Fix comment from previous patch
[llvm.git] / lib / Target / X86 / X86MCCodeEmitter.cpp
blobfff7daebb9651fba3285ee7996c9a17e72a6c475
1 //===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the X86MCCodeEmitter class.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "x86-emitter"
15 #include "X86.h"
16 #include "X86InstrInfo.h"
17 #include "X86FixupKinds.h"
18 #include "llvm/MC/MCCodeEmitter.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCInst.h"
21 #include "llvm/Support/raw_ostream.h"
22 using namespace llvm;
24 namespace {
25 class X86MCCodeEmitter : public MCCodeEmitter {
26 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
27 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
28 const TargetMachine &TM;
29 const TargetInstrInfo &TII;
30 MCContext &Ctx;
31 bool Is64BitMode;
32 public:
33 X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
34 : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
35 Is64BitMode = is64Bit;
38 ~X86MCCodeEmitter() {}
40 unsigned getNumFixupKinds() const {
41 return 4;
44 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
45 const static MCFixupKindInfo Infos[] = {
46 { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
47 { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
48 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
49 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
52 if (Kind < FirstTargetFixupKind)
53 return MCCodeEmitter::getFixupKindInfo(Kind);
55 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
56 "Invalid kind!");
57 return Infos[Kind - FirstTargetFixupKind];
60 static unsigned GetX86RegNum(const MCOperand &MO) {
61 return X86RegisterInfo::getX86RegNum(MO.getReg());
64 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
65 // 0-7 and the difference between the 2 groups is given by the REX prefix.
66 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
67 // in 1's complement form, example:
69 // ModRM field => XMM9 => 1
70 // VEX.VVVV => XMM9 => ~9
72 // See table 4-35 of Intel AVX Programming Reference for details.
73 static unsigned char getVEXRegisterEncoding(const MCInst &MI,
74 unsigned OpNum) {
75 unsigned SrcReg = MI.getOperand(OpNum).getReg();
76 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
77 if (SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15)
78 SrcRegNum += 8;
80 // The registers represented through VEX_VVVV should
81 // be encoded in 1's complement form.
82 return (~SrcRegNum) & 0xf;
85 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
86 OS << (char)C;
87 ++CurByte;
90 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
91 raw_ostream &OS) const {
92 // Output the constant in little endian byte order.
93 for (unsigned i = 0; i != Size; ++i) {
94 EmitByte(Val & 255, CurByte, OS);
95 Val >>= 8;
99 void EmitImmediate(const MCOperand &Disp,
100 unsigned ImmSize, MCFixupKind FixupKind,
101 unsigned &CurByte, raw_ostream &OS,
102 SmallVectorImpl<MCFixup> &Fixups,
103 int ImmOffset = 0) const;
105 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
106 unsigned RM) {
107 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
108 return RM | (RegOpcode << 3) | (Mod << 6);
111 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
112 unsigned &CurByte, raw_ostream &OS) const {
113 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
116 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
117 unsigned &CurByte, raw_ostream &OS) const {
118 // SIB byte is in the same format as the ModRMByte.
119 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
123 void EmitSegmentOverridePrefix(const MCOperand &Op, unsigned TSFlags,
124 unsigned &CurByte, raw_ostream &OS) const;
126 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
127 unsigned RegOpcodeField,
128 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
129 SmallVectorImpl<MCFixup> &Fixups) const;
131 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
132 SmallVectorImpl<MCFixup> &Fixups) const;
134 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
135 const MCInst &MI, const TargetInstrDesc &Desc,
136 raw_ostream &OS) const;
138 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
139 const MCInst &MI, const TargetInstrDesc &Desc,
140 raw_ostream &OS) const;
143 } // end anonymous namespace
146 MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
147 TargetMachine &TM,
148 MCContext &Ctx) {
149 return new X86MCCodeEmitter(TM, Ctx, false);
152 MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
153 TargetMachine &TM,
154 MCContext &Ctx) {
155 return new X86MCCodeEmitter(TM, Ctx, true);
158 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
159 /// sign-extended field.
160 static bool isDisp8(int Value) {
161 return Value == (signed char)Value;
164 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
165 /// in an instruction with the specified TSFlags.
166 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
167 unsigned Size = X86II::getSizeOfImm(TSFlags);
168 bool isPCRel = X86II::isImmPCRel(TSFlags);
170 switch (Size) {
171 default: assert(0 && "Unknown immediate size");
172 case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
173 case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
174 case 2: assert(!isPCRel); return FK_Data_2;
175 case 8: assert(!isPCRel); return FK_Data_8;
180 void X86MCCodeEmitter::
181 EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
182 unsigned &CurByte, raw_ostream &OS,
183 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
184 // If this is a simple integer displacement that doesn't require a relocation,
185 // emit it now.
186 if (DispOp.isImm()) {
187 // FIXME: is this right for pc-rel encoding?? Probably need to emit this as
188 // a fixup if so.
189 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
190 return;
193 // If we have an immoffset, add it to the expression.
194 const MCExpr *Expr = DispOp.getExpr();
196 // If the fixup is pc-relative, we need to bias the value to be relative to
197 // the start of the field, not the end of the field.
198 if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
199 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
200 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
201 ImmOffset -= 4;
202 if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
203 ImmOffset -= 1;
205 if (ImmOffset)
206 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
207 Ctx);
209 // Emit a symbolic constant as a fixup and 4 zeros.
210 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
211 EmitConstant(0, Size, CurByte, OS);
214 void X86MCCodeEmitter::EmitSegmentOverridePrefix(const MCOperand &Op,
215 unsigned TSFlags,
216 unsigned &CurByte,
217 raw_ostream &OS) const {
218 // If no segment register is present, we don't need anything.
219 if (Op.getReg() == 0)
220 return;
222 // Check if we need an override.
223 switch (Op.getReg()) {
224 case X86::CS: EmitByte(0x2E, CurByte, OS); return;
225 case X86::SS: EmitByte(0x36, CurByte, OS); return;
226 case X86::DS: EmitByte(0x3E, CurByte, OS); return;
227 case X86::ES: EmitByte(0x26, CurByte, OS); return;
228 case X86::FS: EmitByte(0x64, CurByte, OS); return;
229 case X86::GS: EmitByte(0x65, CurByte, OS); return;
232 assert(0 && "Invalid segment register!");
235 void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
236 unsigned RegOpcodeField,
237 uint64_t TSFlags, unsigned &CurByte,
238 raw_ostream &OS,
239 SmallVectorImpl<MCFixup> &Fixups) const{
240 const MCOperand &Disp = MI.getOperand(Op+3);
241 const MCOperand &Base = MI.getOperand(Op);
242 const MCOperand &Scale = MI.getOperand(Op+1);
243 const MCOperand &IndexReg = MI.getOperand(Op+2);
244 unsigned BaseReg = Base.getReg();
246 // Handle %rip relative addressing.
247 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
248 assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
249 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
250 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
252 unsigned FixupKind = X86::reloc_riprel_4byte;
254 // movq loads are handled with a special relocation form which allows the
255 // linker to eliminate some loads for GOT references which end up in the
256 // same linkage unit.
257 if (MI.getOpcode() == X86::MOV64rm ||
258 MI.getOpcode() == X86::MOV64rm_TC)
259 FixupKind = X86::reloc_riprel_4byte_movq_load;
261 // rip-relative addressing is actually relative to the *next* instruction.
262 // Since an immediate can follow the mod/rm byte for an instruction, this
263 // means that we need to bias the immediate field of the instruction with
264 // the size of the immediate field. If we have this case, add it into the
265 // expression to emit.
266 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
268 EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
269 CurByte, OS, Fixups, -ImmSize);
270 return;
273 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
275 // Determine whether a SIB byte is needed.
276 // If no BaseReg, issue a RIP relative instruction only if the MCE can
277 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
278 // 2-7) and absolute references.
280 if (// The SIB byte must be used if there is an index register.
281 IndexReg.getReg() == 0 &&
282 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
283 // encode to an R/M value of 4, which indicates that a SIB byte is
284 // present.
285 BaseRegNo != N86::ESP &&
286 // If there is no base register and we're in 64-bit mode, we need a SIB
287 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
288 (!Is64BitMode || BaseReg != 0)) {
290 if (BaseReg == 0) { // [disp32] in X86-32 mode
291 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
292 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
293 return;
296 // If the base is not EBP/ESP and there is no displacement, use simple
297 // indirect register encoding, this handles addresses like [EAX]. The
298 // encoding for [EBP] with no displacement means [disp32] so we handle it
299 // by emitting a displacement of 0 below.
300 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
301 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
302 return;
305 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
306 if (Disp.isImm() && isDisp8(Disp.getImm())) {
307 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
308 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
309 return;
312 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
313 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
314 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
315 return;
318 // We need a SIB byte, so start by outputting the ModR/M byte first
319 assert(IndexReg.getReg() != X86::ESP &&
320 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
322 bool ForceDisp32 = false;
323 bool ForceDisp8 = false;
324 if (BaseReg == 0) {
325 // If there is no base register, we emit the special case SIB byte with
326 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
327 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
328 ForceDisp32 = true;
329 } else if (!Disp.isImm()) {
330 // Emit the normal disp32 encoding.
331 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
332 ForceDisp32 = true;
333 } else if (Disp.getImm() == 0 &&
334 // Base reg can't be anything that ends up with '5' as the base
335 // reg, it is the magic [*] nomenclature that indicates no base.
336 BaseRegNo != N86::EBP) {
337 // Emit no displacement ModR/M byte
338 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
339 } else if (isDisp8(Disp.getImm())) {
340 // Emit the disp8 encoding.
341 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
342 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
343 } else {
344 // Emit the normal disp32 encoding.
345 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
348 // Calculate what the SS field value should be...
349 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
350 unsigned SS = SSTable[Scale.getImm()];
352 if (BaseReg == 0) {
353 // Handle the SIB byte for the case where there is no base, see Intel
354 // Manual 2A, table 2-7. The displacement has already been output.
355 unsigned IndexRegNo;
356 if (IndexReg.getReg())
357 IndexRegNo = GetX86RegNum(IndexReg);
358 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
359 IndexRegNo = 4;
360 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
361 } else {
362 unsigned IndexRegNo;
363 if (IndexReg.getReg())
364 IndexRegNo = GetX86RegNum(IndexReg);
365 else
366 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
367 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
370 // Do we need to output a displacement?
371 if (ForceDisp8)
372 EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
373 else if (ForceDisp32 || Disp.getImm() != 0)
374 EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
377 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
378 /// called VEX.
379 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
380 const MCInst &MI, const TargetInstrDesc &Desc,
381 raw_ostream &OS) const {
383 // Pseudo instructions never have a VEX prefix.
384 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
385 return;
387 bool HasVEX_4V = false;
388 if ((TSFlags >> 32) & X86II::VEX_4V)
389 HasVEX_4V = true;
391 // VEX_R: opcode externsion equivalent to REX.R in
392 // 1's complement (inverted) form
394 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
395 // 0: Same as REX_R=1 (64 bit mode only)
397 unsigned char VEX_R = 0x1;
399 // VEX_X: equivalent to REX.X, only used when a
400 // register is used for index in SIB Byte.
402 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
403 // 0: Same as REX.X=1 (64-bit mode only)
404 unsigned char VEX_X = 0x1;
406 // VEX_B:
408 // 1: Same as REX_B=0 (ignored in 32-bit mode)
409 // 0: Same as REX_B=1 (64 bit mode only)
411 unsigned char VEX_B = 0x1;
413 // VEX_W: opcode specific (use like REX.W, or used for
414 // opcode extension, or ignored, depending on the opcode byte)
415 unsigned char VEX_W = 0;
417 // VEX_5M (VEX m-mmmmm field):
419 // 0b00000: Reserved for future use
420 // 0b00001: implied 0F leading opcode
421 // 0b00010: implied 0F 38 leading opcode bytes
422 // 0b00011: implied 0F 3A leading opcode bytes
423 // 0b00100-0b11111: Reserved for future use
425 unsigned char VEX_5M = 0x1;
427 // VEX_4V (VEX vvvv field): a register specifier
428 // (in 1's complement form) or 1111 if unused.
429 unsigned char VEX_4V = 0xf;
431 // VEX_L (Vector Length):
433 // 0: scalar or 128-bit vector
434 // 1: 256-bit vector
436 unsigned char VEX_L = 0;
438 // VEX_PP: opcode extension providing equivalent
439 // functionality of a SIMD prefix
441 // 0b00: None
442 // 0b01: 66
443 // 0b10: F3
444 // 0b11: F2
446 unsigned char VEX_PP = 0;
448 // Encode the operand size opcode prefix as needed.
449 if (TSFlags & X86II::OpSize)
450 VEX_PP = 0x01;
452 if ((TSFlags >> 32) & X86II::VEX_W)
453 VEX_W = 1;
455 switch (TSFlags & X86II::Op0Mask) {
456 default: assert(0 && "Invalid prefix!");
457 case X86II::T8: // 0F 38
458 VEX_5M = 0x2;
459 break;
460 case X86II::TA: // 0F 3A
461 VEX_5M = 0x3;
462 break;
463 case X86II::TF: // F2 0F 38
464 VEX_PP = 0x3;
465 VEX_5M = 0x2;
466 break;
467 case X86II::XS: // F3 0F
468 VEX_PP = 0x2;
469 break;
470 case X86II::XD: // F2 0F
471 VEX_PP = 0x3;
472 break;
473 case X86II::TB: // Bypass: Not used by VEX
474 case 0:
475 break; // No prefix!
478 unsigned NumOps = MI.getNumOperands();
479 unsigned CurOp = 0;
481 switch (TSFlags & X86II::FormMask) {
482 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
483 case X86II::MRM0m: case X86II::MRM1m:
484 case X86II::MRM2m: case X86II::MRM3m:
485 case X86II::MRM4m: case X86II::MRM5m:
486 case X86II::MRM6m: case X86II::MRM7m:
487 case X86II::MRMDestMem:
488 NumOps = CurOp = X86AddrNumOperands;
489 case X86II::MRMSrcMem:
490 case X86II::MRMSrcReg:
491 if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
492 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
493 VEX_R = 0x0;
495 // CurOp and NumOps are equal when VEX_R represents a register used
496 // to index a memory destination (which is the last operand)
497 CurOp = (CurOp == NumOps) ? 0 : CurOp+1;
499 if (HasVEX_4V) {
500 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
501 CurOp++;
504 // If the last register should be encoded in the immediate field
505 // do not use any bit from VEX prefix to this register, ignore it
506 if ((TSFlags >> 32) & X86II::VEX_I8IMM)
507 NumOps--;
509 for (; CurOp != NumOps; ++CurOp) {
510 const MCOperand &MO = MI.getOperand(CurOp);
511 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
512 VEX_B = 0x0;
513 if (!VEX_B && MO.isReg() &&
514 ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
515 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
516 VEX_X = 0x0;
518 break;
519 default: // MRMDestReg, MRM0r-MRM7r
520 if (MI.getOperand(CurOp).isReg() &&
521 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
522 VEX_B = 0;
524 if (HasVEX_4V)
525 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
527 CurOp++;
528 for (; CurOp != NumOps; ++CurOp) {
529 const MCOperand &MO = MI.getOperand(CurOp);
530 if (MO.isReg() && !HasVEX_4V &&
531 X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
532 VEX_R = 0x0;
534 break;
535 assert(0 && "Not implemented!");
538 // VEX opcode prefix can have 2 or 3 bytes
540 // 3 bytes:
541 // +-----+ +--------------+ +-------------------+
542 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
543 // +-----+ +--------------+ +-------------------+
544 // 2 bytes:
545 // +-----+ +-------------------+
546 // | C5h | | R | vvvv | L | pp |
547 // +-----+ +-------------------+
549 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
551 if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
552 EmitByte(0xC5, CurByte, OS);
553 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
554 return;
557 // 3 byte VEX prefix
558 EmitByte(0xC4, CurByte, OS);
559 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
560 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
563 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
564 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
565 /// size, and 3) use of X86-64 extended registers.
566 static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
567 const TargetInstrDesc &Desc) {
568 // Pseudo instructions never have a rex byte.
569 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
570 return 0;
572 unsigned REX = 0;
573 if (TSFlags & X86II::REX_W)
574 REX |= 1 << 3; // set REX.W
576 if (MI.getNumOperands() == 0) return REX;
578 unsigned NumOps = MI.getNumOperands();
579 // FIXME: MCInst should explicitize the two-addrness.
580 bool isTwoAddr = NumOps > 1 &&
581 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
583 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
584 unsigned i = isTwoAddr ? 1 : 0;
585 for (; i != NumOps; ++i) {
586 const MCOperand &MO = MI.getOperand(i);
587 if (!MO.isReg()) continue;
588 unsigned Reg = MO.getReg();
589 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
590 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
591 // that returns non-zero.
592 REX |= 0x40; // REX fixed encoding prefix
593 break;
596 switch (TSFlags & X86II::FormMask) {
597 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
598 case X86II::MRMSrcReg:
599 if (MI.getOperand(0).isReg() &&
600 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
601 REX |= 1 << 2; // set REX.R
602 i = isTwoAddr ? 2 : 1;
603 for (; i != NumOps; ++i) {
604 const MCOperand &MO = MI.getOperand(i);
605 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
606 REX |= 1 << 0; // set REX.B
608 break;
609 case X86II::MRMSrcMem: {
610 if (MI.getOperand(0).isReg() &&
611 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
612 REX |= 1 << 2; // set REX.R
613 unsigned Bit = 0;
614 i = isTwoAddr ? 2 : 1;
615 for (; i != NumOps; ++i) {
616 const MCOperand &MO = MI.getOperand(i);
617 if (MO.isReg()) {
618 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
619 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
620 Bit++;
623 break;
625 case X86II::MRM0m: case X86II::MRM1m:
626 case X86II::MRM2m: case X86II::MRM3m:
627 case X86II::MRM4m: case X86II::MRM5m:
628 case X86II::MRM6m: case X86II::MRM7m:
629 case X86II::MRMDestMem: {
630 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
631 i = isTwoAddr ? 1 : 0;
632 if (NumOps > e && MI.getOperand(e).isReg() &&
633 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
634 REX |= 1 << 2; // set REX.R
635 unsigned Bit = 0;
636 for (; i != e; ++i) {
637 const MCOperand &MO = MI.getOperand(i);
638 if (MO.isReg()) {
639 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
640 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
641 Bit++;
644 break;
646 default:
647 if (MI.getOperand(0).isReg() &&
648 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
649 REX |= 1 << 0; // set REX.B
650 i = isTwoAddr ? 2 : 1;
651 for (unsigned e = NumOps; i != e; ++i) {
652 const MCOperand &MO = MI.getOperand(i);
653 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
654 REX |= 1 << 2; // set REX.R
656 break;
658 return REX;
661 /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
662 void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
663 const MCInst &MI,
664 const TargetInstrDesc &Desc,
665 raw_ostream &OS) const {
667 // Emit the lock opcode prefix as needed.
668 if (TSFlags & X86II::LOCK)
669 EmitByte(0xF0, CurByte, OS);
671 // Emit segment override opcode prefix as needed.
672 switch (TSFlags & X86II::SegOvrMask) {
673 default: assert(0 && "Invalid segment!");
674 case 0: break; // No segment override!
675 case X86II::FS:
676 EmitByte(0x64, CurByte, OS);
677 break;
678 case X86II::GS:
679 EmitByte(0x65, CurByte, OS);
680 break;
683 // Emit the repeat opcode prefix as needed.
684 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
685 EmitByte(0xF3, CurByte, OS);
687 // Emit the operand size opcode prefix as needed.
688 if (TSFlags & X86II::OpSize)
689 EmitByte(0x66, CurByte, OS);
691 // Emit the address size opcode prefix as needed.
692 if (TSFlags & X86II::AdSize)
693 EmitByte(0x67, CurByte, OS);
695 bool Need0FPrefix = false;
696 switch (TSFlags & X86II::Op0Mask) {
697 default: assert(0 && "Invalid prefix!");
698 case 0: break; // No prefix!
699 case X86II::REP: break; // already handled.
700 case X86II::TB: // Two-byte opcode prefix
701 case X86II::T8: // 0F 38
702 case X86II::TA: // 0F 3A
703 Need0FPrefix = true;
704 break;
705 case X86II::TF: // F2 0F 38
706 EmitByte(0xF2, CurByte, OS);
707 Need0FPrefix = true;
708 break;
709 case X86II::XS: // F3 0F
710 EmitByte(0xF3, CurByte, OS);
711 Need0FPrefix = true;
712 break;
713 case X86II::XD: // F2 0F
714 EmitByte(0xF2, CurByte, OS);
715 Need0FPrefix = true;
716 break;
717 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
718 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
719 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
720 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
721 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
722 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
723 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
724 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
727 // Handle REX prefix.
728 // FIXME: Can this come before F2 etc to simplify emission?
729 if (Is64BitMode) {
730 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
731 EmitByte(0x40 | REX, CurByte, OS);
734 // 0x0F escape code must be emitted just before the opcode.
735 if (Need0FPrefix)
736 EmitByte(0x0F, CurByte, OS);
738 // FIXME: Pull this up into previous switch if REX can be moved earlier.
739 switch (TSFlags & X86II::Op0Mask) {
740 case X86II::TF: // F2 0F 38
741 case X86II::T8: // 0F 38
742 EmitByte(0x38, CurByte, OS);
743 break;
744 case X86II::TA: // 0F 3A
745 EmitByte(0x3A, CurByte, OS);
746 break;
750 void X86MCCodeEmitter::
751 EncodeInstruction(const MCInst &MI, raw_ostream &OS,
752 SmallVectorImpl<MCFixup> &Fixups) const {
753 unsigned Opcode = MI.getOpcode();
754 const TargetInstrDesc &Desc = TII.get(Opcode);
755 uint64_t TSFlags = Desc.TSFlags;
757 // Keep track of the current byte being emitted.
758 unsigned CurByte = 0;
760 // Is this instruction encoded using the AVX VEX prefix?
761 bool HasVEXPrefix = false;
763 // It uses the VEX.VVVV field?
764 bool HasVEX_4V = false;
766 if ((TSFlags >> 32) & X86II::VEX)
767 HasVEXPrefix = true;
768 if ((TSFlags >> 32) & X86II::VEX_4V)
769 HasVEX_4V = true;
771 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
772 // in order to provide diffability.
774 if (!HasVEXPrefix)
775 EmitOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
776 else
777 EmitVEXOpcodePrefix(TSFlags, CurByte, MI, Desc, OS);
779 // If this is a two-address instruction, skip one of the register operands.
780 unsigned NumOps = Desc.getNumOperands();
781 unsigned CurOp = 0;
782 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
783 ++CurOp;
784 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
785 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
786 --NumOps;
788 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
789 unsigned SrcRegNum = 0;
790 switch (TSFlags & X86II::FormMask) {
791 case X86II::MRMInitReg:
792 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
793 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
794 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
795 case X86II::Pseudo: return; // Pseudo instructions encode to nothing.
796 case X86II::RawFrm:
797 EmitByte(BaseOpcode, CurByte, OS);
798 break;
800 case X86II::AddRegFrm:
801 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
802 break;
804 case X86II::MRMDestReg:
805 EmitByte(BaseOpcode, CurByte, OS);
806 EmitRegModRMByte(MI.getOperand(CurOp),
807 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
808 CurOp += 2;
809 break;
811 case X86II::MRMDestMem:
812 EmitSegmentOverridePrefix(MI.getOperand(CurOp + 4), TSFlags, CurByte, OS);
813 EmitByte(BaseOpcode, CurByte, OS);
814 EmitMemModRMByte(MI, CurOp,
815 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
816 TSFlags, CurByte, OS, Fixups);
817 CurOp += X86AddrNumOperands + 1;
818 break;
820 case X86II::MRMSrcReg:
821 EmitByte(BaseOpcode, CurByte, OS);
822 SrcRegNum = CurOp + 1;
824 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
825 SrcRegNum++;
827 EmitRegModRMByte(MI.getOperand(SrcRegNum),
828 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
829 CurOp = SrcRegNum + 1;
830 break;
832 case X86II::MRMSrcMem: {
833 int AddrOperands = X86AddrNumOperands;
834 unsigned FirstMemOp = CurOp+1;
835 if (HasVEX_4V) {
836 ++AddrOperands;
837 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
840 // FIXME: Maybe lea should have its own form? This is a horrible hack.
841 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
842 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
843 --AddrOperands; // No segment register
844 else
845 EmitSegmentOverridePrefix(MI.getOperand(FirstMemOp+4),
846 TSFlags, CurByte, OS);
848 EmitByte(BaseOpcode, CurByte, OS);
851 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
852 TSFlags, CurByte, OS, Fixups);
853 CurOp += AddrOperands + 1;
854 break;
857 case X86II::MRM0r: case X86II::MRM1r:
858 case X86II::MRM2r: case X86II::MRM3r:
859 case X86II::MRM4r: case X86II::MRM5r:
860 case X86II::MRM6r: case X86II::MRM7r:
861 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
862 CurOp++;
863 EmitByte(BaseOpcode, CurByte, OS);
864 EmitRegModRMByte(MI.getOperand(CurOp++),
865 (TSFlags & X86II::FormMask)-X86II::MRM0r,
866 CurByte, OS);
867 break;
868 case X86II::MRM0m: case X86II::MRM1m:
869 case X86II::MRM2m: case X86II::MRM3m:
870 case X86II::MRM4m: case X86II::MRM5m:
871 case X86II::MRM6m: case X86II::MRM7m:
872 EmitSegmentOverridePrefix(MI.getOperand(CurOp+4), TSFlags, CurByte, OS);
873 EmitByte(BaseOpcode, CurByte, OS);
874 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
875 TSFlags, CurByte, OS, Fixups);
876 CurOp += X86AddrNumOperands;
877 break;
878 case X86II::MRM_C1:
879 EmitByte(BaseOpcode, CurByte, OS);
880 EmitByte(0xC1, CurByte, OS);
881 break;
882 case X86II::MRM_C2:
883 EmitByte(BaseOpcode, CurByte, OS);
884 EmitByte(0xC2, CurByte, OS);
885 break;
886 case X86II::MRM_C3:
887 EmitByte(BaseOpcode, CurByte, OS);
888 EmitByte(0xC3, CurByte, OS);
889 break;
890 case X86II::MRM_C4:
891 EmitByte(BaseOpcode, CurByte, OS);
892 EmitByte(0xC4, CurByte, OS);
893 break;
894 case X86II::MRM_C8:
895 EmitByte(BaseOpcode, CurByte, OS);
896 EmitByte(0xC8, CurByte, OS);
897 break;
898 case X86II::MRM_C9:
899 EmitByte(BaseOpcode, CurByte, OS);
900 EmitByte(0xC9, CurByte, OS);
901 break;
902 case X86II::MRM_E8:
903 EmitByte(BaseOpcode, CurByte, OS);
904 EmitByte(0xE8, CurByte, OS);
905 break;
906 case X86II::MRM_F0:
907 EmitByte(BaseOpcode, CurByte, OS);
908 EmitByte(0xF0, CurByte, OS);
909 break;
910 case X86II::MRM_F8:
911 EmitByte(BaseOpcode, CurByte, OS);
912 EmitByte(0xF8, CurByte, OS);
913 break;
914 case X86II::MRM_F9:
915 EmitByte(BaseOpcode, CurByte, OS);
916 EmitByte(0xF9, CurByte, OS);
917 break;
920 // If there is a remaining operand, it must be a trailing immediate. Emit it
921 // according to the right size for the instruction.
922 if (CurOp != NumOps) {
923 // The last source register of a 4 operand instruction in AVX is encoded
924 // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
925 if ((TSFlags >> 32) & X86II::VEX_I8IMM) {
926 const MCOperand &MO = MI.getOperand(CurOp++);
927 bool IsExtReg =
928 X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
929 unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
930 RegNum |= GetX86RegNum(MO) << 4;
931 EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
932 Fixups);
933 } else
934 EmitImmediate(MI.getOperand(CurOp++),
935 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
936 CurByte, OS, Fixups);
940 #ifndef NDEBUG
941 // FIXME: Verify.
942 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
943 errs() << "Cannot encode all operands of: ";
944 MI.dump();
945 errs() << '\n';
946 abort();
948 #endif