Silence some -Asserts uninitialized variable warnings.
[llvm.git] / lib / CodeGen / SelectionDAG / LegalizeDAG.cpp
blob7a47da4ec52efeadc67d909723e0d8885eed9269
1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::Legalize method.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineJumpTableInfo.h"
18 #include "llvm/CodeGen/MachineModuleInfo.h"
19 #include "llvm/Analysis/DebugInfo.h"
20 #include "llvm/CodeGen/PseudoSourceValue.h"
21 #include "llvm/Target/TargetFrameInfo.h"
22 #include "llvm/Target/TargetLowering.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Target/TargetOptions.h"
26 #include "llvm/CallingConv.h"
27 #include "llvm/Constants.h"
28 #include "llvm/DerivedTypes.h"
29 #include "llvm/Function.h"
30 #include "llvm/GlobalVariable.h"
31 #include "llvm/LLVMContext.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 using namespace llvm;
42 //===----------------------------------------------------------------------===//
43 /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44 /// hacks on it until the target machine can handle it. This involves
45 /// eliminating value sizes the machine cannot handle (promoting small sizes to
46 /// large sizes or splitting up large values into small values) as well as
47 /// eliminating operations the machine cannot handle.
48 ///
49 /// This code also does a small amount of optimization and recognition of idioms
50 /// as part of its processing. For example, if a target does not support a
51 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52 /// will attempt merge setcc and brc instructions into brcc's.
53 ///
54 namespace {
55 class SelectionDAGLegalize {
56 const TargetMachine &TM;
57 const TargetLowering &TLI;
58 SelectionDAG &DAG;
59 CodeGenOpt::Level OptLevel;
61 // Libcall insertion helpers.
63 /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
64 /// legalized. We use this to ensure that calls are properly serialized
65 /// against each other, including inserted libcalls.
66 SDValue LastCALLSEQ_END;
68 /// IsLegalizingCall - This member is used *only* for purposes of providing
69 /// helpful assertions that a libcall isn't created while another call is
70 /// being legalized (which could lead to non-serialized call sequences).
71 bool IsLegalizingCall;
73 enum LegalizeAction {
74 Legal, // The target natively supports this operation.
75 Promote, // This operation should be executed in a larger type.
76 Expand // Try to expand this to other ops, otherwise use a libcall.
79 /// ValueTypeActions - This is a bitvector that contains two bits for each
80 /// value type, where the two bits correspond to the LegalizeAction enum.
81 /// This can be queried with "getTypeAction(VT)".
82 TargetLowering::ValueTypeActionImpl ValueTypeActions;
84 /// LegalizedNodes - For nodes that are of legal width, and that have more
85 /// than one use, this map indicates what regularized operand to use. This
86 /// allows us to avoid legalizing the same thing more than once.
87 DenseMap<SDValue, SDValue> LegalizedNodes;
89 void AddLegalizedOperand(SDValue From, SDValue To) {
90 LegalizedNodes.insert(std::make_pair(From, To));
91 // If someone requests legalization of the new node, return itself.
92 if (From != To)
93 LegalizedNodes.insert(std::make_pair(To, To));
96 public:
97 SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
99 /// getTypeAction - Return how we should legalize values of this type, either
100 /// it is already legal or we need to expand it into multiple registers of
101 /// smaller integer type, or we need to promote it to a larger type.
102 LegalizeAction getTypeAction(EVT VT) const {
103 return
104 (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
107 /// isTypeLegal - Return true if this type is legal on this target.
109 bool isTypeLegal(EVT VT) const {
110 return getTypeAction(VT) == Legal;
113 void LegalizeDAG();
115 private:
116 /// LegalizeOp - We know that the specified value has a legal type.
117 /// Recursively ensure that the operands have legal types, then return the
118 /// result.
119 SDValue LegalizeOp(SDValue O);
121 SDValue OptimizeFloatStore(StoreSDNode *ST);
123 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
124 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
125 /// is necessary to spill the vector being inserted into to memory, perform
126 /// the insert there, and then read the result back.
127 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
128 SDValue Idx, DebugLoc dl);
129 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
130 SDValue Idx, DebugLoc dl);
132 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
133 /// performs the same shuffe in terms of order or result bytes, but on a type
134 /// whose vector element type is narrower than the original shuffle type.
135 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
136 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
137 SDValue N1, SDValue N2,
138 SmallVectorImpl<int> &Mask) const;
140 bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
141 SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
143 void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
144 DebugLoc dl);
146 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
147 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
148 SDNode *Node, bool isSigned);
149 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
150 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
151 RTLIB::Libcall Call_PPCF128);
152 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
153 RTLIB::Libcall Call_I8,
154 RTLIB::Libcall Call_I16,
155 RTLIB::Libcall Call_I32,
156 RTLIB::Libcall Call_I64,
157 RTLIB::Libcall Call_I128);
159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
160 SDValue ExpandBUILD_VECTOR(SDNode *Node);
161 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
162 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
163 SmallVectorImpl<SDValue> &Results);
164 SDValue ExpandFCOPYSIGN(SDNode *Node);
165 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
166 DebugLoc dl);
167 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
168 DebugLoc dl);
169 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
170 DebugLoc dl);
172 SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
173 SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
175 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
176 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
178 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
180 void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
181 void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
185 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
186 /// performs the same shuffe in terms of order or result bytes, but on a type
187 /// whose vector element type is narrower than the original shuffle type.
188 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
189 SDValue
190 SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
191 SDValue N1, SDValue N2,
192 SmallVectorImpl<int> &Mask) const {
193 unsigned NumMaskElts = VT.getVectorNumElements();
194 unsigned NumDestElts = NVT.getVectorNumElements();
195 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
197 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
199 if (NumEltsGrowth == 1)
200 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
202 SmallVector<int, 8> NewMask;
203 for (unsigned i = 0; i != NumMaskElts; ++i) {
204 int Idx = Mask[i];
205 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
206 if (Idx < 0)
207 NewMask.push_back(-1);
208 else
209 NewMask.push_back(Idx * NumEltsGrowth + j);
212 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
213 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
214 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
217 SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
218 CodeGenOpt::Level ol)
219 : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
220 DAG(dag), OptLevel(ol),
221 ValueTypeActions(TLI.getValueTypeActions()) {
222 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
223 "Too many value types for ValueTypeActions to hold!");
226 void SelectionDAGLegalize::LegalizeDAG() {
227 LastCALLSEQ_END = DAG.getEntryNode();
228 IsLegalizingCall = false;
230 // The legalize process is inherently a bottom-up recursive process (users
231 // legalize their uses before themselves). Given infinite stack space, we
232 // could just start legalizing on the root and traverse the whole graph. In
233 // practice however, this causes us to run out of stack space on large basic
234 // blocks. To avoid this problem, compute an ordering of the nodes where each
235 // node is only legalized after all of its operands are legalized.
236 DAG.AssignTopologicalOrder();
237 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
238 E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
239 LegalizeOp(SDValue(I, 0));
241 // Finally, it's possible the root changed. Get the new root.
242 SDValue OldRoot = DAG.getRoot();
243 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
244 DAG.setRoot(LegalizedNodes[OldRoot]);
246 LegalizedNodes.clear();
248 // Remove dead nodes now.
249 DAG.RemoveDeadNodes();
253 /// FindCallEndFromCallStart - Given a chained node that is part of a call
254 /// sequence, find the CALLSEQ_END node that terminates the call sequence.
255 static SDNode *FindCallEndFromCallStart(SDNode *Node) {
256 if (Node->getOpcode() == ISD::CALLSEQ_END)
257 return Node;
258 if (Node->use_empty())
259 return 0; // No CallSeqEnd
261 // The chain is usually at the end.
262 SDValue TheChain(Node, Node->getNumValues()-1);
263 if (TheChain.getValueType() != MVT::Other) {
264 // Sometimes it's at the beginning.
265 TheChain = SDValue(Node, 0);
266 if (TheChain.getValueType() != MVT::Other) {
267 // Otherwise, hunt for it.
268 for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
269 if (Node->getValueType(i) == MVT::Other) {
270 TheChain = SDValue(Node, i);
271 break;
274 // Otherwise, we walked into a node without a chain.
275 if (TheChain.getValueType() != MVT::Other)
276 return 0;
280 for (SDNode::use_iterator UI = Node->use_begin(),
281 E = Node->use_end(); UI != E; ++UI) {
283 // Make sure to only follow users of our token chain.
284 SDNode *User = *UI;
285 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
286 if (User->getOperand(i) == TheChain)
287 if (SDNode *Result = FindCallEndFromCallStart(User))
288 return Result;
290 return 0;
293 /// FindCallStartFromCallEnd - Given a chained node that is part of a call
294 /// sequence, find the CALLSEQ_START node that initiates the call sequence.
295 static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
296 assert(Node && "Didn't find callseq_start for a call??");
297 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
299 assert(Node->getOperand(0).getValueType() == MVT::Other &&
300 "Node doesn't have a token chain argument!");
301 return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
304 /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
305 /// see if any uses can reach Dest. If no dest operands can get to dest,
306 /// legalize them, legalize ourself, and return false, otherwise, return true.
308 /// Keep track of the nodes we fine that actually do lead to Dest in
309 /// NodesLeadingTo. This avoids retraversing them exponential number of times.
311 bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
312 SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
313 if (N == Dest) return true; // N certainly leads to Dest :)
315 // If we've already processed this node and it does lead to Dest, there is no
316 // need to reprocess it.
317 if (NodesLeadingTo.count(N)) return true;
319 // If the first result of this node has been already legalized, then it cannot
320 // reach N.
321 if (LegalizedNodes.count(SDValue(N, 0))) return false;
323 // Okay, this node has not already been legalized. Check and legalize all
324 // operands. If none lead to Dest, then we can legalize this node.
325 bool OperandsLeadToDest = false;
326 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
327 OperandsLeadToDest |= // If an operand leads to Dest, so do we.
328 LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
329 NodesLeadingTo);
331 if (OperandsLeadToDest) {
332 NodesLeadingTo.insert(N);
333 return true;
336 // Okay, this node looks safe, legalize it and return false.
337 LegalizeOp(SDValue(N, 0));
338 return false;
341 /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
342 /// a load from the constant pool.
343 static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
344 SelectionDAG &DAG, const TargetLowering &TLI) {
345 bool Extend = false;
346 DebugLoc dl = CFP->getDebugLoc();
348 // If a FP immediate is precise when represented as a float and if the
349 // target can do an extending load from float to double, we put it into
350 // the constant pool as a float, even if it's is statically typed as a
351 // double. This shrinks FP constants and canonicalizes them for targets where
352 // an FP extending load is the same cost as a normal load (such as on the x87
353 // fp stack or PPC FP unit).
354 EVT VT = CFP->getValueType(0);
355 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
356 if (!UseCP) {
357 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
358 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
359 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
362 EVT OrigVT = VT;
363 EVT SVT = VT;
364 while (SVT != MVT::f32) {
365 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
366 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
367 // Only do this if the target has a native EXTLOAD instruction from
368 // smaller type.
369 TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
370 TLI.ShouldShrinkFPConstant(OrigVT)) {
371 const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
372 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
373 VT = SVT;
374 Extend = true;
378 SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
379 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
380 if (Extend)
381 return DAG.getExtLoad(ISD::EXTLOAD, OrigVT, dl,
382 DAG.getEntryNode(),
383 CPIdx, PseudoSourceValue::getConstantPool(),
384 0, VT, false, false, Alignment);
385 return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
386 PseudoSourceValue::getConstantPool(), 0, false, false,
387 Alignment);
390 /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
391 static
392 SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
393 const TargetLowering &TLI) {
394 SDValue Chain = ST->getChain();
395 SDValue Ptr = ST->getBasePtr();
396 SDValue Val = ST->getValue();
397 EVT VT = Val.getValueType();
398 int Alignment = ST->getAlignment();
399 int SVOffset = ST->getSrcValueOffset();
400 DebugLoc dl = ST->getDebugLoc();
401 if (ST->getMemoryVT().isFloatingPoint() ||
402 ST->getMemoryVT().isVector()) {
403 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
404 if (TLI.isTypeLegal(intVT)) {
405 // Expand to a bitconvert of the value to the integer type of the
406 // same size, then a (misaligned) int store.
407 // FIXME: Does not handle truncating floating point stores!
408 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
409 return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
410 SVOffset, ST->isVolatile(), ST->isNonTemporal(),
411 Alignment);
412 } else {
413 // Do a (aligned) store to a stack slot, then copy from the stack slot
414 // to the final destination using (unaligned) integer loads and stores.
415 EVT StoredVT = ST->getMemoryVT();
416 EVT RegVT =
417 TLI.getRegisterType(*DAG.getContext(),
418 EVT::getIntegerVT(*DAG.getContext(),
419 StoredVT.getSizeInBits()));
420 unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
421 unsigned RegBytes = RegVT.getSizeInBits() / 8;
422 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
424 // Make sure the stack slot is also aligned for the register type.
425 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
427 // Perform the original store, only redirected to the stack slot.
428 SDValue Store = DAG.getTruncStore(Chain, dl,
429 Val, StackPtr, NULL, 0, StoredVT,
430 false, false, 0);
431 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
432 SmallVector<SDValue, 8> Stores;
433 unsigned Offset = 0;
435 // Do all but one copies using the full register width.
436 for (unsigned i = 1; i < NumRegs; i++) {
437 // Load one integer register's worth from the stack slot.
438 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0,
439 false, false, 0);
440 // Store it to the final location. Remember the store.
441 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
442 ST->getSrcValue(), SVOffset + Offset,
443 ST->isVolatile(), ST->isNonTemporal(),
444 MinAlign(ST->getAlignment(), Offset)));
445 // Increment the pointers.
446 Offset += RegBytes;
447 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
448 Increment);
449 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
452 // The last store may be partial. Do a truncating store. On big-endian
453 // machines this requires an extending load from the stack slot to ensure
454 // that the bits are in the right place.
455 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
456 8 * (StoredBytes - Offset));
458 // Load from the stack slot.
459 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Store, StackPtr,
460 NULL, 0, MemVT, false, false, 0);
462 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
463 ST->getSrcValue(), SVOffset + Offset,
464 MemVT, ST->isVolatile(),
465 ST->isNonTemporal(),
466 MinAlign(ST->getAlignment(), Offset)));
467 // The order of the stores doesn't matter - say it with a TokenFactor.
468 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
469 Stores.size());
472 assert(ST->getMemoryVT().isInteger() &&
473 !ST->getMemoryVT().isVector() &&
474 "Unaligned store of unknown type.");
475 // Get the half-size VT
476 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
477 int NumBits = NewStoredVT.getSizeInBits();
478 int IncrementSize = NumBits / 8;
480 // Divide the stored value in two parts.
481 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
482 SDValue Lo = Val;
483 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
485 // Store the two parts
486 SDValue Store1, Store2;
487 Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
488 ST->getSrcValue(), SVOffset, NewStoredVT,
489 ST->isVolatile(), ST->isNonTemporal(), Alignment);
490 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
491 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
492 Alignment = MinAlign(Alignment, IncrementSize);
493 Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
494 ST->getSrcValue(), SVOffset + IncrementSize,
495 NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
496 Alignment);
498 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
501 /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
502 static
503 SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
504 const TargetLowering &TLI) {
505 int SVOffset = LD->getSrcValueOffset();
506 SDValue Chain = LD->getChain();
507 SDValue Ptr = LD->getBasePtr();
508 EVT VT = LD->getValueType(0);
509 EVT LoadedVT = LD->getMemoryVT();
510 DebugLoc dl = LD->getDebugLoc();
511 if (VT.isFloatingPoint() || VT.isVector()) {
512 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
513 if (TLI.isTypeLegal(intVT)) {
514 // Expand to a (misaligned) integer load of the same size,
515 // then bitconvert to floating point or vector.
516 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
517 SVOffset, LD->isVolatile(),
518 LD->isNonTemporal(), LD->getAlignment());
519 SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
520 if (VT.isFloatingPoint() && LoadedVT != VT)
521 Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
523 SDValue Ops[] = { Result, Chain };
524 return DAG.getMergeValues(Ops, 2, dl);
525 } else {
526 // Copy the value to a (aligned) stack slot using (unaligned) integer
527 // loads and stores, then do a (aligned) load from the stack slot.
528 EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
529 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
530 unsigned RegBytes = RegVT.getSizeInBits() / 8;
531 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
533 // Make sure the stack slot is also aligned for the register type.
534 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
536 SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
537 SmallVector<SDValue, 8> Stores;
538 SDValue StackPtr = StackBase;
539 unsigned Offset = 0;
541 // Do all but one copies using the full register width.
542 for (unsigned i = 1; i < NumRegs; i++) {
543 // Load one integer register's worth from the original location.
544 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
545 SVOffset + Offset, LD->isVolatile(),
546 LD->isNonTemporal(),
547 MinAlign(LD->getAlignment(), Offset));
548 // Follow the load with a store to the stack slot. Remember the store.
549 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
550 NULL, 0, false, false, 0));
551 // Increment the pointers.
552 Offset += RegBytes;
553 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
554 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
555 Increment);
558 // The last copy may be partial. Do an extending load.
559 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
560 8 * (LoadedBytes - Offset));
561 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Chain, Ptr,
562 LD->getSrcValue(), SVOffset + Offset,
563 MemVT, LD->isVolatile(),
564 LD->isNonTemporal(),
565 MinAlign(LD->getAlignment(), Offset));
566 // Follow the load with a store to the stack slot. Remember the store.
567 // On big-endian machines this requires a truncating store to ensure
568 // that the bits end up in the right place.
569 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
570 NULL, 0, MemVT, false, false, 0));
572 // The order of the stores doesn't matter - say it with a TokenFactor.
573 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
574 Stores.size());
576 // Finally, perform the original load only redirected to the stack slot.
577 Load = DAG.getExtLoad(LD->getExtensionType(), VT, dl, TF, StackBase,
578 NULL, 0, LoadedVT, false, false, 0);
580 // Callers expect a MERGE_VALUES node.
581 SDValue Ops[] = { Load, TF };
582 return DAG.getMergeValues(Ops, 2, dl);
585 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
586 "Unaligned load of unsupported type.");
588 // Compute the new VT that is half the size of the old one. This is an
589 // integer MVT.
590 unsigned NumBits = LoadedVT.getSizeInBits();
591 EVT NewLoadedVT;
592 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
593 NumBits >>= 1;
595 unsigned Alignment = LD->getAlignment();
596 unsigned IncrementSize = NumBits / 8;
597 ISD::LoadExtType HiExtType = LD->getExtensionType();
599 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
600 if (HiExtType == ISD::NON_EXTLOAD)
601 HiExtType = ISD::ZEXTLOAD;
603 // Load the value in two parts
604 SDValue Lo, Hi;
605 if (TLI.isLittleEndian()) {
606 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr, LD->getSrcValue(),
607 SVOffset, NewLoadedVT, LD->isVolatile(),
608 LD->isNonTemporal(), Alignment);
609 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
610 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
611 Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr, LD->getSrcValue(),
612 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
613 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
614 } else {
615 Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr, LD->getSrcValue(),
616 SVOffset, NewLoadedVT, LD->isVolatile(),
617 LD->isNonTemporal(), Alignment);
618 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
619 DAG.getConstant(IncrementSize, TLI.getPointerTy()));
620 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr, LD->getSrcValue(),
621 SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
622 LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
625 // aggregate the two parts
626 SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
627 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
628 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
630 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
631 Hi.getValue(1));
633 SDValue Ops[] = { Result, TF };
634 return DAG.getMergeValues(Ops, 2, dl);
637 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
638 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
639 /// is necessary to spill the vector being inserted into to memory, perform
640 /// the insert there, and then read the result back.
641 SDValue SelectionDAGLegalize::
642 PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
643 DebugLoc dl) {
644 SDValue Tmp1 = Vec;
645 SDValue Tmp2 = Val;
646 SDValue Tmp3 = Idx;
648 // If the target doesn't support this, we have to spill the input vector
649 // to a temporary stack slot, update the element, then reload it. This is
650 // badness. We could also load the value into a vector register (either
651 // with a "move to register" or "extload into register" instruction, then
652 // permute it into place, if the idx is a constant and if the idx is
653 // supported by the target.
654 EVT VT = Tmp1.getValueType();
655 EVT EltVT = VT.getVectorElementType();
656 EVT IdxVT = Tmp3.getValueType();
657 EVT PtrVT = TLI.getPointerTy();
658 SDValue StackPtr = DAG.CreateStackTemporary(VT);
660 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
662 // Store the vector.
663 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
664 PseudoSourceValue::getFixedStack(SPFI), 0,
665 false, false, 0);
667 // Truncate or zero extend offset to target pointer type.
668 unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
669 Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
670 // Add the offset to the index.
671 unsigned EltSize = EltVT.getSizeInBits()/8;
672 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
673 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
674 // Store the scalar value.
675 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
676 PseudoSourceValue::getFixedStack(SPFI), 0, EltVT,
677 false, false, 0);
678 // Load the updated vector.
679 return DAG.getLoad(VT, dl, Ch, StackPtr,
680 PseudoSourceValue::getFixedStack(SPFI), 0,
681 false, false, 0);
685 SDValue SelectionDAGLegalize::
686 ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
687 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
688 // SCALAR_TO_VECTOR requires that the type of the value being inserted
689 // match the element type of the vector being created, except for
690 // integers in which case the inserted value can be over width.
691 EVT EltVT = Vec.getValueType().getVectorElementType();
692 if (Val.getValueType() == EltVT ||
693 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
694 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
695 Vec.getValueType(), Val);
697 unsigned NumElts = Vec.getValueType().getVectorNumElements();
698 // We generate a shuffle of InVec and ScVec, so the shuffle mask
699 // should be 0,1,2,3,4,5... with the appropriate element replaced with
700 // elt 0 of the RHS.
701 SmallVector<int, 8> ShufOps;
702 for (unsigned i = 0; i != NumElts; ++i)
703 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
705 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
706 &ShufOps[0]);
709 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
712 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
713 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
714 // FIXME: We shouldn't do this for TargetConstantFP's.
715 // FIXME: move this to the DAG Combiner! Note that we can't regress due
716 // to phase ordering between legalized code and the dag combiner. This
717 // probably means that we need to integrate dag combiner and legalizer
718 // together.
719 // We generally can't do this one for long doubles.
720 SDValue Tmp1 = ST->getChain();
721 SDValue Tmp2 = ST->getBasePtr();
722 SDValue Tmp3;
723 int SVOffset = ST->getSrcValueOffset();
724 unsigned Alignment = ST->getAlignment();
725 bool isVolatile = ST->isVolatile();
726 bool isNonTemporal = ST->isNonTemporal();
727 DebugLoc dl = ST->getDebugLoc();
728 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
729 if (CFP->getValueType(0) == MVT::f32 &&
730 getTypeAction(MVT::i32) == Legal) {
731 Tmp3 = DAG.getConstant(CFP->getValueAPF().
732 bitcastToAPInt().zextOrTrunc(32),
733 MVT::i32);
734 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
735 SVOffset, isVolatile, isNonTemporal, Alignment);
736 } else if (CFP->getValueType(0) == MVT::f64) {
737 // If this target supports 64-bit registers, do a single 64-bit store.
738 if (getTypeAction(MVT::i64) == Legal) {
739 Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
740 zextOrTrunc(64), MVT::i64);
741 return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
742 SVOffset, isVolatile, isNonTemporal, Alignment);
743 } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
744 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
745 // stores. If the target supports neither 32- nor 64-bits, this
746 // xform is certainly not worth it.
747 const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
748 SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
749 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
750 if (TLI.isBigEndian()) std::swap(Lo, Hi);
752 Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
753 SVOffset, isVolatile, isNonTemporal, Alignment);
754 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
755 DAG.getIntPtrConstant(4));
756 Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
757 isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
759 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
763 return SDValue();
766 /// LegalizeOp - We know that the specified value has a legal type, and
767 /// that its operands are legal. Now ensure that the operation itself
768 /// is legal, recursively ensuring that the operands' operations remain
769 /// legal.
770 SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
771 if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
772 return Op;
774 SDNode *Node = Op.getNode();
775 DebugLoc dl = Node->getDebugLoc();
777 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
778 assert(getTypeAction(Node->getValueType(i)) == Legal &&
779 "Unexpected illegal type!");
781 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
782 assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
783 Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
784 "Unexpected illegal type!");
786 // Note that LegalizeOp may be reentered even from single-use nodes, which
787 // means that we always must cache transformed nodes.
788 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
789 if (I != LegalizedNodes.end()) return I->second;
791 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
792 SDValue Result = Op;
793 bool isCustom = false;
795 // Figure out the correct action; the way to query this varies by opcode
796 TargetLowering::LegalizeAction Action;
797 bool SimpleFinishLegalizing = true;
798 switch (Node->getOpcode()) {
799 case ISD::INTRINSIC_W_CHAIN:
800 case ISD::INTRINSIC_WO_CHAIN:
801 case ISD::INTRINSIC_VOID:
802 case ISD::VAARG:
803 case ISD::STACKSAVE:
804 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
805 break;
806 case ISD::SINT_TO_FP:
807 case ISD::UINT_TO_FP:
808 case ISD::EXTRACT_VECTOR_ELT:
809 Action = TLI.getOperationAction(Node->getOpcode(),
810 Node->getOperand(0).getValueType());
811 break;
812 case ISD::FP_ROUND_INREG:
813 case ISD::SIGN_EXTEND_INREG: {
814 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
815 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
816 break;
818 case ISD::SELECT_CC:
819 case ISD::SETCC:
820 case ISD::BR_CC: {
821 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
822 Node->getOpcode() == ISD::SETCC ? 2 : 1;
823 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
824 EVT OpVT = Node->getOperand(CompareOperand).getValueType();
825 ISD::CondCode CCCode =
826 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
827 Action = TLI.getCondCodeAction(CCCode, OpVT);
828 if (Action == TargetLowering::Legal) {
829 if (Node->getOpcode() == ISD::SELECT_CC)
830 Action = TLI.getOperationAction(Node->getOpcode(),
831 Node->getValueType(0));
832 else
833 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
835 break;
837 case ISD::LOAD:
838 case ISD::STORE:
839 // FIXME: Model these properly. LOAD and STORE are complicated, and
840 // STORE expects the unlegalized operand in some cases.
841 SimpleFinishLegalizing = false;
842 break;
843 case ISD::CALLSEQ_START:
844 case ISD::CALLSEQ_END:
845 // FIXME: This shouldn't be necessary. These nodes have special properties
846 // dealing with the recursive nature of legalization. Removing this
847 // special case should be done as part of making LegalizeDAG non-recursive.
848 SimpleFinishLegalizing = false;
849 break;
850 case ISD::EXTRACT_ELEMENT:
851 case ISD::FLT_ROUNDS_:
852 case ISD::SADDO:
853 case ISD::SSUBO:
854 case ISD::UADDO:
855 case ISD::USUBO:
856 case ISD::SMULO:
857 case ISD::UMULO:
858 case ISD::FPOWI:
859 case ISD::MERGE_VALUES:
860 case ISD::EH_RETURN:
861 case ISD::FRAME_TO_ARGS_OFFSET:
862 case ISD::EH_SJLJ_SETJMP:
863 case ISD::EH_SJLJ_LONGJMP:
864 // These operations lie about being legal: when they claim to be legal,
865 // they should actually be expanded.
866 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
867 if (Action == TargetLowering::Legal)
868 Action = TargetLowering::Expand;
869 break;
870 case ISD::TRAMPOLINE:
871 case ISD::FRAMEADDR:
872 case ISD::RETURNADDR:
873 // These operations lie about being legal: when they claim to be legal,
874 // they should actually be custom-lowered.
875 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
876 if (Action == TargetLowering::Legal)
877 Action = TargetLowering::Custom;
878 break;
879 case ISD::BUILD_VECTOR:
880 // A weird case: legalization for BUILD_VECTOR never legalizes the
881 // operands!
882 // FIXME: This really sucks... changing it isn't semantically incorrect,
883 // but it massively pessimizes the code for floating-point BUILD_VECTORs
884 // because ConstantFP operands get legalized into constant pool loads
885 // before the BUILD_VECTOR code can see them. It doesn't usually bite,
886 // though, because BUILD_VECTORS usually get lowered into other nodes
887 // which get legalized properly.
888 SimpleFinishLegalizing = false;
889 break;
890 default:
891 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
892 Action = TargetLowering::Legal;
893 } else {
894 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
896 break;
899 if (SimpleFinishLegalizing) {
900 SmallVector<SDValue, 8> Ops, ResultVals;
901 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
902 Ops.push_back(LegalizeOp(Node->getOperand(i)));
903 switch (Node->getOpcode()) {
904 default: break;
905 case ISD::BR:
906 case ISD::BRIND:
907 case ISD::BR_JT:
908 case ISD::BR_CC:
909 case ISD::BRCOND:
910 // Branches tweak the chain to include LastCALLSEQ_END
911 Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
912 LastCALLSEQ_END);
913 Ops[0] = LegalizeOp(Ops[0]);
914 LastCALLSEQ_END = DAG.getEntryNode();
915 break;
916 case ISD::SHL:
917 case ISD::SRL:
918 case ISD::SRA:
919 case ISD::ROTL:
920 case ISD::ROTR:
921 // Legalizing shifts/rotates requires adjusting the shift amount
922 // to the appropriate width.
923 if (!Ops[1].getValueType().isVector())
924 Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
925 break;
926 case ISD::SRL_PARTS:
927 case ISD::SRA_PARTS:
928 case ISD::SHL_PARTS:
929 // Legalizing shifts/rotates requires adjusting the shift amount
930 // to the appropriate width.
931 if (!Ops[2].getValueType().isVector())
932 Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
933 break;
936 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
937 Ops.size()), 0);
938 switch (Action) {
939 case TargetLowering::Legal:
940 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
941 ResultVals.push_back(Result.getValue(i));
942 break;
943 case TargetLowering::Custom:
944 // FIXME: The handling for custom lowering with multiple results is
945 // a complete mess.
946 Tmp1 = TLI.LowerOperation(Result, DAG);
947 if (Tmp1.getNode()) {
948 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
949 if (e == 1)
950 ResultVals.push_back(Tmp1);
951 else
952 ResultVals.push_back(Tmp1.getValue(i));
954 break;
957 // FALL THROUGH
958 case TargetLowering::Expand:
959 ExpandNode(Result.getNode(), ResultVals);
960 break;
961 case TargetLowering::Promote:
962 PromoteNode(Result.getNode(), ResultVals);
963 break;
965 if (!ResultVals.empty()) {
966 for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
967 if (ResultVals[i] != SDValue(Node, i))
968 ResultVals[i] = LegalizeOp(ResultVals[i]);
969 AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
971 return ResultVals[Op.getResNo()];
975 switch (Node->getOpcode()) {
976 default:
977 #ifndef NDEBUG
978 dbgs() << "NODE: ";
979 Node->dump( &DAG);
980 dbgs() << "\n";
981 #endif
982 assert(0 && "Do not know how to legalize this operator!");
984 case ISD::BUILD_VECTOR:
985 switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
986 default: assert(0 && "This action is not supported yet!");
987 case TargetLowering::Custom:
988 Tmp3 = TLI.LowerOperation(Result, DAG);
989 if (Tmp3.getNode()) {
990 Result = Tmp3;
991 break;
993 // FALLTHROUGH
994 case TargetLowering::Expand:
995 Result = ExpandBUILD_VECTOR(Result.getNode());
996 break;
998 break;
999 case ISD::CALLSEQ_START: {
1000 SDNode *CallEnd = FindCallEndFromCallStart(Node);
1002 // Recursively Legalize all of the inputs of the call end that do not lead
1003 // to this call start. This ensures that any libcalls that need be inserted
1004 // are inserted *before* the CALLSEQ_START.
1005 {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1006 for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1007 LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1008 NodesLeadingTo);
1011 // Now that we have legalized all of the inputs (which may have inserted
1012 // libcalls), create the new CALLSEQ_START node.
1013 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1015 // Merge in the last call to ensure that this call starts after the last
1016 // call ended.
1017 if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1018 Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1019 Tmp1, LastCALLSEQ_END);
1020 Tmp1 = LegalizeOp(Tmp1);
1023 // Do not try to legalize the target-specific arguments (#1+).
1024 if (Tmp1 != Node->getOperand(0)) {
1025 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1026 Ops[0] = Tmp1;
1027 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1028 Ops.size()), Result.getResNo());
1031 // Remember that the CALLSEQ_START is legalized.
1032 AddLegalizedOperand(Op.getValue(0), Result);
1033 if (Node->getNumValues() == 2) // If this has a flag result, remember it.
1034 AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1036 // Now that the callseq_start and all of the non-call nodes above this call
1037 // sequence have been legalized, legalize the call itself. During this
1038 // process, no libcalls can/will be inserted, guaranteeing that no calls
1039 // can overlap.
1040 assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1041 // Note that we are selecting this call!
1042 LastCALLSEQ_END = SDValue(CallEnd, 0);
1043 IsLegalizingCall = true;
1045 // Legalize the call, starting from the CALLSEQ_END.
1046 LegalizeOp(LastCALLSEQ_END);
1047 assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1048 return Result;
1050 case ISD::CALLSEQ_END:
1051 // If the CALLSEQ_START node hasn't been legalized first, legalize it. This
1052 // will cause this node to be legalized as well as handling libcalls right.
1053 if (LastCALLSEQ_END.getNode() != Node) {
1054 LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1055 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1056 assert(I != LegalizedNodes.end() &&
1057 "Legalizing the call start should have legalized this node!");
1058 return I->second;
1061 // Otherwise, the call start has been legalized and everything is going
1062 // according to plan. Just legalize ourselves normally here.
1063 Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
1064 // Do not try to legalize the target-specific arguments (#1+), except for
1065 // an optional flag input.
1066 if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1067 if (Tmp1 != Node->getOperand(0)) {
1068 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1069 Ops[0] = Tmp1;
1070 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1071 &Ops[0], Ops.size()),
1072 Result.getResNo());
1074 } else {
1075 Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1076 if (Tmp1 != Node->getOperand(0) ||
1077 Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1078 SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1079 Ops[0] = Tmp1;
1080 Ops.back() = Tmp2;
1081 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1082 &Ops[0], Ops.size()),
1083 Result.getResNo());
1086 assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1087 // This finishes up call legalization.
1088 IsLegalizingCall = false;
1090 // If the CALLSEQ_END node has a flag, remember that we legalized it.
1091 AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1092 if (Node->getNumValues() == 2)
1093 AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1094 return Result.getValue(Op.getResNo());
1095 case ISD::LOAD: {
1096 LoadSDNode *LD = cast<LoadSDNode>(Node);
1097 Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain.
1098 Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1100 ISD::LoadExtType ExtType = LD->getExtensionType();
1101 if (ExtType == ISD::NON_EXTLOAD) {
1102 EVT VT = Node->getValueType(0);
1103 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1104 Tmp1, Tmp2, LD->getOffset()),
1105 Result.getResNo());
1106 Tmp3 = Result.getValue(0);
1107 Tmp4 = Result.getValue(1);
1109 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1110 default: assert(0 && "This action is not supported yet!");
1111 case TargetLowering::Legal:
1112 // If this is an unaligned load and the target doesn't support it,
1113 // expand it.
1114 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1115 const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1116 unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1117 if (LD->getAlignment() < ABIAlignment){
1118 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1119 DAG, TLI);
1120 Tmp3 = Result.getOperand(0);
1121 Tmp4 = Result.getOperand(1);
1122 Tmp3 = LegalizeOp(Tmp3);
1123 Tmp4 = LegalizeOp(Tmp4);
1126 break;
1127 case TargetLowering::Custom:
1128 Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1129 if (Tmp1.getNode()) {
1130 Tmp3 = LegalizeOp(Tmp1);
1131 Tmp4 = LegalizeOp(Tmp1.getValue(1));
1133 break;
1134 case TargetLowering::Promote: {
1135 // Only promote a load of vector type to another.
1136 assert(VT.isVector() && "Cannot promote this load!");
1137 // Change base type to a different vector type.
1138 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1140 Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1141 LD->getSrcValueOffset(),
1142 LD->isVolatile(), LD->isNonTemporal(),
1143 LD->getAlignment());
1144 Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1145 Tmp4 = LegalizeOp(Tmp1.getValue(1));
1146 break;
1149 // Since loads produce two values, make sure to remember that we
1150 // legalized both of them.
1151 AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1152 AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1153 return Op.getResNo() ? Tmp4 : Tmp3;
1154 } else {
1155 EVT SrcVT = LD->getMemoryVT();
1156 unsigned SrcWidth = SrcVT.getSizeInBits();
1157 int SVOffset = LD->getSrcValueOffset();
1158 unsigned Alignment = LD->getAlignment();
1159 bool isVolatile = LD->isVolatile();
1160 bool isNonTemporal = LD->isNonTemporal();
1162 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1163 // Some targets pretend to have an i1 loading operation, and actually
1164 // load an i8. This trick is correct for ZEXTLOAD because the top 7
1165 // bits are guaranteed to be zero; it helps the optimizers understand
1166 // that these bits are zero. It is also useful for EXTLOAD, since it
1167 // tells the optimizers that those bits are undefined. It would be
1168 // nice to have an effective generic way of getting these benefits...
1169 // Until such a way is found, don't insist on promoting i1 here.
1170 (SrcVT != MVT::i1 ||
1171 TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1172 // Promote to a byte-sized load if not loading an integral number of
1173 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1174 unsigned NewWidth = SrcVT.getStoreSizeInBits();
1175 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1176 SDValue Ch;
1178 // The extra bits are guaranteed to be zero, since we stored them that
1179 // way. A zext load from NVT thus automatically gives zext from SrcVT.
1181 ISD::LoadExtType NewExtType =
1182 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1184 Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), dl,
1185 Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1186 NVT, isVolatile, isNonTemporal, Alignment);
1188 Ch = Result.getValue(1); // The chain.
1190 if (ExtType == ISD::SEXTLOAD)
1191 // Having the top bits zero doesn't help when sign extending.
1192 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1193 Result.getValueType(),
1194 Result, DAG.getValueType(SrcVT));
1195 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1196 // All the top bits are guaranteed to be zero - inform the optimizers.
1197 Result = DAG.getNode(ISD::AssertZext, dl,
1198 Result.getValueType(), Result,
1199 DAG.getValueType(SrcVT));
1201 Tmp1 = LegalizeOp(Result);
1202 Tmp2 = LegalizeOp(Ch);
1203 } else if (SrcWidth & (SrcWidth - 1)) {
1204 // If not loading a power-of-2 number of bits, expand as two loads.
1205 assert(!SrcVT.isVector() && "Unsupported extload!");
1206 unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1207 assert(RoundWidth < SrcWidth);
1208 unsigned ExtraWidth = SrcWidth - RoundWidth;
1209 assert(ExtraWidth < RoundWidth);
1210 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1211 "Load size not an integral number of bytes!");
1212 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1213 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1214 SDValue Lo, Hi, Ch;
1215 unsigned IncrementSize;
1217 if (TLI.isLittleEndian()) {
1218 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1219 // Load the bottom RoundWidth bits.
1220 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), dl,
1221 Tmp1, Tmp2,
1222 LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1223 isNonTemporal, Alignment);
1225 // Load the remaining ExtraWidth bits.
1226 IncrementSize = RoundWidth / 8;
1227 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1228 DAG.getIntPtrConstant(IncrementSize));
1229 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1230 LD->getSrcValue(), SVOffset + IncrementSize,
1231 ExtraVT, isVolatile, isNonTemporal,
1232 MinAlign(Alignment, IncrementSize));
1234 // Build a factor node to remember that this load is independent of
1235 // the other one.
1236 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1237 Hi.getValue(1));
1239 // Move the top bits to the right place.
1240 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1241 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1243 // Join the hi and lo parts.
1244 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1245 } else {
1246 // Big endian - avoid unaligned loads.
1247 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1248 // Load the top RoundWidth bits.
1249 Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1250 LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1251 isNonTemporal, Alignment);
1253 // Load the remaining ExtraWidth bits.
1254 IncrementSize = RoundWidth / 8;
1255 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1256 DAG.getIntPtrConstant(IncrementSize));
1257 Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1258 Node->getValueType(0), dl, Tmp1, Tmp2,
1259 LD->getSrcValue(), SVOffset + IncrementSize,
1260 ExtraVT, isVolatile, isNonTemporal,
1261 MinAlign(Alignment, IncrementSize));
1263 // Build a factor node to remember that this load is independent of
1264 // the other one.
1265 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1266 Hi.getValue(1));
1268 // Move the top bits to the right place.
1269 Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1270 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1272 // Join the hi and lo parts.
1273 Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1276 Tmp1 = LegalizeOp(Result);
1277 Tmp2 = LegalizeOp(Ch);
1278 } else {
1279 switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1280 default: assert(0 && "This action is not supported yet!");
1281 case TargetLowering::Custom:
1282 isCustom = true;
1283 // FALLTHROUGH
1284 case TargetLowering::Legal:
1285 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1286 Tmp1, Tmp2, LD->getOffset()),
1287 Result.getResNo());
1288 Tmp1 = Result.getValue(0);
1289 Tmp2 = Result.getValue(1);
1291 if (isCustom) {
1292 Tmp3 = TLI.LowerOperation(Result, DAG);
1293 if (Tmp3.getNode()) {
1294 Tmp1 = LegalizeOp(Tmp3);
1295 Tmp2 = LegalizeOp(Tmp3.getValue(1));
1297 } else {
1298 // If this is an unaligned load and the target doesn't support it,
1299 // expand it.
1300 if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1301 const Type *Ty =
1302 LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1303 unsigned ABIAlignment =
1304 TLI.getTargetData()->getABITypeAlignment(Ty);
1305 if (LD->getAlignment() < ABIAlignment){
1306 Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1307 DAG, TLI);
1308 Tmp1 = Result.getOperand(0);
1309 Tmp2 = Result.getOperand(1);
1310 Tmp1 = LegalizeOp(Tmp1);
1311 Tmp2 = LegalizeOp(Tmp2);
1315 break;
1316 case TargetLowering::Expand:
1317 // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1318 // f128 = EXTLOAD {f32,f64} too
1319 if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
1320 Node->getValueType(0) == MVT::f128)) ||
1321 (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
1322 SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1323 LD->getSrcValueOffset(),
1324 LD->isVolatile(), LD->isNonTemporal(),
1325 LD->getAlignment());
1326 Result = DAG.getNode(ISD::FP_EXTEND, dl,
1327 Node->getValueType(0), Load);
1328 Tmp1 = LegalizeOp(Result); // Relegalize new nodes.
1329 Tmp2 = LegalizeOp(Load.getValue(1));
1330 break;
1332 assert(ExtType != ISD::EXTLOAD &&
1333 "EXTLOAD should always be supported!");
1334 // Turn the unsupported load into an EXTLOAD followed by an explicit
1335 // zero/sign extend inreg.
1336 Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), dl,
1337 Tmp1, Tmp2, LD->getSrcValue(),
1338 LD->getSrcValueOffset(), SrcVT,
1339 LD->isVolatile(), LD->isNonTemporal(),
1340 LD->getAlignment());
1341 SDValue ValRes;
1342 if (ExtType == ISD::SEXTLOAD)
1343 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1344 Result.getValueType(),
1345 Result, DAG.getValueType(SrcVT));
1346 else
1347 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1348 Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes.
1349 Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes.
1350 break;
1354 // Since loads produce two values, make sure to remember that we legalized
1355 // both of them.
1356 AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1357 AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1358 return Op.getResNo() ? Tmp2 : Tmp1;
1361 case ISD::STORE: {
1362 StoreSDNode *ST = cast<StoreSDNode>(Node);
1363 Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain.
1364 Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer.
1365 int SVOffset = ST->getSrcValueOffset();
1366 unsigned Alignment = ST->getAlignment();
1367 bool isVolatile = ST->isVolatile();
1368 bool isNonTemporal = ST->isNonTemporal();
1370 if (!ST->isTruncatingStore()) {
1371 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1372 Result = SDValue(OptStore, 0);
1373 break;
1377 Tmp3 = LegalizeOp(ST->getValue());
1378 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1379 Tmp1, Tmp3, Tmp2,
1380 ST->getOffset()),
1381 Result.getResNo());
1383 EVT VT = Tmp3.getValueType();
1384 switch (TLI.getOperationAction(ISD::STORE, VT)) {
1385 default: assert(0 && "This action is not supported yet!");
1386 case TargetLowering::Legal:
1387 // If this is an unaligned store and the target doesn't support it,
1388 // expand it.
1389 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1390 const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1391 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1392 if (ST->getAlignment() < ABIAlignment)
1393 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1394 DAG, TLI);
1396 break;
1397 case TargetLowering::Custom:
1398 Tmp1 = TLI.LowerOperation(Result, DAG);
1399 if (Tmp1.getNode()) Result = Tmp1;
1400 break;
1401 case TargetLowering::Promote:
1402 assert(VT.isVector() && "Unknown legal promote case!");
1403 Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1404 TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1405 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1406 ST->getSrcValue(), SVOffset, isVolatile,
1407 isNonTemporal, Alignment);
1408 break;
1410 break;
1412 } else {
1413 Tmp3 = LegalizeOp(ST->getValue());
1415 EVT StVT = ST->getMemoryVT();
1416 unsigned StWidth = StVT.getSizeInBits();
1418 if (StWidth != StVT.getStoreSizeInBits()) {
1419 // Promote to a byte-sized store with upper bits zero if not
1420 // storing an integral number of bytes. For example, promote
1421 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1422 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1423 StVT.getStoreSizeInBits());
1424 Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1425 Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1426 SVOffset, NVT, isVolatile, isNonTemporal,
1427 Alignment);
1428 } else if (StWidth & (StWidth - 1)) {
1429 // If not storing a power-of-2 number of bits, expand as two stores.
1430 assert(!StVT.isVector() && "Unsupported truncstore!");
1431 unsigned RoundWidth = 1 << Log2_32(StWidth);
1432 assert(RoundWidth < StWidth);
1433 unsigned ExtraWidth = StWidth - RoundWidth;
1434 assert(ExtraWidth < RoundWidth);
1435 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1436 "Store size not an integral number of bytes!");
1437 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1438 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1439 SDValue Lo, Hi;
1440 unsigned IncrementSize;
1442 if (TLI.isLittleEndian()) {
1443 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1444 // Store the bottom RoundWidth bits.
1445 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1446 SVOffset, RoundVT,
1447 isVolatile, isNonTemporal, Alignment);
1449 // Store the remaining ExtraWidth bits.
1450 IncrementSize = RoundWidth / 8;
1451 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1452 DAG.getIntPtrConstant(IncrementSize));
1453 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1454 DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1455 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1456 SVOffset + IncrementSize, ExtraVT, isVolatile,
1457 isNonTemporal,
1458 MinAlign(Alignment, IncrementSize));
1459 } else {
1460 // Big endian - avoid unaligned stores.
1461 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1462 // Store the top RoundWidth bits.
1463 Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1464 DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1465 Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1466 SVOffset, RoundVT, isVolatile, isNonTemporal,
1467 Alignment);
1469 // Store the remaining ExtraWidth bits.
1470 IncrementSize = RoundWidth / 8;
1471 Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1472 DAG.getIntPtrConstant(IncrementSize));
1473 Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1474 SVOffset + IncrementSize, ExtraVT, isVolatile,
1475 isNonTemporal,
1476 MinAlign(Alignment, IncrementSize));
1479 // The order of the stores doesn't matter.
1480 Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1481 } else {
1482 if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1483 Tmp2 != ST->getBasePtr())
1484 Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1485 Tmp1, Tmp3, Tmp2,
1486 ST->getOffset()),
1487 Result.getResNo());
1489 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1490 default: assert(0 && "This action is not supported yet!");
1491 case TargetLowering::Legal:
1492 // If this is an unaligned store and the target doesn't support it,
1493 // expand it.
1494 if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1495 const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1496 unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1497 if (ST->getAlignment() < ABIAlignment)
1498 Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1499 DAG, TLI);
1501 break;
1502 case TargetLowering::Custom:
1503 Result = TLI.LowerOperation(Result, DAG);
1504 break;
1505 case Expand:
1506 // TRUNCSTORE:i16 i32 -> STORE i16
1507 assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1508 Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1509 Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1510 SVOffset, isVolatile, isNonTemporal,
1511 Alignment);
1512 break;
1516 break;
1519 assert(Result.getValueType() == Op.getValueType() &&
1520 "Bad legalization!");
1522 // Make sure that the generated code is itself legal.
1523 if (Result != Op)
1524 Result = LegalizeOp(Result);
1526 // Note that LegalizeOp may be reentered even from single-use nodes, which
1527 // means that we always must cache transformed nodes.
1528 AddLegalizedOperand(Op, Result);
1529 return Result;
1532 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1533 SDValue Vec = Op.getOperand(0);
1534 SDValue Idx = Op.getOperand(1);
1535 DebugLoc dl = Op.getDebugLoc();
1536 // Store the value to a temporary stack slot, then LOAD the returned part.
1537 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1538 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0,
1539 false, false, 0);
1541 // Add the offset to the index.
1542 unsigned EltSize =
1543 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1544 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1545 DAG.getConstant(EltSize, Idx.getValueType()));
1547 if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1548 Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1549 else
1550 Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1552 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1554 if (Op.getValueType().isVector())
1555 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0,
1556 false, false, 0);
1557 else
1558 return DAG.getExtLoad(ISD::EXTLOAD, Op.getValueType(), dl, Ch, StackPtr,
1559 NULL, 0, Vec.getValueType().getVectorElementType(),
1560 false, false, 0);
1563 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1564 // We can't handle this case efficiently. Allocate a sufficiently
1565 // aligned object on the stack, store each element into it, then load
1566 // the result as a vector.
1567 // Create the stack frame object.
1568 EVT VT = Node->getValueType(0);
1569 EVT EltVT = VT.getVectorElementType();
1570 DebugLoc dl = Node->getDebugLoc();
1571 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1572 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1573 const Value *SV = PseudoSourceValue::getFixedStack(FI);
1575 // Emit a store of each element to the stack slot.
1576 SmallVector<SDValue, 8> Stores;
1577 unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1578 // Store (in the right endianness) the elements to memory.
1579 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1580 // Ignore undef elements.
1581 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1583 unsigned Offset = TypeByteSize*i;
1585 SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1586 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1588 // If the destination vector element type is narrower than the source
1589 // element type, only store the bits necessary.
1590 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1591 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1592 Node->getOperand(i), Idx, SV, Offset,
1593 EltVT, false, false, 0));
1594 } else
1595 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1596 Node->getOperand(i), Idx, SV, Offset,
1597 false, false, 0));
1600 SDValue StoreChain;
1601 if (!Stores.empty()) // Not all undef elements?
1602 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1603 &Stores[0], Stores.size());
1604 else
1605 StoreChain = DAG.getEntryNode();
1607 // Result is a load from the stack slot.
1608 return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0, false, false, 0);
1611 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1612 DebugLoc dl = Node->getDebugLoc();
1613 SDValue Tmp1 = Node->getOperand(0);
1614 SDValue Tmp2 = Node->getOperand(1);
1616 // Get the sign bit of the RHS. First obtain a value that has the same
1617 // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1618 SDValue SignBit;
1619 EVT FloatVT = Tmp2.getValueType();
1620 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1621 if (isTypeLegal(IVT)) {
1622 // Convert to an integer with the same sign bit.
1623 SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1624 } else {
1625 // Store the float to memory, then load the sign part out as an integer.
1626 MVT LoadTy = TLI.getPointerTy();
1627 // First create a temporary that is aligned for both the load and store.
1628 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1629 // Then store the float to it.
1630 SDValue Ch =
1631 DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, NULL, 0,
1632 false, false, 0);
1633 if (TLI.isBigEndian()) {
1634 assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1635 // Load out a legal integer with the same sign bit as the float.
1636 SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, NULL, 0, false, false, 0);
1637 } else { // Little endian
1638 SDValue LoadPtr = StackPtr;
1639 // The float may be wider than the integer we are going to load. Advance
1640 // the pointer so that the loaded integer will contain the sign bit.
1641 unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1642 unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1643 LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1644 LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1645 // Load a legal integer containing the sign bit.
1646 SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, NULL, 0, false, false, 0);
1647 // Move the sign bit to the top bit of the loaded integer.
1648 unsigned BitShift = LoadTy.getSizeInBits() -
1649 (FloatVT.getSizeInBits() - 8 * ByteOffset);
1650 assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1651 if (BitShift)
1652 SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1653 DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1656 // Now get the sign bit proper, by seeing whether the value is negative.
1657 SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1658 SignBit, DAG.getConstant(0, SignBit.getValueType()),
1659 ISD::SETLT);
1660 // Get the absolute value of the result.
1661 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1662 // Select between the nabs and abs value based on the sign bit of
1663 // the input.
1664 return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1665 DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1666 AbsVal);
1669 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1670 SmallVectorImpl<SDValue> &Results) {
1671 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1672 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1673 " not tell us which reg is the stack pointer!");
1674 DebugLoc dl = Node->getDebugLoc();
1675 EVT VT = Node->getValueType(0);
1676 SDValue Tmp1 = SDValue(Node, 0);
1677 SDValue Tmp2 = SDValue(Node, 1);
1678 SDValue Tmp3 = Node->getOperand(2);
1679 SDValue Chain = Tmp1.getOperand(0);
1681 // Chain the dynamic stack allocation so that it doesn't modify the stack
1682 // pointer when other instructions are using the stack.
1683 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1685 SDValue Size = Tmp2.getOperand(1);
1686 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1687 Chain = SP.getValue(1);
1688 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1689 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
1690 if (Align > StackAlign)
1691 SP = DAG.getNode(ISD::AND, dl, VT, SP,
1692 DAG.getConstant(-(uint64_t)Align, VT));
1693 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1694 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1696 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1697 DAG.getIntPtrConstant(0, true), SDValue());
1699 Results.push_back(Tmp1);
1700 Results.push_back(Tmp2);
1703 /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1704 /// condition code CC on the current target. This routine expands SETCC with
1705 /// illegal condition code into AND / OR of multiple SETCC values.
1706 void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1707 SDValue &LHS, SDValue &RHS,
1708 SDValue &CC,
1709 DebugLoc dl) {
1710 EVT OpVT = LHS.getValueType();
1711 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1712 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1713 default: assert(0 && "Unknown condition code action!");
1714 case TargetLowering::Legal:
1715 // Nothing to do.
1716 break;
1717 case TargetLowering::Expand: {
1718 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1719 unsigned Opc = 0;
1720 switch (CCCode) {
1721 default: assert(0 && "Don't know how to expand this condition!");
1722 case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break;
1723 case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break;
1724 case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1725 case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break;
1726 case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1727 case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break;
1728 case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1729 case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1730 case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1731 case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1732 case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1733 case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
1734 // FIXME: Implement more expansions.
1737 SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1738 SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1739 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1740 RHS = SDValue();
1741 CC = SDValue();
1742 break;
1747 /// EmitStackConvert - Emit a store/load combination to the stack. This stores
1748 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1749 /// a load from the stack slot to DestVT, extending it if needed.
1750 /// The resultant code need not be legal.
1751 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1752 EVT SlotVT,
1753 EVT DestVT,
1754 DebugLoc dl) {
1755 // Create the stack frame object.
1756 unsigned SrcAlign =
1757 TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1758 getTypeForEVT(*DAG.getContext()));
1759 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1761 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1762 int SPFI = StackPtrFI->getIndex();
1763 const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1765 unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1766 unsigned SlotSize = SlotVT.getSizeInBits();
1767 unsigned DestSize = DestVT.getSizeInBits();
1768 const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1769 unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1771 // Emit a store to the stack slot. Use a truncstore if the input value is
1772 // later than DestVT.
1773 SDValue Store;
1775 if (SrcSize > SlotSize)
1776 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1777 SV, 0, SlotVT, false, false, SrcAlign);
1778 else {
1779 assert(SrcSize == SlotSize && "Invalid store");
1780 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1781 SV, 0, false, false, SrcAlign);
1784 // Result is a load from the stack slot.
1785 if (SlotSize == DestSize)
1786 return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, false,
1787 DestAlign);
1789 assert(SlotSize < DestSize && "Unknown extension!");
1790 return DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl, Store, FIPtr, SV, 0, SlotVT,
1791 false, false, DestAlign);
1794 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1795 DebugLoc dl = Node->getDebugLoc();
1796 // Create a vector sized/aligned stack slot, store the value to element #0,
1797 // then load the whole vector back out.
1798 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1800 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1801 int SPFI = StackPtrFI->getIndex();
1803 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1804 StackPtr,
1805 PseudoSourceValue::getFixedStack(SPFI), 0,
1806 Node->getValueType(0).getVectorElementType(),
1807 false, false, 0);
1808 return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1809 PseudoSourceValue::getFixedStack(SPFI), 0,
1810 false, false, 0);
1814 /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1815 /// support the operation, but do support the resultant vector type.
1816 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1817 unsigned NumElems = Node->getNumOperands();
1818 SDValue Value1, Value2;
1819 DebugLoc dl = Node->getDebugLoc();
1820 EVT VT = Node->getValueType(0);
1821 EVT OpVT = Node->getOperand(0).getValueType();
1822 EVT EltVT = VT.getVectorElementType();
1824 // If the only non-undef value is the low element, turn this into a
1825 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1826 bool isOnlyLowElement = true;
1827 bool MoreThanTwoValues = false;
1828 bool isConstant = true;
1829 for (unsigned i = 0; i < NumElems; ++i) {
1830 SDValue V = Node->getOperand(i);
1831 if (V.getOpcode() == ISD::UNDEF)
1832 continue;
1833 if (i > 0)
1834 isOnlyLowElement = false;
1835 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1836 isConstant = false;
1838 if (!Value1.getNode()) {
1839 Value1 = V;
1840 } else if (!Value2.getNode()) {
1841 if (V != Value1)
1842 Value2 = V;
1843 } else if (V != Value1 && V != Value2) {
1844 MoreThanTwoValues = true;
1848 if (!Value1.getNode())
1849 return DAG.getUNDEF(VT);
1851 if (isOnlyLowElement)
1852 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1854 // If all elements are constants, create a load from the constant pool.
1855 if (isConstant) {
1856 std::vector<Constant*> CV;
1857 for (unsigned i = 0, e = NumElems; i != e; ++i) {
1858 if (ConstantFPSDNode *V =
1859 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1860 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1861 } else if (ConstantSDNode *V =
1862 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1863 if (OpVT==EltVT)
1864 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1865 else {
1866 // If OpVT and EltVT don't match, EltVT is not legal and the
1867 // element values have been promoted/truncated earlier. Undo this;
1868 // we don't want a v16i8 to become a v16i32 for example.
1869 const ConstantInt *CI = V->getConstantIntValue();
1870 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1871 CI->getZExtValue()));
1873 } else {
1874 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1875 const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1876 CV.push_back(UndefValue::get(OpNTy));
1879 Constant *CP = ConstantVector::get(CV);
1880 SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1881 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1882 return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1883 PseudoSourceValue::getConstantPool(), 0,
1884 false, false, Alignment);
1887 if (!MoreThanTwoValues) {
1888 SmallVector<int, 8> ShuffleVec(NumElems, -1);
1889 for (unsigned i = 0; i < NumElems; ++i) {
1890 SDValue V = Node->getOperand(i);
1891 if (V.getOpcode() == ISD::UNDEF)
1892 continue;
1893 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1895 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1896 // Get the splatted value into the low element of a vector register.
1897 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1898 SDValue Vec2;
1899 if (Value2.getNode())
1900 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1901 else
1902 Vec2 = DAG.getUNDEF(VT);
1904 // Return shuffle(LowValVec, undef, <0,0,0,0>)
1905 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1909 // Otherwise, we can't handle this case efficiently.
1910 return ExpandVectorBuildThroughStack(Node);
1913 // ExpandLibCall - Expand a node into a call to a libcall. If the result value
1914 // does not fit into a register, return the lo part and set the hi part to the
1915 // by-reg argument. If it does fit into a single register, return the result
1916 // and leave the Hi part unset.
1917 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1918 bool isSigned) {
1919 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1920 // The input chain to this libcall is the entry node of the function.
1921 // Legalizing the call will automatically add the previous call to the
1922 // dependence.
1923 SDValue InChain = DAG.getEntryNode();
1925 TargetLowering::ArgListTy Args;
1926 TargetLowering::ArgListEntry Entry;
1927 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1928 EVT ArgVT = Node->getOperand(i).getValueType();
1929 const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1930 Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1931 Entry.isSExt = isSigned;
1932 Entry.isZExt = !isSigned;
1933 Args.push_back(Entry);
1935 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1936 TLI.getPointerTy());
1938 // Splice the libcall in wherever FindInputOutputChains tells us to.
1939 const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1940 std::pair<SDValue, SDValue> CallInfo =
1941 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1942 0, TLI.getLibcallCallingConv(LC), false,
1943 /*isReturnValueUsed=*/true,
1944 Callee, Args, DAG, Node->getDebugLoc());
1946 // Legalize the call sequence, starting with the chain. This will advance
1947 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1948 // was added by LowerCallTo (guaranteeing proper serialization of calls).
1949 LegalizeOp(CallInfo.second);
1950 return CallInfo.first;
1953 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1954 // ExpandLibCall except that the first operand is the in-chain.
1955 std::pair<SDValue, SDValue>
1956 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1957 SDNode *Node,
1958 bool isSigned) {
1959 assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1960 SDValue InChain = Node->getOperand(0);
1962 TargetLowering::ArgListTy Args;
1963 TargetLowering::ArgListEntry Entry;
1964 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1965 EVT ArgVT = Node->getOperand(i).getValueType();
1966 const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1967 Entry.Node = Node->getOperand(i);
1968 Entry.Ty = ArgTy;
1969 Entry.isSExt = isSigned;
1970 Entry.isZExt = !isSigned;
1971 Args.push_back(Entry);
1973 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1974 TLI.getPointerTy());
1976 // Splice the libcall in wherever FindInputOutputChains tells us to.
1977 const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1978 std::pair<SDValue, SDValue> CallInfo =
1979 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1980 0, TLI.getLibcallCallingConv(LC), false,
1981 /*isReturnValueUsed=*/true,
1982 Callee, Args, DAG, Node->getDebugLoc());
1984 // Legalize the call sequence, starting with the chain. This will advance
1985 // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1986 // was added by LowerCallTo (guaranteeing proper serialization of calls).
1987 LegalizeOp(CallInfo.second);
1988 return CallInfo;
1991 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1992 RTLIB::Libcall Call_F32,
1993 RTLIB::Libcall Call_F64,
1994 RTLIB::Libcall Call_F80,
1995 RTLIB::Libcall Call_PPCF128) {
1996 RTLIB::Libcall LC;
1997 switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1998 default: assert(0 && "Unexpected request for libcall!");
1999 case MVT::f32: LC = Call_F32; break;
2000 case MVT::f64: LC = Call_F64; break;
2001 case MVT::f80: LC = Call_F80; break;
2002 case MVT::ppcf128: LC = Call_PPCF128; break;
2004 return ExpandLibCall(LC, Node, false);
2007 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2008 RTLIB::Libcall Call_I8,
2009 RTLIB::Libcall Call_I16,
2010 RTLIB::Libcall Call_I32,
2011 RTLIB::Libcall Call_I64,
2012 RTLIB::Libcall Call_I128) {
2013 RTLIB::Libcall LC;
2014 switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2015 default: assert(0 && "Unexpected request for libcall!");
2016 case MVT::i8: LC = Call_I8; break;
2017 case MVT::i16: LC = Call_I16; break;
2018 case MVT::i32: LC = Call_I32; break;
2019 case MVT::i64: LC = Call_I64; break;
2020 case MVT::i128: LC = Call_I128; break;
2022 return ExpandLibCall(LC, Node, isSigned);
2025 /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2026 /// INT_TO_FP operation of the specified operand when the target requests that
2027 /// we expand it. At this point, we know that the result and operand types are
2028 /// legal for the target.
2029 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2030 SDValue Op0,
2031 EVT DestVT,
2032 DebugLoc dl) {
2033 if (Op0.getValueType() == MVT::i32) {
2034 // simple 32-bit [signed|unsigned] integer to float/double expansion
2036 // Get the stack frame index of a 8 byte buffer.
2037 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2039 // word offset constant for Hi/Lo address computation
2040 SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2041 // set up Hi and Lo (into buffer) address based on endian
2042 SDValue Hi = StackSlot;
2043 SDValue Lo = DAG.getNode(ISD::ADD, dl,
2044 TLI.getPointerTy(), StackSlot, WordOff);
2045 if (TLI.isLittleEndian())
2046 std::swap(Hi, Lo);
2048 // if signed map to unsigned space
2049 SDValue Op0Mapped;
2050 if (isSigned) {
2051 // constant used to invert sign bit (signed to unsigned mapping)
2052 SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2053 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2054 } else {
2055 Op0Mapped = Op0;
2057 // store the lo of the constructed double - based on integer input
2058 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2059 Op0Mapped, Lo, NULL, 0,
2060 false, false, 0);
2061 // initial hi portion of constructed double
2062 SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2063 // store the hi of the constructed double - biased exponent
2064 SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0,
2065 false, false, 0);
2066 // load the constructed double
2067 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0,
2068 false, false, 0);
2069 // FP constant to bias correct the final result
2070 SDValue Bias = DAG.getConstantFP(isSigned ?
2071 BitsToDouble(0x4330000080000000ULL) :
2072 BitsToDouble(0x4330000000000000ULL),
2073 MVT::f64);
2074 // subtract the bias
2075 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2076 // final result
2077 SDValue Result;
2078 // handle final rounding
2079 if (DestVT == MVT::f64) {
2080 // do nothing
2081 Result = Sub;
2082 } else if (DestVT.bitsLT(MVT::f64)) {
2083 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2084 DAG.getIntPtrConstant(0));
2085 } else if (DestVT.bitsGT(MVT::f64)) {
2086 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2088 return Result;
2090 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2091 // Code below here assumes !isSigned without checking again.
2093 // Implementation of unsigned i64 to f64 following the algorithm in
2094 // __floatundidf in compiler_rt. This implementation has the advantage
2095 // of performing rounding correctly, both in the default rounding mode
2096 // and in all alternate rounding modes.
2097 // TODO: Generalize this for use with other types.
2098 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2099 SDValue TwoP52 =
2100 DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2101 SDValue TwoP84PlusTwoP52 =
2102 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2103 SDValue TwoP84 =
2104 DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2106 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2107 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2108 DAG.getConstant(32, MVT::i64));
2109 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2110 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2111 SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2112 SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2113 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2114 TwoP84PlusTwoP52);
2115 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2118 // Implementation of unsigned i64 to f32. This implementation has the
2119 // advantage of performing rounding correctly.
2120 // TODO: Generalize this for use with other types.
2121 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2122 EVT SHVT = TLI.getShiftAmountTy();
2124 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2125 DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2126 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2127 DAG.getConstant(UINT64_C(0x800), MVT::i64));
2128 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2129 DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2130 SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2131 And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2132 SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2133 SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2134 Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2135 ISD::SETUGE);
2136 SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2138 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2139 DAG.getConstant(32, SHVT));
2140 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2141 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2142 SDValue TwoP32 =
2143 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2144 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2145 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2146 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2147 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2148 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2149 DAG.getIntPtrConstant(0));
2153 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2155 SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2156 Op0, DAG.getConstant(0, Op0.getValueType()),
2157 ISD::SETLT);
2158 SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2159 SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2160 SignSet, Four, Zero);
2162 // If the sign bit of the integer is set, the large number will be treated
2163 // as a negative number. To counteract this, the dynamic code adds an
2164 // offset depending on the data type.
2165 uint64_t FF;
2166 switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2167 default: assert(0 && "Unsupported integer type!");
2168 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2169 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2170 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2171 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2173 if (TLI.isLittleEndian()) FF <<= 32;
2174 Constant *FudgeFactor = ConstantInt::get(
2175 Type::getInt64Ty(*DAG.getContext()), FF);
2177 SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2178 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2179 CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2180 Alignment = std::min(Alignment, 4u);
2181 SDValue FudgeInReg;
2182 if (DestVT == MVT::f32)
2183 FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2184 PseudoSourceValue::getConstantPool(), 0,
2185 false, false, Alignment);
2186 else {
2187 FudgeInReg =
2188 LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl,
2189 DAG.getEntryNode(), CPIdx,
2190 PseudoSourceValue::getConstantPool(), 0,
2191 MVT::f32, false, false, Alignment));
2194 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2197 /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2198 /// *INT_TO_FP operation of the specified operand when the target requests that
2199 /// we promote it. At this point, we know that the result and operand types are
2200 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2201 /// operation that takes a larger input.
2202 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2203 EVT DestVT,
2204 bool isSigned,
2205 DebugLoc dl) {
2206 // First step, figure out the appropriate *INT_TO_FP operation to use.
2207 EVT NewInTy = LegalOp.getValueType();
2209 unsigned OpToUse = 0;
2211 // Scan for the appropriate larger type to use.
2212 while (1) {
2213 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2214 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2216 // If the target supports SINT_TO_FP of this type, use it.
2217 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2218 OpToUse = ISD::SINT_TO_FP;
2219 break;
2221 if (isSigned) continue;
2223 // If the target supports UINT_TO_FP of this type, use it.
2224 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2225 OpToUse = ISD::UINT_TO_FP;
2226 break;
2229 // Otherwise, try a larger type.
2232 // Okay, we found the operation and type to use. Zero extend our input to the
2233 // desired type then run the operation on it.
2234 return DAG.getNode(OpToUse, dl, DestVT,
2235 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2236 dl, NewInTy, LegalOp));
2239 /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2240 /// FP_TO_*INT operation of the specified operand when the target requests that
2241 /// we promote it. At this point, we know that the result and operand types are
2242 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2243 /// operation that returns a larger result.
2244 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2245 EVT DestVT,
2246 bool isSigned,
2247 DebugLoc dl) {
2248 // First step, figure out the appropriate FP_TO*INT operation to use.
2249 EVT NewOutTy = DestVT;
2251 unsigned OpToUse = 0;
2253 // Scan for the appropriate larger type to use.
2254 while (1) {
2255 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2256 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2258 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2259 OpToUse = ISD::FP_TO_SINT;
2260 break;
2263 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2264 OpToUse = ISD::FP_TO_UINT;
2265 break;
2268 // Otherwise, try a larger type.
2272 // Okay, we found the operation and type to use.
2273 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2275 // Truncate the result of the extended FP_TO_*INT operation to the desired
2276 // size.
2277 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2280 /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2282 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2283 EVT VT = Op.getValueType();
2284 EVT SHVT = TLI.getShiftAmountTy();
2285 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2286 switch (VT.getSimpleVT().SimpleTy) {
2287 default: assert(0 && "Unhandled Expand type in BSWAP!");
2288 case MVT::i16:
2289 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2290 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2291 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2292 case MVT::i32:
2293 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2294 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2295 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2296 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2297 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2298 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2299 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2300 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2301 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2302 case MVT::i64:
2303 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2304 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2305 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2306 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2307 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2308 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2309 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2310 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2311 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2312 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2313 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2314 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2315 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2316 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2317 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2318 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2319 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2320 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2321 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2322 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2323 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2327 /// ExpandBitCount - Expand the specified bitcount instruction into operations.
2329 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2330 DebugLoc dl) {
2331 switch (Opc) {
2332 default: assert(0 && "Cannot expand this yet!");
2333 case ISD::CTPOP: {
2334 static const uint64_t mask[6] = {
2335 0x5555555555555555ULL, 0x3333333333333333ULL,
2336 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2337 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2339 EVT VT = Op.getValueType();
2340 EVT ShVT = TLI.getShiftAmountTy();
2341 unsigned len = VT.getSizeInBits();
2342 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2343 //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2344 unsigned EltSize = VT.isVector() ?
2345 VT.getVectorElementType().getSizeInBits() : len;
2346 SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2347 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2348 Op = DAG.getNode(ISD::ADD, dl, VT,
2349 DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2350 DAG.getNode(ISD::AND, dl, VT,
2351 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2352 Tmp2));
2354 return Op;
2356 case ISD::CTLZ: {
2357 // for now, we do this:
2358 // x = x | (x >> 1);
2359 // x = x | (x >> 2);
2360 // ...
2361 // x = x | (x >>16);
2362 // x = x | (x >>32); // for 64-bit input
2363 // return popcount(~x);
2365 // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2366 EVT VT = Op.getValueType();
2367 EVT ShVT = TLI.getShiftAmountTy();
2368 unsigned len = VT.getSizeInBits();
2369 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2370 SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2371 Op = DAG.getNode(ISD::OR, dl, VT, Op,
2372 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2374 Op = DAG.getNOT(dl, Op, VT);
2375 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2377 case ISD::CTTZ: {
2378 // for now, we use: { return popcount(~x & (x - 1)); }
2379 // unless the target has ctlz but not ctpop, in which case we use:
2380 // { return 32 - nlz(~x & (x-1)); }
2381 // see also http://www.hackersdelight.org/HDcode/ntz.cc
2382 EVT VT = Op.getValueType();
2383 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2384 DAG.getNOT(dl, Op, VT),
2385 DAG.getNode(ISD::SUB, dl, VT, Op,
2386 DAG.getConstant(1, VT)));
2387 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2388 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2389 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2390 return DAG.getNode(ISD::SUB, dl, VT,
2391 DAG.getConstant(VT.getSizeInBits(), VT),
2392 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2393 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2398 std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2399 unsigned Opc = Node->getOpcode();
2400 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2401 RTLIB::Libcall LC;
2403 switch (Opc) {
2404 default:
2405 llvm_unreachable("Unhandled atomic intrinsic Expand!");
2406 break;
2407 case ISD::ATOMIC_SWAP:
2408 switch (VT.SimpleTy) {
2409 default: llvm_unreachable("Unexpected value type for atomic!");
2410 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2411 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2412 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2413 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2415 break;
2416 case ISD::ATOMIC_CMP_SWAP:
2417 switch (VT.SimpleTy) {
2418 default: llvm_unreachable("Unexpected value type for atomic!");
2419 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2420 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2421 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2422 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2424 break;
2425 case ISD::ATOMIC_LOAD_ADD:
2426 switch (VT.SimpleTy) {
2427 default: llvm_unreachable("Unexpected value type for atomic!");
2428 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2429 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2430 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2431 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2433 break;
2434 case ISD::ATOMIC_LOAD_SUB:
2435 switch (VT.SimpleTy) {
2436 default: llvm_unreachable("Unexpected value type for atomic!");
2437 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2438 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2439 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2440 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2442 break;
2443 case ISD::ATOMIC_LOAD_AND:
2444 switch (VT.SimpleTy) {
2445 default: llvm_unreachable("Unexpected value type for atomic!");
2446 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2447 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2448 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2449 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2451 break;
2452 case ISD::ATOMIC_LOAD_OR:
2453 switch (VT.SimpleTy) {
2454 default: llvm_unreachable("Unexpected value type for atomic!");
2455 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2456 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2457 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2458 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2460 break;
2461 case ISD::ATOMIC_LOAD_XOR:
2462 switch (VT.SimpleTy) {
2463 default: llvm_unreachable("Unexpected value type for atomic!");
2464 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2465 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2466 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2467 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2469 break;
2470 case ISD::ATOMIC_LOAD_NAND:
2471 switch (VT.SimpleTy) {
2472 default: llvm_unreachable("Unexpected value type for atomic!");
2473 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2474 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2475 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2476 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2478 break;
2481 return ExpandChainLibCall(LC, Node, false);
2484 void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2485 SmallVectorImpl<SDValue> &Results) {
2486 DebugLoc dl = Node->getDebugLoc();
2487 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2488 switch (Node->getOpcode()) {
2489 case ISD::CTPOP:
2490 case ISD::CTLZ:
2491 case ISD::CTTZ:
2492 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2493 Results.push_back(Tmp1);
2494 break;
2495 case ISD::BSWAP:
2496 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2497 break;
2498 case ISD::FRAMEADDR:
2499 case ISD::RETURNADDR:
2500 case ISD::FRAME_TO_ARGS_OFFSET:
2501 Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2502 break;
2503 case ISD::FLT_ROUNDS_:
2504 Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2505 break;
2506 case ISD::EH_RETURN:
2507 case ISD::EH_LABEL:
2508 case ISD::PREFETCH:
2509 case ISD::VAEND:
2510 case ISD::EH_SJLJ_LONGJMP:
2511 Results.push_back(Node->getOperand(0));
2512 break;
2513 case ISD::EH_SJLJ_SETJMP:
2514 Results.push_back(DAG.getConstant(0, MVT::i32));
2515 Results.push_back(Node->getOperand(0));
2516 break;
2517 case ISD::MEMBARRIER: {
2518 // If the target didn't lower this, lower it to '__sync_synchronize()' call
2519 TargetLowering::ArgListTy Args;
2520 std::pair<SDValue, SDValue> CallResult =
2521 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2522 false, false, false, false, 0, CallingConv::C, false,
2523 /*isReturnValueUsed=*/true,
2524 DAG.getExternalSymbol("__sync_synchronize",
2525 TLI.getPointerTy()),
2526 Args, DAG, dl);
2527 Results.push_back(CallResult.second);
2528 break;
2530 // By default, atomic intrinsics are marked Legal and lowered. Targets
2531 // which don't support them directly, however, may want libcalls, in which
2532 // case they mark them Expand, and we get here.
2533 // FIXME: Unimplemented for now. Add libcalls.
2534 case ISD::ATOMIC_SWAP:
2535 case ISD::ATOMIC_LOAD_ADD:
2536 case ISD::ATOMIC_LOAD_SUB:
2537 case ISD::ATOMIC_LOAD_AND:
2538 case ISD::ATOMIC_LOAD_OR:
2539 case ISD::ATOMIC_LOAD_XOR:
2540 case ISD::ATOMIC_LOAD_NAND:
2541 case ISD::ATOMIC_LOAD_MIN:
2542 case ISD::ATOMIC_LOAD_MAX:
2543 case ISD::ATOMIC_LOAD_UMIN:
2544 case ISD::ATOMIC_LOAD_UMAX:
2545 case ISD::ATOMIC_CMP_SWAP: {
2546 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2547 Results.push_back(Tmp.first);
2548 Results.push_back(Tmp.second);
2549 break;
2551 case ISD::DYNAMIC_STACKALLOC:
2552 ExpandDYNAMIC_STACKALLOC(Node, Results);
2553 break;
2554 case ISD::MERGE_VALUES:
2555 for (unsigned i = 0; i < Node->getNumValues(); i++)
2556 Results.push_back(Node->getOperand(i));
2557 break;
2558 case ISD::UNDEF: {
2559 EVT VT = Node->getValueType(0);
2560 if (VT.isInteger())
2561 Results.push_back(DAG.getConstant(0, VT));
2562 else {
2563 assert(VT.isFloatingPoint() && "Unknown value type!");
2564 Results.push_back(DAG.getConstantFP(0, VT));
2566 break;
2568 case ISD::TRAP: {
2569 // If this operation is not supported, lower it to 'abort()' call
2570 TargetLowering::ArgListTy Args;
2571 std::pair<SDValue, SDValue> CallResult =
2572 TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2573 false, false, false, false, 0, CallingConv::C, false,
2574 /*isReturnValueUsed=*/true,
2575 DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2576 Args, DAG, dl);
2577 Results.push_back(CallResult.second);
2578 break;
2580 case ISD::FP_ROUND:
2581 case ISD::BIT_CONVERT:
2582 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2583 Node->getValueType(0), dl);
2584 Results.push_back(Tmp1);
2585 break;
2586 case ISD::FP_EXTEND:
2587 Tmp1 = EmitStackConvert(Node->getOperand(0),
2588 Node->getOperand(0).getValueType(),
2589 Node->getValueType(0), dl);
2590 Results.push_back(Tmp1);
2591 break;
2592 case ISD::SIGN_EXTEND_INREG: {
2593 // NOTE: we could fall back on load/store here too for targets without
2594 // SAR. However, it is doubtful that any exist.
2595 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2596 EVT VT = Node->getValueType(0);
2597 EVT ShiftAmountTy = TLI.getShiftAmountTy();
2598 if (VT.isVector())
2599 ShiftAmountTy = VT;
2600 unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2601 ExtraVT.getScalarType().getSizeInBits();
2602 SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2603 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2604 Node->getOperand(0), ShiftCst);
2605 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2606 Results.push_back(Tmp1);
2607 break;
2609 case ISD::FP_ROUND_INREG: {
2610 // The only way we can lower this is to turn it into a TRUNCSTORE,
2611 // EXTLOAD pair, targetting a temporary location (a stack slot).
2613 // NOTE: there is a choice here between constantly creating new stack
2614 // slots and always reusing the same one. We currently always create
2615 // new ones, as reuse may inhibit scheduling.
2616 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2617 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2618 Node->getValueType(0), dl);
2619 Results.push_back(Tmp1);
2620 break;
2622 case ISD::SINT_TO_FP:
2623 case ISD::UINT_TO_FP:
2624 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2625 Node->getOperand(0), Node->getValueType(0), dl);
2626 Results.push_back(Tmp1);
2627 break;
2628 case ISD::FP_TO_UINT: {
2629 SDValue True, False;
2630 EVT VT = Node->getOperand(0).getValueType();
2631 EVT NVT = Node->getValueType(0);
2632 const uint64_t zero[] = {0, 0};
2633 APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2634 APInt x = APInt::getSignBit(NVT.getSizeInBits());
2635 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2636 Tmp1 = DAG.getConstantFP(apf, VT);
2637 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2638 Node->getOperand(0),
2639 Tmp1, ISD::SETLT);
2640 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2641 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2642 DAG.getNode(ISD::FSUB, dl, VT,
2643 Node->getOperand(0), Tmp1));
2644 False = DAG.getNode(ISD::XOR, dl, NVT, False,
2645 DAG.getConstant(x, NVT));
2646 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2647 Results.push_back(Tmp1);
2648 break;
2650 case ISD::VAARG: {
2651 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2652 EVT VT = Node->getValueType(0);
2653 Tmp1 = Node->getOperand(0);
2654 Tmp2 = Node->getOperand(1);
2655 unsigned Align = Node->getConstantOperandVal(3);
2657 SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0,
2658 false, false, 0);
2659 SDValue VAList = VAListLoad;
2661 if (Align > TLI.getMinStackArgumentAlignment()) {
2662 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2664 VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2665 DAG.getConstant(Align - 1,
2666 TLI.getPointerTy()));
2668 VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2669 DAG.getConstant(-Align,
2670 TLI.getPointerTy()));
2673 // Increment the pointer, VAList, to the next vaarg
2674 Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2675 DAG.getConstant(TLI.getTargetData()->
2676 getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2677 TLI.getPointerTy()));
2678 // Store the incremented VAList to the legalized pointer
2679 Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2, V, 0,
2680 false, false, 0);
2681 // Load the actual argument out of the pointer VAList
2682 Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0,
2683 false, false, 0));
2684 Results.push_back(Results[0].getValue(1));
2685 break;
2687 case ISD::VACOPY: {
2688 // This defaults to loading a pointer from the input and storing it to the
2689 // output, returning the chain.
2690 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2691 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2692 Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2693 Node->getOperand(2), VS, 0, false, false, 0);
2694 Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0,
2695 false, false, 0);
2696 Results.push_back(Tmp1);
2697 break;
2699 case ISD::EXTRACT_VECTOR_ELT:
2700 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2701 // This must be an access of the only element. Return it.
2702 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2703 Node->getOperand(0));
2704 else
2705 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2706 Results.push_back(Tmp1);
2707 break;
2708 case ISD::EXTRACT_SUBVECTOR:
2709 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2710 break;
2711 case ISD::CONCAT_VECTORS: {
2712 Results.push_back(ExpandVectorBuildThroughStack(Node));
2713 break;
2715 case ISD::SCALAR_TO_VECTOR:
2716 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2717 break;
2718 case ISD::INSERT_VECTOR_ELT:
2719 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2720 Node->getOperand(1),
2721 Node->getOperand(2), dl));
2722 break;
2723 case ISD::VECTOR_SHUFFLE: {
2724 SmallVector<int, 8> Mask;
2725 cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2727 EVT VT = Node->getValueType(0);
2728 EVT EltVT = VT.getVectorElementType();
2729 if (getTypeAction(EltVT) == Promote)
2730 EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2731 unsigned NumElems = VT.getVectorNumElements();
2732 SmallVector<SDValue, 8> Ops;
2733 for (unsigned i = 0; i != NumElems; ++i) {
2734 if (Mask[i] < 0) {
2735 Ops.push_back(DAG.getUNDEF(EltVT));
2736 continue;
2738 unsigned Idx = Mask[i];
2739 if (Idx < NumElems)
2740 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2741 Node->getOperand(0),
2742 DAG.getIntPtrConstant(Idx)));
2743 else
2744 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2745 Node->getOperand(1),
2746 DAG.getIntPtrConstant(Idx - NumElems)));
2748 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2749 Results.push_back(Tmp1);
2750 break;
2752 case ISD::EXTRACT_ELEMENT: {
2753 EVT OpTy = Node->getOperand(0).getValueType();
2754 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2755 // 1 -> Hi
2756 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2757 DAG.getConstant(OpTy.getSizeInBits()/2,
2758 TLI.getShiftAmountTy()));
2759 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2760 } else {
2761 // 0 -> Lo
2762 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2763 Node->getOperand(0));
2765 Results.push_back(Tmp1);
2766 break;
2768 case ISD::STACKSAVE:
2769 // Expand to CopyFromReg if the target set
2770 // StackPointerRegisterToSaveRestore.
2771 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2772 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2773 Node->getValueType(0)));
2774 Results.push_back(Results[0].getValue(1));
2775 } else {
2776 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2777 Results.push_back(Node->getOperand(0));
2779 break;
2780 case ISD::STACKRESTORE:
2781 // Expand to CopyToReg if the target set
2782 // StackPointerRegisterToSaveRestore.
2783 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2784 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2785 Node->getOperand(1)));
2786 } else {
2787 Results.push_back(Node->getOperand(0));
2789 break;
2790 case ISD::FCOPYSIGN:
2791 Results.push_back(ExpandFCOPYSIGN(Node));
2792 break;
2793 case ISD::FNEG:
2794 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
2795 Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2796 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2797 Node->getOperand(0));
2798 Results.push_back(Tmp1);
2799 break;
2800 case ISD::FABS: {
2801 // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2802 EVT VT = Node->getValueType(0);
2803 Tmp1 = Node->getOperand(0);
2804 Tmp2 = DAG.getConstantFP(0.0, VT);
2805 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2806 Tmp1, Tmp2, ISD::SETUGT);
2807 Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2808 Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2809 Results.push_back(Tmp1);
2810 break;
2812 case ISD::FSQRT:
2813 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2814 RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2815 break;
2816 case ISD::FSIN:
2817 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2818 RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2819 break;
2820 case ISD::FCOS:
2821 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2822 RTLIB::COS_F80, RTLIB::COS_PPCF128));
2823 break;
2824 case ISD::FLOG:
2825 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2826 RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2827 break;
2828 case ISD::FLOG2:
2829 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2830 RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2831 break;
2832 case ISD::FLOG10:
2833 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2834 RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2835 break;
2836 case ISD::FEXP:
2837 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2838 RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2839 break;
2840 case ISD::FEXP2:
2841 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2842 RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2843 break;
2844 case ISD::FTRUNC:
2845 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2846 RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2847 break;
2848 case ISD::FFLOOR:
2849 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2850 RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2851 break;
2852 case ISD::FCEIL:
2853 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2854 RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2855 break;
2856 case ISD::FRINT:
2857 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2858 RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2859 break;
2860 case ISD::FNEARBYINT:
2861 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2862 RTLIB::NEARBYINT_F64,
2863 RTLIB::NEARBYINT_F80,
2864 RTLIB::NEARBYINT_PPCF128));
2865 break;
2866 case ISD::FPOWI:
2867 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2868 RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2869 break;
2870 case ISD::FPOW:
2871 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2872 RTLIB::POW_F80, RTLIB::POW_PPCF128));
2873 break;
2874 case ISD::FDIV:
2875 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2876 RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2877 break;
2878 case ISD::FREM:
2879 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2880 RTLIB::REM_F80, RTLIB::REM_PPCF128));
2881 break;
2882 case ISD::FP16_TO_FP32:
2883 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2884 break;
2885 case ISD::FP32_TO_FP16:
2886 Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2887 break;
2888 case ISD::ConstantFP: {
2889 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2890 // Check to see if this FP immediate is already legal.
2891 // If this is a legal constant, turn it into a TargetConstantFP node.
2892 if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2893 Results.push_back(SDValue(Node, 0));
2894 else
2895 Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2896 break;
2898 case ISD::EHSELECTION: {
2899 unsigned Reg = TLI.getExceptionSelectorRegister();
2900 assert(Reg && "Can't expand to unknown register!");
2901 Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2902 Node->getValueType(0)));
2903 Results.push_back(Results[0].getValue(1));
2904 break;
2906 case ISD::EXCEPTIONADDR: {
2907 unsigned Reg = TLI.getExceptionAddressRegister();
2908 assert(Reg && "Can't expand to unknown register!");
2909 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2910 Node->getValueType(0)));
2911 Results.push_back(Results[0].getValue(1));
2912 break;
2914 case ISD::SUB: {
2915 EVT VT = Node->getValueType(0);
2916 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2917 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2918 "Don't know how to expand this subtraction!");
2919 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2920 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2921 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2922 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2923 break;
2925 case ISD::UREM:
2926 case ISD::SREM: {
2927 EVT VT = Node->getValueType(0);
2928 SDVTList VTs = DAG.getVTList(VT, VT);
2929 bool isSigned = Node->getOpcode() == ISD::SREM;
2930 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2931 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2932 Tmp2 = Node->getOperand(0);
2933 Tmp3 = Node->getOperand(1);
2934 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2935 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2936 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2937 // X % Y -> X-X/Y*Y
2938 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2939 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2940 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2941 } else if (isSigned) {
2942 Tmp1 = ExpandIntLibCall(Node, true,
2943 RTLIB::SREM_I8,
2944 RTLIB::SREM_I16, RTLIB::SREM_I32,
2945 RTLIB::SREM_I64, RTLIB::SREM_I128);
2946 } else {
2947 Tmp1 = ExpandIntLibCall(Node, false,
2948 RTLIB::UREM_I8,
2949 RTLIB::UREM_I16, RTLIB::UREM_I32,
2950 RTLIB::UREM_I64, RTLIB::UREM_I128);
2952 Results.push_back(Tmp1);
2953 break;
2955 case ISD::UDIV:
2956 case ISD::SDIV: {
2957 bool isSigned = Node->getOpcode() == ISD::SDIV;
2958 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2959 EVT VT = Node->getValueType(0);
2960 SDVTList VTs = DAG.getVTList(VT, VT);
2961 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2962 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2963 Node->getOperand(1));
2964 else if (isSigned)
2965 Tmp1 = ExpandIntLibCall(Node, true,
2966 RTLIB::SDIV_I8,
2967 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2968 RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2969 else
2970 Tmp1 = ExpandIntLibCall(Node, false,
2971 RTLIB::UDIV_I8,
2972 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2973 RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2974 Results.push_back(Tmp1);
2975 break;
2977 case ISD::MULHU:
2978 case ISD::MULHS: {
2979 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2980 ISD::SMUL_LOHI;
2981 EVT VT = Node->getValueType(0);
2982 SDVTList VTs = DAG.getVTList(VT, VT);
2983 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2984 "If this wasn't legal, it shouldn't have been created!");
2985 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2986 Node->getOperand(1));
2987 Results.push_back(Tmp1.getValue(1));
2988 break;
2990 case ISD::MUL: {
2991 EVT VT = Node->getValueType(0);
2992 SDVTList VTs = DAG.getVTList(VT, VT);
2993 // See if multiply or divide can be lowered using two-result operations.
2994 // We just need the low half of the multiply; try both the signed
2995 // and unsigned forms. If the target supports both SMUL_LOHI and
2996 // UMUL_LOHI, form a preference by checking which forms of plain
2997 // MULH it supports.
2998 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2999 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3000 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3001 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3002 unsigned OpToUse = 0;
3003 if (HasSMUL_LOHI && !HasMULHS) {
3004 OpToUse = ISD::SMUL_LOHI;
3005 } else if (HasUMUL_LOHI && !HasMULHU) {
3006 OpToUse = ISD::UMUL_LOHI;
3007 } else if (HasSMUL_LOHI) {
3008 OpToUse = ISD::SMUL_LOHI;
3009 } else if (HasUMUL_LOHI) {
3010 OpToUse = ISD::UMUL_LOHI;
3012 if (OpToUse) {
3013 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3014 Node->getOperand(1)));
3015 break;
3017 Tmp1 = ExpandIntLibCall(Node, false,
3018 RTLIB::MUL_I8,
3019 RTLIB::MUL_I16, RTLIB::MUL_I32,
3020 RTLIB::MUL_I64, RTLIB::MUL_I128);
3021 Results.push_back(Tmp1);
3022 break;
3024 case ISD::SADDO:
3025 case ISD::SSUBO: {
3026 SDValue LHS = Node->getOperand(0);
3027 SDValue RHS = Node->getOperand(1);
3028 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3029 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3030 LHS, RHS);
3031 Results.push_back(Sum);
3032 EVT OType = Node->getValueType(1);
3034 SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3036 // LHSSign -> LHS >= 0
3037 // RHSSign -> RHS >= 0
3038 // SumSign -> Sum >= 0
3040 // Add:
3041 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3042 // Sub:
3043 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3045 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3046 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3047 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3048 Node->getOpcode() == ISD::SADDO ?
3049 ISD::SETEQ : ISD::SETNE);
3051 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3052 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3054 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3055 Results.push_back(Cmp);
3056 break;
3058 case ISD::UADDO:
3059 case ISD::USUBO: {
3060 SDValue LHS = Node->getOperand(0);
3061 SDValue RHS = Node->getOperand(1);
3062 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3063 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3064 LHS, RHS);
3065 Results.push_back(Sum);
3066 Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3067 Node->getOpcode () == ISD::UADDO ?
3068 ISD::SETULT : ISD::SETUGT));
3069 break;
3071 case ISD::UMULO:
3072 case ISD::SMULO: {
3073 EVT VT = Node->getValueType(0);
3074 SDValue LHS = Node->getOperand(0);
3075 SDValue RHS = Node->getOperand(1);
3076 SDValue BottomHalf;
3077 SDValue TopHalf;
3078 static const unsigned Ops[2][3] =
3079 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3080 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3081 bool isSigned = Node->getOpcode() == ISD::SMULO;
3082 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3083 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3084 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3085 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3086 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3087 RHS);
3088 TopHalf = BottomHalf.getValue(1);
3089 } else {
3090 // FIXME: We should be able to fall back to a libcall with an illegal
3091 // type in some cases.
3092 // Also, we can fall back to a division in some cases, but that's a big
3093 // performance hit in the general case.
3094 assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3095 VT.getSizeInBits() * 2)) &&
3096 "Don't know how to expand this operation yet!");
3097 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3098 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3099 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3100 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3101 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3102 DAG.getIntPtrConstant(0));
3103 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3104 DAG.getIntPtrConstant(1));
3106 if (isSigned) {
3107 Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
3108 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3109 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3110 ISD::SETNE);
3111 } else {
3112 TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3113 DAG.getConstant(0, VT), ISD::SETNE);
3115 Results.push_back(BottomHalf);
3116 Results.push_back(TopHalf);
3117 break;
3119 case ISD::BUILD_PAIR: {
3120 EVT PairTy = Node->getValueType(0);
3121 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3122 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3123 Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3124 DAG.getConstant(PairTy.getSizeInBits()/2,
3125 TLI.getShiftAmountTy()));
3126 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3127 break;
3129 case ISD::SELECT:
3130 Tmp1 = Node->getOperand(0);
3131 Tmp2 = Node->getOperand(1);
3132 Tmp3 = Node->getOperand(2);
3133 if (Tmp1.getOpcode() == ISD::SETCC) {
3134 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3135 Tmp2, Tmp3,
3136 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3137 } else {
3138 Tmp1 = DAG.getSelectCC(dl, Tmp1,
3139 DAG.getConstant(0, Tmp1.getValueType()),
3140 Tmp2, Tmp3, ISD::SETNE);
3142 Results.push_back(Tmp1);
3143 break;
3144 case ISD::BR_JT: {
3145 SDValue Chain = Node->getOperand(0);
3146 SDValue Table = Node->getOperand(1);
3147 SDValue Index = Node->getOperand(2);
3149 EVT PTy = TLI.getPointerTy();
3151 const TargetData &TD = *TLI.getTargetData();
3152 unsigned EntrySize =
3153 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3155 Index = DAG.getNode(ISD::MUL, dl, PTy,
3156 Index, DAG.getConstant(EntrySize, PTy));
3157 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3159 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3160 SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, PTy, dl, Chain, Addr,
3161 PseudoSourceValue::getJumpTable(), 0, MemVT,
3162 false, false, 0);
3163 Addr = LD;
3164 if (TM.getRelocationModel() == Reloc::PIC_) {
3165 // For PIC, the sequence is:
3166 // BRIND(load(Jumptable + index) + RelocBase)
3167 // RelocBase can be JumpTable, GOT or some sort of global base.
3168 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3169 TLI.getPICJumpTableRelocBase(Table, DAG));
3171 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3172 Results.push_back(Tmp1);
3173 break;
3175 case ISD::BRCOND:
3176 // Expand brcond's setcc into its constituent parts and create a BR_CC
3177 // Node.
3178 Tmp1 = Node->getOperand(0);
3179 Tmp2 = Node->getOperand(1);
3180 if (Tmp2.getOpcode() == ISD::SETCC) {
3181 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3182 Tmp1, Tmp2.getOperand(2),
3183 Tmp2.getOperand(0), Tmp2.getOperand(1),
3184 Node->getOperand(2));
3185 } else {
3186 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3187 DAG.getCondCode(ISD::SETNE), Tmp2,
3188 DAG.getConstant(0, Tmp2.getValueType()),
3189 Node->getOperand(2));
3191 Results.push_back(Tmp1);
3192 break;
3193 case ISD::SETCC: {
3194 Tmp1 = Node->getOperand(0);
3195 Tmp2 = Node->getOperand(1);
3196 Tmp3 = Node->getOperand(2);
3197 LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3199 // If we expanded the SETCC into an AND/OR, return the new node
3200 if (Tmp2.getNode() == 0) {
3201 Results.push_back(Tmp1);
3202 break;
3205 // Otherwise, SETCC for the given comparison type must be completely
3206 // illegal; expand it into a SELECT_CC.
3207 EVT VT = Node->getValueType(0);
3208 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3209 DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3210 Results.push_back(Tmp1);
3211 break;
3213 case ISD::SELECT_CC: {
3214 Tmp1 = Node->getOperand(0); // LHS
3215 Tmp2 = Node->getOperand(1); // RHS
3216 Tmp3 = Node->getOperand(2); // True
3217 Tmp4 = Node->getOperand(3); // False
3218 SDValue CC = Node->getOperand(4);
3220 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3221 Tmp1, Tmp2, CC, dl);
3223 assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3224 Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3225 CC = DAG.getCondCode(ISD::SETNE);
3226 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3227 Tmp3, Tmp4, CC);
3228 Results.push_back(Tmp1);
3229 break;
3231 case ISD::BR_CC: {
3232 Tmp1 = Node->getOperand(0); // Chain
3233 Tmp2 = Node->getOperand(2); // LHS
3234 Tmp3 = Node->getOperand(3); // RHS
3235 Tmp4 = Node->getOperand(1); // CC
3237 LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3238 Tmp2, Tmp3, Tmp4, dl);
3239 LastCALLSEQ_END = DAG.getEntryNode();
3241 assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3242 Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3243 Tmp4 = DAG.getCondCode(ISD::SETNE);
3244 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3245 Tmp3, Node->getOperand(4));
3246 Results.push_back(Tmp1);
3247 break;
3249 case ISD::GLOBAL_OFFSET_TABLE:
3250 case ISD::GlobalAddress:
3251 case ISD::GlobalTLSAddress:
3252 case ISD::ExternalSymbol:
3253 case ISD::ConstantPool:
3254 case ISD::JumpTable:
3255 case ISD::INTRINSIC_W_CHAIN:
3256 case ISD::INTRINSIC_WO_CHAIN:
3257 case ISD::INTRINSIC_VOID:
3258 // FIXME: Custom lowering for these operations shouldn't return null!
3259 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3260 Results.push_back(SDValue(Node, i));
3261 break;
3264 void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3265 SmallVectorImpl<SDValue> &Results) {
3266 EVT OVT = Node->getValueType(0);
3267 if (Node->getOpcode() == ISD::UINT_TO_FP ||
3268 Node->getOpcode() == ISD::SINT_TO_FP ||
3269 Node->getOpcode() == ISD::SETCC) {
3270 OVT = Node->getOperand(0).getValueType();
3272 EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3273 DebugLoc dl = Node->getDebugLoc();
3274 SDValue Tmp1, Tmp2, Tmp3;
3275 switch (Node->getOpcode()) {
3276 case ISD::CTTZ:
3277 case ISD::CTLZ:
3278 case ISD::CTPOP:
3279 // Zero extend the argument.
3280 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3281 // Perform the larger operation.
3282 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3283 if (Node->getOpcode() == ISD::CTTZ) {
3284 //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3285 Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3286 Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3287 ISD::SETEQ);
3288 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3289 DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3290 } else if (Node->getOpcode() == ISD::CTLZ) {
3291 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3292 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3293 DAG.getConstant(NVT.getSizeInBits() -
3294 OVT.getSizeInBits(), NVT));
3296 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3297 break;
3298 case ISD::BSWAP: {
3299 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3300 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3301 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3302 Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3303 DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3304 Results.push_back(Tmp1);
3305 break;
3307 case ISD::FP_TO_UINT:
3308 case ISD::FP_TO_SINT:
3309 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3310 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3311 Results.push_back(Tmp1);
3312 break;
3313 case ISD::UINT_TO_FP:
3314 case ISD::SINT_TO_FP:
3315 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3316 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3317 Results.push_back(Tmp1);
3318 break;
3319 case ISD::AND:
3320 case ISD::OR:
3321 case ISD::XOR: {
3322 unsigned ExtOp, TruncOp;
3323 if (OVT.isVector()) {
3324 ExtOp = ISD::BIT_CONVERT;
3325 TruncOp = ISD::BIT_CONVERT;
3326 } else {
3327 assert(OVT.isInteger() && "Cannot promote logic operation");
3328 ExtOp = ISD::ANY_EXTEND;
3329 TruncOp = ISD::TRUNCATE;
3331 // Promote each of the values to the new type.
3332 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3333 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3334 // Perform the larger operation, then convert back
3335 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3336 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3337 break;
3339 case ISD::SELECT: {
3340 unsigned ExtOp, TruncOp;
3341 if (Node->getValueType(0).isVector()) {
3342 ExtOp = ISD::BIT_CONVERT;
3343 TruncOp = ISD::BIT_CONVERT;
3344 } else if (Node->getValueType(0).isInteger()) {
3345 ExtOp = ISD::ANY_EXTEND;
3346 TruncOp = ISD::TRUNCATE;
3347 } else {
3348 ExtOp = ISD::FP_EXTEND;
3349 TruncOp = ISD::FP_ROUND;
3351 Tmp1 = Node->getOperand(0);
3352 // Promote each of the values to the new type.
3353 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3354 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3355 // Perform the larger operation, then round down.
3356 Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3357 if (TruncOp != ISD::FP_ROUND)
3358 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3359 else
3360 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3361 DAG.getIntPtrConstant(0));
3362 Results.push_back(Tmp1);
3363 break;
3365 case ISD::VECTOR_SHUFFLE: {
3366 SmallVector<int, 8> Mask;
3367 cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3369 // Cast the two input vectors.
3370 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3371 Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3373 // Convert the shuffle mask to the right # elements.
3374 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3375 Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3376 Results.push_back(Tmp1);
3377 break;
3379 case ISD::SETCC: {
3380 unsigned ExtOp = ISD::FP_EXTEND;
3381 if (NVT.isInteger()) {
3382 ISD::CondCode CCCode =
3383 cast<CondCodeSDNode>(Node->getOperand(2))->get();
3384 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3386 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3387 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3388 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3389 Tmp1, Tmp2, Node->getOperand(2)));
3390 break;
3395 // SelectionDAG::Legalize - This is the entry point for the file.
3397 void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3398 /// run - This is the main entry point to this class.
3400 SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();