Silence some -Asserts uninitialized variable warnings.
[llvm.git] / lib / CodeGen / RegAllocPBQP.cpp
blob594618891de1c21b8ec5056bbd7672c86eb67774
1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 // architectures. In Proceedings of the Joint Conference on Languages,
27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28 // NY, USA, 139-148.
30 //===----------------------------------------------------------------------===//
32 #define DEBUG_TYPE "regalloc"
34 #include "PBQP/HeuristicSolver.h"
35 #include "PBQP/Graph.h"
36 #include "PBQP/Heuristics/Briggs.h"
37 #include "RenderMachineFunction.h"
38 #include "Splitter.h"
39 #include "VirtRegMap.h"
40 #include "VirtRegRewriter.h"
41 #include "llvm/CodeGen/CalcSpillWeights.h"
42 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
43 #include "llvm/CodeGen/LiveStackAnalysis.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/RegAllocRegistry.h"
48 #include "llvm/CodeGen/RegisterCoalescer.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Target/TargetInstrInfo.h"
52 #include "llvm/Target/TargetMachine.h"
53 #include <limits>
54 #include <map>
55 #include <memory>
56 #include <set>
57 #include <vector>
59 using namespace llvm;
61 static RegisterRegAlloc
62 registerPBQPRepAlloc("pbqp", "PBQP register allocator",
63 llvm::createPBQPRegisterAllocator);
65 static cl::opt<bool>
66 pbqpCoalescing("pbqp-coalescing",
67 cl::desc("Attempt coalescing during PBQP register allocation."),
68 cl::init(false), cl::Hidden);
70 static cl::opt<bool>
71 pbqpPreSplitting("pbqp-pre-splitting",
72 cl::desc("Pre-splite before PBQP register allocation."),
73 cl::init(false), cl::Hidden);
75 namespace {
77 ///
78 /// PBQP based allocators solve the register allocation problem by mapping
79 /// register allocation problems to Partitioned Boolean Quadratic
80 /// Programming problems.
81 class PBQPRegAlloc : public MachineFunctionPass {
82 public:
84 static char ID;
86 /// Construct a PBQP register allocator.
87 PBQPRegAlloc() : MachineFunctionPass(&ID) {}
89 /// Return the pass name.
90 virtual const char* getPassName() const {
91 return "PBQP Register Allocator";
94 /// PBQP analysis usage.
95 virtual void getAnalysisUsage(AnalysisUsage &au) const {
96 au.addRequired<SlotIndexes>();
97 au.addPreserved<SlotIndexes>();
98 au.addRequired<LiveIntervals>();
99 //au.addRequiredID(SplitCriticalEdgesID);
100 au.addRequired<RegisterCoalescer>();
101 au.addRequired<CalculateSpillWeights>();
102 au.addRequired<LiveStacks>();
103 au.addPreserved<LiveStacks>();
104 au.addRequired<MachineLoopInfo>();
105 au.addPreserved<MachineLoopInfo>();
106 if (pbqpPreSplitting)
107 au.addRequired<LoopSplitter>();
108 au.addRequired<VirtRegMap>();
109 au.addRequired<RenderMachineFunction>();
110 MachineFunctionPass::getAnalysisUsage(au);
113 /// Perform register allocation
114 virtual bool runOnMachineFunction(MachineFunction &MF);
116 private:
118 class LIOrdering {
119 public:
120 bool operator()(const LiveInterval *li1, const LiveInterval *li2) const {
121 return li1->reg < li2->reg;
125 typedef std::map<const LiveInterval*, unsigned, LIOrdering> LI2NodeMap;
126 typedef std::vector<const LiveInterval*> Node2LIMap;
127 typedef std::vector<unsigned> AllowedSet;
128 typedef std::vector<AllowedSet> AllowedSetMap;
129 typedef std::set<unsigned> RegSet;
130 typedef std::pair<unsigned, unsigned> RegPair;
131 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
133 typedef std::set<LiveInterval*, LIOrdering> LiveIntervalSet;
135 typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
137 MachineFunction *mf;
138 const TargetMachine *tm;
139 const TargetRegisterInfo *tri;
140 const TargetInstrInfo *tii;
141 const MachineLoopInfo *loopInfo;
142 MachineRegisterInfo *mri;
144 LiveIntervals *lis;
145 LiveStacks *lss;
146 VirtRegMap *vrm;
148 LI2NodeMap li2Node;
149 Node2LIMap node2LI;
150 AllowedSetMap allowedSets;
151 LiveIntervalSet vregIntervalsToAlloc,
152 emptyVRegIntervals;
153 NodeVector problemNodes;
156 /// Builds a PBQP cost vector.
157 template <typename RegContainer>
158 PBQP::Vector buildCostVector(unsigned vReg,
159 const RegContainer &allowed,
160 const CoalesceMap &cealesces,
161 PBQP::PBQPNum spillCost) const;
163 /// \brief Builds a PBQP interference matrix.
165 /// @return Either a pointer to a non-zero PBQP matrix representing the
166 /// allocation option costs, or a null pointer for a zero matrix.
168 /// Expects allowed sets for two interfering LiveIntervals. These allowed
169 /// sets should contain only allocable registers from the LiveInterval's
170 /// register class, with any interfering pre-colored registers removed.
171 template <typename RegContainer>
172 PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
173 const RegContainer &allowed2) const;
176 /// Expects allowed sets for two potentially coalescable LiveIntervals,
177 /// and an estimated benefit due to coalescing. The allowed sets should
178 /// contain only allocable registers from the LiveInterval's register
179 /// classes, with any interfering pre-colored registers removed.
180 template <typename RegContainer>
181 PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
182 const RegContainer &allowed2,
183 PBQP::PBQPNum cBenefit) const;
185 /// \brief Finds coalescing opportunities and returns them as a map.
187 /// Any entries in the map are guaranteed coalescable, even if their
188 /// corresponding live intervals overlap.
189 CoalesceMap findCoalesces();
191 /// \brief Finds the initial set of vreg intervals to allocate.
192 void findVRegIntervalsToAlloc();
194 /// \brief Constructs a PBQP problem representation of the register
195 /// allocation problem for this function.
197 /// @return a PBQP solver object for the register allocation problem.
198 PBQP::Graph constructPBQPProblem();
200 /// \brief Adds a stack interval if the given live interval has been
201 /// spilled. Used to support stack slot coloring.
202 void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
204 /// \brief Given a solved PBQP problem maps this solution back to a register
205 /// assignment.
206 bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
208 /// \brief Postprocessing before final spilling. Sets basic block "live in"
209 /// variables.
210 void finalizeAlloc() const;
214 char PBQPRegAlloc::ID = 0;
218 template <typename RegContainer>
219 PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
220 const RegContainer &allowed,
221 const CoalesceMap &coalesces,
222 PBQP::PBQPNum spillCost) const {
224 typedef typename RegContainer::const_iterator AllowedItr;
226 // Allocate vector. Additional element (0th) used for spill option
227 PBQP::Vector v(allowed.size() + 1, 0);
229 v[0] = spillCost;
231 // Iterate over the allowed registers inserting coalesce benefits if there
232 // are any.
233 unsigned ai = 0;
234 for (AllowedItr itr = allowed.begin(), end = allowed.end();
235 itr != end; ++itr, ++ai) {
237 unsigned pReg = *itr;
239 CoalesceMap::const_iterator cmItr =
240 coalesces.find(RegPair(vReg, pReg));
242 // No coalesce - on to the next preg.
243 if (cmItr == coalesces.end())
244 continue;
246 // We have a coalesce - insert the benefit.
247 v[ai + 1] = -cmItr->second;
250 return v;
253 template <typename RegContainer>
254 PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
255 const RegContainer &allowed1, const RegContainer &allowed2) const {
257 typedef typename RegContainer::const_iterator RegContainerIterator;
259 // Construct a PBQP matrix representing the cost of allocation options. The
260 // rows and columns correspond to the allocation options for the two live
261 // intervals. Elements will be infinite where corresponding registers alias,
262 // since we cannot allocate aliasing registers to interfering live intervals.
263 // All other elements (non-aliasing combinations) will have zero cost. Note
264 // that the spill option (element 0,0) has zero cost, since we can allocate
265 // both intervals to memory safely (the cost for each individual allocation
266 // to memory is accounted for by the cost vectors for each live interval).
267 PBQP::Matrix *m =
268 new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
270 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
271 // between interfering live ranges with non-overlapping register sets (e.g.
272 // non-overlapping reg classes, or disjoint sets of allowed regs within the
273 // same class). The term "overlapping" is used advisedly: sets which do not
274 // intersect, but contain registers which alias, will have non-zero matrices.
275 // We optimize zero matrices away to improve solver speed.
276 bool isZeroMatrix = true;
279 // Row index. Starts at 1, since the 0th row is for the spill option, which
280 // is always zero.
281 unsigned ri = 1;
283 // Iterate over allowed sets, insert infinities where required.
284 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
285 a1Itr != a1End; ++a1Itr) {
287 // Column index, starts at 1 as for row index.
288 unsigned ci = 1;
289 unsigned reg1 = *a1Itr;
291 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
292 a2Itr != a2End; ++a2Itr) {
294 unsigned reg2 = *a2Itr;
296 // If the row/column regs are identical or alias insert an infinity.
297 if (tri->regsOverlap(reg1, reg2)) {
298 (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
299 isZeroMatrix = false;
302 ++ci;
305 ++ri;
308 // If this turns out to be a zero matrix...
309 if (isZeroMatrix) {
310 // free it and return null.
311 delete m;
312 return 0;
315 // ...otherwise return the cost matrix.
316 return m;
319 template <typename RegContainer>
320 PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
321 const RegContainer &allowed1, const RegContainer &allowed2,
322 PBQP::PBQPNum cBenefit) const {
324 typedef typename RegContainer::const_iterator RegContainerIterator;
326 // Construct a PBQP Matrix representing the benefits of coalescing. As with
327 // interference matrices the rows and columns represent allowed registers
328 // for the LiveIntervals which are (potentially) to be coalesced. The amount
329 // -cBenefit will be placed in any element representing the same register
330 // for both intervals.
331 PBQP::Matrix *m =
332 new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
334 // Reset costs to zero.
335 m->reset(0);
337 // Assume the matrix is zero till proven otherwise. Zero matrices will be
338 // optimized away as in the interference case.
339 bool isZeroMatrix = true;
341 // Row index. Starts at 1, since the 0th row is for the spill option, which
342 // is always zero.
343 unsigned ri = 1;
345 // Iterate over the allowed sets, insert coalescing benefits where
346 // appropriate.
347 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
348 a1Itr != a1End; ++a1Itr) {
350 // Column index, starts at 1 as for row index.
351 unsigned ci = 1;
352 unsigned reg1 = *a1Itr;
354 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
355 a2Itr != a2End; ++a2Itr) {
357 // If the row and column represent the same register insert a beneficial
358 // cost to preference this allocation - it would allow us to eliminate a
359 // move instruction.
360 if (reg1 == *a2Itr) {
361 (*m)[ri][ci] = -cBenefit;
362 isZeroMatrix = false;
365 ++ci;
368 ++ri;
371 // If this turns out to be a zero matrix...
372 if (isZeroMatrix) {
373 // ...free it and return null.
374 delete m;
375 return 0;
378 return m;
381 PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
383 typedef MachineFunction::const_iterator MFIterator;
384 typedef MachineBasicBlock::const_iterator MBBIterator;
385 typedef LiveInterval::const_vni_iterator VNIIterator;
387 CoalesceMap coalescesFound;
389 // To find coalesces we need to iterate over the function looking for
390 // copy instructions.
391 for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
392 bbItr != bbEnd; ++bbItr) {
394 const MachineBasicBlock *mbb = &*bbItr;
396 for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
397 iItr != iEnd; ++iItr) {
399 const MachineInstr *instr = &*iItr;
401 // If this isn't a copy then continue to the next instruction.
402 if (!instr->isCopy())
403 continue;
405 unsigned srcReg = instr->getOperand(1).getReg();
406 unsigned dstReg = instr->getOperand(0).getReg();
408 // If the registers are already the same our job is nice and easy.
409 if (dstReg == srcReg)
410 continue;
412 bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
413 dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
415 // If both registers are physical then we can't coalesce.
416 if (srcRegIsPhysical && dstRegIsPhysical)
417 continue;
419 // If it's a copy that includes two virtual register but the source and
420 // destination classes differ then we can't coalesce.
421 if (!srcRegIsPhysical && !dstRegIsPhysical &&
422 mri->getRegClass(srcReg) != mri->getRegClass(dstReg))
423 continue;
425 // If one is physical and one is virtual, check that the physical is
426 // allocatable in the class of the virtual.
427 if (srcRegIsPhysical && !dstRegIsPhysical) {
428 const TargetRegisterClass *dstRegClass = mri->getRegClass(dstReg);
429 if (std::find(dstRegClass->allocation_order_begin(*mf),
430 dstRegClass->allocation_order_end(*mf), srcReg) ==
431 dstRegClass->allocation_order_end(*mf))
432 continue;
434 if (!srcRegIsPhysical && dstRegIsPhysical) {
435 const TargetRegisterClass *srcRegClass = mri->getRegClass(srcReg);
436 if (std::find(srcRegClass->allocation_order_begin(*mf),
437 srcRegClass->allocation_order_end(*mf), dstReg) ==
438 srcRegClass->allocation_order_end(*mf))
439 continue;
442 // If we've made it here we have a copy with compatible register classes.
443 // We can probably coalesce, but we need to consider overlap.
444 const LiveInterval *srcLI = &lis->getInterval(srcReg),
445 *dstLI = &lis->getInterval(dstReg);
447 if (srcLI->overlaps(*dstLI)) {
448 // Even in the case of an overlap we might still be able to coalesce,
449 // but we need to make sure that no definition of either range occurs
450 // while the other range is live.
452 // Otherwise start by assuming we're ok.
453 bool badDef = false;
455 // Test all defs of the source range.
456 for (VNIIterator
457 vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
458 vniItr != vniEnd; ++vniItr) {
460 // If we find a poorly defined def we err on the side of caution.
461 if (!(*vniItr)->def.isValid()) {
462 badDef = true;
463 break;
466 // If we find a def that kills the coalescing opportunity then
467 // record it and break from the loop.
468 if (dstLI->liveAt((*vniItr)->def)) {
469 badDef = true;
470 break;
474 // If we have a bad def give up, continue to the next instruction.
475 if (badDef)
476 continue;
478 // Otherwise test definitions of the destination range.
479 for (VNIIterator
480 vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
481 vniItr != vniEnd; ++vniItr) {
483 // We want to make sure we skip the copy instruction itself.
484 if ((*vniItr)->getCopy() == instr)
485 continue;
487 if (!(*vniItr)->def.isValid()) {
488 badDef = true;
489 break;
492 if (srcLI->liveAt((*vniItr)->def)) {
493 badDef = true;
494 break;
498 // As before a bad def we give up and continue to the next instr.
499 if (badDef)
500 continue;
503 // If we make it to here then either the ranges didn't overlap, or they
504 // did, but none of their definitions would prevent us from coalescing.
505 // We're good to go with the coalesce.
507 float cBenefit = std::pow(10.0f, (float)loopInfo->getLoopDepth(mbb)) / 5.0;
509 coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
510 coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
515 return coalescesFound;
518 void PBQPRegAlloc::findVRegIntervalsToAlloc() {
520 // Iterate over all live ranges.
521 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
522 itr != end; ++itr) {
524 // Ignore physical ones.
525 if (TargetRegisterInfo::isPhysicalRegister(itr->first))
526 continue;
528 LiveInterval *li = itr->second;
530 // If this live interval is non-empty we will use pbqp to allocate it.
531 // Empty intervals we allocate in a simple post-processing stage in
532 // finalizeAlloc.
533 if (!li->empty()) {
534 vregIntervalsToAlloc.insert(li);
536 else {
537 emptyVRegIntervals.insert(li);
542 PBQP::Graph PBQPRegAlloc::constructPBQPProblem() {
544 typedef std::vector<const LiveInterval*> LIVector;
545 typedef std::vector<unsigned> RegVector;
547 // This will store the physical intervals for easy reference.
548 LIVector physIntervals;
550 // Start by clearing the old node <-> live interval mappings & allowed sets
551 li2Node.clear();
552 node2LI.clear();
553 allowedSets.clear();
555 // Populate physIntervals, update preg use:
556 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
557 itr != end; ++itr) {
559 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
560 physIntervals.push_back(itr->second);
561 mri->setPhysRegUsed(itr->second->reg);
565 // Iterate over vreg intervals, construct live interval <-> node number
566 // mappings.
567 for (LiveIntervalSet::const_iterator
568 itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
569 itr != end; ++itr) {
570 const LiveInterval *li = *itr;
572 li2Node[li] = node2LI.size();
573 node2LI.push_back(li);
576 // Get the set of potential coalesces.
577 CoalesceMap coalesces;
579 if (pbqpCoalescing) {
580 coalesces = findCoalesces();
583 // Construct a PBQP solver for this problem
584 PBQP::Graph problem;
585 problemNodes.resize(vregIntervalsToAlloc.size());
587 // Resize allowedSets container appropriately.
588 allowedSets.resize(vregIntervalsToAlloc.size());
590 // Iterate over virtual register intervals to compute allowed sets...
591 for (unsigned node = 0; node < node2LI.size(); ++node) {
593 // Grab pointers to the interval and its register class.
594 const LiveInterval *li = node2LI[node];
595 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
597 // Start by assuming all allocable registers in the class are allowed...
598 RegVector liAllowed(liRC->allocation_order_begin(*mf),
599 liRC->allocation_order_end(*mf));
601 // Eliminate the physical registers which overlap with this range, along
602 // with all their aliases.
603 for (LIVector::iterator pItr = physIntervals.begin(),
604 pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
606 if (!li->overlaps(**pItr))
607 continue;
609 unsigned pReg = (*pItr)->reg;
611 // If we get here then the live intervals overlap, but we're still ok
612 // if they're coalescable.
613 if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
614 continue;
616 // If we get here then we have a genuine exclusion.
618 // Remove the overlapping reg...
619 RegVector::iterator eraseItr =
620 std::find(liAllowed.begin(), liAllowed.end(), pReg);
622 if (eraseItr != liAllowed.end())
623 liAllowed.erase(eraseItr);
625 const unsigned *aliasItr = tri->getAliasSet(pReg);
627 if (aliasItr != 0) {
628 // ...and its aliases.
629 for (; *aliasItr != 0; ++aliasItr) {
630 RegVector::iterator eraseItr =
631 std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
633 if (eraseItr != liAllowed.end()) {
634 liAllowed.erase(eraseItr);
640 // Copy the allowed set into a member vector for use when constructing cost
641 // vectors & matrices, and mapping PBQP solutions back to assignments.
642 allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
644 // Set the spill cost to the interval weight, or epsilon if the
645 // interval weight is zero
646 PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
647 li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
649 // Build a cost vector for this interval.
650 problemNodes[node] =
651 problem.addNode(
652 buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
657 // Now add the cost matrices...
658 for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
659 const LiveInterval *li = node2LI[node1];
661 // Test for live range overlaps and insert interference matrices.
662 for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
663 const LiveInterval *li2 = node2LI[node2];
665 CoalesceMap::const_iterator cmItr =
666 coalesces.find(RegPair(li->reg, li2->reg));
668 PBQP::Matrix *m = 0;
670 if (cmItr != coalesces.end()) {
671 m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
672 cmItr->second);
674 else if (li->overlaps(*li2)) {
675 m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
678 if (m != 0) {
679 problem.addEdge(problemNodes[node1],
680 problemNodes[node2],
681 *m);
683 delete m;
688 assert(problem.getNumNodes() == allowedSets.size());
690 std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
691 << problem.getNumEdges() << " edges.\n";
693 problem.printDot(std::cerr);
695 // We're done, PBQP problem constructed - return it.
696 return problem;
699 void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
700 MachineRegisterInfo* mri) {
701 int stackSlot = vrm->getStackSlot(spilled->reg);
703 if (stackSlot == VirtRegMap::NO_STACK_SLOT)
704 return;
706 const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
707 LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
709 VNInfo *vni;
710 if (stackInterval.getNumValNums() != 0)
711 vni = stackInterval.getValNumInfo(0);
712 else
713 vni = stackInterval.getNextValue(
714 SlotIndex(), 0, false, lss->getVNInfoAllocator());
716 LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
717 stackInterval.MergeRangesInAsValue(rhsInterval, vni);
720 bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
722 // Set to true if we have any spills
723 bool anotherRoundNeeded = false;
725 // Clear the existing allocation.
726 vrm->clearAllVirt();
728 // Iterate over the nodes mapping the PBQP solution to a register assignment.
729 for (unsigned node = 0; node < node2LI.size(); ++node) {
730 unsigned virtReg = node2LI[node]->reg,
731 allocSelection = solution.getSelection(problemNodes[node]);
734 // If the PBQP solution is non-zero it's a physical register...
735 if (allocSelection != 0) {
736 // Get the physical reg, subtracting 1 to account for the spill option.
737 unsigned physReg = allowedSets[node][allocSelection - 1];
739 DEBUG(dbgs() << "VREG " << virtReg << " -> "
740 << tri->getName(physReg) << "\n");
742 assert(physReg != 0);
744 // Add to the virt reg map and update the used phys regs.
745 vrm->assignVirt2Phys(virtReg, physReg);
747 // ...Otherwise it's a spill.
748 else {
750 // Make sure we ignore this virtual reg on the next round
751 // of allocation
752 vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
754 // Insert spill ranges for this live range
755 const LiveInterval *spillInterval = node2LI[node];
756 double oldSpillWeight = spillInterval->weight;
757 SmallVector<LiveInterval*, 8> spillIs;
758 std::vector<LiveInterval*> newSpills =
759 lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
760 addStackInterval(spillInterval, mri);
762 (void) oldSpillWeight;
763 DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: "
764 << oldSpillWeight << ", New vregs: ");
766 // Copy any newly inserted live intervals into the list of regs to
767 // allocate.
768 for (std::vector<LiveInterval*>::const_iterator
769 itr = newSpills.begin(), end = newSpills.end();
770 itr != end; ++itr) {
772 assert(!(*itr)->empty() && "Empty spill range.");
774 DEBUG(dbgs() << (*itr)->reg << " ");
776 vregIntervalsToAlloc.insert(*itr);
779 DEBUG(dbgs() << ")\n");
781 // We need another round if spill intervals were added.
782 anotherRoundNeeded |= !newSpills.empty();
786 return !anotherRoundNeeded;
789 void PBQPRegAlloc::finalizeAlloc() const {
790 typedef LiveIntervals::iterator LIIterator;
791 typedef LiveInterval::Ranges::const_iterator LRIterator;
793 // First allocate registers for the empty intervals.
794 for (LiveIntervalSet::const_iterator
795 itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
796 itr != end; ++itr) {
797 LiveInterval *li = *itr;
799 unsigned physReg = vrm->getRegAllocPref(li->reg);
801 if (physReg == 0) {
802 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
803 physReg = *liRC->allocation_order_begin(*mf);
806 vrm->assignVirt2Phys(li->reg, physReg);
809 // Finally iterate over the basic blocks to compute and set the live-in sets.
810 SmallVector<MachineBasicBlock*, 8> liveInMBBs;
811 MachineBasicBlock *entryMBB = &*mf->begin();
813 for (LIIterator liItr = lis->begin(), liEnd = lis->end();
814 liItr != liEnd; ++liItr) {
816 const LiveInterval *li = liItr->second;
817 unsigned reg = 0;
819 // Get the physical register for this interval
820 if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
821 reg = li->reg;
823 else if (vrm->isAssignedReg(li->reg)) {
824 reg = vrm->getPhys(li->reg);
826 else {
827 // Ranges which are assigned a stack slot only are ignored.
828 continue;
831 if (reg == 0) {
832 // Filter out zero regs - they're for intervals that were spilled.
833 continue;
836 // Iterate over the ranges of the current interval...
837 for (LRIterator lrItr = li->begin(), lrEnd = li->end();
838 lrItr != lrEnd; ++lrItr) {
840 // Find the set of basic blocks which this range is live into...
841 if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
842 // And add the physreg for this interval to their live-in sets.
843 for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
844 if (liveInMBBs[i] != entryMBB) {
845 if (!liveInMBBs[i]->isLiveIn(reg)) {
846 liveInMBBs[i]->addLiveIn(reg);
850 liveInMBBs.clear();
857 bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
859 mf = &MF;
860 tm = &mf->getTarget();
861 tri = tm->getRegisterInfo();
862 tii = tm->getInstrInfo();
863 mri = &mf->getRegInfo();
865 lis = &getAnalysis<LiveIntervals>();
866 lss = &getAnalysis<LiveStacks>();
867 loopInfo = &getAnalysis<MachineLoopInfo>();
868 RenderMachineFunction *rmf = &getAnalysis<RenderMachineFunction>();
870 vrm = &getAnalysis<VirtRegMap>();
873 DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");
875 // Allocator main loop:
877 // * Map current regalloc problem to a PBQP problem
878 // * Solve the PBQP problem
879 // * Map the solution back to a register allocation
880 // * Spill if necessary
882 // This process is continued till no more spills are generated.
884 // Find the vreg intervals in need of allocation.
885 findVRegIntervalsToAlloc();
887 // If there are non-empty intervals allocate them using pbqp.
888 if (!vregIntervalsToAlloc.empty()) {
890 bool pbqpAllocComplete = false;
891 unsigned round = 0;
893 while (!pbqpAllocComplete) {
894 DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
896 PBQP::Graph problem = constructPBQPProblem();
897 PBQP::Solution solution =
898 PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem);
900 pbqpAllocComplete = mapPBQPToRegAlloc(solution);
902 ++round;
906 // Finalise allocation, allocate empty ranges.
907 finalizeAlloc();
909 rmf->renderMachineFunction("After PBQP register allocation.", vrm);
911 vregIntervalsToAlloc.clear();
912 emptyVRegIntervals.clear();
913 li2Node.clear();
914 node2LI.clear();
915 allowedSets.clear();
916 problemNodes.clear();
918 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
920 // Run rewriter
921 std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
923 rewriter->runOnMachineFunction(*mf, *vrm, lis);
925 return true;
928 FunctionPass* llvm::createPBQPRegisterAllocator() {
929 return new PBQPRegAlloc();
933 #undef DEBUG_TYPE