Fix GCC warning:
[llvm.git] / lib / CodeGen / RegAllocGreedy.cpp
blob50e45466603c9f6c71428f6acba2821a0ee3080f
1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "AllocationOrder.h"
17 #include "LiveIntervalUnion.h"
18 #include "LiveRangeEdit.h"
19 #include "RegAllocBase.h"
20 #include "Spiller.h"
21 #include "SplitKit.h"
22 #include "VirtRegMap.h"
23 #include "VirtRegRewriter.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Function.h"
26 #include "llvm/PassAnalysisSupport.h"
27 #include "llvm/CodeGen/CalcSpillWeights.h"
28 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
29 #include "llvm/CodeGen/LiveStackAnalysis.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineLoopRanges.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegAllocRegistry.h"
37 #include "llvm/CodeGen/RegisterCoalescer.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Support/Timer.h"
44 using namespace llvm;
46 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
47 createGreedyRegisterAllocator);
49 namespace {
50 class RAGreedy : public MachineFunctionPass, public RegAllocBase {
51 // context
52 MachineFunction *MF;
53 BitVector ReservedRegs;
55 // analyses
56 LiveStacks *LS;
57 MachineDominatorTree *DomTree;
58 MachineLoopInfo *Loops;
59 MachineLoopRanges *LoopRanges;
61 // state
62 std::auto_ptr<Spiller> SpillerInstance;
63 std::auto_ptr<SplitAnalysis> SA;
65 public:
66 RAGreedy();
68 /// Return the pass name.
69 virtual const char* getPassName() const {
70 return "Greedy Register Allocator";
73 /// RAGreedy analysis usage.
74 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
76 virtual void releaseMemory();
78 virtual Spiller &spiller() { return *SpillerInstance; }
80 virtual float getPriority(LiveInterval *LI);
82 virtual unsigned selectOrSplit(LiveInterval &VirtReg,
83 SmallVectorImpl<LiveInterval*> &SplitVRegs);
85 /// Perform register allocation.
86 virtual bool runOnMachineFunction(MachineFunction &mf);
88 static char ID;
90 private:
91 bool checkUncachedInterference(LiveInterval&, unsigned);
92 LiveInterval *getSingleInterference(LiveInterval&, unsigned);
93 bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg);
94 bool reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg);
95 unsigned findInterferenceFreeReg(MachineLoopRange*,
96 LiveInterval&, AllocationOrder&);
98 unsigned tryReassign(LiveInterval&, AllocationOrder&);
99 unsigned trySplit(LiveInterval&, AllocationOrder&,
100 SmallVectorImpl<LiveInterval*>&);
102 } // end anonymous namespace
104 char RAGreedy::ID = 0;
106 FunctionPass* llvm::createGreedyRegisterAllocator() {
107 return new RAGreedy();
110 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
111 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
112 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
113 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
114 initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
115 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
116 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
117 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
118 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
119 initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
120 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
123 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
124 AU.setPreservesCFG();
125 AU.addRequired<AliasAnalysis>();
126 AU.addPreserved<AliasAnalysis>();
127 AU.addRequired<LiveIntervals>();
128 AU.addPreserved<SlotIndexes>();
129 if (StrongPHIElim)
130 AU.addRequiredID(StrongPHIEliminationID);
131 AU.addRequiredTransitive<RegisterCoalescer>();
132 AU.addRequired<CalculateSpillWeights>();
133 AU.addRequired<LiveStacks>();
134 AU.addPreserved<LiveStacks>();
135 AU.addRequired<MachineDominatorTree>();
136 AU.addPreserved<MachineDominatorTree>();
137 AU.addRequired<MachineLoopInfo>();
138 AU.addPreserved<MachineLoopInfo>();
139 AU.addRequired<MachineLoopRanges>();
140 AU.addPreserved<MachineLoopRanges>();
141 AU.addRequired<VirtRegMap>();
142 AU.addPreserved<VirtRegMap>();
143 MachineFunctionPass::getAnalysisUsage(AU);
146 void RAGreedy::releaseMemory() {
147 SpillerInstance.reset(0);
148 RegAllocBase::releaseMemory();
151 float RAGreedy::getPriority(LiveInterval *LI) {
152 float Priority = LI->weight;
154 // Prioritize hinted registers so they are allocated first.
155 std::pair<unsigned, unsigned> Hint;
156 if (Hint.first || Hint.second) {
157 // The hint can be target specific, a virtual register, or a physreg.
158 Priority *= 2;
160 // Prefer physreg hints above anything else.
161 if (Hint.first == 0 && TargetRegisterInfo::isPhysicalRegister(Hint.second))
162 Priority *= 2;
164 return Priority;
167 // Check interference without using the cache.
168 bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg,
169 unsigned PhysReg) {
170 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
171 LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[*AliasI]);
172 if (subQ.checkInterference())
173 return true;
175 return false;
178 /// getSingleInterference - Return the single interfering virtual register
179 /// assigned to PhysReg. Return 0 if more than one virtual register is
180 /// interfering.
181 LiveInterval *RAGreedy::getSingleInterference(LiveInterval &VirtReg,
182 unsigned PhysReg) {
183 // Check physreg and aliases.
184 LiveInterval *Interference = 0;
185 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
186 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
187 if (Q.checkInterference()) {
188 if (Interference)
189 return 0;
190 Q.collectInterferingVRegs(1);
191 if (!Q.seenAllInterferences())
192 return 0;
193 Interference = Q.interferingVRegs().front();
196 return Interference;
199 // Attempt to reassign this virtual register to a different physical register.
201 // FIXME: we are not yet caching these "second-level" interferences discovered
202 // in the sub-queries. These interferences can change with each call to
203 // selectOrSplit. However, we could implement a "may-interfere" cache that
204 // could be conservatively dirtied when we reassign or split.
206 // FIXME: This may result in a lot of alias queries. We could summarize alias
207 // live intervals in their parent register's live union, but it's messy.
208 bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg,
209 unsigned WantedPhysReg) {
210 assert(TargetRegisterInfo::isVirtualRegister(InterferingVReg.reg) &&
211 "Can only reassign virtual registers");
212 assert(TRI->regsOverlap(WantedPhysReg, VRM->getPhys(InterferingVReg.reg)) &&
213 "inconsistent phys reg assigment");
215 AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs);
216 while (unsigned PhysReg = Order.next()) {
217 // Don't reassign to a WantedPhysReg alias.
218 if (TRI->regsOverlap(PhysReg, WantedPhysReg))
219 continue;
221 if (checkUncachedInterference(InterferingVReg, PhysReg))
222 continue;
224 // Reassign the interfering virtual reg to this physical reg.
225 unsigned OldAssign = VRM->getPhys(InterferingVReg.reg);
226 DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " <<
227 TRI->getName(OldAssign) << " to " << TRI->getName(PhysReg) << '\n');
228 PhysReg2LiveUnion[OldAssign].extract(InterferingVReg);
229 VRM->clearVirt(InterferingVReg.reg);
230 VRM->assignVirt2Phys(InterferingVReg.reg, PhysReg);
231 PhysReg2LiveUnion[PhysReg].unify(InterferingVReg);
233 return true;
235 return false;
238 /// reassignInterferences - Reassign all interferences to different physical
239 /// registers such that Virtreg can be assigned to PhysReg.
240 /// Currently this only works with a single interference.
241 /// @param VirtReg Currently unassigned virtual register.
242 /// @param PhysReg Physical register to be cleared.
243 /// @return True on success, false if nothing was changed.
244 bool RAGreedy::reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg) {
245 LiveInterval *InterferingVReg = getSingleInterference(VirtReg, PhysReg);
246 if (!InterferingVReg)
247 return false;
248 if (TargetRegisterInfo::isPhysicalRegister(InterferingVReg->reg))
249 return false;
250 return reassignVReg(*InterferingVReg, PhysReg);
253 /// tryReassign - Try to reassign interferences to different physregs.
254 /// @param VirtReg Currently unassigned virtual register.
255 /// @param Order Physregs to try.
256 /// @return Physreg to assign VirtReg, or 0.
257 unsigned RAGreedy::tryReassign(LiveInterval &VirtReg, AllocationOrder &Order) {
258 NamedRegionTimer T("Reassign", TimerGroupName, TimePassesIsEnabled);
259 Order.rewind();
260 while (unsigned PhysReg = Order.next())
261 if (reassignInterferences(VirtReg, PhysReg))
262 return PhysReg;
263 return 0;
266 /// findInterferenceFreeReg - Find a physical register in Order where Loop has
267 /// no interferences with VirtReg.
268 unsigned RAGreedy::findInterferenceFreeReg(MachineLoopRange *Loop,
269 LiveInterval &VirtReg,
270 AllocationOrder &Order) {
271 Order.rewind();
272 while (unsigned PhysReg = Order.next()) {
273 bool interference = false;
274 for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
275 if (query(VirtReg, *AI).checkLoopInterference(Loop)) {
276 interference = true;
277 break;
280 if (!interference)
281 return PhysReg;
283 // No physreg found.
284 return 0;
287 /// trySplit - Try to split VirtReg or one of its interferences, making it
288 /// assignable.
289 /// @return Physreg when VirtReg may be assigned and/or new SplitVRegs.
290 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
291 SmallVectorImpl<LiveInterval*>&SplitVRegs) {
292 NamedRegionTimer T("Splitter", TimerGroupName, TimePassesIsEnabled);
293 SA->analyze(&VirtReg);
295 // Get the set of loops that have VirtReg uses and are splittable.
296 SplitAnalysis::LoopPtrSet SplitLoopSet;
297 SA->getSplitLoops(SplitLoopSet);
299 // Order loops by descending area.
300 SmallVector<MachineLoopRange*, 8> SplitLoops;
301 for (SplitAnalysis::LoopPtrSet::const_iterator I = SplitLoopSet.begin(),
302 E = SplitLoopSet.end(); I != E; ++I)
303 SplitLoops.push_back(LoopRanges->getLoopRange(*I));
304 array_pod_sort(SplitLoops.begin(), SplitLoops.end(),
305 MachineLoopRange::byAreaDesc);
307 // Find the first loop that is interference-free for some register in the
308 // allocation order.
309 MachineLoopRange *Loop = 0;
310 for (unsigned i = 0, e = SplitLoops.size(); i != e; ++i) {
311 if (unsigned PhysReg = findInterferenceFreeReg(SplitLoops[i],
312 VirtReg, Order)) {
313 (void)PhysReg;
314 Loop = SplitLoops[i];
315 DEBUG(dbgs() << " " << TRI->getName(PhysReg)
316 << " has no interferences in " << *Loop << '\n');
317 break;
321 if (!Loop) {
322 DEBUG(dbgs() << " All candidate loops have interference.\n");
323 return 0;
326 // Execute the split around Loop.
327 SmallVector<LiveInterval*, 4> SpillRegs;
328 LiveRangeEdit LREdit(VirtReg, SplitVRegs, SpillRegs);
329 SplitEditor(*SA, *LIS, *VRM, *DomTree, LREdit)
330 .splitAroundLoop(Loop->getLoop());
332 if (VerifyEnabled)
333 MF->verify(this, "After splitting live range around loop");
335 // We have new split regs, don't assign anything.
336 return 0;
339 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
340 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
341 // Populate a list of physical register spill candidates.
342 SmallVector<unsigned, 8> PhysRegSpillCands;
344 // Check for an available register in this class.
345 AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
346 while (unsigned PhysReg = Order.next()) {
347 // Check interference and as a side effect, intialize queries for this
348 // VirtReg and its aliases.
349 unsigned InterfReg = checkPhysRegInterference(VirtReg, PhysReg);
350 if (InterfReg == 0) {
351 // Found an available register.
352 return PhysReg;
354 assert(!VirtReg.empty() && "Empty VirtReg has interference");
355 LiveInterval *InterferingVirtReg =
356 Queries[InterfReg].firstInterference().liveUnionPos().value();
358 // The current VirtReg must either be spillable, or one of its interferences
359 // must have less spill weight.
360 if (InterferingVirtReg->weight < VirtReg.weight )
361 PhysRegSpillCands.push_back(PhysReg);
364 // Try to reassign interferences.
365 if (unsigned PhysReg = tryReassign(VirtReg, Order))
366 return PhysReg;
368 // Try splitting VirtReg or interferences.
369 unsigned PhysReg = trySplit(VirtReg, Order, SplitVRegs);
370 if (PhysReg || !SplitVRegs.empty())
371 return PhysReg;
373 // Try to spill another interfering reg with less spill weight.
374 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
376 // FIXME: do this in two steps: (1) check for unspillable interferences while
377 // accumulating spill weight; (2) spill the interferences with lowest
378 // aggregate spill weight.
379 for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
380 PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
382 if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
384 assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
385 "Interference after spill.");
386 // Tell the caller to allocate to this newly freed physical register.
387 return *PhysRegI;
390 // No other spill candidates were found, so spill the current VirtReg.
391 DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
392 SmallVector<LiveInterval*, 1> pendingSpills;
394 spiller().spill(&VirtReg, SplitVRegs, pendingSpills);
396 // The live virtual register requesting allocation was spilled, so tell
397 // the caller not to allocate anything during this round.
398 return 0;
401 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
402 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
403 << "********** Function: "
404 << ((Value*)mf.getFunction())->getName() << '\n');
406 MF = &mf;
407 if (VerifyEnabled)
408 MF->verify(this, "Before greedy register allocator");
410 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
411 DomTree = &getAnalysis<MachineDominatorTree>();
412 ReservedRegs = TRI->getReservedRegs(*MF);
413 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
414 Loops = &getAnalysis<MachineLoopInfo>();
415 LoopRanges = &getAnalysis<MachineLoopRanges>();
416 SA.reset(new SplitAnalysis(*MF, *LIS, *Loops));
418 allocatePhysRegs();
419 addMBBLiveIns(MF);
421 // Run rewriter
423 NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
424 std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
425 rewriter->runOnMachineFunction(*MF, *VRM, LIS);
428 // The pass output is in VirtRegMap. Release all the transient data.
429 releaseMemory();
431 return true;