Silence some -Asserts uninitialized variable warnings.
[llvm.git] / lib / CodeGen / CriticalAntiDepBreaker.cpp
blob98d4d413201815d174864e32ca8178c6ed47c8cd
1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CriticalAntiDepBreaker class, which
11 // implements register anti-dependence breaking along a blocks
12 // critical path during post-RA scheduler.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "post-RA-sched"
17 #include "CriticalAntiDepBreaker.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/Target/TargetMachine.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
29 CriticalAntiDepBreaker::
30 CriticalAntiDepBreaker(MachineFunction& MFi) :
31 AntiDepBreaker(), MF(MFi),
32 MRI(MF.getRegInfo()),
33 TII(MF.getTarget().getInstrInfo()),
34 TRI(MF.getTarget().getRegisterInfo()),
35 AllocatableSet(TRI->getAllocatableSet(MF)),
36 Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
37 KillIndices(TRI->getNumRegs(), 0),
38 DefIndices(TRI->getNumRegs(), 0) {}
40 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
43 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
44 const unsigned BBSize = BB->size();
45 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
46 // Clear out the register class data.
47 Classes[i] = static_cast<const TargetRegisterClass *>(0);
49 // Initialize the indices to indicate that no registers are live.
50 KillIndices[i] = ~0u;
51 DefIndices[i] = BBSize;
54 // Clear "do not change" set.
55 KeepRegs.clear();
57 bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
59 // Determine the live-out physregs for this block.
60 if (IsReturnBlock) {
61 // In a return block, examine the function live-out regs.
62 for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
63 E = MRI.liveout_end(); I != E; ++I) {
64 unsigned Reg = *I;
65 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
66 KillIndices[Reg] = BB->size();
67 DefIndices[Reg] = ~0u;
69 // Repeat, for all aliases.
70 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
71 unsigned AliasReg = *Alias;
72 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
73 KillIndices[AliasReg] = BB->size();
74 DefIndices[AliasReg] = ~0u;
79 // In a non-return block, examine the live-in regs of all successors.
80 // Note a return block can have successors if the return instruction is
81 // predicated.
82 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
83 SE = BB->succ_end(); SI != SE; ++SI)
84 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
85 E = (*SI)->livein_end(); I != E; ++I) {
86 unsigned Reg = *I;
87 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
88 KillIndices[Reg] = BB->size();
89 DefIndices[Reg] = ~0u;
91 // Repeat, for all aliases.
92 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
93 unsigned AliasReg = *Alias;
94 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
95 KillIndices[AliasReg] = BB->size();
96 DefIndices[AliasReg] = ~0u;
100 // Mark live-out callee-saved registers. In a return block this is
101 // all callee-saved registers. In non-return this is any
102 // callee-saved register that is not saved in the prolog.
103 const MachineFrameInfo *MFI = MF.getFrameInfo();
104 BitVector Pristine = MFI->getPristineRegs(BB);
105 for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
106 unsigned Reg = *I;
107 if (!IsReturnBlock && !Pristine.test(Reg)) continue;
108 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
109 KillIndices[Reg] = BB->size();
110 DefIndices[Reg] = ~0u;
112 // Repeat, for all aliases.
113 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
114 unsigned AliasReg = *Alias;
115 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
116 KillIndices[AliasReg] = BB->size();
117 DefIndices[AliasReg] = ~0u;
122 void CriticalAntiDepBreaker::FinishBlock() {
123 RegRefs.clear();
124 KeepRegs.clear();
127 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
128 unsigned InsertPosIndex) {
129 if (MI->isDebugValue())
130 return;
131 assert(Count < InsertPosIndex && "Instruction index out of expected range!");
133 // Any register which was defined within the previous scheduling region
134 // may have been rescheduled and its lifetime may overlap with registers
135 // in ways not reflected in our current liveness state. For each such
136 // register, adjust the liveness state to be conservatively correct.
137 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg)
138 if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
139 assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
141 // Mark this register to be non-renamable.
142 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
144 // Move the def index to the end of the previous region, to reflect
145 // that the def could theoretically have been scheduled at the end.
146 DefIndices[Reg] = InsertPosIndex;
149 PrescanInstruction(MI);
150 ScanInstruction(MI, Count);
153 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
154 /// critical path.
155 static const SDep *CriticalPathStep(const SUnit *SU) {
156 const SDep *Next = 0;
157 unsigned NextDepth = 0;
158 // Find the predecessor edge with the greatest depth.
159 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
160 P != PE; ++P) {
161 const SUnit *PredSU = P->getSUnit();
162 unsigned PredLatency = P->getLatency();
163 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
164 // In the case of a latency tie, prefer an anti-dependency edge over
165 // other types of edges.
166 if (NextDepth < PredTotalLatency ||
167 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
168 NextDepth = PredTotalLatency;
169 Next = &*P;
172 return Next;
175 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
176 // It's not safe to change register allocation for source operands of
177 // that have special allocation requirements. Also assume all registers
178 // used in a call must not be changed (ABI).
179 // FIXME: The issue with predicated instruction is more complex. We are being
180 // conservatively here because the kill markers cannot be trusted after
181 // if-conversion:
182 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
183 // ...
184 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
185 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
186 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
188 // The first R6 kill is not really a kill since it's killed by a predicated
189 // instruction which may not be executed. The second R6 def may or may not
190 // re-define R6 so it's not safe to change it since the last R6 use cannot be
191 // changed.
192 bool Special = MI->getDesc().isCall() ||
193 MI->getDesc().hasExtraSrcRegAllocReq() ||
194 TII->isPredicated(MI);
196 // Scan the register operands for this instruction and update
197 // Classes and RegRefs.
198 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
199 MachineOperand &MO = MI->getOperand(i);
200 if (!MO.isReg()) continue;
201 unsigned Reg = MO.getReg();
202 if (Reg == 0) continue;
203 const TargetRegisterClass *NewRC = 0;
205 if (i < MI->getDesc().getNumOperands())
206 NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
208 // For now, only allow the register to be changed if its register
209 // class is consistent across all uses.
210 if (!Classes[Reg] && NewRC)
211 Classes[Reg] = NewRC;
212 else if (!NewRC || Classes[Reg] != NewRC)
213 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
215 // Now check for aliases.
216 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
217 // If an alias of the reg is used during the live range, give up.
218 // Note that this allows us to skip checking if AntiDepReg
219 // overlaps with any of the aliases, among other things.
220 unsigned AliasReg = *Alias;
221 if (Classes[AliasReg]) {
222 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
223 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
227 // If we're still willing to consider this register, note the reference.
228 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
229 RegRefs.insert(std::make_pair(Reg, &MO));
231 if (MO.isUse() && Special) {
232 if (KeepRegs.insert(Reg)) {
233 for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
234 *Subreg; ++Subreg)
235 KeepRegs.insert(*Subreg);
241 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
242 unsigned Count) {
243 // Update liveness.
244 // Proceding upwards, registers that are defed but not used in this
245 // instruction are now dead.
247 if (!TII->isPredicated(MI)) {
248 // Predicated defs are modeled as read + write, i.e. similar to two
249 // address updates.
250 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
251 MachineOperand &MO = MI->getOperand(i);
252 if (!MO.isReg()) continue;
253 unsigned Reg = MO.getReg();
254 if (Reg == 0) continue;
255 if (!MO.isDef()) continue;
256 // Ignore two-addr defs.
257 if (MI->isRegTiedToUseOperand(i)) continue;
259 DefIndices[Reg] = Count;
260 KillIndices[Reg] = ~0u;
261 assert(((KillIndices[Reg] == ~0u) !=
262 (DefIndices[Reg] == ~0u)) &&
263 "Kill and Def maps aren't consistent for Reg!");
264 KeepRegs.erase(Reg);
265 Classes[Reg] = 0;
266 RegRefs.erase(Reg);
267 // Repeat, for all subregs.
268 for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
269 *Subreg; ++Subreg) {
270 unsigned SubregReg = *Subreg;
271 DefIndices[SubregReg] = Count;
272 KillIndices[SubregReg] = ~0u;
273 KeepRegs.erase(SubregReg);
274 Classes[SubregReg] = 0;
275 RegRefs.erase(SubregReg);
277 // Conservatively mark super-registers as unusable.
278 for (const unsigned *Super = TRI->getSuperRegisters(Reg);
279 *Super; ++Super) {
280 unsigned SuperReg = *Super;
281 Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
285 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
286 MachineOperand &MO = MI->getOperand(i);
287 if (!MO.isReg()) continue;
288 unsigned Reg = MO.getReg();
289 if (Reg == 0) continue;
290 if (!MO.isUse()) continue;
292 const TargetRegisterClass *NewRC = 0;
293 if (i < MI->getDesc().getNumOperands())
294 NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
296 // For now, only allow the register to be changed if its register
297 // class is consistent across all uses.
298 if (!Classes[Reg] && NewRC)
299 Classes[Reg] = NewRC;
300 else if (!NewRC || Classes[Reg] != NewRC)
301 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
303 RegRefs.insert(std::make_pair(Reg, &MO));
305 // It wasn't previously live but now it is, this is a kill.
306 if (KillIndices[Reg] == ~0u) {
307 KillIndices[Reg] = Count;
308 DefIndices[Reg] = ~0u;
309 assert(((KillIndices[Reg] == ~0u) !=
310 (DefIndices[Reg] == ~0u)) &&
311 "Kill and Def maps aren't consistent for Reg!");
313 // Repeat, for all aliases.
314 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
315 unsigned AliasReg = *Alias;
316 if (KillIndices[AliasReg] == ~0u) {
317 KillIndices[AliasReg] = Count;
318 DefIndices[AliasReg] = ~0u;
324 unsigned
325 CriticalAntiDepBreaker::findSuitableFreeRegister(MachineInstr *MI,
326 unsigned AntiDepReg,
327 unsigned LastNewReg,
328 const TargetRegisterClass *RC)
330 for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
331 RE = RC->allocation_order_end(MF); R != RE; ++R) {
332 unsigned NewReg = *R;
333 // Don't replace a register with itself.
334 if (NewReg == AntiDepReg) continue;
335 // Don't replace a register with one that was recently used to repair
336 // an anti-dependence with this AntiDepReg, because that would
337 // re-introduce that anti-dependence.
338 if (NewReg == LastNewReg) continue;
339 // If the instruction already has a def of the NewReg, it's not suitable.
340 // For example, Instruction with multiple definitions can result in this
341 // condition.
342 if (MI->modifiesRegister(NewReg, TRI)) continue;
343 // If NewReg is dead and NewReg's most recent def is not before
344 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
345 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
346 && "Kill and Def maps aren't consistent for AntiDepReg!");
347 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
348 && "Kill and Def maps aren't consistent for NewReg!");
349 if (KillIndices[NewReg] != ~0u ||
350 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
351 KillIndices[AntiDepReg] > DefIndices[NewReg])
352 continue;
353 return NewReg;
356 // No registers are free and available!
357 return 0;
360 unsigned CriticalAntiDepBreaker::
361 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
362 MachineBasicBlock::iterator Begin,
363 MachineBasicBlock::iterator End,
364 unsigned InsertPosIndex) {
365 // The code below assumes that there is at least one instruction,
366 // so just duck out immediately if the block is empty.
367 if (SUnits.empty()) return 0;
369 // Keep a map of the MachineInstr*'s back to the SUnit representing them.
370 // This is used for updating debug information.
371 DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
373 // Find the node at the bottom of the critical path.
374 const SUnit *Max = 0;
375 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
376 const SUnit *SU = &SUnits[i];
377 MISUnitMap[SU->getInstr()] = SU;
378 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
379 Max = SU;
382 #ifndef NDEBUG
384 DEBUG(dbgs() << "Critical path has total latency "
385 << (Max->getDepth() + Max->Latency) << "\n");
386 DEBUG(dbgs() << "Available regs:");
387 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
388 if (KillIndices[Reg] == ~0u)
389 DEBUG(dbgs() << " " << TRI->getName(Reg));
391 DEBUG(dbgs() << '\n');
393 #endif
395 // Track progress along the critical path through the SUnit graph as we walk
396 // the instructions.
397 const SUnit *CriticalPathSU = Max;
398 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
400 // Consider this pattern:
401 // A = ...
402 // ... = A
403 // A = ...
404 // ... = A
405 // A = ...
406 // ... = A
407 // A = ...
408 // ... = A
409 // There are three anti-dependencies here, and without special care,
410 // we'd break all of them using the same register:
411 // A = ...
412 // ... = A
413 // B = ...
414 // ... = B
415 // B = ...
416 // ... = B
417 // B = ...
418 // ... = B
419 // because at each anti-dependence, B is the first register that
420 // isn't A which is free. This re-introduces anti-dependencies
421 // at all but one of the original anti-dependencies that we were
422 // trying to break. To avoid this, keep track of the most recent
423 // register that each register was replaced with, avoid
424 // using it to repair an anti-dependence on the same register.
425 // This lets us produce this:
426 // A = ...
427 // ... = A
428 // B = ...
429 // ... = B
430 // C = ...
431 // ... = C
432 // B = ...
433 // ... = B
434 // This still has an anti-dependence on B, but at least it isn't on the
435 // original critical path.
437 // TODO: If we tracked more than one register here, we could potentially
438 // fix that remaining critical edge too. This is a little more involved,
439 // because unlike the most recent register, less recent registers should
440 // still be considered, though only if no other registers are available.
441 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
443 // Attempt to break anti-dependence edges on the critical path. Walk the
444 // instructions from the bottom up, tracking information about liveness
445 // as we go to help determine which registers are available.
446 unsigned Broken = 0;
447 unsigned Count = InsertPosIndex - 1;
448 for (MachineBasicBlock::iterator I = End, E = Begin;
449 I != E; --Count) {
450 MachineInstr *MI = --I;
451 if (MI->isDebugValue())
452 continue;
454 // Check if this instruction has a dependence on the critical path that
455 // is an anti-dependence that we may be able to break. If it is, set
456 // AntiDepReg to the non-zero register associated with the anti-dependence.
458 // We limit our attention to the critical path as a heuristic to avoid
459 // breaking anti-dependence edges that aren't going to significantly
460 // impact the overall schedule. There are a limited number of registers
461 // and we want to save them for the important edges.
463 // TODO: Instructions with multiple defs could have multiple
464 // anti-dependencies. The current code here only knows how to break one
465 // edge per instruction. Note that we'd have to be able to break all of
466 // the anti-dependencies in an instruction in order to be effective.
467 unsigned AntiDepReg = 0;
468 if (MI == CriticalPathMI) {
469 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
470 const SUnit *NextSU = Edge->getSUnit();
472 // Only consider anti-dependence edges.
473 if (Edge->getKind() == SDep::Anti) {
474 AntiDepReg = Edge->getReg();
475 assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
476 if (!AllocatableSet.test(AntiDepReg))
477 // Don't break anti-dependencies on non-allocatable registers.
478 AntiDepReg = 0;
479 else if (KeepRegs.count(AntiDepReg))
480 // Don't break anti-dependencies if an use down below requires
481 // this exact register.
482 AntiDepReg = 0;
483 else {
484 // If the SUnit has other dependencies on the SUnit that it
485 // anti-depends on, don't bother breaking the anti-dependency
486 // since those edges would prevent such units from being
487 // scheduled past each other regardless.
489 // Also, if there are dependencies on other SUnits with the
490 // same register as the anti-dependency, don't attempt to
491 // break it.
492 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
493 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
494 if (P->getSUnit() == NextSU ?
495 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
496 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
497 AntiDepReg = 0;
498 break;
502 CriticalPathSU = NextSU;
503 CriticalPathMI = CriticalPathSU->getInstr();
504 } else {
505 // We've reached the end of the critical path.
506 CriticalPathSU = 0;
507 CriticalPathMI = 0;
511 PrescanInstruction(MI);
513 // If MI's defs have a special allocation requirement, don't allow
514 // any def registers to be changed. Also assume all registers
515 // defined in a call must not be changed (ABI).
516 if (MI->getDesc().isCall() || MI->getDesc().hasExtraDefRegAllocReq() ||
517 TII->isPredicated(MI))
518 // If this instruction's defs have special allocation requirement, don't
519 // break this anti-dependency.
520 AntiDepReg = 0;
521 else if (AntiDepReg) {
522 // If this instruction has a use of AntiDepReg, breaking it
523 // is invalid.
524 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
525 MachineOperand &MO = MI->getOperand(i);
526 if (!MO.isReg()) continue;
527 unsigned Reg = MO.getReg();
528 if (Reg == 0) continue;
529 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
530 AntiDepReg = 0;
531 break;
536 // Determine AntiDepReg's register class, if it is live and is
537 // consistently used within a single class.
538 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
539 assert((AntiDepReg == 0 || RC != NULL) &&
540 "Register should be live if it's causing an anti-dependence!");
541 if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
542 AntiDepReg = 0;
544 // Look for a suitable register to use to break the anti-depenence.
546 // TODO: Instead of picking the first free register, consider which might
547 // be the best.
548 if (AntiDepReg != 0) {
549 if (unsigned NewReg = findSuitableFreeRegister(MI, AntiDepReg,
550 LastNewReg[AntiDepReg],
551 RC)) {
552 DEBUG(dbgs() << "Breaking anti-dependence edge on "
553 << TRI->getName(AntiDepReg)
554 << " with " << RegRefs.count(AntiDepReg) << " references"
555 << " using " << TRI->getName(NewReg) << "!\n");
557 // Update the references to the old register to refer to the new
558 // register.
559 std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
560 std::multimap<unsigned, MachineOperand *>::iterator>
561 Range = RegRefs.equal_range(AntiDepReg);
562 for (std::multimap<unsigned, MachineOperand *>::iterator
563 Q = Range.first, QE = Range.second; Q != QE; ++Q) {
564 Q->second->setReg(NewReg);
565 // If the SU for the instruction being updated has debug information
566 // related to the anti-dependency register, make sure to update that
567 // as well.
568 const SUnit *SU = MISUnitMap[Q->second->getParent()];
569 if (!SU) continue;
570 for (unsigned i = 0, e = SU->DbgInstrList.size() ; i < e ; ++i) {
571 MachineInstr *DI = SU->DbgInstrList[i];
572 assert (DI->getNumOperands()==3 && DI->getOperand(0).isReg() &&
573 DI->getOperand(0).getReg()
574 && "Non register dbg_value attached to SUnit!");
575 if (DI->getOperand(0).getReg() == AntiDepReg)
576 DI->getOperand(0).setReg(NewReg);
580 // We just went back in time and modified history; the
581 // liveness information for the anti-depenence reg is now
582 // inconsistent. Set the state as if it were dead.
583 Classes[NewReg] = Classes[AntiDepReg];
584 DefIndices[NewReg] = DefIndices[AntiDepReg];
585 KillIndices[NewReg] = KillIndices[AntiDepReg];
586 assert(((KillIndices[NewReg] == ~0u) !=
587 (DefIndices[NewReg] == ~0u)) &&
588 "Kill and Def maps aren't consistent for NewReg!");
590 Classes[AntiDepReg] = 0;
591 DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
592 KillIndices[AntiDepReg] = ~0u;
593 assert(((KillIndices[AntiDepReg] == ~0u) !=
594 (DefIndices[AntiDepReg] == ~0u)) &&
595 "Kill and Def maps aren't consistent for AntiDepReg!");
597 RegRefs.erase(AntiDepReg);
598 LastNewReg[AntiDepReg] = NewReg;
599 ++Broken;
603 ScanInstruction(MI, Count);
606 return Broken;