aa">No Alias Analysis (always returns 'may' alias)</a>
466 </div>
467 <div class="doc_text">
469 Always returns "I don't know" for alias queries. NoAA is unlike other alias
470 analysis implementations, in that it does not chain to a previous analysis. As
471 such it doesn't follow many of the rules that other alias analyses must.
472 </p>
473 </div>
475 <!-------------------------------------------------------------------------- -->
476 <div class="doc_subsection">
477 <a name="no-profile">No Profile Information</a>
478 </div>
479 <div class="doc_text">
481 The default "no profile" implementation of the abstract
482 <code>ProfileInfo</code> interface.
483 </p>
484 </div>
486 <!-------------------------------------------------------------------------- -->
487 <div class="doc_subsection">
488 <a name="postdomfrontier">Post-Dominance Frontier Construction</a>
489 </div>
490 <div class="doc_text">
492 This pass is a simple post-dominator construction algorithm for finding
493 post-dominator frontiers.
494 </p>
495 </div>
497 <!-------------------------------------------------------------------------- -->
498 <div class="doc_subsection">
499 <a name="postdomtree">Post-Dominator Tree Construction</a>
500 </div>
501 <div class="doc_text">
503 This pass is a simple post-dominator construction algorithm for finding
504 post-dominators.
505 </p>
506 </div>
508 <!-------------------------------------------------------------------------- -->
509 <div class="doc_subsection">
510 <a name="print-alias-sets">Alias Set Printer</a>
511 </div>
512 <div class="doc_text">
513 <p>Yet to be written.</p>
514 </div>
516 <!-------------------------------------------------------------------------- -->
517 <div class="doc_subsection">
518 <a name="print-callgraph">Print a call graph</a>
519 </div>
520 <div class="doc_text">
522 This pass, only available in <code>opt</code>, prints the call graph to
523 standard output in a human-readable form.
524 </p>
525 </div>
527 <!-------------------------------------------------------------------------- -->
528 <div class="doc_subsection">
529 <a name="print-callgraph-sccs">Print SCCs of the Call Graph</a>
530 </div>
531 <div class="doc_text">
533 This pass, only available in <code>opt</code>, prints the SCCs of the call
534 graph to standard output in a human-readable form.
535 </p>
536 </div>
538 <!-------------------------------------------------------------------------- -->
539 <div class="doc_subsection">
540 <a name="print-cfg-sccs">Print SCCs of each function CFG</a>
541 </div>
542 <div class="doc_text">
544 This pass, only available in <code>opt</code>, prints the SCCs of each
545 function CFG to standard output in a human-readable form.
546 </p>
547 </div>
549 <!-------------------------------------------------------------------------- -->
550 <div class="doc_subsection">
551 <a name="print-externalfnconstants">Print external fn callsites passed constants</a>
552 </div>
553 <div class="doc_text">
555 This pass, only available in <code>opt</code>, prints out call sites to
556 external functions that are called with constant arguments. This can be
557 useful when looking for standard library functions we should constant fold
558 or handle in alias analyses.
559 </p>
560 </div>
562 <!-------------------------------------------------------------------------- -->
563 <div class="doc_subsection">
564 <a name="print-function">Print function to stderr</a>
565 </div>
566 <div class="doc_text">
568 The <code>PrintFunctionPass</code> class is designed to be pipelined with
569 other <code>FunctionPass</code>es, and prints out the functions of the module
570 as they are processed.
571 </p>
572 </div>
574 <!-------------------------------------------------------------------------- -->
575 <div class="doc_subsection">
576 <a name="print-module">Print module to stderr</a>
577 </div>
578 <div class="doc_text">
580 This pass simply prints out the entire module when it is executed.
581 </p>
582 </div>
584 <!-------------------------------------------------------------------------- -->
585 <div class="doc_subsection">
586 <a name="print-used-types">Find Used Types</a>
587 </div>
588 <div class="doc_text">
590 This pass is used to seek out all of the types in use by the program. Note
591 that this analysis explicitly does not include types only used by the symbol
592 table.
593 </div>
595 <!-------------------------------------------------------------------------- -->
596 <div class="doc_subsection">
597 <a name="profile-loader">Load profile information from llvmprof.out</a>
598 </div>
599 <div class="doc_text">
601 A concrete implementation of profiling information that loads the information
602 from a profile dump file.
603 </p>
604 </div>
606 <!-------------------------------------------------------------------------- -->
607 <div class="doc_subsection">
608 <a name="scalar-evolution">Scalar Evolution Analysis</a>
609 </div>
610 <div class="doc_text">
612 The <code>ScalarEvolution</code> analysis can be used to analyze and
613 catagorize scalar expressions in loops. It specializes in recognizing general
614 induction variables, representing them with the abstract and opaque
615 <code>SCEV</code> class. Given this analysis, trip counts of loops and other
616 important properties can be obtained.
617 </p>
620 This analysis is primarily useful for induction variable substitution and
621 strength reduction.
622 </p>
623 </div>
625 <!-------------------------------------------------------------------------- -->
626 <div class="doc_subsection">
627 <a name="targetdata">Target Data Layout</a>
628 </div>
629 <div class="doc_text">
630 <p>Provides other passes access to information on how the size and alignment
631 required by the the target ABI for various data types.</p>
632 </div>
634 <!-- ======================================================================= -->
635 <div class="doc_section"> <a name="transform">Transform Passes</a></div>
636 <div class="doc_text">
637 <p>This section describes the LLVM Transform Passes.</p>
638 </div>
640 <!-------------------------------------------------------------------------- -->
641 <div class="doc_subsection">
642 <a name="adce">Aggressive Dead Code Elimination</a>
643 </div>
644 <div class="doc_text">
645 <p>ADCE aggressively tries to eliminate code. This pass is similar to
646 <a href="#dce">DCE</a> but it assumes that values are dead until proven
647 otherwise. This is similar to <a href="#sccp">SCCP</a>, except applied to
648 the liveness of values.</p>
649 </div>
651 <!-------------------------------------------------------------------------- -->
652 <div class="doc_subsection">
653 <a name="argpromotion">Promote 'by reference' arguments to scalars</a>
654 </div>
655 <div class="doc_text">
657 This pass promotes "by reference" arguments to be "by value" arguments. In
658 practice, this means looking for internal functions that have pointer
659 arguments. If it can prove, through the use of alias analysis, that an
660 argument is *only* loaded, then it can pass the value into the function
661 instead of the address of the value. This can cause recursive simplification
662 of code and lead to the elimination of allocas (especially in C++ template
663 code like the STL).
664 </p>
667 This pass also handles aggregate arguments that are passed into a function,
668 scalarizing them if the elements of the aggregate are only loaded. Note that
669 it refuses to scalarize aggregates which would require passing in more than
670 three operands to the function, because passing thousands of operands for a
671 large array or structure is unprofitable!
672 </p>
675 Note that this transformation could also be done for arguments that are only
676 stored to (returning the value instead), but does not currently. This case
677 would be best handled when and if LLVM starts supporting multiple return
678 values from functions.
679 </p>
680 </div>
682 <!-------------------------------------------------------------------------- -->
683 <div class="doc_subsection">
684 <a name="block-placement">Profile Guided Basic Block Placement</a>
685 </div>
686 <div class="doc_text">
687 <p>This pass is a very simple profile guided basic block placement algorithm.
688 The idea is to put frequently executed blocks together at the start of the
689 function and hopefully increase the number of fall-through conditional
690 branches. If there is no profile information for a particular function, this
691 pass basically orders blocks in depth-first order.</p>
692 </div>
694 <!-------------------------------------------------------------------------- -->
695 <div class="doc_subsection">
696 <a name="break-crit-edges">Break critical edges in CFG</a>
697 </div>
698 <div class="doc_text">
700 Break all of the critical edges in the CFG by inserting a dummy basic block.
701 It may be "required" by passes that cannot deal with critical edges. This
702 transformation obviously invalidates the CFG, but can update forward dominator
703 (set, immediate dominators, tree, and frontier) information.
704 </p>
705 </div>
707 <!-------------------------------------------------------------------------- -->
708 <div class="doc_subsection">
709 <a name="codegenprepare">Prepare a function for code generation</a>
710 </div>
711 <div class="doc_text">
712 This pass munges the code in the input function to better prepare it for
713 SelectionDAG-based code generation. This works around limitations in it's
714 basic-block-at-a-time approach. It should eventually be removed.
715 </div>
717 <!-------------------------------------------------------------------------- -->
718 <div class="doc_subsection">
719 <a name="condprop">Conditional Propagation</a>
720 </div>
721 <div class="doc_text">
722 <p>This pass propagates information about conditional expressions through the
723 program, allowing it to eliminate conditional branches in some cases.</p>
724 </div>
726 <!-------------------------------------------------------------------------- -->
727 <div class="doc_subsection">
728 <a name="constmerge">Merge Duplicate Global Constants</a>
729 </div>
730 <div class="doc_text">
732 Merges duplicate global constants together into a single constant that is
733 shared. This is useful because some passes (ie TraceValues) insert a lot of
734 string constants into the program, regardless of whether or not an existing
735 string is available.
736 </p>
737 </div>
739 <!-------------------------------------------------------------------------- -->
740 <div class="doc_subsection">
741 <a name="constprop">Simple constant propagation</a>
742 </div>
743 <div class="doc_text">
744 <p>This file implements constant propagation and merging. It looks for
745 instructions involving only constant operands and replaces them with a
746 constant value instead of an instruction. For example:</p>
747 <blockquote><pre>add i32 1, 2</pre></blockquote>
748 <p>becomes</p>
749 <blockquote><pre>i32 3</pre></blockquote>
750 <p>NOTE: this pass has a habit of making definitions be dead. It is a good
751 idea to to run a <a href="#die">DIE</a> (Dead Instruction Elimination) pass
752 sometime after running this pass.</p>
753 </div>
755 <!-------------------------------------------------------------------------- -->
756 <div class="doc_subsection">
757 <a name="dce">Dead Code Elimination</a>
758 </div>
759 <div class="doc_text">
761 Dead code elimination is similar to <a href="#die">dead instruction
762 elimination</a>, but it rechecks instructions that were used by removed
763 instructions to see if they are newly dead.
764 </p>
765 </div>
767 <!-------------------------------------------------------------------------- -->
768 <div class="doc_subsection">
769 <a name="deadargelim">Dead Argument Elimination</a>
770 </div>
771 <div class="doc_text">
773 This pass deletes dead arguments from internal functions. Dead argument
774 elimination removes arguments which are directly dead, as well as arguments
775 only passed into function calls as dead arguments of other functions. This
776 pass also deletes dead arguments in a similar way.
777 </p>
780 This pass is often useful as a cleanup pass to run after aggressive
781 interprocedural passes, which add possibly-dead arguments.
782 </p>
783 </div>
785 <!-------------------------------------------------------------------------- -->
786 <div class="doc_subsection">
787 <a name="deadtypeelim">Dead Type Elimination</a>
788 </div>
789 <div class="doc_text">
791 This pass is used to cleanup the output of GCC. It eliminate names for types
792 that are unused in the entire translation unit, using the <a
793 href="#findusedtypes">find used types</a> pass.
794 </p>
795 </div>
797 <!-------------------------------------------------------------------------- -->
798 <div class="doc_subsection">
799 <a name="die">Dead Instruction Elimination</a>
800 </div>
801 <div class="doc_text">
803 Dead instruction elimination performs a single pass over the function,
804 removing instructions that are obviously dead.
805 </p>
806 </div>
808 <!-------------------------------------------------------------------------- -->
809 <div class="doc_subsection">
810 <a name="dse">Dead Store Elimination</a>
811 </div>
812 <div class="doc_text">
814 A trivial dead store elimination that only considers basic-block local
815 redundant stores.
816 </p>
817 </div>
819 <!-------------------------------------------------------------------------- -->
820 <div class="doc_subsection">
821 <a name="globaldce">Dead Global Elimination</a>
822 </div>
823 <div class="doc_text">
825 This transform is designed to eliminate unreachable internal globals from the
826 program. It uses an aggressive algorithm, searching out globals that are
827 known to be alive. After it finds all of the globals which are needed, it
828 deletes whatever is left over. This allows it to delete recursive chunks of
829 the program which are unreachable.
830 </p>
831 </div>
833 <!-------------------------------------------------------------------------- -->
834 <div class="doc_subsection">
835 <a name="globalopt">Global Variable Optimizer</a>
836 </div>
837 <div class="doc_text">
839 This pass transforms simple global variables that never have their address
840 taken. If obviously true, it marks read/write globals as constant, deletes
841 variables only stored to, etc.
842 </p>
843 </div>
845 <!-------------------------------------------------------------------------- -->
846 <div class="doc_subsection">
847 <a name="gvn">Global Value Numbering</a>
848 </div>
849 <div class="doc_text">
851 This pass performs global value numbering to eliminate fully and partially
852 redundant instructions. It also performs redundant load elimination.
853 </p>
854 </div>
857 <!-------------------------------------------------------------------------- -->
858 <div class="doc_subsection">
859 <a name="indmemrem">Indirect Malloc and Free Removal</a>
860 </div>
861 <div class="doc_text">
863 This pass finds places where memory allocation functions may escape into
864 indirect land. Some transforms are much easier (aka possible) only if free
865 or malloc are not called indirectly.
866 </p>
869 Thus find places where the address of memory functions are taken and construct
870 bounce functions with direct calls of those functions.
871 </p>
872 </div>
874 <!-------------------------------------------------------------------------- -->
875 <div class="doc_subsection">
876 <a name="indvars">Canonicalize Induction Variables</a>
877 </div>
878 <div class="doc_text">
880 This transformation analyzes and transforms the induction variables (and
881 computations derived from them) into simpler forms suitable for subsequent
882 analysis and transformation.
883 </p>
886 This transformation makes the following changes to each loop with an
887 identifiable induction variable:
888 </p>
890 <ol>
891 <li>All loops are transformed to have a <em>single</em> canonical
892 induction variable which starts at zero and steps by one.</li>
893 <li>The canonical induction variable is guaranteed to be the first PHI node
894 in the loop header block.</li>
895 <li>Any pointer arithmetic recurrences are raised to use array
896 subscripts.</li>
897 </ol>
900 If the trip count of a loop is computable, this pass also makes the following
901 changes:
902 </p>
904 <ol>
905 <li>The exit condition for the loop is canonicalized to compare the
906 induction value against the exit value. This turns loops like:
907 <blockquote><pre>for (i = 7; i*i < 1000; ++i)</pre></blockquote>
908 into
909 <blockquote><pre>for (i = 0; i != 25; ++i)</pre></blockquote></li>
910 <li>Any use outside of the loop of an expression derived from the indvar
911 is changed to compute the derived value outside of the loop, eliminating
912 the dependence on the exit value of the induction variable. If the only
913 purpose of the loop is to compute the exit value of some derived
914 expression, this transformation will make the loop dead.</li>
915 </ol>
918 This transformation should be followed by strength reduction after all of the
919 desired loop transformations have been performed. Additionally, on targets
920 where it is profitable, the loop could be transformed to count down to zero
921 (the "do loop" optimization).
922 </p>
923 </div>
925 <!-------------------------------------------------------------------------- -->
926 <div class="doc_subsection">
927 <a name="inline">Function Integration/Inlining</a>
928 </div>
929 <div class="doc_text">
931 Bottom-up inlining of functions into callees.
932 </p>
933 </div>
935 <!-------------------------------------------------------------------------- -->
936 <div class="doc_subsection">
937 <a name="insert-block-profiling">Insert instrumentation for block profiling</a>
938 </div>
939 <div class="doc_text">
941 This pass instruments the specified program with counters for basic block
942 profiling, which counts the number of times each basic block executes. This
943 is the most basic form of profiling, which can tell which blocks are hot, but
944 cannot reliably detect hot paths through the CFG.
945 </p>
948 Note that this implementation is very naïve. Control equivalent regions of
949 the CFG should not require duplicate counters, but it does put duplicate
950 counters in.
951 </p>
952 </div>
954 <!-------------------------------------------------------------------------- -->
955 <div class="doc_subsection">
956 <a name="insert-edge-profiling">Insert instrumentation for edge profiling</a>
957 </div>
958 <div class="doc_text">
960 This pass instruments the specified program with counters for edge profiling.
961 Edge profiling can give a reasonable approximation of the hot paths through a
962 program, and is used for a wide variety of program transformations.
963 </p>
966 Note that this implementation is very naïve. It inserts a counter for
967 <em>every</em> edge in the program, instead of using control flow information
968 to prune the number of counters inserted.
969 </p>
970 </div>
972 <!-------------------------------------------------------------------------- -->
973 <div class="doc_subsection">
974 <a name="insert-function-profiling">Insert instrumentation for function profiling</a>
975 </div>
976 <div class="doc_text">
978 This pass instruments the specified program with counters for function
979 profiling, which counts the number of times each function is called.
980 </p>
981 </div>
983 <!-------------------------------------------------------------------------- -->
984 <div class="doc_subsection">
985 <a name="insert-null-profiling-rs">Measure profiling framework overhead</a>
986 </div>
987 <div class="doc_text">
989 The basic profiler that does nothing. It is the default profiler and thus
990 terminates <code>RSProfiler</code> chains. It is useful for measuring
991 framework overhead.
992 </p>
993 </div>
995 <!-------------------------------------------------------------------------- -->
996 <div class="doc_subsection">
997 <a name="insert-rs-profiling-framework">Insert random sampling instrumentation framework</a>
998 </div>
999 <div class="doc_text">
1001 The second stage of the random-sampling instrumentation framework, duplicates
1002 all instructions in a function, ignoring the profiling code, then connects the
1003 two versions together at the entry and at backedges. At each connection point
1004 a choice is made as to whether to jump to the profiled code (take a sample) or
1005 execute the unprofiled code.
1006 </p>
1009 After this pass, it is highly recommended to run<a href="#mem2reg">mem2reg</a>
1010 and <a href="#adce">adce</a>. <a href="#instcombine">instcombine</a>,
1011 <a href="#load-vn">load-vn</a>, <a href="#gdce">gdce</a>, and
1012 <a href="#dse">dse</a> also are good to run afterwards.
1013 </p>
1014 </div>
1016 <!-------------------------------------------------------------------------- -->
1017 <div class="doc_subsection">
1018 <a name="instcombine">Combine redundant instructions</a>
1019 </div>
1020 <div class="doc_text">
1022 Combine instructions to form fewer, simple
1023 instructions. This pass does not modify the CFG This pass is where algebraic
1024 simplification happens.
1025 </p>
1028 This pass combines things like:
1029 </p>
1031 <blockquote><pre
1032 >%Y = add i32 %X, 1
1033 %Z = add i32 %Y, 1</pre></blockquote>
1036 into:
1037 </p>
1039 <blockquote><pre
1040 >%Z = add i32 %X, 2</pre></blockquote>
1043 This is a simple worklist driven algorithm.
1044 </p>
1047 This pass guarantees that the following canonicalizations are performed on
1048 the program:
1049 </p>
1051 <ul>
1052 <li>If a binary operator has a constant operand, it is moved to the right-
1053 hand side.</li>
1054 <li>Bitwise operators with constant operands are always grouped so that
1055 shifts are performed first, then <code>or</code>s, then
1056 <code>and</code>s, then <code>xor</code>s.</li>
1057 <li>Compare instructions are converted from <code>&lt;</code>,
1058 <code>&gt;</code>, <code>≤</code>, or <code>≥</code> to
1059 <code>=</code> or <code>≠</code> if possible.</li>
1060 <li>All <code>cmp</code> instructions on boolean values are replaced with
1061 logical operations.</li>
1062 <li><code>add <var>X</var>, <var>X</var></code> is represented as
1063 <code>mul <var>X</var>, 2</code> ⇒ <code>shl <var>X</var>, 1</code></li>
1064 <li>Multiplies with a constant power-of-two argument are transformed into
1065 shifts.</li>
1066 <li>… etc.</li>
1067 </ul>
1068 </div>
1070 <!-------------------------------------------------------------------------- -->
1071 <div class="doc_subsection">
1072 <a name="internalize">Internalize Global Symbols</a>
1073 </div>
1074 <div class="doc_text">
1076 This pass loops over all of the functions in the input module, looking for a
1077 main function. If a main function is found, all other functions and all
1078 global variables with initializers are marked as internal.
1079 </p>
1080 </div>
1082 <!-------------------------------------------------------------------------- -->
1083 <div class="doc_subsection">
1084 <a name="ipconstprop">Interprocedural constant propagation</a>
1085 </div>
1086 <div class="doc_text">
1088 This pass implements an <em>extremely</em> simple interprocedural constant
1089 propagation pass. It could certainly be improved in many different ways,
1090 like using a worklist. This pass makes arguments dead, but does not remove
1091 them. The existing dead argument elimination pass should be run after this
1092 to clean up the mess.
1093 </p>
1094 </div>
1096 <!-------------------------------------------------------------------------- -->
1097 <div class="doc_subsection">
1098 <a name="ipsccp">Interprocedural Sparse Conditional Constant Propagation</a>
1099 </div>
1100 <div class="doc_text">
1102 An interprocedural variant of <a href="#sccp">Sparse Conditional Constant
1103 Propagation</a>.
1104 </p>
1105 </div>
1107 <!-------------------------------------------------------------------------- -->
1108 <div class="doc_subsection">
1109 <a name="jump-threading">Thread control through conditional blocks</a>
1110 </div>
1111 <div class="doc_text">
1113 Jump threading tries to find distinct threads of control flow running through
1114 a basic block. This pass looks at blocks that have multiple predecessors and
1115 multiple successors. If one or more of the predecessors of the block can be
1116 proven to always cause a jump to one of the successors, we forward the edge
1117 from the predecessor to the successor by duplicating the contents of this
1118 block.
1119 </p>
1121 An example of when this can occur is code like this:
1122 </p>
1124 <pre
1125 >if () { ...
1126 X = 4;
1128 if (X &lt; 3) {</pre>
1131 In this case, the unconditional branch at the end of the first if can be
1132 revectored to the false side of the second if.
1133 </p>
1134 </div>
1136 <!-------------------------------------------------------------------------- -->
1137 <div class="doc_subsection">
1138 <a name="lcssa">Loop-Closed SSA Form Pass</a>
1139 </div>
1140 <div class="doc_text">
1142 This pass transforms loops by placing phi nodes at the end of the loops for
1143 all values that are live across the loop boundary. For example, it turns
1144 the left into the right code:
1145 </p>
1147 <pre
1148 >for (...) for (...)
1149 if (c) if (c)
1150 X1 = ... X1 = ...
1151 else else
1152 X2 = ... X2 = ...
1153 X3 = phi(X1, X2) X3 = phi(X1, X2)
1154 ... = X3 + 4 X4 = phi(X3)
1155 ... = X4 + 4</pre>
1158 This is still valid LLVM; the extra phi nodes are purely redundant, and will
1159 be trivially eliminated by <code>InstCombine</code>. The major benefit of
1160 this transformation is that it makes many other loop optimizations, such as
1161 LoopUnswitching, simpler.
1162 </p>
1163 </div>
1165 <!-------------------------------------------------------------------------- -->
1166 <div class="doc_subsection">
1167 <a name="licm">Loop Invariant Code Motion</a>
1168 </div>
1169 <div class="doc_text">
1171 This pass performs loop invariant code motion, attempting to remove as much
1172 code from the body of a loop as possible. It does this by either hoisting
1173 code into the preheader block, or by sinking code to the exit blocks if it is
1174 safe. This pass also promotes must-aliased memory locations in the loop to
1175 live in registers, thus hoisting and sinking "invariant" loads and stores.
1176 </p>
1179 This pass uses alias analysis for two purposes:
1180 </p>
1182 <ul>
1183 <li>Moving loop invariant loads and calls out of loops. If we can determine
1184 that a load or call inside of a loop never aliases anything stored to,
1185 we can hoist it or sink it like any other instruction.</li>
1186 <li>Scalar Promotion of Memory - If there is a store instruction inside of
1187 the loop, we try to move the store to happen AFTER the loop instead of
1188 inside of the loop. This can only happen if a few conditions are true:
1189 <ul>
1190 <li>The pointer stored through is loop invariant.</li>
1191 <li>There are no stores or loads in the loop which <em>may</em> alias
1192 the pointer. There are no calls in the loop which mod/ref the
1193 pointer.</li>
1194 </ul>
1195 If these conditions are true, we can promote the loads and stores in the
1196 loop of the pointer to use a temporary alloca'd variable. We then use
1197 the mem2reg functionality to construct the appropriate SSA form for the
1198 variable.</li>
1199 </ul>
1200 </div>
1201 <!-------------------------------------------------------------------------- -->
1202 <div class="doc_subsection">
1203 <a name="loop-deletion">Dead Loop Deletion Pass</a>
1204 </div>
1205 <div class="doc_text">
1207 This file implements the Dead Loop Deletion Pass. This pass is responsible
1208 for eliminating loops with non-infinite computable trip counts that have no
1209 side effects or volatile instructions, and do not contribute to the
1210 computation of the function's return value.
1211 </p>
1212 </div>
1214 <!-------------------------------------------------------------------------- -->
1215 <div class="doc_subsection">
1216 <a name="loop-extract">Extract loops into new functions</a>
1217 </div>
1218 <div class="doc_text">
1220 A pass wrapper around the <code>ExtractLoop()</code> scalar transformation to
1221 extract each top-level loop into its own new function. If the loop is the
1222 <em>only</em> loop in a given function, it is not touched. This is a pass most
1223 useful for debugging via bugpoint.
1224 </p>
1225 </div>
1227 <!-------------------------------------------------------------------------- -->
1228 <div class="doc_subsection">
1229 <a name="loop-extract-single">Extract at most one loop into a new function</a>
1230 </div>
1231 <div class="doc_text">
1233 Similar to <a href="#loop-extract">Extract loops into new functions</a>,
1234 this pass extracts one natural loop from the program into a function if it
1235 can. This is used by bugpoint.
1236 </p>
1237 </div>
1239 <!-------------------------------------------------------------------------- -->
1240 <div class="doc_subsection">
1241 <a name="loop-index-split">Index Split Loops</a>
1242 </div>
1243 <div class="doc_text">
1245 This pass divides loop's iteration range by spliting loop such that each
1246 individual loop is executed efficiently.
1247 </p>
1248 </div>
1250 <!-------------------------------------------------------------------------- -->
1251 <div class="doc_subsection">
1252 <a name="loop-reduce">Loop Strength Reduction</a>
1253 </div>
1254 <div class="doc_text">
1256 This pass performs a strength reduction on array references inside loops that
1257 have as one or more of their components the loop induction variable. This is
1258 accomplished by creating a new value to hold the initial value of the array
1259 access for the first iteration, and then creating a new GEP instruction in
1260 the loop to increment the value by the appropriate amount.
1261 </p>
1262 </div>
1264 <!-------------------------------------------------------------------------- -->
1265 <div class="doc_subsection">
1266 <a name="loop-rotate">Rotate Loops</a>
1267 </div>
1268 <div class="doc_text">
1269 <p>A simple loop rotation transformation.</p>
1270 </div>
1272 <!-------------------------------------------------------------------------- -->
1273 <div class="doc_subsection">
1274 <a name="loop-unroll">Unroll loops</a>
1275 </div>
1276 <div class="doc_text">
1278 This pass implements a simple loop unroller. It works best when loops have
1279 been canonicalized by the <a href="#indvars"><tt>-indvars</tt></a> pass,
1280 allowing it to determine the trip counts of loops easily.
1281 </p>
1282 </div>
1284 <!-------------------------------------------------------------------------- -->
1285 <div class="doc_subsection">
1286 <a name="loop-unswitch">Unswitch loops</a>
1287 </div>
1288 <div class="doc_text">
1290 This pass transforms loops that contain branches on loop-invariant conditions
1291 to have multiple loops. For example, it turns the left into the right code:
1292 </p>
1294 <pre
1295 >for (...) if (lic)
1296 A for (...)
1297 if (lic) A; B; C
1298 B else
1299 C for (...)
1300 A; C</pre>
1303 This can increase the size of the code exponentially (doubling it every time
1304 a loop is unswitched) so we only unswitch if the resultant code will be
1305 smaller than a threshold.
1306 </p>
1309 This pass expects LICM to be run before it to hoist invariant conditions out
1310 of the loop, to make the unswitching opportunity obvious.
1311 </p>
1312 </div>
1314 <!-------------------------------------------------------------------------- -->
1315 <div class="doc_subsection">
1316 <a name="loopsimplify">Canonicalize natural loops</a>
1317 </div>
1318 <div class="doc_text">
1320 This pass performs several transformations to transform natural loops into a
1321 simpler form, which makes subsequent analyses and transformations simpler and
1322 more effective.
1323 </p>
1326 Loop pre-header insertion guarantees that there is a single, non-critical
1327 entry edge from outside of the loop to the loop header. This simplifies a
1328 number of analyses and transformations, such as LICM.
1329 </p>
1332 Loop exit-block insertion guarantees that all exit blocks from the loop
1333 (blocks which are outside of the loop that have predecessors inside of the
1334 loop) only have predecessors from inside of the loop (and are thus dominated
1335 by the loop header). This simplifies transformations such as store-sinking
1336 that are built into LICM.
1337 </p>
1340 This pass also guarantees that loops will have exactly one backedge.
1341 </p>
1344 Note that the simplifycfg pass will clean up blocks which are split out but
1345 end up being unnecessary, so usage of this pass should not pessimize
1346 generated code.
1347 </p>
1350 This pass obviously modifies the CFG, but updates loop information and
1351 dominator information.
1352 </p>
1353 </div>
1355 <!-------------------------------------------------------------------------- -->
1356 <div class="doc_subsection">
1357 <a name="lowerallocs">Lower allocations from instructions to calls</a>
1358 </div>
1359 <div class="doc_text">
1361 Turn <tt>malloc</tt> and <tt>free</tt> instructions into <tt>@malloc</tt> and
1362 <tt>@free</tt> calls.
1363 </p>
1366 This is a target-dependent tranformation because it depends on the size of
1367 data types and alignment constraints.
1368 </p>
1369 </div>
1371 <!-------------------------------------------------------------------------- -->
1372 <div class="doc_subsection">
1373 <a name="lowerinvoke">Lower invoke and unwind, for unwindless code generators</a>
1374 </div>
1375 <div class="doc_text">
1377 This transformation is designed for use by code generators which do not yet
1378 support stack unwinding. This pass supports two models of exception handling
1379 lowering, the 'cheap' support and the 'expensive' support.
1380 </p>
1383 'Cheap' exception handling support gives the program the ability to execute
1384 any program which does not "throw an exception", by turning 'invoke'
1385 instructions into calls and by turning 'unwind' instructions into calls to
1386 abort(). If the program does dynamically use the unwind instruction, the
1387 program will print a message then abort.
1388 </p>
1391 'Expensive' exception handling support gives the full exception handling
1392 support to the program at the cost of making the 'invoke' instruction
1393 really expensive. It basically inserts setjmp/longjmp calls to emulate the
1394 exception handling as necessary.
1395 </p>
1398 Because the 'expensive' support slows down programs a lot, and EH is only
1399 used for a subset of the programs, it must be specifically enabled by the
1400 <tt>-enable-correct-eh-support</tt> option.
1401 </p>
1404 Note that after this pass runs the CFG is not entirely accurate (exceptional
1405 control flow edges are not correct anymore) so only very simple things should
1406 be done after the lowerinvoke pass has run (like generation of native code).
1407 This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
1408 support the invoke instruction yet" lowering pass.
1409 </p>
1410 </div>
1412 <!-------------------------------------------------------------------------- -->
1413 <div class="doc_subsection">
1414 <a name="lowersetjmp">Lower Set Jump</a>
1415 </div>
1416 <div class="doc_text">
1418 Lowers <tt>setjmp</tt> and <tt>longjmp</tt> to use the LLVM invoke and unwind
1419 instructions as necessary.
1420 </p>
1423 Lowering of <tt>longjmp</tt> is fairly trivial. We replace the call with a
1424 call to the LLVM library function <tt>__llvm_sjljeh_throw_longjmp()</tt>.
1425 This unwinds the stack for us calling all of the destructors for
1426 objects allocated on the stack.
1427 </p>
1430 At a <tt>setjmp</tt> call, the basic block is split and the <tt>setjmp</tt>
1431 removed. The calls in a function that have a <tt>setjmp</tt> are converted to
1432 invoke where the except part checks to see if it's a <tt>longjmp</tt>
1433 exception and, if so, if it's handled in the function. If it is, then it gets
1434 the value returned by the <tt>longjmp</tt> and goes to where the basic block
1435 was split. <tt>invoke</tt> instructions are handled in a similar fashion with
1436 the original except block being executed if it isn't a <tt>longjmp</tt>
1437 except that is handled by that function.
1438 </p>
1439 </div>
1441 <!-------------------------------------------------------------------------- -->
1442 <div class="doc_subsection">
1443 <a name="lowerswitch">Lower SwitchInst's to branches</a>
1444 </div>
1445 <div class="doc_text">
1447 Rewrites <tt>switch</tt> instructions with a sequence of branches, which
1448 allows targets to get away with not implementing the switch instruction until
1449 it is convenient.
1450 </p>
1451 </div>
1453 <!-------------------------------------------------------------------------- -->
1454 <div class="doc_subsection">
1455 <a name="mem2reg">Promote Memory to Register</a>
1456 </div>
1457 <div class="doc_text">
1459 This file promotes memory references to be register references. It promotes
1460 <tt>alloca</tt> instructions which only have <tt>load</tt>s and
1461 <tt>store</tt>s as uses. An <tt>alloca</tt> is transformed by using dominator
1462 frontiers to place <tt>phi</tt> nodes, then traversing the function in
1463 depth-first order to rewrite <tt>load</tt>s and <tt>store</tt>s as
1464 appropriate. This is just the standard SSA construction algorithm to construct
1465 "pruned" SSA form.
1466 </p>
1467 </div>
1469 <!-------------------------------------------------------------------------- -->
1470 <div class="doc_subsection">
1471 <a name="memcpyopt">Optimize use of memcpy and friend</a>
1472 </div>
1473 <div class="doc_text">
1475 This pass performs various transformations related to eliminating memcpy
1476 calls, or transforming sets of stores into memset's.
1477 </p>
1478 </div>
1480 <!-------------------------------------------------------------------------- -->
1481 <div class="doc_subsection">
1482 <a name="mergereturn">Unify function exit nodes</a>
1483 </div>
1484 <div class="doc_text">
1486 Ensure that functions have at most one <tt>ret</tt> instruction in them.
1487 Additionally, it keeps track of which node is the new exit node of the CFG.
1488 </p>
1489 </div>
1491 <!-------------------------------------------------------------------------- -->
1492 <div class="doc_subsection">
1493 <a name="prune-eh">Remove unused exception handling info</a>
1494 </div>
1495 <div class="doc_text">
1497 This file implements a simple interprocedural pass which walks the call-graph,
1498 turning <tt>invoke</tt> instructions into <tt>call</tt> instructions if and
1499 only if the callee cannot throw an exception. It implements this as a
1500 bottom-up traversal of the call-graph.
1501 </p>
1502 </div>
1504 <!-------------------------------------------------------------------------- -->
1505 <div class="doc_subsection">
1506 <a name="reassociate">Reassociate expressions</a>
1507 </div>
1508 <div class="doc_text">
1510 This pass reassociates commutative expressions in an order that is designed
1511 to promote better constant propagation, GCSE, LICM, PRE, etc.
1512 </p>
1515 For example: 4 + (<var>x</var> + 5) ⇒ <var>x</var> + (4 + 5)
1516 </p>
1519 In the implementation of this algorithm, constants are assigned rank = 0,
1520 function arguments are rank = 1, and other values are assigned ranks
1521 corresponding to the reverse post order traversal of current function
1522 (starting at 2), which effectively gives values in deep loops higher rank
1523 than values not in loops.
1524 </p>
1525 </div>
1527 <!-------------------------------------------------------------------------- -->
1528 <div class="doc_subsection">
1529 <a name="reg2mem">Demote all values to stack slots</a>
1530 </div>
1531 <div class="doc_text">
1533 This file demotes all registers to memory references. It is intented to be
1534 the inverse of <a href="#mem2reg"><tt>-mem2reg</tt></a>. By converting to
1535 <tt>load</tt> instructions, the only values live across basic blocks are
1536 <tt>alloca</tt> instructions and <tt>load</tt> instructions before
1537 <tt>phi</tt> nodes. It is intended that this should make CFG hacking much
1538 easier. To make later hacking easier, the entry block is split into two, such
1539 that all introduced <tt>alloca</tt> instructions (and nothing else) are in the
1540 entry block.
1541 </p>
1542 </div>
1544 <!-------------------------------------------------------------------------- -->
1545 <div class="doc_subsection">
1546 <a name="scalarrepl">Scalar Replacement of Aggregates</a>
1547 </div>
1548 <div class="doc_text">
1550 The well-known scalar replacement of aggregates transformation. This
1551 transform breaks up <tt>alloca</tt> instructions of aggregate type (structure
1552 or array) into individual <tt>alloca</tt> instructions for each member if
1553 possible. Then, if possible, it transforms the individual <tt>alloca</tt>
1554 instructions into nice clean scalar SSA form.
1555 </p>
1558 This combines a simple scalar replacement of aggregates algorithm with the <a
1559 href="#mem2reg"><tt>mem2reg</tt></a> algorithm because often interact,
1560 especially for C++ programs. As such, iterating between <tt>scalarrepl</tt>,
1561 then <a href="#mem2reg"><tt>mem2reg</tt></a> until we run out of things to
1562 promote works well.
1563 </p>
1564 </div>
1566 <!-------------------------------------------------------------------------- -->
1567 <div class="doc_subsection">
1568 <a name="sccp">Sparse Conditional Constant Propagation</a>
1569 </div>
1570 <div class="doc_text">
1572 Sparse conditional constant propagation and merging, which can be summarized
1574 </p>
1576 <ol>
1577 <li>Assumes values are constant unless proven otherwise</li>
1578 <li>Assumes BasicBlocks are dead unless proven otherwise</li>
1579 <li>Proves values to be constant, and replaces them with constants</li>
1580 <li>Proves conditional branches to be unconditional</li>
1581 </ol>
1584 Note that this pass has a habit of making definitions be dead. It is a good
1585 idea to to run a DCE pass sometime after running this pass.
1586 </p>
1587 </div>
1589 <!-------------------------------------------------------------------------- -->
1590 <div class="doc_subsection">
1591 <a name="simplify-libcalls">Simplify well-known library calls</a>
1592 </div>
1593 <div class="doc_text">
1595 Applies a variety of small optimizations for calls to specific well-known
1596 function calls (e.g. runtime library functions). For example, a call
1597 <tt>exit(3)</tt> that occurs within the <tt>main()</tt> function can be
1598 transformed into simply <tt>return 3</tt>.
1599 </p>
1600 </div>
1602 <!-------------------------------------------------------------------------- -->
1603 <div class="doc_subsection">
1604 <a name="simplifycfg">Simplify the CFG</a>
1605 </div>
1606 <div class="doc_text">
1608 Performs dead code elimination and basic block merging. Specifically:
1609 </p>
1611 <ol>
1612 <li>Removes basic blocks with no predecessors.</li>
1613 <li>Merges a basic block into its predecessor if there is only one and the
1614 predecessor only has one successor.</li>
1615 <li>Eliminates PHI nodes for basic blocks with a single predecessor.</li>
1616 <li>Eliminates a basic block that only contains an unconditional
1617 branch.</li>
1618 </ol>
1619 </div>
1621 <!-------------------------------------------------------------------------- -->
1622 <div class="doc_subsection">
1623 <a name="strip">Strip all symbols from a module</a>
1624 </div>
1625 <div class="doc_text">
1627 Performs code stripping. This transformation can delete:
1628 </p>
1630 <ol>
1631 <li>names for virtual registers</li>
1632 <li>symbols for internal globals and functions</li>
1633 <li>debug information</li>
1634 </ol>
1637 Note that this transformation makes code much less readable, so it should
1638 only be used in situations where the <tt>strip</tt> utility would be used,
1639 such as reducing code size or making it harder to reverse engineer code.
1640 </p>
1641 </div>
1643 <!-------------------------------------------------------------------------- -->
1644 <div class="doc_subsection">
1645 <a name="strip-dead-prototypes">Remove unused function declarations</a>
1646 </div>
1647 <div class="doc_text">
1649 This pass loops over all of the functions in the input module, looking for
1650 dead declarations and removes them. Dead declarations are declarations of
1651 functions for which no implementation is available (i.e., declarations for
1652 unused library functions).
1653 </p>
1654 </div>
1656 <!-------------------------------------------------------------------------- -->
1657 <div class="doc_subsection">
1658 <a name="sretpromotion">Promote sret arguments</a>
1659 </div>
1660 <div class="doc_text">
1662 This pass finds functions that return a struct (using a pointer to the struct
1663 as the first argument of the function, marked with the '<tt>sret</tt>' attribute) and
1664 replaces them with a new function that simply returns each of the elements of
1665 that struct (using multiple return values).
1666 </p>
1669 This pass works under a number of conditions:
1670 </p>
1672 <ul>
1673 <li>The returned struct must not contain other structs</li>
1674 <li>The returned struct must only be used to load values from</li>
1675 <li>The placeholder struct passed in is the result of an <tt>alloca</tt></li>
1676 </ul>
1677 </div>
1679 <!-------------------------------------------------------------------------- -->
1680 <div class="doc_subsection">
1681 <a name="tailcallelim">Tail Call Elimination</a>
1682 </div>
1683 <div class="doc_text">
1685 This file transforms calls of the current function (self recursion) followed
1686 by a return instruction with a branch to the entry of the function, creating
1687 a loop. This pass also implements the following extensions to the basic
1688 algorithm:
1689 </p>
1691 <ul>
1692 <li>Trivial instructions between the call and return do not prevent the
1693 transformation from taking place, though currently the analysis cannot
1694 support moving any really useful instructions (only dead ones).
1695 <li>This pass transforms functions that are prevented from being tail
1696 recursive by an associative expression to use an accumulator variable,
1697 thus compiling the typical naive factorial or <tt>fib</tt> implementation
1698 into efficient code.
1699 <li>TRE is performed if the function returns void, if the return
1700 returns the result returned by the call, or if the function returns a
1701 run-time constant on all exits from the function. It is possible, though
1702 unlikely, that the return returns something else (like constant 0), and
1703 can still be TRE'd. It can be TRE'd if <em>all other</em> return
1704 instructions in the function return the exact same value.
1705 <li>If it can prove that callees do not access theier caller stack frame,
1706 they are marked as eligible for tail call elimination (by the code
1707 generator).
1708 </ul>
1709 </div>
1711 <!-------------------------------------------------------------------------- -->
1712 <div class="doc_subsection">
1713 <a name="tailduplicate">Tail Duplication</a>
1714 </div>
1715 <div class="doc_text">
1717 This pass performs a limited form of tail duplication, intended to simplify
1718 CFGs by removing some unconditional branches. This pass is necessary to
1719 straighten out loops created by the C front-end, but also is capable of
1720 making other code nicer. After this pass is run, the CFG simplify pass
1721 should be run to clean up the mess.
1722 </p>
1723 </div>
1725 <!-- ======================================================================= -->
1726 <div class="doc_section"> <a name="transform">Utility Passes</a></div>
1727 <div class="doc_text">
1728 <p>This section describes the LLVM Utility Passes.</p>
1729 </div>
1731 <!-------------------------------------------------------------------------- -->
1732 <div class="doc_subsection">
1733 <a name="deadarghaX0r">Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</a>
1734 </div>
1735 <div class="doc_text">
1737 Same as dead argument elimination, but deletes arguments to functions which
1738 are external. This is only for use by <a
1739 href="Bugpoint.html">bugpoint</a>.</p>
1740 </div>
1742 <!-------------------------------------------------------------------------- -->
1743 <div class="doc_subsection">
1744 <a name="extract-blocks">Extract Basic Blocks From Module (for bugpoint use)</a>
1745 </div>
1746 <div class="doc_text">
1748 This pass is used by bugpoint to extract all blocks from the module into their
1749 own functions.</p>
1750 </div>
1752 <!-------------------------------------------------------------------------- -->
1753 <div class="doc_subsection">
1754 <a name="preverify">Preliminary module verification</a>
1755 </div>
1756 <div class="doc_text">
1758 Ensures that the module is in the form required by the <a
1759 href="#verifier">Module Verifier</a> pass.
1760 </p>
1763 Running the verifier runs this pass automatically, so there should be no need
1764 to use it directly.
1765 </p>
1766 </div>
1768 <!-------------------------------------------------------------------------- -->
1769 <div class="doc_subsection">
1770 <a name="verify">Module Verifier</a>
1771 </div>
1772 <div class="doc_text">
1774 Verifies an LLVM IR code. This is useful to run after an optimization which is
1775 undergoing testing. Note that <tt>llvm-as</tt> verifies its input before
1776 emitting bitcode, and also that malformed bitcode is likely to make LLVM
1777 crash. All language front-ends are therefore encouraged to verify their output
1778 before performing optimizing transformations.
1779 </p>
1781 <ul>
1782 <li>Both of a binary operator's parameters are of the same type.</li>
1783 <li>Verify that the indices of mem access instructions match other
1784 operands.</li>
1785 <li>Verify that arithmetic and other things are only performed on
1786 first-class types. Verify that shifts and logicals only happen on
1787 integrals f.e.</li>
1788 <li>All of the constants in a switch statement are of the correct type.</li>
1789 <li>The code is in valid SSA form.</li>
1790 <li>It is illegal to put a label into any other type (like a structure) or
1791 to return one.</li>
1792 <li>Only phi nodes can be self referential: <tt>%x = add i32 %x, %x</tt> is
1793 invalid.</li>
1794 <li>PHI nodes must have an entry for each predecessor, with no extras.</li>
1795 <li>PHI nodes must be the first thing in a basic block, all grouped
1796 together.</li>
1797 <li>PHI nodes must have at least one entry.</li>
1798 <li>All basic blocks should only end with terminator insts, not contain
1799 them.</li>
1800 <li>The entry node to a function must not have predecessors.</li>
1801 <li>All Instructions must be embedded into a basic block.</li>
1802 <li>Functions cannot take a void-typed parameter.</li>
1803 <li>Verify that a function's argument list agrees with its declared
1804 type.</li>
1805 <li>It is illegal to specify a name for a void value.</li>
1806 <li>It is illegal to have a internal global value with no initializer.</li>
1807 <li>It is illegal to have a ret instruction that returns a value that does
1808 not agree with the function return value type.</li>
1809 <li>Function call argument types match the function prototype.</li>
1810 <li>All other things that are tested by asserts spread about the code.</li>
1811 </ul>
1814 Note that this does not provide full security verification (like Java), but
1815 instead just tries to ensure that code is well-formed.
1816 </p>
1817 </div>
1819 <!-------------------------------------------------------------------------- -->
1820 <div class="doc_subsection">
1821 <a name="view-cfg">View CFG of function</a>
1822 </div>
1823 <div class="doc_text">
1825 Displays the control flow graph using the GraphViz tool.
1826 </p>
1827 </div>
1829 <!-------------------------------------------------------------------------- -->
1830 <div class="doc_subsection">
1831 <a name="view-cfg-only">View CFG of function (with no function bodies)</a>
1832 </div>
1833 <div class="doc_text">
1835 Displays the control flow graph using the GraphViz tool, but omitting function
1836 bodies.
1837 </p>
1838 </div>
1840 <!-- *********************************************************************** -->
1842 <hr>
1843 <address>
1844 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1845 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
1846 <a href="http://validator.w3.org/check/referer"><img
1847 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
1849 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a><br>
1850 <a href="http://llvm.org">LLVM Compiler Infrastructure</a><br>
1851 Last modified: $Date$
1852 </address>
1854 </body>
1855 </html>