Move lowering of TLS_addr32 and TLS_addr64 to X86MCInstLower.
[llvm.git] / lib / Target / X86 / X86ISelLowering.cpp
blob6793b70dd57dde024b70beb3a0a21f4cfbceac8b
1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86ShuffleDecode.h"
20 #include "X86TargetMachine.h"
21 #include "X86TargetObjectFile.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/GlobalAlias.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/PseudoSourceValue.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCExpr.h"
41 #include "llvm/MC/MCSymbol.h"
42 #include "llvm/ADT/BitVector.h"
43 #include "llvm/ADT/SmallSet.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/StringExtras.h"
46 #include "llvm/ADT/VectorExtras.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/Dwarf.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 using namespace llvm;
54 using namespace dwarf;
56 STATISTIC(NumTailCalls, "Number of tail calls");
58 static cl::opt<bool>
59 DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
61 // Forward declarations.
62 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
63 SDValue V2);
65 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
67 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
69 if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
70 if (is64Bit) return new X8664_MachoTargetObjectFile();
71 return new TargetLoweringObjectFileMachO();
72 } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
73 if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
74 return new X8632_ELFTargetObjectFile(TM);
75 } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
76 return new TargetLoweringObjectFileCOFF();
78 llvm_unreachable("unknown subtarget type");
81 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
82 : TargetLowering(TM, createTLOF(TM)) {
83 Subtarget = &TM.getSubtarget<X86Subtarget>();
84 X86ScalarSSEf64 = Subtarget->hasSSE2();
85 X86ScalarSSEf32 = Subtarget->hasSSE1();
86 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
88 RegInfo = TM.getRegisterInfo();
89 TD = getTargetData();
91 // Set up the TargetLowering object.
93 // X86 is weird, it always uses i8 for shift amounts and setcc results.
94 setShiftAmountType(MVT::i8);
95 setBooleanContents(ZeroOrOneBooleanContent);
96 setSchedulingPreference(Sched::RegPressure);
97 setStackPointerRegisterToSaveRestore(X86StackPtr);
99 if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
100 // Setup Windows compiler runtime calls.
101 setLibcallName(RTLIB::SDIV_I64, "_alldiv");
102 setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
103 setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
104 setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
105 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
106 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
107 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
108 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
111 if (Subtarget->isTargetDarwin()) {
112 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
113 setUseUnderscoreSetJmp(false);
114 setUseUnderscoreLongJmp(false);
115 } else if (Subtarget->isTargetMingw()) {
116 // MS runtime is weird: it exports _setjmp, but longjmp!
117 setUseUnderscoreSetJmp(true);
118 setUseUnderscoreLongJmp(false);
119 } else {
120 setUseUnderscoreSetJmp(true);
121 setUseUnderscoreLongJmp(true);
124 // Set up the register classes.
125 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
126 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
127 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
128 if (Subtarget->is64Bit())
129 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
131 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
133 // We don't accept any truncstore of integer registers.
134 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
135 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
136 setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
137 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
138 setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
139 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
141 // SETOEQ and SETUNE require checking two conditions.
142 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
143 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
144 setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
145 setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
146 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
147 setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
149 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
150 // operation.
151 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
152 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
153 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
155 if (Subtarget->is64Bit()) {
156 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
157 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
158 } else if (!UseSoftFloat) {
159 // We have an algorithm for SSE2->double, and we turn this into a
160 // 64-bit FILD followed by conditional FADD for other targets.
161 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
162 // We have an algorithm for SSE2, and we turn this into a 64-bit
163 // FILD for other targets.
164 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
167 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
168 // this operation.
169 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
170 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
172 if (!UseSoftFloat) {
173 // SSE has no i16 to fp conversion, only i32
174 if (X86ScalarSSEf32) {
175 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
176 // f32 and f64 cases are Legal, f80 case is not
177 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
178 } else {
179 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
180 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
182 } else {
183 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
184 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
187 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
188 // are Legal, f80 is custom lowered.
189 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
190 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
192 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
193 // this operation.
194 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
195 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
197 if (X86ScalarSSEf32) {
198 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
199 // f32 and f64 cases are Legal, f80 case is not
200 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
201 } else {
202 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
203 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
206 // Handle FP_TO_UINT by promoting the destination to a larger signed
207 // conversion.
208 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
209 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
210 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
212 if (Subtarget->is64Bit()) {
213 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
214 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
215 } else if (!UseSoftFloat) {
216 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
217 // Expand FP_TO_UINT into a select.
218 // FIXME: We would like to use a Custom expander here eventually to do
219 // the optimal thing for SSE vs. the default expansion in the legalizer.
220 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
221 else
222 // With SSE3 we can use fisttpll to convert to a signed i64; without
223 // SSE, we're stuck with a fistpll.
224 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
227 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
228 if (!X86ScalarSSEf64) {
229 setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
230 setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
231 if (Subtarget->is64Bit()) {
232 setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
233 // Without SSE, i64->f64 goes through memory.
234 setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
238 // Scalar integer divide and remainder are lowered to use operations that
239 // produce two results, to match the available instructions. This exposes
240 // the two-result form to trivial CSE, which is able to combine x/y and x%y
241 // into a single instruction.
243 // Scalar integer multiply-high is also lowered to use two-result
244 // operations, to match the available instructions. However, plain multiply
245 // (low) operations are left as Legal, as there are single-result
246 // instructions for this in x86. Using the two-result multiply instructions
247 // when both high and low results are needed must be arranged by dagcombine.
248 setOperationAction(ISD::MULHS , MVT::i8 , Expand);
249 setOperationAction(ISD::MULHU , MVT::i8 , Expand);
250 setOperationAction(ISD::SDIV , MVT::i8 , Expand);
251 setOperationAction(ISD::UDIV , MVT::i8 , Expand);
252 setOperationAction(ISD::SREM , MVT::i8 , Expand);
253 setOperationAction(ISD::UREM , MVT::i8 , Expand);
254 setOperationAction(ISD::MULHS , MVT::i16 , Expand);
255 setOperationAction(ISD::MULHU , MVT::i16 , Expand);
256 setOperationAction(ISD::SDIV , MVT::i16 , Expand);
257 setOperationAction(ISD::UDIV , MVT::i16 , Expand);
258 setOperationAction(ISD::SREM , MVT::i16 , Expand);
259 setOperationAction(ISD::UREM , MVT::i16 , Expand);
260 setOperationAction(ISD::MULHS , MVT::i32 , Expand);
261 setOperationAction(ISD::MULHU , MVT::i32 , Expand);
262 setOperationAction(ISD::SDIV , MVT::i32 , Expand);
263 setOperationAction(ISD::UDIV , MVT::i32 , Expand);
264 setOperationAction(ISD::SREM , MVT::i32 , Expand);
265 setOperationAction(ISD::UREM , MVT::i32 , Expand);
266 setOperationAction(ISD::MULHS , MVT::i64 , Expand);
267 setOperationAction(ISD::MULHU , MVT::i64 , Expand);
268 setOperationAction(ISD::SDIV , MVT::i64 , Expand);
269 setOperationAction(ISD::UDIV , MVT::i64 , Expand);
270 setOperationAction(ISD::SREM , MVT::i64 , Expand);
271 setOperationAction(ISD::UREM , MVT::i64 , Expand);
273 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
274 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
275 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
276 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
277 if (Subtarget->is64Bit())
278 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
279 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
280 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
281 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
282 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
283 setOperationAction(ISD::FREM , MVT::f32 , Expand);
284 setOperationAction(ISD::FREM , MVT::f64 , Expand);
285 setOperationAction(ISD::FREM , MVT::f80 , Expand);
286 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
288 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
289 setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
290 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
291 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
292 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
293 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
294 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
295 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
296 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
297 if (Subtarget->is64Bit()) {
298 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
299 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
300 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
303 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
304 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
306 // These should be promoted to a larger select which is supported.
307 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
308 // X86 wants to expand cmov itself.
309 setOperationAction(ISD::SELECT , MVT::i8 , Custom);
310 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
311 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
312 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
313 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
314 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
315 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
316 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
317 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
318 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
319 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
320 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
321 if (Subtarget->is64Bit()) {
322 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
323 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
325 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
327 // Darwin ABI issue.
328 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
329 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
330 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
331 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
332 if (Subtarget->is64Bit())
333 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
334 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
335 setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
336 if (Subtarget->is64Bit()) {
337 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
338 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
339 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
340 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
341 setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
343 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
344 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
345 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
346 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
347 if (Subtarget->is64Bit()) {
348 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
349 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
350 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
353 if (Subtarget->hasSSE1())
354 setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
356 // We may not have a libcall for MEMBARRIER so we should lower this.
357 setOperationAction(ISD::MEMBARRIER , MVT::Other, Custom);
359 // On X86 and X86-64, atomic operations are lowered to locked instructions.
360 // Locked instructions, in turn, have implicit fence semantics (all memory
361 // operations are flushed before issuing the locked instruction, and they
362 // are not buffered), so we can fold away the common pattern of
363 // fence-atomic-fence.
364 setShouldFoldAtomicFences(true);
366 // Expand certain atomics
367 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
368 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
369 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
370 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
372 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
373 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
374 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
375 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
377 if (!Subtarget->is64Bit()) {
378 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
379 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
380 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
381 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
382 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
383 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
384 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
387 // FIXME - use subtarget debug flags
388 if (!Subtarget->isTargetDarwin() &&
389 !Subtarget->isTargetELF() &&
390 !Subtarget->isTargetCygMing()) {
391 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
394 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
395 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
396 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
397 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
398 if (Subtarget->is64Bit()) {
399 setExceptionPointerRegister(X86::RAX);
400 setExceptionSelectorRegister(X86::RDX);
401 } else {
402 setExceptionPointerRegister(X86::EAX);
403 setExceptionSelectorRegister(X86::EDX);
405 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
406 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
408 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
410 setOperationAction(ISD::TRAP, MVT::Other, Legal);
412 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
413 setOperationAction(ISD::VASTART , MVT::Other, Custom);
414 setOperationAction(ISD::VAEND , MVT::Other, Expand);
415 if (Subtarget->is64Bit()) {
416 setOperationAction(ISD::VAARG , MVT::Other, Custom);
417 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
418 } else {
419 setOperationAction(ISD::VAARG , MVT::Other, Expand);
420 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
423 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
424 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
425 if (Subtarget->is64Bit())
426 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
427 if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows())
428 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
429 else
430 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
432 if (!UseSoftFloat && X86ScalarSSEf64) {
433 // f32 and f64 use SSE.
434 // Set up the FP register classes.
435 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
436 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
438 // Use ANDPD to simulate FABS.
439 setOperationAction(ISD::FABS , MVT::f64, Custom);
440 setOperationAction(ISD::FABS , MVT::f32, Custom);
442 // Use XORP to simulate FNEG.
443 setOperationAction(ISD::FNEG , MVT::f64, Custom);
444 setOperationAction(ISD::FNEG , MVT::f32, Custom);
446 // Use ANDPD and ORPD to simulate FCOPYSIGN.
447 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
448 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
450 // We don't support sin/cos/fmod
451 setOperationAction(ISD::FSIN , MVT::f64, Expand);
452 setOperationAction(ISD::FCOS , MVT::f64, Expand);
453 setOperationAction(ISD::FSIN , MVT::f32, Expand);
454 setOperationAction(ISD::FCOS , MVT::f32, Expand);
456 // Expand FP immediates into loads from the stack, except for the special
457 // cases we handle.
458 addLegalFPImmediate(APFloat(+0.0)); // xorpd
459 addLegalFPImmediate(APFloat(+0.0f)); // xorps
460 } else if (!UseSoftFloat && X86ScalarSSEf32) {
461 // Use SSE for f32, x87 for f64.
462 // Set up the FP register classes.
463 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
464 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
466 // Use ANDPS to simulate FABS.
467 setOperationAction(ISD::FABS , MVT::f32, Custom);
469 // Use XORP to simulate FNEG.
470 setOperationAction(ISD::FNEG , MVT::f32, Custom);
472 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
474 // Use ANDPS and ORPS to simulate FCOPYSIGN.
475 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
476 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
478 // We don't support sin/cos/fmod
479 setOperationAction(ISD::FSIN , MVT::f32, Expand);
480 setOperationAction(ISD::FCOS , MVT::f32, Expand);
482 // Special cases we handle for FP constants.
483 addLegalFPImmediate(APFloat(+0.0f)); // xorps
484 addLegalFPImmediate(APFloat(+0.0)); // FLD0
485 addLegalFPImmediate(APFloat(+1.0)); // FLD1
486 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
487 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
489 if (!UnsafeFPMath) {
490 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
491 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
493 } else if (!UseSoftFloat) {
494 // f32 and f64 in x87.
495 // Set up the FP register classes.
496 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
497 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
499 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
500 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
501 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
502 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
504 if (!UnsafeFPMath) {
505 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
506 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
508 addLegalFPImmediate(APFloat(+0.0)); // FLD0
509 addLegalFPImmediate(APFloat(+1.0)); // FLD1
510 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
511 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
512 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
513 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
514 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
515 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
518 // Long double always uses X87.
519 if (!UseSoftFloat) {
520 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
521 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
522 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
524 bool ignored;
525 APFloat TmpFlt(+0.0);
526 TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
527 &ignored);
528 addLegalFPImmediate(TmpFlt); // FLD0
529 TmpFlt.changeSign();
530 addLegalFPImmediate(TmpFlt); // FLD0/FCHS
531 APFloat TmpFlt2(+1.0);
532 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
533 &ignored);
534 addLegalFPImmediate(TmpFlt2); // FLD1
535 TmpFlt2.changeSign();
536 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
539 if (!UnsafeFPMath) {
540 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
541 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
545 // Always use a library call for pow.
546 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
547 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
548 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
550 setOperationAction(ISD::FLOG, MVT::f80, Expand);
551 setOperationAction(ISD::FLOG2, MVT::f80, Expand);
552 setOperationAction(ISD::FLOG10, MVT::f80, Expand);
553 setOperationAction(ISD::FEXP, MVT::f80, Expand);
554 setOperationAction(ISD::FEXP2, MVT::f80, Expand);
556 // First set operation action for all vector types to either promote
557 // (for widening) or expand (for scalarization). Then we will selectively
558 // turn on ones that can be effectively codegen'd.
559 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
560 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
561 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
562 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
563 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
564 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
565 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
566 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
567 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
568 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
569 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
570 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
571 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
572 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
573 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
574 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
575 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
576 setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
577 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
578 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
579 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
580 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
581 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
582 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
583 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
584 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
585 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
586 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
587 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
588 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
589 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
590 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
591 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
592 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
593 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
594 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
595 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
596 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
597 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
598 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
599 setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
600 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
601 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
602 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
603 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
604 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
605 setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
606 setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
607 setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
608 setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
609 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
610 setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand);
611 setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand);
612 setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand);
613 setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand);
614 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
615 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
616 setTruncStoreAction((MVT::SimpleValueType)VT,
617 (MVT::SimpleValueType)InnerVT, Expand);
618 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
619 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
620 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
623 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
624 // with -msoft-float, disable use of MMX as well.
625 if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
626 addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
627 // No operations on x86mmx supported, everything uses intrinsics.
630 // MMX-sized vectors (other than x86mmx) are expected to be expanded
631 // into smaller operations.
632 setOperationAction(ISD::MULHS, MVT::v8i8, Expand);
633 setOperationAction(ISD::MULHS, MVT::v4i16, Expand);
634 setOperationAction(ISD::MULHS, MVT::v2i32, Expand);
635 setOperationAction(ISD::MULHS, MVT::v1i64, Expand);
636 setOperationAction(ISD::AND, MVT::v8i8, Expand);
637 setOperationAction(ISD::AND, MVT::v4i16, Expand);
638 setOperationAction(ISD::AND, MVT::v2i32, Expand);
639 setOperationAction(ISD::AND, MVT::v1i64, Expand);
640 setOperationAction(ISD::OR, MVT::v8i8, Expand);
641 setOperationAction(ISD::OR, MVT::v4i16, Expand);
642 setOperationAction(ISD::OR, MVT::v2i32, Expand);
643 setOperationAction(ISD::OR, MVT::v1i64, Expand);
644 setOperationAction(ISD::XOR, MVT::v8i8, Expand);
645 setOperationAction(ISD::XOR, MVT::v4i16, Expand);
646 setOperationAction(ISD::XOR, MVT::v2i32, Expand);
647 setOperationAction(ISD::XOR, MVT::v1i64, Expand);
648 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand);
649 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand);
650 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand);
651 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand);
652 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand);
653 setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
654 setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
655 setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
656 setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
657 setOperationAction(ISD::BITCAST, MVT::v8i8, Expand);
658 setOperationAction(ISD::BITCAST, MVT::v4i16, Expand);
659 setOperationAction(ISD::BITCAST, MVT::v2i32, Expand);
660 setOperationAction(ISD::BITCAST, MVT::v1i64, Expand);
662 if (!UseSoftFloat && Subtarget->hasSSE1()) {
663 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
665 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
666 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
667 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
668 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
669 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
670 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
671 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
672 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
673 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
674 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
675 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
676 setOperationAction(ISD::VSETCC, MVT::v4f32, Custom);
679 if (!UseSoftFloat && Subtarget->hasSSE2()) {
680 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
682 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
683 // registers cannot be used even for integer operations.
684 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
685 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
686 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
687 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
689 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
690 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
691 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
692 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
693 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
694 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
695 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
696 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
697 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
698 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
699 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
700 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
701 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
702 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
703 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
704 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
706 setOperationAction(ISD::VSETCC, MVT::v2f64, Custom);
707 setOperationAction(ISD::VSETCC, MVT::v16i8, Custom);
708 setOperationAction(ISD::VSETCC, MVT::v8i16, Custom);
709 setOperationAction(ISD::VSETCC, MVT::v4i32, Custom);
711 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
712 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
713 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
714 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
715 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
717 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom);
718 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom);
719 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom);
720 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom);
721 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
723 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
724 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
725 EVT VT = (MVT::SimpleValueType)i;
726 // Do not attempt to custom lower non-power-of-2 vectors
727 if (!isPowerOf2_32(VT.getVectorNumElements()))
728 continue;
729 // Do not attempt to custom lower non-128-bit vectors
730 if (!VT.is128BitVector())
731 continue;
732 setOperationAction(ISD::BUILD_VECTOR,
733 VT.getSimpleVT().SimpleTy, Custom);
734 setOperationAction(ISD::VECTOR_SHUFFLE,
735 VT.getSimpleVT().SimpleTy, Custom);
736 setOperationAction(ISD::EXTRACT_VECTOR_ELT,
737 VT.getSimpleVT().SimpleTy, Custom);
740 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
741 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
742 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
743 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
744 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
745 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
747 if (Subtarget->is64Bit()) {
748 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
749 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
752 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
753 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
754 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
755 EVT VT = SVT;
757 // Do not attempt to promote non-128-bit vectors
758 if (!VT.is128BitVector())
759 continue;
761 setOperationAction(ISD::AND, SVT, Promote);
762 AddPromotedToType (ISD::AND, SVT, MVT::v2i64);
763 setOperationAction(ISD::OR, SVT, Promote);
764 AddPromotedToType (ISD::OR, SVT, MVT::v2i64);
765 setOperationAction(ISD::XOR, SVT, Promote);
766 AddPromotedToType (ISD::XOR, SVT, MVT::v2i64);
767 setOperationAction(ISD::LOAD, SVT, Promote);
768 AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64);
769 setOperationAction(ISD::SELECT, SVT, Promote);
770 AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
773 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
775 // Custom lower v2i64 and v2f64 selects.
776 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
777 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
778 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
779 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
781 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
782 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
785 if (Subtarget->hasSSE41()) {
786 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
787 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
788 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
789 setOperationAction(ISD::FRINT, MVT::f32, Legal);
790 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
791 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
792 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
793 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
794 setOperationAction(ISD::FRINT, MVT::f64, Legal);
795 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
797 // FIXME: Do we need to handle scalar-to-vector here?
798 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
800 // Can turn SHL into an integer multiply.
801 setOperationAction(ISD::SHL, MVT::v4i32, Custom);
802 setOperationAction(ISD::SHL, MVT::v16i8, Custom);
804 // i8 and i16 vectors are custom , because the source register and source
805 // source memory operand types are not the same width. f32 vectors are
806 // custom since the immediate controlling the insert encodes additional
807 // information.
808 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
809 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
810 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
811 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
813 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
814 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
815 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
816 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
818 if (Subtarget->is64Bit()) {
819 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
820 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
824 if (Subtarget->hasSSE42()) {
825 setOperationAction(ISD::VSETCC, MVT::v2i64, Custom);
828 if (!UseSoftFloat && Subtarget->hasAVX()) {
829 addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
830 addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
831 addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
832 addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
833 addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
835 setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
836 setOperationAction(ISD::LOAD, MVT::v8i32, Legal);
837 setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
838 setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
839 setOperationAction(ISD::FADD, MVT::v8f32, Legal);
840 setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
841 setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
842 setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
843 setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
844 setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
845 setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom);
846 //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom);
847 //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
848 //setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
849 //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom);
851 // Operations to consider commented out -v16i16 v32i8
852 //setOperationAction(ISD::ADD, MVT::v16i16, Legal);
853 setOperationAction(ISD::ADD, MVT::v8i32, Custom);
854 setOperationAction(ISD::ADD, MVT::v4i64, Custom);
855 //setOperationAction(ISD::SUB, MVT::v32i8, Legal);
856 //setOperationAction(ISD::SUB, MVT::v16i16, Legal);
857 setOperationAction(ISD::SUB, MVT::v8i32, Custom);
858 setOperationAction(ISD::SUB, MVT::v4i64, Custom);
859 //setOperationAction(ISD::MUL, MVT::v16i16, Legal);
860 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
861 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
862 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
863 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
864 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
865 setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
867 setOperationAction(ISD::VSETCC, MVT::v4f64, Custom);
868 // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom);
869 // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom);
870 setOperationAction(ISD::VSETCC, MVT::v8i32, Custom);
872 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom);
873 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom);
874 // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom);
875 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i32, Custom);
876 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8f32, Custom);
878 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
879 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i64, Custom);
880 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f64, Custom);
881 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i64, Custom);
882 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f64, Custom);
883 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
885 #if 0
886 // Not sure we want to do this since there are no 256-bit integer
887 // operations in AVX
889 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
890 // This includes 256-bit vectors
891 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
892 EVT VT = (MVT::SimpleValueType)i;
894 // Do not attempt to custom lower non-power-of-2 vectors
895 if (!isPowerOf2_32(VT.getVectorNumElements()))
896 continue;
898 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
899 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
900 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
903 if (Subtarget->is64Bit()) {
904 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i64, Custom);
905 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
907 #endif
909 #if 0
910 // Not sure we want to do this since there are no 256-bit integer
911 // operations in AVX
913 // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
914 // Including 256-bit vectors
915 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
916 EVT VT = (MVT::SimpleValueType)i;
918 if (!VT.is256BitVector()) {
919 continue;
921 setOperationAction(ISD::AND, VT, Promote);
922 AddPromotedToType (ISD::AND, VT, MVT::v4i64);
923 setOperationAction(ISD::OR, VT, Promote);
924 AddPromotedToType (ISD::OR, VT, MVT::v4i64);
925 setOperationAction(ISD::XOR, VT, Promote);
926 AddPromotedToType (ISD::XOR, VT, MVT::v4i64);
927 setOperationAction(ISD::LOAD, VT, Promote);
928 AddPromotedToType (ISD::LOAD, VT, MVT::v4i64);
929 setOperationAction(ISD::SELECT, VT, Promote);
930 AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
933 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
934 #endif
937 // We want to custom lower some of our intrinsics.
938 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
940 // Add/Sub/Mul with overflow operations are custom lowered.
941 setOperationAction(ISD::SADDO, MVT::i32, Custom);
942 setOperationAction(ISD::UADDO, MVT::i32, Custom);
943 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
944 setOperationAction(ISD::USUBO, MVT::i32, Custom);
945 setOperationAction(ISD::SMULO, MVT::i32, Custom);
947 // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
948 // handle type legalization for these operations here.
950 // FIXME: We really should do custom legalization for addition and
951 // subtraction on x86-32 once PR3203 is fixed. We really can't do much better
952 // than generic legalization for 64-bit multiplication-with-overflow, though.
953 if (Subtarget->is64Bit()) {
954 setOperationAction(ISD::SADDO, MVT::i64, Custom);
955 setOperationAction(ISD::UADDO, MVT::i64, Custom);
956 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
957 setOperationAction(ISD::USUBO, MVT::i64, Custom);
958 setOperationAction(ISD::SMULO, MVT::i64, Custom);
961 if (!Subtarget->is64Bit()) {
962 // These libcalls are not available in 32-bit.
963 setLibcallName(RTLIB::SHL_I128, 0);
964 setLibcallName(RTLIB::SRL_I128, 0);
965 setLibcallName(RTLIB::SRA_I128, 0);
968 // We have target-specific dag combine patterns for the following nodes:
969 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
970 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
971 setTargetDAGCombine(ISD::BUILD_VECTOR);
972 setTargetDAGCombine(ISD::SELECT);
973 setTargetDAGCombine(ISD::SHL);
974 setTargetDAGCombine(ISD::SRA);
975 setTargetDAGCombine(ISD::SRL);
976 setTargetDAGCombine(ISD::OR);
977 setTargetDAGCombine(ISD::STORE);
978 setTargetDAGCombine(ISD::ZERO_EXTEND);
979 if (Subtarget->is64Bit())
980 setTargetDAGCombine(ISD::MUL);
982 computeRegisterProperties();
984 // FIXME: These should be based on subtarget info. Plus, the values should
985 // be smaller when we are in optimizing for size mode.
986 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
987 maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
988 maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
989 setPrefLoopAlignment(16);
990 benefitFromCodePlacementOpt = true;
994 MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
995 return MVT::i8;
999 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1000 /// the desired ByVal argument alignment.
1001 static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1002 if (MaxAlign == 16)
1003 return;
1004 if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1005 if (VTy->getBitWidth() == 128)
1006 MaxAlign = 16;
1007 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1008 unsigned EltAlign = 0;
1009 getMaxByValAlign(ATy->getElementType(), EltAlign);
1010 if (EltAlign > MaxAlign)
1011 MaxAlign = EltAlign;
1012 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1013 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1014 unsigned EltAlign = 0;
1015 getMaxByValAlign(STy->getElementType(i), EltAlign);
1016 if (EltAlign > MaxAlign)
1017 MaxAlign = EltAlign;
1018 if (MaxAlign == 16)
1019 break;
1022 return;
1025 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1026 /// function arguments in the caller parameter area. For X86, aggregates
1027 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
1028 /// are at 4-byte boundaries.
1029 unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1030 if (Subtarget->is64Bit()) {
1031 // Max of 8 and alignment of type.
1032 unsigned TyAlign = TD->getABITypeAlignment(Ty);
1033 if (TyAlign > 8)
1034 return TyAlign;
1035 return 8;
1038 unsigned Align = 4;
1039 if (Subtarget->hasSSE1())
1040 getMaxByValAlign(Ty, Align);
1041 return Align;
1044 /// getOptimalMemOpType - Returns the target specific optimal type for load
1045 /// and store operations as a result of memset, memcpy, and memmove
1046 /// lowering. If DstAlign is zero that means it's safe to destination
1047 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1048 /// means there isn't a need to check it against alignment requirement,
1049 /// probably because the source does not need to be loaded. If
1050 /// 'NonScalarIntSafe' is true, that means it's safe to return a
1051 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
1052 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1053 /// constant so it does not need to be loaded.
1054 /// It returns EVT::Other if the type should be determined using generic
1055 /// target-independent logic.
1057 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1058 unsigned DstAlign, unsigned SrcAlign,
1059 bool NonScalarIntSafe,
1060 bool MemcpyStrSrc,
1061 MachineFunction &MF) const {
1062 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1063 // linux. This is because the stack realignment code can't handle certain
1064 // cases like PR2962. This should be removed when PR2962 is fixed.
1065 const Function *F = MF.getFunction();
1066 if (NonScalarIntSafe &&
1067 !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1068 if (Size >= 16 &&
1069 (Subtarget->isUnalignedMemAccessFast() ||
1070 ((DstAlign == 0 || DstAlign >= 16) &&
1071 (SrcAlign == 0 || SrcAlign >= 16))) &&
1072 Subtarget->getStackAlignment() >= 16) {
1073 if (Subtarget->hasSSE2())
1074 return MVT::v4i32;
1075 if (Subtarget->hasSSE1())
1076 return MVT::v4f32;
1077 } else if (!MemcpyStrSrc && Size >= 8 &&
1078 !Subtarget->is64Bit() &&
1079 Subtarget->getStackAlignment() >= 8 &&
1080 Subtarget->hasSSE2()) {
1081 // Do not use f64 to lower memcpy if source is string constant. It's
1082 // better to use i32 to avoid the loads.
1083 return MVT::f64;
1086 if (Subtarget->is64Bit() && Size >= 8)
1087 return MVT::i64;
1088 return MVT::i32;
1091 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1092 /// current function. The returned value is a member of the
1093 /// MachineJumpTableInfo::JTEntryKind enum.
1094 unsigned X86TargetLowering::getJumpTableEncoding() const {
1095 // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1096 // symbol.
1097 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1098 Subtarget->isPICStyleGOT())
1099 return MachineJumpTableInfo::EK_Custom32;
1101 // Otherwise, use the normal jump table encoding heuristics.
1102 return TargetLowering::getJumpTableEncoding();
1105 const MCExpr *
1106 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1107 const MachineBasicBlock *MBB,
1108 unsigned uid,MCContext &Ctx) const{
1109 assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1110 Subtarget->isPICStyleGOT());
1111 // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1112 // entries.
1113 return MCSymbolRefExpr::Create(MBB->getSymbol(),
1114 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1117 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1118 /// jumptable.
1119 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1120 SelectionDAG &DAG) const {
1121 if (!Subtarget->is64Bit())
1122 // This doesn't have DebugLoc associated with it, but is not really the
1123 // same as a Register.
1124 return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1125 return Table;
1128 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1129 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1130 /// MCExpr.
1131 const MCExpr *X86TargetLowering::
1132 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1133 MCContext &Ctx) const {
1134 // X86-64 uses RIP relative addressing based on the jump table label.
1135 if (Subtarget->isPICStyleRIPRel())
1136 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1138 // Otherwise, the reference is relative to the PIC base.
1139 return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1142 /// getFunctionAlignment - Return the Log2 alignment of this function.
1143 unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1144 return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1147 std::pair<const TargetRegisterClass*, uint8_t>
1148 X86TargetLowering::findRepresentativeClass(EVT VT) const{
1149 const TargetRegisterClass *RRC = 0;
1150 uint8_t Cost = 1;
1151 switch (VT.getSimpleVT().SimpleTy) {
1152 default:
1153 return TargetLowering::findRepresentativeClass(VT);
1154 case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1155 RRC = (Subtarget->is64Bit()
1156 ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1157 break;
1158 case MVT::x86mmx:
1159 RRC = X86::VR64RegisterClass;
1160 break;
1161 case MVT::f32: case MVT::f64:
1162 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1163 case MVT::v4f32: case MVT::v2f64:
1164 case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1165 case MVT::v4f64:
1166 RRC = X86::VR128RegisterClass;
1167 break;
1169 return std::make_pair(RRC, Cost);
1172 unsigned
1173 X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1174 MachineFunction &MF) const {
1175 const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
1177 unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
1178 switch (RC->getID()) {
1179 default:
1180 return 0;
1181 case X86::GR32RegClassID:
1182 return 4 - FPDiff;
1183 case X86::GR64RegClassID:
1184 return 8 - FPDiff;
1185 case X86::VR128RegClassID:
1186 return Subtarget->is64Bit() ? 10 : 4;
1187 case X86::VR64RegClassID:
1188 return 4;
1192 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1193 unsigned &Offset) const {
1194 if (!Subtarget->isTargetLinux())
1195 return false;
1197 if (Subtarget->is64Bit()) {
1198 // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1199 Offset = 0x28;
1200 if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1201 AddressSpace = 256;
1202 else
1203 AddressSpace = 257;
1204 } else {
1205 // %gs:0x14 on i386
1206 Offset = 0x14;
1207 AddressSpace = 256;
1209 return true;
1213 //===----------------------------------------------------------------------===//
1214 // Return Value Calling Convention Implementation
1215 //===----------------------------------------------------------------------===//
1217 #include "X86GenCallingConv.inc"
1219 bool
1220 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1221 const SmallVectorImpl<ISD::OutputArg> &Outs,
1222 LLVMContext &Context) const {
1223 SmallVector<CCValAssign, 16> RVLocs;
1224 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1225 RVLocs, Context);
1226 return CCInfo.CheckReturn(Outs, RetCC_X86);
1229 SDValue
1230 X86TargetLowering::LowerReturn(SDValue Chain,
1231 CallingConv::ID CallConv, bool isVarArg,
1232 const SmallVectorImpl<ISD::OutputArg> &Outs,
1233 const SmallVectorImpl<SDValue> &OutVals,
1234 DebugLoc dl, SelectionDAG &DAG) const {
1235 MachineFunction &MF = DAG.getMachineFunction();
1236 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1238 SmallVector<CCValAssign, 16> RVLocs;
1239 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1240 RVLocs, *DAG.getContext());
1241 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1243 // Add the regs to the liveout set for the function.
1244 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1245 for (unsigned i = 0; i != RVLocs.size(); ++i)
1246 if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1247 MRI.addLiveOut(RVLocs[i].getLocReg());
1249 SDValue Flag;
1251 SmallVector<SDValue, 6> RetOps;
1252 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1253 // Operand #1 = Bytes To Pop
1254 RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1255 MVT::i16));
1257 // Copy the result values into the output registers.
1258 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1259 CCValAssign &VA = RVLocs[i];
1260 assert(VA.isRegLoc() && "Can only return in registers!");
1261 SDValue ValToCopy = OutVals[i];
1262 EVT ValVT = ValToCopy.getValueType();
1264 // If this is x86-64, and we disabled SSE, we can't return FP values,
1265 // or SSE or MMX vectors.
1266 if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1267 VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1268 (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1269 report_fatal_error("SSE register return with SSE disabled");
1271 // Likewise we can't return F64 values with SSE1 only. gcc does so, but
1272 // llvm-gcc has never done it right and no one has noticed, so this
1273 // should be OK for now.
1274 if (ValVT == MVT::f64 &&
1275 (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1276 report_fatal_error("SSE2 register return with SSE2 disabled");
1278 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1279 // the RET instruction and handled by the FP Stackifier.
1280 if (VA.getLocReg() == X86::ST0 ||
1281 VA.getLocReg() == X86::ST1) {
1282 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1283 // change the value to the FP stack register class.
1284 if (isScalarFPTypeInSSEReg(VA.getValVT()))
1285 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1286 RetOps.push_back(ValToCopy);
1287 // Don't emit a copytoreg.
1288 continue;
1291 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1292 // which is returned in RAX / RDX.
1293 if (Subtarget->is64Bit()) {
1294 if (ValVT == MVT::x86mmx) {
1295 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1296 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1297 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1298 ValToCopy);
1299 // If we don't have SSE2 available, convert to v4f32 so the generated
1300 // register is legal.
1301 if (!Subtarget->hasSSE2())
1302 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1307 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1308 Flag = Chain.getValue(1);
1311 // The x86-64 ABI for returning structs by value requires that we copy
1312 // the sret argument into %rax for the return. We saved the argument into
1313 // a virtual register in the entry block, so now we copy the value out
1314 // and into %rax.
1315 if (Subtarget->is64Bit() &&
1316 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1317 MachineFunction &MF = DAG.getMachineFunction();
1318 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1319 unsigned Reg = FuncInfo->getSRetReturnReg();
1320 assert(Reg &&
1321 "SRetReturnReg should have been set in LowerFormalArguments().");
1322 SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1324 Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1325 Flag = Chain.getValue(1);
1327 // RAX now acts like a return value.
1328 MRI.addLiveOut(X86::RAX);
1331 RetOps[0] = Chain; // Update chain.
1333 // Add the flag if we have it.
1334 if (Flag.getNode())
1335 RetOps.push_back(Flag);
1337 return DAG.getNode(X86ISD::RET_FLAG, dl,
1338 MVT::Other, &RetOps[0], RetOps.size());
1341 /// LowerCallResult - Lower the result values of a call into the
1342 /// appropriate copies out of appropriate physical registers.
1344 SDValue
1345 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1346 CallingConv::ID CallConv, bool isVarArg,
1347 const SmallVectorImpl<ISD::InputArg> &Ins,
1348 DebugLoc dl, SelectionDAG &DAG,
1349 SmallVectorImpl<SDValue> &InVals) const {
1351 // Assign locations to each value returned by this call.
1352 SmallVector<CCValAssign, 16> RVLocs;
1353 bool Is64Bit = Subtarget->is64Bit();
1354 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1355 RVLocs, *DAG.getContext());
1356 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1358 // Copy all of the result registers out of their specified physreg.
1359 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1360 CCValAssign &VA = RVLocs[i];
1361 EVT CopyVT = VA.getValVT();
1363 // If this is x86-64, and we disabled SSE, we can't return FP values
1364 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1365 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1366 report_fatal_error("SSE register return with SSE disabled");
1369 SDValue Val;
1371 // If this is a call to a function that returns an fp value on the floating
1372 // point stack, we must guarantee the the value is popped from the stack, so
1373 // a CopyFromReg is not good enough - the copy instruction may be eliminated
1374 // if the return value is not used. We use the FpGET_ST0 instructions
1375 // instead.
1376 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1377 // If we prefer to use the value in xmm registers, copy it out as f80 and
1378 // use a truncate to move it from fp stack reg to xmm reg.
1379 if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1380 bool isST0 = VA.getLocReg() == X86::ST0;
1381 unsigned Opc = 0;
1382 if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1383 if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1384 if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1385 SDValue Ops[] = { Chain, InFlag };
1386 Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1387 Ops, 2), 1);
1388 Val = Chain.getValue(0);
1390 // Round the f80 to the right size, which also moves it to the appropriate
1391 // xmm register.
1392 if (CopyVT != VA.getValVT())
1393 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1394 // This truncation won't change the value.
1395 DAG.getIntPtrConstant(1));
1396 } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1397 // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1398 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1399 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1400 MVT::v2i64, InFlag).getValue(1);
1401 Val = Chain.getValue(0);
1402 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1403 Val, DAG.getConstant(0, MVT::i64));
1404 } else {
1405 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1406 MVT::i64, InFlag).getValue(1);
1407 Val = Chain.getValue(0);
1409 Val = DAG.getNode(ISD::BITCAST, dl, CopyVT, Val);
1410 } else {
1411 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1412 CopyVT, InFlag).getValue(1);
1413 Val = Chain.getValue(0);
1415 InFlag = Chain.getValue(2);
1416 InVals.push_back(Val);
1419 return Chain;
1423 //===----------------------------------------------------------------------===//
1424 // C & StdCall & Fast Calling Convention implementation
1425 //===----------------------------------------------------------------------===//
1426 // StdCall calling convention seems to be standard for many Windows' API
1427 // routines and around. It differs from C calling convention just a little:
1428 // callee should clean up the stack, not caller. Symbols should be also
1429 // decorated in some fancy way :) It doesn't support any vector arguments.
1430 // For info on fast calling convention see Fast Calling Convention (tail call)
1431 // implementation LowerX86_32FastCCCallTo.
1433 /// CallIsStructReturn - Determines whether a call uses struct return
1434 /// semantics.
1435 static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1436 if (Outs.empty())
1437 return false;
1439 return Outs[0].Flags.isSRet();
1442 /// ArgsAreStructReturn - Determines whether a function uses struct
1443 /// return semantics.
1444 static bool
1445 ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1446 if (Ins.empty())
1447 return false;
1449 return Ins[0].Flags.isSRet();
1452 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1453 /// by "Src" to address "Dst" with size and alignment information specified by
1454 /// the specific parameter attribute. The copy will be passed as a byval
1455 /// function parameter.
1456 static SDValue
1457 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1458 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1459 DebugLoc dl) {
1460 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1462 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1463 /*isVolatile*/false, /*AlwaysInline=*/true,
1464 MachinePointerInfo(), MachinePointerInfo());
1467 /// IsTailCallConvention - Return true if the calling convention is one that
1468 /// supports tail call optimization.
1469 static bool IsTailCallConvention(CallingConv::ID CC) {
1470 return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1473 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
1474 /// a tailcall target by changing its ABI.
1475 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1476 return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1479 SDValue
1480 X86TargetLowering::LowerMemArgument(SDValue Chain,
1481 CallingConv::ID CallConv,
1482 const SmallVectorImpl<ISD::InputArg> &Ins,
1483 DebugLoc dl, SelectionDAG &DAG,
1484 const CCValAssign &VA,
1485 MachineFrameInfo *MFI,
1486 unsigned i) const {
1487 // Create the nodes corresponding to a load from this parameter slot.
1488 ISD::ArgFlagsTy Flags = Ins[i].Flags;
1489 bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1490 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1491 EVT ValVT;
1493 // If value is passed by pointer we have address passed instead of the value
1494 // itself.
1495 if (VA.getLocInfo() == CCValAssign::Indirect)
1496 ValVT = VA.getLocVT();
1497 else
1498 ValVT = VA.getValVT();
1500 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1501 // changed with more analysis.
1502 // In case of tail call optimization mark all arguments mutable. Since they
1503 // could be overwritten by lowering of arguments in case of a tail call.
1504 if (Flags.isByVal()) {
1505 int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1506 VA.getLocMemOffset(), isImmutable);
1507 return DAG.getFrameIndex(FI, getPointerTy());
1508 } else {
1509 int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1510 VA.getLocMemOffset(), isImmutable);
1511 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1512 return DAG.getLoad(ValVT, dl, Chain, FIN,
1513 MachinePointerInfo::getFixedStack(FI),
1514 false, false, 0);
1518 SDValue
1519 X86TargetLowering::LowerFormalArguments(SDValue Chain,
1520 CallingConv::ID CallConv,
1521 bool isVarArg,
1522 const SmallVectorImpl<ISD::InputArg> &Ins,
1523 DebugLoc dl,
1524 SelectionDAG &DAG,
1525 SmallVectorImpl<SDValue> &InVals)
1526 const {
1527 MachineFunction &MF = DAG.getMachineFunction();
1528 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1530 const Function* Fn = MF.getFunction();
1531 if (Fn->hasExternalLinkage() &&
1532 Subtarget->isTargetCygMing() &&
1533 Fn->getName() == "main")
1534 FuncInfo->setForceFramePointer(true);
1536 MachineFrameInfo *MFI = MF.getFrameInfo();
1537 bool Is64Bit = Subtarget->is64Bit();
1538 bool IsWin64 = Subtarget->isTargetWin64();
1540 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1541 "Var args not supported with calling convention fastcc or ghc");
1543 // Assign locations to all of the incoming arguments.
1544 SmallVector<CCValAssign, 16> ArgLocs;
1545 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1546 ArgLocs, *DAG.getContext());
1547 CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1549 unsigned LastVal = ~0U;
1550 SDValue ArgValue;
1551 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1552 CCValAssign &VA = ArgLocs[i];
1553 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1554 // places.
1555 assert(VA.getValNo() != LastVal &&
1556 "Don't support value assigned to multiple locs yet");
1557 LastVal = VA.getValNo();
1559 if (VA.isRegLoc()) {
1560 EVT RegVT = VA.getLocVT();
1561 TargetRegisterClass *RC = NULL;
1562 if (RegVT == MVT::i32)
1563 RC = X86::GR32RegisterClass;
1564 else if (Is64Bit && RegVT == MVT::i64)
1565 RC = X86::GR64RegisterClass;
1566 else if (RegVT == MVT::f32)
1567 RC = X86::FR32RegisterClass;
1568 else if (RegVT == MVT::f64)
1569 RC = X86::FR64RegisterClass;
1570 else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1571 RC = X86::VR256RegisterClass;
1572 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1573 RC = X86::VR128RegisterClass;
1574 else if (RegVT == MVT::x86mmx)
1575 RC = X86::VR64RegisterClass;
1576 else
1577 llvm_unreachable("Unknown argument type!");
1579 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1580 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1582 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1583 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1584 // right size.
1585 if (VA.getLocInfo() == CCValAssign::SExt)
1586 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1587 DAG.getValueType(VA.getValVT()));
1588 else if (VA.getLocInfo() == CCValAssign::ZExt)
1589 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1590 DAG.getValueType(VA.getValVT()));
1591 else if (VA.getLocInfo() == CCValAssign::BCvt)
1592 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1594 if (VA.isExtInLoc()) {
1595 // Handle MMX values passed in XMM regs.
1596 if (RegVT.isVector()) {
1597 ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1598 ArgValue);
1599 } else
1600 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1602 } else {
1603 assert(VA.isMemLoc());
1604 ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1607 // If value is passed via pointer - do a load.
1608 if (VA.getLocInfo() == CCValAssign::Indirect)
1609 ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1610 MachinePointerInfo(), false, false, 0);
1612 InVals.push_back(ArgValue);
1615 // The x86-64 ABI for returning structs by value requires that we copy
1616 // the sret argument into %rax for the return. Save the argument into
1617 // a virtual register so that we can access it from the return points.
1618 if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1619 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1620 unsigned Reg = FuncInfo->getSRetReturnReg();
1621 if (!Reg) {
1622 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1623 FuncInfo->setSRetReturnReg(Reg);
1625 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1626 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1629 unsigned StackSize = CCInfo.getNextStackOffset();
1630 // Align stack specially for tail calls.
1631 if (FuncIsMadeTailCallSafe(CallConv))
1632 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1634 // If the function takes variable number of arguments, make a frame index for
1635 // the start of the first vararg value... for expansion of llvm.va_start.
1636 if (isVarArg) {
1637 if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1638 CallConv != CallingConv::X86_ThisCall))) {
1639 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1641 if (Is64Bit) {
1642 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1644 // FIXME: We should really autogenerate these arrays
1645 static const unsigned GPR64ArgRegsWin64[] = {
1646 X86::RCX, X86::RDX, X86::R8, X86::R9
1648 static const unsigned GPR64ArgRegs64Bit[] = {
1649 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1651 static const unsigned XMMArgRegs64Bit[] = {
1652 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1653 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1655 const unsigned *GPR64ArgRegs;
1656 unsigned NumXMMRegs = 0;
1658 if (IsWin64) {
1659 // The XMM registers which might contain var arg parameters are shadowed
1660 // in their paired GPR. So we only need to save the GPR to their home
1661 // slots.
1662 TotalNumIntRegs = 4;
1663 GPR64ArgRegs = GPR64ArgRegsWin64;
1664 } else {
1665 TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1666 GPR64ArgRegs = GPR64ArgRegs64Bit;
1668 NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1670 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1671 TotalNumIntRegs);
1673 bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1674 assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1675 "SSE register cannot be used when SSE is disabled!");
1676 assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1677 "SSE register cannot be used when SSE is disabled!");
1678 if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1679 // Kernel mode asks for SSE to be disabled, so don't push them
1680 // on the stack.
1681 TotalNumXMMRegs = 0;
1683 if (IsWin64) {
1684 const TargetFrameInfo &TFI = *getTargetMachine().getFrameInfo();
1685 // Get to the caller-allocated home save location. Add 8 to account
1686 // for the return address.
1687 int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1688 FuncInfo->setRegSaveFrameIndex(
1689 MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1690 FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1691 } else {
1692 // For X86-64, if there are vararg parameters that are passed via
1693 // registers, then we must store them to their spots on the stack so they
1694 // may be loaded by deferencing the result of va_next.
1695 FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1696 FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1697 FuncInfo->setRegSaveFrameIndex(
1698 MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1699 false));
1702 // Store the integer parameter registers.
1703 SmallVector<SDValue, 8> MemOps;
1704 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1705 getPointerTy());
1706 unsigned Offset = FuncInfo->getVarArgsGPOffset();
1707 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1708 SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1709 DAG.getIntPtrConstant(Offset));
1710 unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1711 X86::GR64RegisterClass);
1712 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1713 SDValue Store =
1714 DAG.getStore(Val.getValue(1), dl, Val, FIN,
1715 MachinePointerInfo::getFixedStack(
1716 FuncInfo->getRegSaveFrameIndex(), Offset),
1717 false, false, 0);
1718 MemOps.push_back(Store);
1719 Offset += 8;
1722 if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1723 // Now store the XMM (fp + vector) parameter registers.
1724 SmallVector<SDValue, 11> SaveXMMOps;
1725 SaveXMMOps.push_back(Chain);
1727 unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1728 SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1729 SaveXMMOps.push_back(ALVal);
1731 SaveXMMOps.push_back(DAG.getIntPtrConstant(
1732 FuncInfo->getRegSaveFrameIndex()));
1733 SaveXMMOps.push_back(DAG.getIntPtrConstant(
1734 FuncInfo->getVarArgsFPOffset()));
1736 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1737 unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1738 X86::VR128RegisterClass);
1739 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1740 SaveXMMOps.push_back(Val);
1742 MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1743 MVT::Other,
1744 &SaveXMMOps[0], SaveXMMOps.size()));
1747 if (!MemOps.empty())
1748 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1749 &MemOps[0], MemOps.size());
1753 // Some CCs need callee pop.
1754 if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1755 FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1756 } else {
1757 FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1758 // If this is an sret function, the return should pop the hidden pointer.
1759 if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1760 FuncInfo->setBytesToPopOnReturn(4);
1763 if (!Is64Bit) {
1764 // RegSaveFrameIndex is X86-64 only.
1765 FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1766 if (CallConv == CallingConv::X86_FastCall ||
1767 CallConv == CallingConv::X86_ThisCall)
1768 // fastcc functions can't have varargs.
1769 FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1772 return Chain;
1775 SDValue
1776 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1777 SDValue StackPtr, SDValue Arg,
1778 DebugLoc dl, SelectionDAG &DAG,
1779 const CCValAssign &VA,
1780 ISD::ArgFlagsTy Flags) const {
1781 const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1782 unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1783 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1784 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1785 if (Flags.isByVal())
1786 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1788 return DAG.getStore(Chain, dl, Arg, PtrOff,
1789 MachinePointerInfo::getStack(LocMemOffset),
1790 false, false, 0);
1793 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1794 /// optimization is performed and it is required.
1795 SDValue
1796 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1797 SDValue &OutRetAddr, SDValue Chain,
1798 bool IsTailCall, bool Is64Bit,
1799 int FPDiff, DebugLoc dl) const {
1800 // Adjust the Return address stack slot.
1801 EVT VT = getPointerTy();
1802 OutRetAddr = getReturnAddressFrameIndex(DAG);
1804 // Load the "old" Return address.
1805 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1806 false, false, 0);
1807 return SDValue(OutRetAddr.getNode(), 1);
1810 /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1811 /// optimization is performed and it is required (FPDiff!=0).
1812 static SDValue
1813 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1814 SDValue Chain, SDValue RetAddrFrIdx,
1815 bool Is64Bit, int FPDiff, DebugLoc dl) {
1816 // Store the return address to the appropriate stack slot.
1817 if (!FPDiff) return Chain;
1818 // Calculate the new stack slot for the return address.
1819 int SlotSize = Is64Bit ? 8 : 4;
1820 int NewReturnAddrFI =
1821 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1822 EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1823 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1824 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1825 MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1826 false, false, 0);
1827 return Chain;
1830 SDValue
1831 X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1832 CallingConv::ID CallConv, bool isVarArg,
1833 bool &isTailCall,
1834 const SmallVectorImpl<ISD::OutputArg> &Outs,
1835 const SmallVectorImpl<SDValue> &OutVals,
1836 const SmallVectorImpl<ISD::InputArg> &Ins,
1837 DebugLoc dl, SelectionDAG &DAG,
1838 SmallVectorImpl<SDValue> &InVals) const {
1839 MachineFunction &MF = DAG.getMachineFunction();
1840 bool Is64Bit = Subtarget->is64Bit();
1841 bool IsStructRet = CallIsStructReturn(Outs);
1842 bool IsSibcall = false;
1844 if (isTailCall) {
1845 // Check if it's really possible to do a tail call.
1846 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1847 isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1848 Outs, OutVals, Ins, DAG);
1850 // Sibcalls are automatically detected tailcalls which do not require
1851 // ABI changes.
1852 if (!GuaranteedTailCallOpt && isTailCall)
1853 IsSibcall = true;
1855 if (isTailCall)
1856 ++NumTailCalls;
1859 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1860 "Var args not supported with calling convention fastcc or ghc");
1862 // Analyze operands of the call, assigning locations to each operand.
1863 SmallVector<CCValAssign, 16> ArgLocs;
1864 CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1865 ArgLocs, *DAG.getContext());
1866 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
1868 // Get a count of how many bytes are to be pushed on the stack.
1869 unsigned NumBytes = CCInfo.getNextStackOffset();
1870 if (IsSibcall)
1871 // This is a sibcall. The memory operands are available in caller's
1872 // own caller's stack.
1873 NumBytes = 0;
1874 else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1875 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1877 int FPDiff = 0;
1878 if (isTailCall && !IsSibcall) {
1879 // Lower arguments at fp - stackoffset + fpdiff.
1880 unsigned NumBytesCallerPushed =
1881 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1882 FPDiff = NumBytesCallerPushed - NumBytes;
1884 // Set the delta of movement of the returnaddr stackslot.
1885 // But only set if delta is greater than previous delta.
1886 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1887 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1890 if (!IsSibcall)
1891 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1893 SDValue RetAddrFrIdx;
1894 // Load return adress for tail calls.
1895 if (isTailCall && FPDiff)
1896 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1897 Is64Bit, FPDiff, dl);
1899 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1900 SmallVector<SDValue, 8> MemOpChains;
1901 SDValue StackPtr;
1903 // Walk the register/memloc assignments, inserting copies/loads. In the case
1904 // of tail call optimization arguments are handle later.
1905 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1906 CCValAssign &VA = ArgLocs[i];
1907 EVT RegVT = VA.getLocVT();
1908 SDValue Arg = OutVals[i];
1909 ISD::ArgFlagsTy Flags = Outs[i].Flags;
1910 bool isByVal = Flags.isByVal();
1912 // Promote the value if needed.
1913 switch (VA.getLocInfo()) {
1914 default: llvm_unreachable("Unknown loc info!");
1915 case CCValAssign::Full: break;
1916 case CCValAssign::SExt:
1917 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1918 break;
1919 case CCValAssign::ZExt:
1920 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1921 break;
1922 case CCValAssign::AExt:
1923 if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1924 // Special case: passing MMX values in XMM registers.
1925 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
1926 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1927 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1928 } else
1929 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1930 break;
1931 case CCValAssign::BCvt:
1932 Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
1933 break;
1934 case CCValAssign::Indirect: {
1935 // Store the argument.
1936 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1937 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1938 Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1939 MachinePointerInfo::getFixedStack(FI),
1940 false, false, 0);
1941 Arg = SpillSlot;
1942 break;
1946 if (VA.isRegLoc()) {
1947 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1948 if (isVarArg && Subtarget->isTargetWin64()) {
1949 // Win64 ABI requires argument XMM reg to be copied to the corresponding
1950 // shadow reg if callee is a varargs function.
1951 unsigned ShadowReg = 0;
1952 switch (VA.getLocReg()) {
1953 case X86::XMM0: ShadowReg = X86::RCX; break;
1954 case X86::XMM1: ShadowReg = X86::RDX; break;
1955 case X86::XMM2: ShadowReg = X86::R8; break;
1956 case X86::XMM3: ShadowReg = X86::R9; break;
1958 if (ShadowReg)
1959 RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
1961 } else if (!IsSibcall && (!isTailCall || isByVal)) {
1962 assert(VA.isMemLoc());
1963 if (StackPtr.getNode() == 0)
1964 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1965 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1966 dl, DAG, VA, Flags));
1970 if (!MemOpChains.empty())
1971 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1972 &MemOpChains[0], MemOpChains.size());
1974 // Build a sequence of copy-to-reg nodes chained together with token chain
1975 // and flag operands which copy the outgoing args into registers.
1976 SDValue InFlag;
1977 // Tail call byval lowering might overwrite argument registers so in case of
1978 // tail call optimization the copies to registers are lowered later.
1979 if (!isTailCall)
1980 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1981 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1982 RegsToPass[i].second, InFlag);
1983 InFlag = Chain.getValue(1);
1986 if (Subtarget->isPICStyleGOT()) {
1987 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1988 // GOT pointer.
1989 if (!isTailCall) {
1990 Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1991 DAG.getNode(X86ISD::GlobalBaseReg,
1992 DebugLoc(), getPointerTy()),
1993 InFlag);
1994 InFlag = Chain.getValue(1);
1995 } else {
1996 // If we are tail calling and generating PIC/GOT style code load the
1997 // address of the callee into ECX. The value in ecx is used as target of
1998 // the tail jump. This is done to circumvent the ebx/callee-saved problem
1999 // for tail calls on PIC/GOT architectures. Normally we would just put the
2000 // address of GOT into ebx and then call target@PLT. But for tail calls
2001 // ebx would be restored (since ebx is callee saved) before jumping to the
2002 // target@PLT.
2004 // Note: The actual moving to ECX is done further down.
2005 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2006 if (G && !G->getGlobal()->hasHiddenVisibility() &&
2007 !G->getGlobal()->hasProtectedVisibility())
2008 Callee = LowerGlobalAddress(Callee, DAG);
2009 else if (isa<ExternalSymbolSDNode>(Callee))
2010 Callee = LowerExternalSymbol(Callee, DAG);
2014 if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2015 // From AMD64 ABI document:
2016 // For calls that may call functions that use varargs or stdargs
2017 // (prototype-less calls or calls to functions containing ellipsis (...) in
2018 // the declaration) %al is used as hidden argument to specify the number
2019 // of SSE registers used. The contents of %al do not need to match exactly
2020 // the number of registers, but must be an ubound on the number of SSE
2021 // registers used and is in the range 0 - 8 inclusive.
2023 // Count the number of XMM registers allocated.
2024 static const unsigned XMMArgRegs[] = {
2025 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2026 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2028 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2029 assert((Subtarget->hasSSE1() || !NumXMMRegs)
2030 && "SSE registers cannot be used when SSE is disabled");
2032 Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2033 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2034 InFlag = Chain.getValue(1);
2038 // For tail calls lower the arguments to the 'real' stack slot.
2039 if (isTailCall) {
2040 // Force all the incoming stack arguments to be loaded from the stack
2041 // before any new outgoing arguments are stored to the stack, because the
2042 // outgoing stack slots may alias the incoming argument stack slots, and
2043 // the alias isn't otherwise explicit. This is slightly more conservative
2044 // than necessary, because it means that each store effectively depends
2045 // on every argument instead of just those arguments it would clobber.
2046 SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2048 SmallVector<SDValue, 8> MemOpChains2;
2049 SDValue FIN;
2050 int FI = 0;
2051 // Do not flag preceeding copytoreg stuff together with the following stuff.
2052 InFlag = SDValue();
2053 if (GuaranteedTailCallOpt) {
2054 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2055 CCValAssign &VA = ArgLocs[i];
2056 if (VA.isRegLoc())
2057 continue;
2058 assert(VA.isMemLoc());
2059 SDValue Arg = OutVals[i];
2060 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2061 // Create frame index.
2062 int32_t Offset = VA.getLocMemOffset()+FPDiff;
2063 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2064 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2065 FIN = DAG.getFrameIndex(FI, getPointerTy());
2067 if (Flags.isByVal()) {
2068 // Copy relative to framepointer.
2069 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2070 if (StackPtr.getNode() == 0)
2071 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2072 getPointerTy());
2073 Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2075 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2076 ArgChain,
2077 Flags, DAG, dl));
2078 } else {
2079 // Store relative to framepointer.
2080 MemOpChains2.push_back(
2081 DAG.getStore(ArgChain, dl, Arg, FIN,
2082 MachinePointerInfo::getFixedStack(FI),
2083 false, false, 0));
2088 if (!MemOpChains2.empty())
2089 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2090 &MemOpChains2[0], MemOpChains2.size());
2092 // Copy arguments to their registers.
2093 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2094 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2095 RegsToPass[i].second, InFlag);
2096 InFlag = Chain.getValue(1);
2098 InFlag =SDValue();
2100 // Store the return address to the appropriate stack slot.
2101 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2102 FPDiff, dl);
2105 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2106 assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2107 // In the 64-bit large code model, we have to make all calls
2108 // through a register, since the call instruction's 32-bit
2109 // pc-relative offset may not be large enough to hold the whole
2110 // address.
2111 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2112 // If the callee is a GlobalAddress node (quite common, every direct call
2113 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2114 // it.
2116 // We should use extra load for direct calls to dllimported functions in
2117 // non-JIT mode.
2118 const GlobalValue *GV = G->getGlobal();
2119 if (!GV->hasDLLImportLinkage()) {
2120 unsigned char OpFlags = 0;
2122 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2123 // external symbols most go through the PLT in PIC mode. If the symbol
2124 // has hidden or protected visibility, or if it is static or local, then
2125 // we don't need to use the PLT - we can directly call it.
2126 if (Subtarget->isTargetELF() &&
2127 getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2128 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2129 OpFlags = X86II::MO_PLT;
2130 } else if (Subtarget->isPICStyleStubAny() &&
2131 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2132 Subtarget->getDarwinVers() < 9) {
2133 // PC-relative references to external symbols should go through $stub,
2134 // unless we're building with the leopard linker or later, which
2135 // automatically synthesizes these stubs.
2136 OpFlags = X86II::MO_DARWIN_STUB;
2139 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2140 G->getOffset(), OpFlags);
2142 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2143 unsigned char OpFlags = 0;
2145 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2146 // symbols should go through the PLT.
2147 if (Subtarget->isTargetELF() &&
2148 getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2149 OpFlags = X86II::MO_PLT;
2150 } else if (Subtarget->isPICStyleStubAny() &&
2151 Subtarget->getDarwinVers() < 9) {
2152 // PC-relative references to external symbols should go through $stub,
2153 // unless we're building with the leopard linker or later, which
2154 // automatically synthesizes these stubs.
2155 OpFlags = X86II::MO_DARWIN_STUB;
2158 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2159 OpFlags);
2162 // Returns a chain & a flag for retval copy to use.
2163 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2164 SmallVector<SDValue, 8> Ops;
2166 if (!IsSibcall && isTailCall) {
2167 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2168 DAG.getIntPtrConstant(0, true), InFlag);
2169 InFlag = Chain.getValue(1);
2172 Ops.push_back(Chain);
2173 Ops.push_back(Callee);
2175 if (isTailCall)
2176 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2178 // Add argument registers to the end of the list so that they are known live
2179 // into the call.
2180 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2181 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2182 RegsToPass[i].second.getValueType()));
2184 // Add an implicit use GOT pointer in EBX.
2185 if (!isTailCall && Subtarget->isPICStyleGOT())
2186 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2188 // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2189 if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2190 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2192 if (InFlag.getNode())
2193 Ops.push_back(InFlag);
2195 if (isTailCall) {
2196 // We used to do:
2197 //// If this is the first return lowered for this function, add the regs
2198 //// to the liveout set for the function.
2199 // This isn't right, although it's probably harmless on x86; liveouts
2200 // should be computed from returns not tail calls. Consider a void
2201 // function making a tail call to a function returning int.
2202 return DAG.getNode(X86ISD::TC_RETURN, dl,
2203 NodeTys, &Ops[0], Ops.size());
2206 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2207 InFlag = Chain.getValue(1);
2209 // Create the CALLSEQ_END node.
2210 unsigned NumBytesForCalleeToPush;
2211 if (Subtarget->IsCalleePop(isVarArg, CallConv))
2212 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
2213 else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2214 // If this is a call to a struct-return function, the callee
2215 // pops the hidden struct pointer, so we have to push it back.
2216 // This is common for Darwin/X86, Linux & Mingw32 targets.
2217 NumBytesForCalleeToPush = 4;
2218 else
2219 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2221 // Returns a flag for retval copy to use.
2222 if (!IsSibcall) {
2223 Chain = DAG.getCALLSEQ_END(Chain,
2224 DAG.getIntPtrConstant(NumBytes, true),
2225 DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2226 true),
2227 InFlag);
2228 InFlag = Chain.getValue(1);
2231 // Handle result values, copying them out of physregs into vregs that we
2232 // return.
2233 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2234 Ins, dl, DAG, InVals);
2238 //===----------------------------------------------------------------------===//
2239 // Fast Calling Convention (tail call) implementation
2240 //===----------------------------------------------------------------------===//
2242 // Like std call, callee cleans arguments, convention except that ECX is
2243 // reserved for storing the tail called function address. Only 2 registers are
2244 // free for argument passing (inreg). Tail call optimization is performed
2245 // provided:
2246 // * tailcallopt is enabled
2247 // * caller/callee are fastcc
2248 // On X86_64 architecture with GOT-style position independent code only local
2249 // (within module) calls are supported at the moment.
2250 // To keep the stack aligned according to platform abi the function
2251 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2252 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2253 // If a tail called function callee has more arguments than the caller the
2254 // caller needs to make sure that there is room to move the RETADDR to. This is
2255 // achieved by reserving an area the size of the argument delta right after the
2256 // original REtADDR, but before the saved framepointer or the spilled registers
2257 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2258 // stack layout:
2259 // arg1
2260 // arg2
2261 // RETADDR
2262 // [ new RETADDR
2263 // move area ]
2264 // (possible EBP)
2265 // ESI
2266 // EDI
2267 // local1 ..
2269 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2270 /// for a 16 byte align requirement.
2271 unsigned
2272 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2273 SelectionDAG& DAG) const {
2274 MachineFunction &MF = DAG.getMachineFunction();
2275 const TargetMachine &TM = MF.getTarget();
2276 const TargetFrameInfo &TFI = *TM.getFrameInfo();
2277 unsigned StackAlignment = TFI.getStackAlignment();
2278 uint64_t AlignMask = StackAlignment - 1;
2279 int64_t Offset = StackSize;
2280 uint64_t SlotSize = TD->getPointerSize();
2281 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2282 // Number smaller than 12 so just add the difference.
2283 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2284 } else {
2285 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2286 Offset = ((~AlignMask) & Offset) + StackAlignment +
2287 (StackAlignment-SlotSize);
2289 return Offset;
2292 /// MatchingStackOffset - Return true if the given stack call argument is
2293 /// already available in the same position (relatively) of the caller's
2294 /// incoming argument stack.
2295 static
2296 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2297 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2298 const X86InstrInfo *TII) {
2299 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2300 int FI = INT_MAX;
2301 if (Arg.getOpcode() == ISD::CopyFromReg) {
2302 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2303 if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2304 return false;
2305 MachineInstr *Def = MRI->getVRegDef(VR);
2306 if (!Def)
2307 return false;
2308 if (!Flags.isByVal()) {
2309 if (!TII->isLoadFromStackSlot(Def, FI))
2310 return false;
2311 } else {
2312 unsigned Opcode = Def->getOpcode();
2313 if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2314 Def->getOperand(1).isFI()) {
2315 FI = Def->getOperand(1).getIndex();
2316 Bytes = Flags.getByValSize();
2317 } else
2318 return false;
2320 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2321 if (Flags.isByVal())
2322 // ByVal argument is passed in as a pointer but it's now being
2323 // dereferenced. e.g.
2324 // define @foo(%struct.X* %A) {
2325 // tail call @bar(%struct.X* byval %A)
2326 // }
2327 return false;
2328 SDValue Ptr = Ld->getBasePtr();
2329 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2330 if (!FINode)
2331 return false;
2332 FI = FINode->getIndex();
2333 } else
2334 return false;
2336 assert(FI != INT_MAX);
2337 if (!MFI->isFixedObjectIndex(FI))
2338 return false;
2339 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2342 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2343 /// for tail call optimization. Targets which want to do tail call
2344 /// optimization should implement this function.
2345 bool
2346 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2347 CallingConv::ID CalleeCC,
2348 bool isVarArg,
2349 bool isCalleeStructRet,
2350 bool isCallerStructRet,
2351 const SmallVectorImpl<ISD::OutputArg> &Outs,
2352 const SmallVectorImpl<SDValue> &OutVals,
2353 const SmallVectorImpl<ISD::InputArg> &Ins,
2354 SelectionDAG& DAG) const {
2355 if (!IsTailCallConvention(CalleeCC) &&
2356 CalleeCC != CallingConv::C)
2357 return false;
2359 // If -tailcallopt is specified, make fastcc functions tail-callable.
2360 const MachineFunction &MF = DAG.getMachineFunction();
2361 const Function *CallerF = DAG.getMachineFunction().getFunction();
2362 CallingConv::ID CallerCC = CallerF->getCallingConv();
2363 bool CCMatch = CallerCC == CalleeCC;
2365 if (GuaranteedTailCallOpt) {
2366 if (IsTailCallConvention(CalleeCC) && CCMatch)
2367 return true;
2368 return false;
2371 // Look for obvious safe cases to perform tail call optimization that do not
2372 // require ABI changes. This is what gcc calls sibcall.
2374 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2375 // emit a special epilogue.
2376 if (RegInfo->needsStackRealignment(MF))
2377 return false;
2379 // Do not sibcall optimize vararg calls unless the call site is not passing
2380 // any arguments.
2381 if (isVarArg && !Outs.empty())
2382 return false;
2384 // Also avoid sibcall optimization if either caller or callee uses struct
2385 // return semantics.
2386 if (isCalleeStructRet || isCallerStructRet)
2387 return false;
2389 // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2390 // Therefore if it's not used by the call it is not safe to optimize this into
2391 // a sibcall.
2392 bool Unused = false;
2393 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2394 if (!Ins[i].Used) {
2395 Unused = true;
2396 break;
2399 if (Unused) {
2400 SmallVector<CCValAssign, 16> RVLocs;
2401 CCState CCInfo(CalleeCC, false, getTargetMachine(),
2402 RVLocs, *DAG.getContext());
2403 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2404 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2405 CCValAssign &VA = RVLocs[i];
2406 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2407 return false;
2411 // If the calling conventions do not match, then we'd better make sure the
2412 // results are returned in the same way as what the caller expects.
2413 if (!CCMatch) {
2414 SmallVector<CCValAssign, 16> RVLocs1;
2415 CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2416 RVLocs1, *DAG.getContext());
2417 CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2419 SmallVector<CCValAssign, 16> RVLocs2;
2420 CCState CCInfo2(CallerCC, false, getTargetMachine(),
2421 RVLocs2, *DAG.getContext());
2422 CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2424 if (RVLocs1.size() != RVLocs2.size())
2425 return false;
2426 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2427 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2428 return false;
2429 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2430 return false;
2431 if (RVLocs1[i].isRegLoc()) {
2432 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2433 return false;
2434 } else {
2435 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2436 return false;
2441 // If the callee takes no arguments then go on to check the results of the
2442 // call.
2443 if (!Outs.empty()) {
2444 // Check if stack adjustment is needed. For now, do not do this if any
2445 // argument is passed on the stack.
2446 SmallVector<CCValAssign, 16> ArgLocs;
2447 CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2448 ArgLocs, *DAG.getContext());
2449 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2450 if (CCInfo.getNextStackOffset()) {
2451 MachineFunction &MF = DAG.getMachineFunction();
2452 if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2453 return false;
2454 if (Subtarget->isTargetWin64())
2455 // Win64 ABI has additional complications.
2456 return false;
2458 // Check if the arguments are already laid out in the right way as
2459 // the caller's fixed stack objects.
2460 MachineFrameInfo *MFI = MF.getFrameInfo();
2461 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2462 const X86InstrInfo *TII =
2463 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2464 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2465 CCValAssign &VA = ArgLocs[i];
2466 SDValue Arg = OutVals[i];
2467 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2468 if (VA.getLocInfo() == CCValAssign::Indirect)
2469 return false;
2470 if (!VA.isRegLoc()) {
2471 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2472 MFI, MRI, TII))
2473 return false;
2478 // If the tailcall address may be in a register, then make sure it's
2479 // possible to register allocate for it. In 32-bit, the call address can
2480 // only target EAX, EDX, or ECX since the tail call must be scheduled after
2481 // callee-saved registers are restored. These happen to be the same
2482 // registers used to pass 'inreg' arguments so watch out for those.
2483 if (!Subtarget->is64Bit() &&
2484 !isa<GlobalAddressSDNode>(Callee) &&
2485 !isa<ExternalSymbolSDNode>(Callee)) {
2486 unsigned NumInRegs = 0;
2487 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2488 CCValAssign &VA = ArgLocs[i];
2489 if (!VA.isRegLoc())
2490 continue;
2491 unsigned Reg = VA.getLocReg();
2492 switch (Reg) {
2493 default: break;
2494 case X86::EAX: case X86::EDX: case X86::ECX:
2495 if (++NumInRegs == 3)
2496 return false;
2497 break;
2503 // An stdcall caller is expected to clean up its arguments; the callee
2504 // isn't going to do that.
2505 if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2506 return false;
2508 return true;
2511 FastISel *
2512 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2513 return X86::createFastISel(funcInfo);
2517 //===----------------------------------------------------------------------===//
2518 // Other Lowering Hooks
2519 //===----------------------------------------------------------------------===//
2521 static bool MayFoldLoad(SDValue Op) {
2522 return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2525 static bool MayFoldIntoStore(SDValue Op) {
2526 return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2529 static bool isTargetShuffle(unsigned Opcode) {
2530 switch(Opcode) {
2531 default: return false;
2532 case X86ISD::PSHUFD:
2533 case X86ISD::PSHUFHW:
2534 case X86ISD::PSHUFLW:
2535 case X86ISD::SHUFPD:
2536 case X86ISD::PALIGN:
2537 case X86ISD::SHUFPS:
2538 case X86ISD::MOVLHPS:
2539 case X86ISD::MOVLHPD:
2540 case X86ISD::MOVHLPS:
2541 case X86ISD::MOVLPS:
2542 case X86ISD::MOVLPD:
2543 case X86ISD::MOVSHDUP:
2544 case X86ISD::MOVSLDUP:
2545 case X86ISD::MOVDDUP:
2546 case X86ISD::MOVSS:
2547 case X86ISD::MOVSD:
2548 case X86ISD::UNPCKLPS:
2549 case X86ISD::UNPCKLPD:
2550 case X86ISD::PUNPCKLWD:
2551 case X86ISD::PUNPCKLBW:
2552 case X86ISD::PUNPCKLDQ:
2553 case X86ISD::PUNPCKLQDQ:
2554 case X86ISD::UNPCKHPS:
2555 case X86ISD::UNPCKHPD:
2556 case X86ISD::PUNPCKHWD:
2557 case X86ISD::PUNPCKHBW:
2558 case X86ISD::PUNPCKHDQ:
2559 case X86ISD::PUNPCKHQDQ:
2560 return true;
2562 return false;
2565 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2566 SDValue V1, SelectionDAG &DAG) {
2567 switch(Opc) {
2568 default: llvm_unreachable("Unknown x86 shuffle node");
2569 case X86ISD::MOVSHDUP:
2570 case X86ISD::MOVSLDUP:
2571 case X86ISD::MOVDDUP:
2572 return DAG.getNode(Opc, dl, VT, V1);
2575 return SDValue();
2578 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2579 SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2580 switch(Opc) {
2581 default: llvm_unreachable("Unknown x86 shuffle node");
2582 case X86ISD::PSHUFD:
2583 case X86ISD::PSHUFHW:
2584 case X86ISD::PSHUFLW:
2585 return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2588 return SDValue();
2591 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2592 SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2593 switch(Opc) {
2594 default: llvm_unreachable("Unknown x86 shuffle node");
2595 case X86ISD::PALIGN:
2596 case X86ISD::SHUFPD:
2597 case X86ISD::SHUFPS:
2598 return DAG.getNode(Opc, dl, VT, V1, V2,
2599 DAG.getConstant(TargetMask, MVT::i8));
2601 return SDValue();
2604 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2605 SDValue V1, SDValue V2, SelectionDAG &DAG) {
2606 switch(Opc) {
2607 default: llvm_unreachable("Unknown x86 shuffle node");
2608 case X86ISD::MOVLHPS:
2609 case X86ISD::MOVLHPD:
2610 case X86ISD::MOVHLPS:
2611 case X86ISD::MOVLPS:
2612 case X86ISD::MOVLPD:
2613 case X86ISD::MOVSS:
2614 case X86ISD::MOVSD:
2615 case X86ISD::UNPCKLPS:
2616 case X86ISD::UNPCKLPD:
2617 case X86ISD::PUNPCKLWD:
2618 case X86ISD::PUNPCKLBW:
2619 case X86ISD::PUNPCKLDQ:
2620 case X86ISD::PUNPCKLQDQ:
2621 case X86ISD::UNPCKHPS:
2622 case X86ISD::UNPCKHPD:
2623 case X86ISD::PUNPCKHWD:
2624 case X86ISD::PUNPCKHBW:
2625 case X86ISD::PUNPCKHDQ:
2626 case X86ISD::PUNPCKHQDQ:
2627 return DAG.getNode(Opc, dl, VT, V1, V2);
2629 return SDValue();
2632 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2633 MachineFunction &MF = DAG.getMachineFunction();
2634 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2635 int ReturnAddrIndex = FuncInfo->getRAIndex();
2637 if (ReturnAddrIndex == 0) {
2638 // Set up a frame object for the return address.
2639 uint64_t SlotSize = TD->getPointerSize();
2640 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2641 false);
2642 FuncInfo->setRAIndex(ReturnAddrIndex);
2645 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2649 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2650 bool hasSymbolicDisplacement) {
2651 // Offset should fit into 32 bit immediate field.
2652 if (!isInt<32>(Offset))
2653 return false;
2655 // If we don't have a symbolic displacement - we don't have any extra
2656 // restrictions.
2657 if (!hasSymbolicDisplacement)
2658 return true;
2660 // FIXME: Some tweaks might be needed for medium code model.
2661 if (M != CodeModel::Small && M != CodeModel::Kernel)
2662 return false;
2664 // For small code model we assume that latest object is 16MB before end of 31
2665 // bits boundary. We may also accept pretty large negative constants knowing
2666 // that all objects are in the positive half of address space.
2667 if (M == CodeModel::Small && Offset < 16*1024*1024)
2668 return true;
2670 // For kernel code model we know that all object resist in the negative half
2671 // of 32bits address space. We may not accept negative offsets, since they may
2672 // be just off and we may accept pretty large positive ones.
2673 if (M == CodeModel::Kernel && Offset > 0)
2674 return true;
2676 return false;
2679 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2680 /// specific condition code, returning the condition code and the LHS/RHS of the
2681 /// comparison to make.
2682 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2683 SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2684 if (!isFP) {
2685 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2686 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2687 // X > -1 -> X == 0, jump !sign.
2688 RHS = DAG.getConstant(0, RHS.getValueType());
2689 return X86::COND_NS;
2690 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2691 // X < 0 -> X == 0, jump on sign.
2692 return X86::COND_S;
2693 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2694 // X < 1 -> X <= 0
2695 RHS = DAG.getConstant(0, RHS.getValueType());
2696 return X86::COND_LE;
2700 switch (SetCCOpcode) {
2701 default: llvm_unreachable("Invalid integer condition!");
2702 case ISD::SETEQ: return X86::COND_E;
2703 case ISD::SETGT: return X86::COND_G;
2704 case ISD::SETGE: return X86::COND_GE;
2705 case ISD::SETLT: return X86::COND_L;
2706 case ISD::SETLE: return X86::COND_LE;
2707 case ISD::SETNE: return X86::COND_NE;
2708 case ISD::SETULT: return X86::COND_B;
2709 case ISD::SETUGT: return X86::COND_A;
2710 case ISD::SETULE: return X86::COND_BE;
2711 case ISD::SETUGE: return X86::COND_AE;
2715 // First determine if it is required or is profitable to flip the operands.
2717 // If LHS is a foldable load, but RHS is not, flip the condition.
2718 if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2719 !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2720 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2721 std::swap(LHS, RHS);
2724 switch (SetCCOpcode) {
2725 default: break;
2726 case ISD::SETOLT:
2727 case ISD::SETOLE:
2728 case ISD::SETUGT:
2729 case ISD::SETUGE:
2730 std::swap(LHS, RHS);
2731 break;
2734 // On a floating point condition, the flags are set as follows:
2735 // ZF PF CF op
2736 // 0 | 0 | 0 | X > Y
2737 // 0 | 0 | 1 | X < Y
2738 // 1 | 0 | 0 | X == Y
2739 // 1 | 1 | 1 | unordered
2740 switch (SetCCOpcode) {
2741 default: llvm_unreachable("Condcode should be pre-legalized away");
2742 case ISD::SETUEQ:
2743 case ISD::SETEQ: return X86::COND_E;
2744 case ISD::SETOLT: // flipped
2745 case ISD::SETOGT:
2746 case ISD::SETGT: return X86::COND_A;
2747 case ISD::SETOLE: // flipped
2748 case ISD::SETOGE:
2749 case ISD::SETGE: return X86::COND_AE;
2750 case ISD::SETUGT: // flipped
2751 case ISD::SETULT:
2752 case ISD::SETLT: return X86::COND_B;
2753 case ISD::SETUGE: // flipped
2754 case ISD::SETULE:
2755 case ISD::SETLE: return X86::COND_BE;
2756 case ISD::SETONE:
2757 case ISD::SETNE: return X86::COND_NE;
2758 case ISD::SETUO: return X86::COND_P;
2759 case ISD::SETO: return X86::COND_NP;
2760 case ISD::SETOEQ:
2761 case ISD::SETUNE: return X86::COND_INVALID;
2765 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
2766 /// code. Current x86 isa includes the following FP cmov instructions:
2767 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2768 static bool hasFPCMov(unsigned X86CC) {
2769 switch (X86CC) {
2770 default:
2771 return false;
2772 case X86::COND_B:
2773 case X86::COND_BE:
2774 case X86::COND_E:
2775 case X86::COND_P:
2776 case X86::COND_A:
2777 case X86::COND_AE:
2778 case X86::COND_NE:
2779 case X86::COND_NP:
2780 return true;
2784 /// isFPImmLegal - Returns true if the target can instruction select the
2785 /// specified FP immediate natively. If false, the legalizer will
2786 /// materialize the FP immediate as a load from a constant pool.
2787 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2788 for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2789 if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2790 return true;
2792 return false;
2795 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
2796 /// the specified range (L, H].
2797 static bool isUndefOrInRange(int Val, int Low, int Hi) {
2798 return (Val < 0) || (Val >= Low && Val < Hi);
2801 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2802 /// specified value.
2803 static bool isUndefOrEqual(int Val, int CmpVal) {
2804 if (Val < 0 || Val == CmpVal)
2805 return true;
2806 return false;
2809 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2810 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
2811 /// the second operand.
2812 static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2813 if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2814 return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2815 if (VT == MVT::v2f64 || VT == MVT::v2i64)
2816 return (Mask[0] < 2 && Mask[1] < 2);
2817 return false;
2820 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2821 SmallVector<int, 8> M;
2822 N->getMask(M);
2823 return ::isPSHUFDMask(M, N->getValueType(0));
2826 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2827 /// is suitable for input to PSHUFHW.
2828 static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2829 if (VT != MVT::v8i16)
2830 return false;
2832 // Lower quadword copied in order or undef.
2833 for (int i = 0; i != 4; ++i)
2834 if (Mask[i] >= 0 && Mask[i] != i)
2835 return false;
2837 // Upper quadword shuffled.
2838 for (int i = 4; i != 8; ++i)
2839 if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2840 return false;
2842 return true;
2845 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2846 SmallVector<int, 8> M;
2847 N->getMask(M);
2848 return ::isPSHUFHWMask(M, N->getValueType(0));
2851 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2852 /// is suitable for input to PSHUFLW.
2853 static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2854 if (VT != MVT::v8i16)
2855 return false;
2857 // Upper quadword copied in order.
2858 for (int i = 4; i != 8; ++i)
2859 if (Mask[i] >= 0 && Mask[i] != i)
2860 return false;
2862 // Lower quadword shuffled.
2863 for (int i = 0; i != 4; ++i)
2864 if (Mask[i] >= 4)
2865 return false;
2867 return true;
2870 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2871 SmallVector<int, 8> M;
2872 N->getMask(M);
2873 return ::isPSHUFLWMask(M, N->getValueType(0));
2876 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2877 /// is suitable for input to PALIGNR.
2878 static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2879 bool hasSSSE3) {
2880 int i, e = VT.getVectorNumElements();
2882 // Do not handle v2i64 / v2f64 shuffles with palignr.
2883 if (e < 4 || !hasSSSE3)
2884 return false;
2886 for (i = 0; i != e; ++i)
2887 if (Mask[i] >= 0)
2888 break;
2890 // All undef, not a palignr.
2891 if (i == e)
2892 return false;
2894 // Determine if it's ok to perform a palignr with only the LHS, since we
2895 // don't have access to the actual shuffle elements to see if RHS is undef.
2896 bool Unary = Mask[i] < (int)e;
2897 bool NeedsUnary = false;
2899 int s = Mask[i] - i;
2901 // Check the rest of the elements to see if they are consecutive.
2902 for (++i; i != e; ++i) {
2903 int m = Mask[i];
2904 if (m < 0)
2905 continue;
2907 Unary = Unary && (m < (int)e);
2908 NeedsUnary = NeedsUnary || (m < s);
2910 if (NeedsUnary && !Unary)
2911 return false;
2912 if (Unary && m != ((s+i) & (e-1)))
2913 return false;
2914 if (!Unary && m != (s+i))
2915 return false;
2917 return true;
2920 bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2921 SmallVector<int, 8> M;
2922 N->getMask(M);
2923 return ::isPALIGNRMask(M, N->getValueType(0), true);
2926 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2927 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
2928 static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2929 int NumElems = VT.getVectorNumElements();
2930 if (NumElems != 2 && NumElems != 4)
2931 return false;
2933 int Half = NumElems / 2;
2934 for (int i = 0; i < Half; ++i)
2935 if (!isUndefOrInRange(Mask[i], 0, NumElems))
2936 return false;
2937 for (int i = Half; i < NumElems; ++i)
2938 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2939 return false;
2941 return true;
2944 bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2945 SmallVector<int, 8> M;
2946 N->getMask(M);
2947 return ::isSHUFPMask(M, N->getValueType(0));
2950 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2951 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2952 /// half elements to come from vector 1 (which would equal the dest.) and
2953 /// the upper half to come from vector 2.
2954 static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2955 int NumElems = VT.getVectorNumElements();
2957 if (NumElems != 2 && NumElems != 4)
2958 return false;
2960 int Half = NumElems / 2;
2961 for (int i = 0; i < Half; ++i)
2962 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2963 return false;
2964 for (int i = Half; i < NumElems; ++i)
2965 if (!isUndefOrInRange(Mask[i], 0, NumElems))
2966 return false;
2967 return true;
2970 static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2971 SmallVector<int, 8> M;
2972 N->getMask(M);
2973 return isCommutedSHUFPMask(M, N->getValueType(0));
2976 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2977 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2978 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2979 if (N->getValueType(0).getVectorNumElements() != 4)
2980 return false;
2982 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2983 return isUndefOrEqual(N->getMaskElt(0), 6) &&
2984 isUndefOrEqual(N->getMaskElt(1), 7) &&
2985 isUndefOrEqual(N->getMaskElt(2), 2) &&
2986 isUndefOrEqual(N->getMaskElt(3), 3);
2989 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2990 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2991 /// <2, 3, 2, 3>
2992 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2993 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2995 if (NumElems != 4)
2996 return false;
2998 return isUndefOrEqual(N->getMaskElt(0), 2) &&
2999 isUndefOrEqual(N->getMaskElt(1), 3) &&
3000 isUndefOrEqual(N->getMaskElt(2), 2) &&
3001 isUndefOrEqual(N->getMaskElt(3), 3);
3004 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3005 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3006 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3007 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3009 if (NumElems != 2 && NumElems != 4)
3010 return false;
3012 for (unsigned i = 0; i < NumElems/2; ++i)
3013 if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3014 return false;
3016 for (unsigned i = NumElems/2; i < NumElems; ++i)
3017 if (!isUndefOrEqual(N->getMaskElt(i), i))
3018 return false;
3020 return true;
3023 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3024 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3025 bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3026 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3028 if (NumElems != 2 && NumElems != 4)
3029 return false;
3031 for (unsigned i = 0; i < NumElems/2; ++i)
3032 if (!isUndefOrEqual(N->getMaskElt(i), i))
3033 return false;
3035 for (unsigned i = 0; i < NumElems/2; ++i)
3036 if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3037 return false;
3039 return true;
3042 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3043 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
3044 static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3045 bool V2IsSplat = false) {
3046 int NumElts = VT.getVectorNumElements();
3047 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3048 return false;
3050 for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3051 int BitI = Mask[i];
3052 int BitI1 = Mask[i+1];
3053 if (!isUndefOrEqual(BitI, j))
3054 return false;
3055 if (V2IsSplat) {
3056 if (!isUndefOrEqual(BitI1, NumElts))
3057 return false;
3058 } else {
3059 if (!isUndefOrEqual(BitI1, j + NumElts))
3060 return false;
3063 return true;
3066 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3067 SmallVector<int, 8> M;
3068 N->getMask(M);
3069 return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3072 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3073 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
3074 static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3075 bool V2IsSplat = false) {
3076 int NumElts = VT.getVectorNumElements();
3077 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3078 return false;
3080 for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3081 int BitI = Mask[i];
3082 int BitI1 = Mask[i+1];
3083 if (!isUndefOrEqual(BitI, j + NumElts/2))
3084 return false;
3085 if (V2IsSplat) {
3086 if (isUndefOrEqual(BitI1, NumElts))
3087 return false;
3088 } else {
3089 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3090 return false;
3093 return true;
3096 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3097 SmallVector<int, 8> M;
3098 N->getMask(M);
3099 return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3102 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3103 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3104 /// <0, 0, 1, 1>
3105 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3106 int NumElems = VT.getVectorNumElements();
3107 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3108 return false;
3110 for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3111 int BitI = Mask[i];
3112 int BitI1 = Mask[i+1];
3113 if (!isUndefOrEqual(BitI, j))
3114 return false;
3115 if (!isUndefOrEqual(BitI1, j))
3116 return false;
3118 return true;
3121 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3122 SmallVector<int, 8> M;
3123 N->getMask(M);
3124 return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3127 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3128 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3129 /// <2, 2, 3, 3>
3130 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3131 int NumElems = VT.getVectorNumElements();
3132 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3133 return false;
3135 for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3136 int BitI = Mask[i];
3137 int BitI1 = Mask[i+1];
3138 if (!isUndefOrEqual(BitI, j))
3139 return false;
3140 if (!isUndefOrEqual(BitI1, j))
3141 return false;
3143 return true;
3146 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3147 SmallVector<int, 8> M;
3148 N->getMask(M);
3149 return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3152 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3153 /// specifies a shuffle of elements that is suitable for input to MOVSS,
3154 /// MOVSD, and MOVD, i.e. setting the lowest element.
3155 static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3156 if (VT.getVectorElementType().getSizeInBits() < 32)
3157 return false;
3159 int NumElts = VT.getVectorNumElements();
3161 if (!isUndefOrEqual(Mask[0], NumElts))
3162 return false;
3164 for (int i = 1; i < NumElts; ++i)
3165 if (!isUndefOrEqual(Mask[i], i))
3166 return false;
3168 return true;
3171 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3172 SmallVector<int, 8> M;
3173 N->getMask(M);
3174 return ::isMOVLMask(M, N->getValueType(0));
3177 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3178 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
3179 /// element of vector 2 and the other elements to come from vector 1 in order.
3180 static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3181 bool V2IsSplat = false, bool V2IsUndef = false) {
3182 int NumOps = VT.getVectorNumElements();
3183 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3184 return false;
3186 if (!isUndefOrEqual(Mask[0], 0))
3187 return false;
3189 for (int i = 1; i < NumOps; ++i)
3190 if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3191 (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3192 (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3193 return false;
3195 return true;
3198 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3199 bool V2IsUndef = false) {
3200 SmallVector<int, 8> M;
3201 N->getMask(M);
3202 return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3205 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3206 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3207 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3208 if (N->getValueType(0).getVectorNumElements() != 4)
3209 return false;
3211 // Expect 1, 1, 3, 3
3212 for (unsigned i = 0; i < 2; ++i) {
3213 int Elt = N->getMaskElt(i);
3214 if (Elt >= 0 && Elt != 1)
3215 return false;
3218 bool HasHi = false;
3219 for (unsigned i = 2; i < 4; ++i) {
3220 int Elt = N->getMaskElt(i);
3221 if (Elt >= 0 && Elt != 3)
3222 return false;
3223 if (Elt == 3)
3224 HasHi = true;
3226 // Don't use movshdup if it can be done with a shufps.
3227 // FIXME: verify that matching u, u, 3, 3 is what we want.
3228 return HasHi;
3231 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3232 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3233 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3234 if (N->getValueType(0).getVectorNumElements() != 4)
3235 return false;
3237 // Expect 0, 0, 2, 2
3238 for (unsigned i = 0; i < 2; ++i)
3239 if (N->getMaskElt(i) > 0)
3240 return false;
3242 bool HasHi = false;
3243 for (unsigned i = 2; i < 4; ++i) {
3244 int Elt = N->getMaskElt(i);
3245 if (Elt >= 0 && Elt != 2)
3246 return false;
3247 if (Elt == 2)
3248 HasHi = true;
3250 // Don't use movsldup if it can be done with a shufps.
3251 return HasHi;
3254 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3255 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3256 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3257 int e = N->getValueType(0).getVectorNumElements() / 2;
3259 for (int i = 0; i < e; ++i)
3260 if (!isUndefOrEqual(N->getMaskElt(i), i))
3261 return false;
3262 for (int i = 0; i < e; ++i)
3263 if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3264 return false;
3265 return true;
3268 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3269 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3270 unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3271 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3272 int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3274 unsigned Shift = (NumOperands == 4) ? 2 : 1;
3275 unsigned Mask = 0;
3276 for (int i = 0; i < NumOperands; ++i) {
3277 int Val = SVOp->getMaskElt(NumOperands-i-1);
3278 if (Val < 0) Val = 0;
3279 if (Val >= NumOperands) Val -= NumOperands;
3280 Mask |= Val;
3281 if (i != NumOperands - 1)
3282 Mask <<= Shift;
3284 return Mask;
3287 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3288 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3289 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3290 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3291 unsigned Mask = 0;
3292 // 8 nodes, but we only care about the last 4.
3293 for (unsigned i = 7; i >= 4; --i) {
3294 int Val = SVOp->getMaskElt(i);
3295 if (Val >= 0)
3296 Mask |= (Val - 4);
3297 if (i != 4)
3298 Mask <<= 2;
3300 return Mask;
3303 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3304 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3305 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3306 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3307 unsigned Mask = 0;
3308 // 8 nodes, but we only care about the first 4.
3309 for (int i = 3; i >= 0; --i) {
3310 int Val = SVOp->getMaskElt(i);
3311 if (Val >= 0)
3312 Mask |= Val;
3313 if (i != 0)
3314 Mask <<= 2;
3316 return Mask;
3319 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3320 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3321 unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3322 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3323 EVT VVT = N->getValueType(0);
3324 unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3325 int Val = 0;
3327 unsigned i, e;
3328 for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3329 Val = SVOp->getMaskElt(i);
3330 if (Val >= 0)
3331 break;
3333 return (Val - i) * EltSize;
3336 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
3337 /// constant +0.0.
3338 bool X86::isZeroNode(SDValue Elt) {
3339 return ((isa<ConstantSDNode>(Elt) &&
3340 cast<ConstantSDNode>(Elt)->isNullValue()) ||
3341 (isa<ConstantFPSDNode>(Elt) &&
3342 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3345 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3346 /// their permute mask.
3347 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3348 SelectionDAG &DAG) {
3349 EVT VT = SVOp->getValueType(0);
3350 unsigned NumElems = VT.getVectorNumElements();
3351 SmallVector<int, 8> MaskVec;
3353 for (unsigned i = 0; i != NumElems; ++i) {
3354 int idx = SVOp->getMaskElt(i);
3355 if (idx < 0)
3356 MaskVec.push_back(idx);
3357 else if (idx < (int)NumElems)
3358 MaskVec.push_back(idx + NumElems);
3359 else
3360 MaskVec.push_back(idx - NumElems);
3362 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3363 SVOp->getOperand(0), &MaskVec[0]);
3366 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3367 /// the two vector operands have swapped position.
3368 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3369 unsigned NumElems = VT.getVectorNumElements();
3370 for (unsigned i = 0; i != NumElems; ++i) {
3371 int idx = Mask[i];
3372 if (idx < 0)
3373 continue;
3374 else if (idx < (int)NumElems)
3375 Mask[i] = idx + NumElems;
3376 else
3377 Mask[i] = idx - NumElems;
3381 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3382 /// match movhlps. The lower half elements should come from upper half of
3383 /// V1 (and in order), and the upper half elements should come from the upper
3384 /// half of V2 (and in order).
3385 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3386 if (Op->getValueType(0).getVectorNumElements() != 4)
3387 return false;
3388 for (unsigned i = 0, e = 2; i != e; ++i)
3389 if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3390 return false;
3391 for (unsigned i = 2; i != 4; ++i)
3392 if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3393 return false;
3394 return true;
3397 /// isScalarLoadToVector - Returns true if the node is a scalar load that
3398 /// is promoted to a vector. It also returns the LoadSDNode by reference if
3399 /// required.
3400 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3401 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3402 return false;
3403 N = N->getOperand(0).getNode();
3404 if (!ISD::isNON_EXTLoad(N))
3405 return false;
3406 if (LD)
3407 *LD = cast<LoadSDNode>(N);
3408 return true;
3411 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3412 /// match movlp{s|d}. The lower half elements should come from lower half of
3413 /// V1 (and in order), and the upper half elements should come from the upper
3414 /// half of V2 (and in order). And since V1 will become the source of the
3415 /// MOVLP, it must be either a vector load or a scalar load to vector.
3416 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3417 ShuffleVectorSDNode *Op) {
3418 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3419 return false;
3420 // Is V2 is a vector load, don't do this transformation. We will try to use
3421 // load folding shufps op.
3422 if (ISD::isNON_EXTLoad(V2))
3423 return false;
3425 unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3427 if (NumElems != 2 && NumElems != 4)
3428 return false;
3429 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3430 if (!isUndefOrEqual(Op->getMaskElt(i), i))
3431 return false;
3432 for (unsigned i = NumElems/2; i != NumElems; ++i)
3433 if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3434 return false;
3435 return true;
3438 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3439 /// all the same.
3440 static bool isSplatVector(SDNode *N) {
3441 if (N->getOpcode() != ISD::BUILD_VECTOR)
3442 return false;
3444 SDValue SplatValue = N->getOperand(0);
3445 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3446 if (N->getOperand(i) != SplatValue)
3447 return false;
3448 return true;
3451 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3452 /// to an zero vector.
3453 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3454 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3455 SDValue V1 = N->getOperand(0);
3456 SDValue V2 = N->getOperand(1);
3457 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3458 for (unsigned i = 0; i != NumElems; ++i) {
3459 int Idx = N->getMaskElt(i);
3460 if (Idx >= (int)NumElems) {
3461 unsigned Opc = V2.getOpcode();
3462 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3463 continue;
3464 if (Opc != ISD::BUILD_VECTOR ||
3465 !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3466 return false;
3467 } else if (Idx >= 0) {
3468 unsigned Opc = V1.getOpcode();
3469 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3470 continue;
3471 if (Opc != ISD::BUILD_VECTOR ||
3472 !X86::isZeroNode(V1.getOperand(Idx)))
3473 return false;
3476 return true;
3479 /// getZeroVector - Returns a vector of specified type with all zero elements.
3481 static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3482 DebugLoc dl) {
3483 assert(VT.isVector() && "Expected a vector type");
3485 // Always build SSE zero vectors as <4 x i32> bitcasted
3486 // to their dest type. This ensures they get CSE'd.
3487 SDValue Vec;
3488 if (VT.getSizeInBits() == 128) { // SSE
3489 if (HasSSE2) { // SSE2
3490 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3491 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3492 } else { // SSE1
3493 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3494 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3496 } else if (VT.getSizeInBits() == 256) { // AVX
3497 // 256-bit logic and arithmetic instructions in AVX are
3498 // all floating-point, no support for integer ops. Default
3499 // to emitting fp zeroed vectors then.
3500 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3501 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3502 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3504 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3507 /// getOnesVector - Returns a vector of specified type with all bits set.
3509 static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3510 assert(VT.isVector() && "Expected a vector type");
3512 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3513 // type. This ensures they get CSE'd.
3514 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3515 SDValue Vec;
3516 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3517 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3521 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3522 /// that point to V2 points to its first element.
3523 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3524 EVT VT = SVOp->getValueType(0);
3525 unsigned NumElems = VT.getVectorNumElements();
3527 bool Changed = false;
3528 SmallVector<int, 8> MaskVec;
3529 SVOp->getMask(MaskVec);
3531 for (unsigned i = 0; i != NumElems; ++i) {
3532 if (MaskVec[i] > (int)NumElems) {
3533 MaskVec[i] = NumElems;
3534 Changed = true;
3537 if (Changed)
3538 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3539 SVOp->getOperand(1), &MaskVec[0]);
3540 return SDValue(SVOp, 0);
3543 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3544 /// operation of specified width.
3545 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3546 SDValue V2) {
3547 unsigned NumElems = VT.getVectorNumElements();
3548 SmallVector<int, 8> Mask;
3549 Mask.push_back(NumElems);
3550 for (unsigned i = 1; i != NumElems; ++i)
3551 Mask.push_back(i);
3552 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3555 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3556 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3557 SDValue V2) {
3558 unsigned NumElems = VT.getVectorNumElements();
3559 SmallVector<int, 8> Mask;
3560 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3561 Mask.push_back(i);
3562 Mask.push_back(i + NumElems);
3564 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3567 /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3568 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3569 SDValue V2) {
3570 unsigned NumElems = VT.getVectorNumElements();
3571 unsigned Half = NumElems/2;
3572 SmallVector<int, 8> Mask;
3573 for (unsigned i = 0; i != Half; ++i) {
3574 Mask.push_back(i + Half);
3575 Mask.push_back(i + NumElems + Half);
3577 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3580 /// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3581 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3582 EVT PVT = MVT::v4f32;
3583 EVT VT = SV->getValueType(0);
3584 DebugLoc dl = SV->getDebugLoc();
3585 SDValue V1 = SV->getOperand(0);
3586 int NumElems = VT.getVectorNumElements();
3587 int EltNo = SV->getSplatIndex();
3589 // unpack elements to the correct location
3590 while (NumElems > 4) {
3591 if (EltNo < NumElems/2) {
3592 V1 = getUnpackl(DAG, dl, VT, V1, V1);
3593 } else {
3594 V1 = getUnpackh(DAG, dl, VT, V1, V1);
3595 EltNo -= NumElems/2;
3597 NumElems >>= 1;
3600 // Perform the splat.
3601 int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3602 V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
3603 V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3604 return DAG.getNode(ISD::BITCAST, dl, VT, V1);
3607 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3608 /// vector of zero or undef vector. This produces a shuffle where the low
3609 /// element of V2 is swizzled into the zero/undef vector, landing at element
3610 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
3611 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3612 bool isZero, bool HasSSE2,
3613 SelectionDAG &DAG) {
3614 EVT VT = V2.getValueType();
3615 SDValue V1 = isZero
3616 ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3617 unsigned NumElems = VT.getVectorNumElements();
3618 SmallVector<int, 16> MaskVec;
3619 for (unsigned i = 0; i != NumElems; ++i)
3620 // If this is the insertion idx, put the low elt of V2 here.
3621 MaskVec.push_back(i == Idx ? NumElems : i);
3622 return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3625 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
3626 /// element of the result of the vector shuffle.
3627 SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3628 unsigned Depth) {
3629 if (Depth == 6)
3630 return SDValue(); // Limit search depth.
3632 SDValue V = SDValue(N, 0);
3633 EVT VT = V.getValueType();
3634 unsigned Opcode = V.getOpcode();
3636 // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3637 if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3638 Index = SV->getMaskElt(Index);
3640 if (Index < 0)
3641 return DAG.getUNDEF(VT.getVectorElementType());
3643 int NumElems = VT.getVectorNumElements();
3644 SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3645 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3648 // Recurse into target specific vector shuffles to find scalars.
3649 if (isTargetShuffle(Opcode)) {
3650 int NumElems = VT.getVectorNumElements();
3651 SmallVector<unsigned, 16> ShuffleMask;
3652 SDValue ImmN;
3654 switch(Opcode) {
3655 case X86ISD::SHUFPS:
3656 case X86ISD::SHUFPD:
3657 ImmN = N->getOperand(N->getNumOperands()-1);
3658 DecodeSHUFPSMask(NumElems,
3659 cast<ConstantSDNode>(ImmN)->getZExtValue(),
3660 ShuffleMask);
3661 break;
3662 case X86ISD::PUNPCKHBW:
3663 case X86ISD::PUNPCKHWD:
3664 case X86ISD::PUNPCKHDQ:
3665 case X86ISD::PUNPCKHQDQ:
3666 DecodePUNPCKHMask(NumElems, ShuffleMask);
3667 break;
3668 case X86ISD::UNPCKHPS:
3669 case X86ISD::UNPCKHPD:
3670 DecodeUNPCKHPMask(NumElems, ShuffleMask);
3671 break;
3672 case X86ISD::PUNPCKLBW:
3673 case X86ISD::PUNPCKLWD:
3674 case X86ISD::PUNPCKLDQ:
3675 case X86ISD::PUNPCKLQDQ:
3676 DecodePUNPCKLMask(NumElems, ShuffleMask);
3677 break;
3678 case X86ISD::UNPCKLPS:
3679 case X86ISD::UNPCKLPD:
3680 DecodeUNPCKLPMask(NumElems, ShuffleMask);
3681 break;
3682 case X86ISD::MOVHLPS:
3683 DecodeMOVHLPSMask(NumElems, ShuffleMask);
3684 break;
3685 case X86ISD::MOVLHPS:
3686 DecodeMOVLHPSMask(NumElems, ShuffleMask);
3687 break;
3688 case X86ISD::PSHUFD:
3689 ImmN = N->getOperand(N->getNumOperands()-1);
3690 DecodePSHUFMask(NumElems,
3691 cast<ConstantSDNode>(ImmN)->getZExtValue(),
3692 ShuffleMask);
3693 break;
3694 case X86ISD::PSHUFHW:
3695 ImmN = N->getOperand(N->getNumOperands()-1);
3696 DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3697 ShuffleMask);
3698 break;
3699 case X86ISD::PSHUFLW:
3700 ImmN = N->getOperand(N->getNumOperands()-1);
3701 DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3702 ShuffleMask);
3703 break;
3704 case X86ISD::MOVSS:
3705 case X86ISD::MOVSD: {
3706 // The index 0 always comes from the first element of the second source,
3707 // this is why MOVSS and MOVSD are used in the first place. The other
3708 // elements come from the other positions of the first source vector.
3709 unsigned OpNum = (Index == 0) ? 1 : 0;
3710 return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3711 Depth+1);
3713 default:
3714 assert("not implemented for target shuffle node");
3715 return SDValue();
3718 Index = ShuffleMask[Index];
3719 if (Index < 0)
3720 return DAG.getUNDEF(VT.getVectorElementType());
3722 SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3723 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3724 Depth+1);
3727 // Actual nodes that may contain scalar elements
3728 if (Opcode == ISD::BITCAST) {
3729 V = V.getOperand(0);
3730 EVT SrcVT = V.getValueType();
3731 unsigned NumElems = VT.getVectorNumElements();
3733 if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3734 return SDValue();
3737 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3738 return (Index == 0) ? V.getOperand(0)
3739 : DAG.getUNDEF(VT.getVectorElementType());
3741 if (V.getOpcode() == ISD::BUILD_VECTOR)
3742 return V.getOperand(Index);
3744 return SDValue();
3747 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
3748 /// shuffle operation which come from a consecutively from a zero. The
3749 /// search can start in two diferent directions, from left or right.
3750 static
3751 unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3752 bool ZerosFromLeft, SelectionDAG &DAG) {
3753 int i = 0;
3755 while (i < NumElems) {
3756 unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3757 SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
3758 if (!(Elt.getNode() &&
3759 (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3760 break;
3761 ++i;
3764 return i;
3767 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3768 /// MaskE correspond consecutively to elements from one of the vector operands,
3769 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
3770 static
3771 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3772 int OpIdx, int NumElems, unsigned &OpNum) {
3773 bool SeenV1 = false;
3774 bool SeenV2 = false;
3776 for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
3777 int Idx = SVOp->getMaskElt(i);
3778 // Ignore undef indicies
3779 if (Idx < 0)
3780 continue;
3782 if (Idx < NumElems)
3783 SeenV1 = true;
3784 else
3785 SeenV2 = true;
3787 // Only accept consecutive elements from the same vector
3788 if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
3789 return false;
3792 OpNum = SeenV1 ? 0 : 1;
3793 return true;
3796 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3797 /// logical left shift of a vector.
3798 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3799 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3800 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3801 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3802 false /* check zeros from right */, DAG);
3803 unsigned OpSrc;
3805 if (!NumZeros)
3806 return false;
3808 // Considering the elements in the mask that are not consecutive zeros,
3809 // check if they consecutively come from only one of the source vectors.
3811 // V1 = {X, A, B, C} 0
3812 // \ \ \ /
3813 // vector_shuffle V1, V2 <1, 2, 3, X>
3815 if (!isShuffleMaskConsecutive(SVOp,
3816 0, // Mask Start Index
3817 NumElems-NumZeros-1, // Mask End Index
3818 NumZeros, // Where to start looking in the src vector
3819 NumElems, // Number of elements in vector
3820 OpSrc)) // Which source operand ?
3821 return false;
3823 isLeft = false;
3824 ShAmt = NumZeros;
3825 ShVal = SVOp->getOperand(OpSrc);
3826 return true;
3829 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3830 /// logical left shift of a vector.
3831 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3832 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3833 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3834 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3835 true /* check zeros from left */, DAG);
3836 unsigned OpSrc;
3838 if (!NumZeros)
3839 return false;
3841 // Considering the elements in the mask that are not consecutive zeros,
3842 // check if they consecutively come from only one of the source vectors.
3844 // 0 { A, B, X, X } = V2
3845 // / \ / /
3846 // vector_shuffle V1, V2 <X, X, 4, 5>
3848 if (!isShuffleMaskConsecutive(SVOp,
3849 NumZeros, // Mask Start Index
3850 NumElems-1, // Mask End Index
3851 0, // Where to start looking in the src vector
3852 NumElems, // Number of elements in vector
3853 OpSrc)) // Which source operand ?
3854 return false;
3856 isLeft = true;
3857 ShAmt = NumZeros;
3858 ShVal = SVOp->getOperand(OpSrc);
3859 return true;
3862 /// isVectorShift - Returns true if the shuffle can be implemented as a
3863 /// logical left or right shift of a vector.
3864 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3865 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3866 if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
3867 isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
3868 return true;
3870 return false;
3873 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3875 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3876 unsigned NumNonZero, unsigned NumZero,
3877 SelectionDAG &DAG,
3878 const TargetLowering &TLI) {
3879 if (NumNonZero > 8)
3880 return SDValue();
3882 DebugLoc dl = Op.getDebugLoc();
3883 SDValue V(0, 0);
3884 bool First = true;
3885 for (unsigned i = 0; i < 16; ++i) {
3886 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3887 if (ThisIsNonZero && First) {
3888 if (NumZero)
3889 V = getZeroVector(MVT::v8i16, true, DAG, dl);
3890 else
3891 V = DAG.getUNDEF(MVT::v8i16);
3892 First = false;
3895 if ((i & 1) != 0) {
3896 SDValue ThisElt(0, 0), LastElt(0, 0);
3897 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3898 if (LastIsNonZero) {
3899 LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3900 MVT::i16, Op.getOperand(i-1));
3902 if (ThisIsNonZero) {
3903 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3904 ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3905 ThisElt, DAG.getConstant(8, MVT::i8));
3906 if (LastIsNonZero)
3907 ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3908 } else
3909 ThisElt = LastElt;
3911 if (ThisElt.getNode())
3912 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3913 DAG.getIntPtrConstant(i/2));
3917 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
3920 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3922 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3923 unsigned NumNonZero, unsigned NumZero,
3924 SelectionDAG &DAG,
3925 const TargetLowering &TLI) {
3926 if (NumNonZero > 4)
3927 return SDValue();
3929 DebugLoc dl = Op.getDebugLoc();
3930 SDValue V(0, 0);
3931 bool First = true;
3932 for (unsigned i = 0; i < 8; ++i) {
3933 bool isNonZero = (NonZeros & (1 << i)) != 0;
3934 if (isNonZero) {
3935 if (First) {
3936 if (NumZero)
3937 V = getZeroVector(MVT::v8i16, true, DAG, dl);
3938 else
3939 V = DAG.getUNDEF(MVT::v8i16);
3940 First = false;
3942 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3943 MVT::v8i16, V, Op.getOperand(i),
3944 DAG.getIntPtrConstant(i));
3948 return V;
3951 /// getVShift - Return a vector logical shift node.
3953 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3954 unsigned NumBits, SelectionDAG &DAG,
3955 const TargetLowering &TLI, DebugLoc dl) {
3956 EVT ShVT = MVT::v2i64;
3957 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3958 SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
3959 return DAG.getNode(ISD::BITCAST, dl, VT,
3960 DAG.getNode(Opc, dl, ShVT, SrcOp,
3961 DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3964 SDValue
3965 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3966 SelectionDAG &DAG) const {
3968 // Check if the scalar load can be widened into a vector load. And if
3969 // the address is "base + cst" see if the cst can be "absorbed" into
3970 // the shuffle mask.
3971 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3972 SDValue Ptr = LD->getBasePtr();
3973 if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3974 return SDValue();
3975 EVT PVT = LD->getValueType(0);
3976 if (PVT != MVT::i32 && PVT != MVT::f32)
3977 return SDValue();
3979 int FI = -1;
3980 int64_t Offset = 0;
3981 if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3982 FI = FINode->getIndex();
3983 Offset = 0;
3984 } else if (Ptr.getOpcode() == ISD::ADD &&
3985 isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3986 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3987 FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3988 Offset = Ptr.getConstantOperandVal(1);
3989 Ptr = Ptr.getOperand(0);
3990 } else {
3991 return SDValue();
3994 SDValue Chain = LD->getChain();
3995 // Make sure the stack object alignment is at least 16.
3996 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3997 if (DAG.InferPtrAlignment(Ptr) < 16) {
3998 if (MFI->isFixedObjectIndex(FI)) {
3999 // Can't change the alignment. FIXME: It's possible to compute
4000 // the exact stack offset and reference FI + adjust offset instead.
4001 // If someone *really* cares about this. That's the way to implement it.
4002 return SDValue();
4003 } else {
4004 MFI->setObjectAlignment(FI, 16);
4008 // (Offset % 16) must be multiple of 4. Then address is then
4009 // Ptr + (Offset & ~15).
4010 if (Offset < 0)
4011 return SDValue();
4012 if ((Offset % 16) & 3)
4013 return SDValue();
4014 int64_t StartOffset = Offset & ~15;
4015 if (StartOffset)
4016 Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4017 Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4019 int EltNo = (Offset - StartOffset) >> 2;
4020 int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4021 EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4022 SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4023 LD->getPointerInfo().getWithOffset(StartOffset),
4024 false, false, 0);
4025 // Canonicalize it to a v4i32 shuffle.
4026 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4027 return DAG.getNode(ISD::BITCAST, dl, VT,
4028 DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4029 DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4032 return SDValue();
4035 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4036 /// vector of type 'VT', see if the elements can be replaced by a single large
4037 /// load which has the same value as a build_vector whose operands are 'elts'.
4039 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4041 /// FIXME: we'd also like to handle the case where the last elements are zero
4042 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4043 /// There's even a handy isZeroNode for that purpose.
4044 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4045 DebugLoc &DL, SelectionDAG &DAG) {
4046 EVT EltVT = VT.getVectorElementType();
4047 unsigned NumElems = Elts.size();
4049 LoadSDNode *LDBase = NULL;
4050 unsigned LastLoadedElt = -1U;
4052 // For each element in the initializer, see if we've found a load or an undef.
4053 // If we don't find an initial load element, or later load elements are
4054 // non-consecutive, bail out.
4055 for (unsigned i = 0; i < NumElems; ++i) {
4056 SDValue Elt = Elts[i];
4058 if (!Elt.getNode() ||
4059 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4060 return SDValue();
4061 if (!LDBase) {
4062 if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4063 return SDValue();
4064 LDBase = cast<LoadSDNode>(Elt.getNode());
4065 LastLoadedElt = i;
4066 continue;
4068 if (Elt.getOpcode() == ISD::UNDEF)
4069 continue;
4071 LoadSDNode *LD = cast<LoadSDNode>(Elt);
4072 if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4073 return SDValue();
4074 LastLoadedElt = i;
4077 // If we have found an entire vector of loads and undefs, then return a large
4078 // load of the entire vector width starting at the base pointer. If we found
4079 // consecutive loads for the low half, generate a vzext_load node.
4080 if (LastLoadedElt == NumElems - 1) {
4081 if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4082 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4083 LDBase->getPointerInfo(),
4084 LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4085 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4086 LDBase->getPointerInfo(),
4087 LDBase->isVolatile(), LDBase->isNonTemporal(),
4088 LDBase->getAlignment());
4089 } else if (NumElems == 4 && LastLoadedElt == 1) {
4090 SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4091 SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4092 SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4093 Ops, 2, MVT::i32,
4094 LDBase->getMemOperand());
4095 return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4097 return SDValue();
4100 SDValue
4101 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4102 DebugLoc dl = Op.getDebugLoc();
4103 // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4104 // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4105 // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4106 // is present, so AllOnes is ignored.
4107 if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4108 (Op.getValueType().getSizeInBits() != 256 &&
4109 ISD::isBuildVectorAllOnes(Op.getNode()))) {
4110 // Canonicalize this to <4 x i32> (SSE) to
4111 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4112 // eliminated on x86-32 hosts.
4113 if (Op.getValueType() == MVT::v4i32)
4114 return Op;
4116 if (ISD::isBuildVectorAllOnes(Op.getNode()))
4117 return getOnesVector(Op.getValueType(), DAG, dl);
4118 return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4121 EVT VT = Op.getValueType();
4122 EVT ExtVT = VT.getVectorElementType();
4123 unsigned EVTBits = ExtVT.getSizeInBits();
4125 unsigned NumElems = Op.getNumOperands();
4126 unsigned NumZero = 0;
4127 unsigned NumNonZero = 0;
4128 unsigned NonZeros = 0;
4129 bool IsAllConstants = true;
4130 SmallSet<SDValue, 8> Values;
4131 for (unsigned i = 0; i < NumElems; ++i) {
4132 SDValue Elt = Op.getOperand(i);
4133 if (Elt.getOpcode() == ISD::UNDEF)
4134 continue;
4135 Values.insert(Elt);
4136 if (Elt.getOpcode() != ISD::Constant &&
4137 Elt.getOpcode() != ISD::ConstantFP)
4138 IsAllConstants = false;
4139 if (X86::isZeroNode(Elt))
4140 NumZero++;
4141 else {
4142 NonZeros |= (1 << i);
4143 NumNonZero++;
4147 // All undef vector. Return an UNDEF. All zero vectors were handled above.
4148 if (NumNonZero == 0)
4149 return DAG.getUNDEF(VT);
4151 // Special case for single non-zero, non-undef, element.
4152 if (NumNonZero == 1) {
4153 unsigned Idx = CountTrailingZeros_32(NonZeros);
4154 SDValue Item = Op.getOperand(Idx);
4156 // If this is an insertion of an i64 value on x86-32, and if the top bits of
4157 // the value are obviously zero, truncate the value to i32 and do the
4158 // insertion that way. Only do this if the value is non-constant or if the
4159 // value is a constant being inserted into element 0. It is cheaper to do
4160 // a constant pool load than it is to do a movd + shuffle.
4161 if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4162 (!IsAllConstants || Idx == 0)) {
4163 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4164 // Handle SSE only.
4165 assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4166 EVT VecVT = MVT::v4i32;
4167 unsigned VecElts = 4;
4169 // Truncate the value (which may itself be a constant) to i32, and
4170 // convert it to a vector with movd (S2V+shuffle to zero extend).
4171 Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4172 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4173 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4174 Subtarget->hasSSE2(), DAG);
4176 // Now we have our 32-bit value zero extended in the low element of
4177 // a vector. If Idx != 0, swizzle it into place.
4178 if (Idx != 0) {
4179 SmallVector<int, 4> Mask;
4180 Mask.push_back(Idx);
4181 for (unsigned i = 1; i != VecElts; ++i)
4182 Mask.push_back(i);
4183 Item = DAG.getVectorShuffle(VecVT, dl, Item,
4184 DAG.getUNDEF(Item.getValueType()),
4185 &Mask[0]);
4187 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4191 // If we have a constant or non-constant insertion into the low element of
4192 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4193 // the rest of the elements. This will be matched as movd/movq/movss/movsd
4194 // depending on what the source datatype is.
4195 if (Idx == 0) {
4196 if (NumZero == 0) {
4197 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4198 } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4199 (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4200 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4201 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4202 return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4203 DAG);
4204 } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4205 Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4206 assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4207 EVT MiddleVT = MVT::v4i32;
4208 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4209 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4210 Subtarget->hasSSE2(), DAG);
4211 return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4215 // Is it a vector logical left shift?
4216 if (NumElems == 2 && Idx == 1 &&
4217 X86::isZeroNode(Op.getOperand(0)) &&
4218 !X86::isZeroNode(Op.getOperand(1))) {
4219 unsigned NumBits = VT.getSizeInBits();
4220 return getVShift(true, VT,
4221 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4222 VT, Op.getOperand(1)),
4223 NumBits/2, DAG, *this, dl);
4226 if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4227 return SDValue();
4229 // Otherwise, if this is a vector with i32 or f32 elements, and the element
4230 // is a non-constant being inserted into an element other than the low one,
4231 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
4232 // movd/movss) to move this into the low element, then shuffle it into
4233 // place.
4234 if (EVTBits == 32) {
4235 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4237 // Turn it into a shuffle of zero and zero-extended scalar to vector.
4238 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4239 Subtarget->hasSSE2(), DAG);
4240 SmallVector<int, 8> MaskVec;
4241 for (unsigned i = 0; i < NumElems; i++)
4242 MaskVec.push_back(i == Idx ? 0 : 1);
4243 return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4247 // Splat is obviously ok. Let legalizer expand it to a shuffle.
4248 if (Values.size() == 1) {
4249 if (EVTBits == 32) {
4250 // Instead of a shuffle like this:
4251 // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4252 // Check if it's possible to issue this instead.
4253 // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4254 unsigned Idx = CountTrailingZeros_32(NonZeros);
4255 SDValue Item = Op.getOperand(Idx);
4256 if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4257 return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4259 return SDValue();
4262 // A vector full of immediates; various special cases are already
4263 // handled, so this is best done with a single constant-pool load.
4264 if (IsAllConstants)
4265 return SDValue();
4267 // Let legalizer expand 2-wide build_vectors.
4268 if (EVTBits == 64) {
4269 if (NumNonZero == 1) {
4270 // One half is zero or undef.
4271 unsigned Idx = CountTrailingZeros_32(NonZeros);
4272 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4273 Op.getOperand(Idx));
4274 return getShuffleVectorZeroOrUndef(V2, Idx, true,
4275 Subtarget->hasSSE2(), DAG);
4277 return SDValue();
4280 // If element VT is < 32 bits, convert it to inserts into a zero vector.
4281 if (EVTBits == 8 && NumElems == 16) {
4282 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4283 *this);
4284 if (V.getNode()) return V;
4287 if (EVTBits == 16 && NumElems == 8) {
4288 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4289 *this);
4290 if (V.getNode()) return V;
4293 // If element VT is == 32 bits, turn it into a number of shuffles.
4294 SmallVector<SDValue, 8> V;
4295 V.resize(NumElems);
4296 if (NumElems == 4 && NumZero > 0) {
4297 for (unsigned i = 0; i < 4; ++i) {
4298 bool isZero = !(NonZeros & (1 << i));
4299 if (isZero)
4300 V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4301 else
4302 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4305 for (unsigned i = 0; i < 2; ++i) {
4306 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4307 default: break;
4308 case 0:
4309 V[i] = V[i*2]; // Must be a zero vector.
4310 break;
4311 case 1:
4312 V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4313 break;
4314 case 2:
4315 V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4316 break;
4317 case 3:
4318 V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4319 break;
4323 SmallVector<int, 8> MaskVec;
4324 bool Reverse = (NonZeros & 0x3) == 2;
4325 for (unsigned i = 0; i < 2; ++i)
4326 MaskVec.push_back(Reverse ? 1-i : i);
4327 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4328 for (unsigned i = 0; i < 2; ++i)
4329 MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4330 return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4333 if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4334 // Check for a build vector of consecutive loads.
4335 for (unsigned i = 0; i < NumElems; ++i)
4336 V[i] = Op.getOperand(i);
4338 // Check for elements which are consecutive loads.
4339 SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4340 if (LD.getNode())
4341 return LD;
4343 // For SSE 4.1, use insertps to put the high elements into the low element.
4344 if (getSubtarget()->hasSSE41()) {
4345 SDValue Result;
4346 if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4347 Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4348 else
4349 Result = DAG.getUNDEF(VT);
4351 for (unsigned i = 1; i < NumElems; ++i) {
4352 if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4353 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4354 Op.getOperand(i), DAG.getIntPtrConstant(i));
4356 return Result;
4359 // Otherwise, expand into a number of unpckl*, start by extending each of
4360 // our (non-undef) elements to the full vector width with the element in the
4361 // bottom slot of the vector (which generates no code for SSE).
4362 for (unsigned i = 0; i < NumElems; ++i) {
4363 if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4364 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4365 else
4366 V[i] = DAG.getUNDEF(VT);
4369 // Next, we iteratively mix elements, e.g. for v4f32:
4370 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4371 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4372 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
4373 unsigned EltStride = NumElems >> 1;
4374 while (EltStride != 0) {
4375 for (unsigned i = 0; i < EltStride; ++i) {
4376 // If V[i+EltStride] is undef and this is the first round of mixing,
4377 // then it is safe to just drop this shuffle: V[i] is already in the
4378 // right place, the one element (since it's the first round) being
4379 // inserted as undef can be dropped. This isn't safe for successive
4380 // rounds because they will permute elements within both vectors.
4381 if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4382 EltStride == NumElems/2)
4383 continue;
4385 V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4387 EltStride >>= 1;
4389 return V[0];
4391 return SDValue();
4394 SDValue
4395 X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4396 // We support concatenate two MMX registers and place them in a MMX
4397 // register. This is better than doing a stack convert.
4398 DebugLoc dl = Op.getDebugLoc();
4399 EVT ResVT = Op.getValueType();
4400 assert(Op.getNumOperands() == 2);
4401 assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4402 ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4403 int Mask[2];
4404 SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4405 SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4406 InVec = Op.getOperand(1);
4407 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4408 unsigned NumElts = ResVT.getVectorNumElements();
4409 VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4410 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4411 InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4412 } else {
4413 InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4414 SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4415 Mask[0] = 0; Mask[1] = 2;
4416 VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4418 return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4421 // v8i16 shuffles - Prefer shuffles in the following order:
4422 // 1. [all] pshuflw, pshufhw, optional move
4423 // 2. [ssse3] 1 x pshufb
4424 // 3. [ssse3] 2 x pshufb + 1 x por
4425 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4426 SDValue
4427 X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4428 SelectionDAG &DAG) const {
4429 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4430 SDValue V1 = SVOp->getOperand(0);
4431 SDValue V2 = SVOp->getOperand(1);
4432 DebugLoc dl = SVOp->getDebugLoc();
4433 SmallVector<int, 8> MaskVals;
4435 // Determine if more than 1 of the words in each of the low and high quadwords
4436 // of the result come from the same quadword of one of the two inputs. Undef
4437 // mask values count as coming from any quadword, for better codegen.
4438 SmallVector<unsigned, 4> LoQuad(4);
4439 SmallVector<unsigned, 4> HiQuad(4);
4440 BitVector InputQuads(4);
4441 for (unsigned i = 0; i < 8; ++i) {
4442 SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4443 int EltIdx = SVOp->getMaskElt(i);
4444 MaskVals.push_back(EltIdx);
4445 if (EltIdx < 0) {
4446 ++Quad[0];
4447 ++Quad[1];
4448 ++Quad[2];
4449 ++Quad[3];
4450 continue;
4452 ++Quad[EltIdx / 4];
4453 InputQuads.set(EltIdx / 4);
4456 int BestLoQuad = -1;
4457 unsigned MaxQuad = 1;
4458 for (unsigned i = 0; i < 4; ++i) {
4459 if (LoQuad[i] > MaxQuad) {
4460 BestLoQuad = i;
4461 MaxQuad = LoQuad[i];
4465 int BestHiQuad = -1;
4466 MaxQuad = 1;
4467 for (unsigned i = 0; i < 4; ++i) {
4468 if (HiQuad[i] > MaxQuad) {
4469 BestHiQuad = i;
4470 MaxQuad = HiQuad[i];
4474 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4475 // of the two input vectors, shuffle them into one input vector so only a
4476 // single pshufb instruction is necessary. If There are more than 2 input
4477 // quads, disable the next transformation since it does not help SSSE3.
4478 bool V1Used = InputQuads[0] || InputQuads[1];
4479 bool V2Used = InputQuads[2] || InputQuads[3];
4480 if (Subtarget->hasSSSE3()) {
4481 if (InputQuads.count() == 2 && V1Used && V2Used) {
4482 BestLoQuad = InputQuads.find_first();
4483 BestHiQuad = InputQuads.find_next(BestLoQuad);
4485 if (InputQuads.count() > 2) {
4486 BestLoQuad = -1;
4487 BestHiQuad = -1;
4491 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4492 // the shuffle mask. If a quad is scored as -1, that means that it contains
4493 // words from all 4 input quadwords.
4494 SDValue NewV;
4495 if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4496 SmallVector<int, 8> MaskV;
4497 MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4498 MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4499 NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4500 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
4501 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
4502 NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
4504 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4505 // source words for the shuffle, to aid later transformations.
4506 bool AllWordsInNewV = true;
4507 bool InOrder[2] = { true, true };
4508 for (unsigned i = 0; i != 8; ++i) {
4509 int idx = MaskVals[i];
4510 if (idx != (int)i)
4511 InOrder[i/4] = false;
4512 if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4513 continue;
4514 AllWordsInNewV = false;
4515 break;
4518 bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4519 if (AllWordsInNewV) {
4520 for (int i = 0; i != 8; ++i) {
4521 int idx = MaskVals[i];
4522 if (idx < 0)
4523 continue;
4524 idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4525 if ((idx != i) && idx < 4)
4526 pshufhw = false;
4527 if ((idx != i) && idx > 3)
4528 pshuflw = false;
4530 V1 = NewV;
4531 V2Used = false;
4532 BestLoQuad = 0;
4533 BestHiQuad = 1;
4536 // If we've eliminated the use of V2, and the new mask is a pshuflw or
4537 // pshufhw, that's as cheap as it gets. Return the new shuffle.
4538 if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4539 unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4540 unsigned TargetMask = 0;
4541 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4542 DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4543 TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4544 X86::getShufflePSHUFLWImmediate(NewV.getNode());
4545 V1 = NewV.getOperand(0);
4546 return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4550 // If we have SSSE3, and all words of the result are from 1 input vector,
4551 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
4552 // is present, fall back to case 4.
4553 if (Subtarget->hasSSSE3()) {
4554 SmallVector<SDValue,16> pshufbMask;
4556 // If we have elements from both input vectors, set the high bit of the
4557 // shuffle mask element to zero out elements that come from V2 in the V1
4558 // mask, and elements that come from V1 in the V2 mask, so that the two
4559 // results can be OR'd together.
4560 bool TwoInputs = V1Used && V2Used;
4561 for (unsigned i = 0; i != 8; ++i) {
4562 int EltIdx = MaskVals[i] * 2;
4563 if (TwoInputs && (EltIdx >= 16)) {
4564 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4565 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4566 continue;
4568 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4569 pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4571 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
4572 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4573 DAG.getNode(ISD::BUILD_VECTOR, dl,
4574 MVT::v16i8, &pshufbMask[0], 16));
4575 if (!TwoInputs)
4576 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4578 // Calculate the shuffle mask for the second input, shuffle it, and
4579 // OR it with the first shuffled input.
4580 pshufbMask.clear();
4581 for (unsigned i = 0; i != 8; ++i) {
4582 int EltIdx = MaskVals[i] * 2;
4583 if (EltIdx < 16) {
4584 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4585 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4586 continue;
4588 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4589 pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4591 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
4592 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4593 DAG.getNode(ISD::BUILD_VECTOR, dl,
4594 MVT::v16i8, &pshufbMask[0], 16));
4595 V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4596 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4599 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4600 // and update MaskVals with new element order.
4601 BitVector InOrder(8);
4602 if (BestLoQuad >= 0) {
4603 SmallVector<int, 8> MaskV;
4604 for (int i = 0; i != 4; ++i) {
4605 int idx = MaskVals[i];
4606 if (idx < 0) {
4607 MaskV.push_back(-1);
4608 InOrder.set(i);
4609 } else if ((idx / 4) == BestLoQuad) {
4610 MaskV.push_back(idx & 3);
4611 InOrder.set(i);
4612 } else {
4613 MaskV.push_back(-1);
4616 for (unsigned i = 4; i != 8; ++i)
4617 MaskV.push_back(i);
4618 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4619 &MaskV[0]);
4621 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4622 NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4623 NewV.getOperand(0),
4624 X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4625 DAG);
4628 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4629 // and update MaskVals with the new element order.
4630 if (BestHiQuad >= 0) {
4631 SmallVector<int, 8> MaskV;
4632 for (unsigned i = 0; i != 4; ++i)
4633 MaskV.push_back(i);
4634 for (unsigned i = 4; i != 8; ++i) {
4635 int idx = MaskVals[i];
4636 if (idx < 0) {
4637 MaskV.push_back(-1);
4638 InOrder.set(i);
4639 } else if ((idx / 4) == BestHiQuad) {
4640 MaskV.push_back((idx & 3) + 4);
4641 InOrder.set(i);
4642 } else {
4643 MaskV.push_back(-1);
4646 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4647 &MaskV[0]);
4649 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4650 NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4651 NewV.getOperand(0),
4652 X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4653 DAG);
4656 // In case BestHi & BestLo were both -1, which means each quadword has a word
4657 // from each of the four input quadwords, calculate the InOrder bitvector now
4658 // before falling through to the insert/extract cleanup.
4659 if (BestLoQuad == -1 && BestHiQuad == -1) {
4660 NewV = V1;
4661 for (int i = 0; i != 8; ++i)
4662 if (MaskVals[i] < 0 || MaskVals[i] == i)
4663 InOrder.set(i);
4666 // The other elements are put in the right place using pextrw and pinsrw.
4667 for (unsigned i = 0; i != 8; ++i) {
4668 if (InOrder[i])
4669 continue;
4670 int EltIdx = MaskVals[i];
4671 if (EltIdx < 0)
4672 continue;
4673 SDValue ExtOp = (EltIdx < 8)
4674 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4675 DAG.getIntPtrConstant(EltIdx))
4676 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4677 DAG.getIntPtrConstant(EltIdx - 8));
4678 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4679 DAG.getIntPtrConstant(i));
4681 return NewV;
4684 // v16i8 shuffles - Prefer shuffles in the following order:
4685 // 1. [ssse3] 1 x pshufb
4686 // 2. [ssse3] 2 x pshufb + 1 x por
4687 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
4688 static
4689 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4690 SelectionDAG &DAG,
4691 const X86TargetLowering &TLI) {
4692 SDValue V1 = SVOp->getOperand(0);
4693 SDValue V2 = SVOp->getOperand(1);
4694 DebugLoc dl = SVOp->getDebugLoc();
4695 SmallVector<int, 16> MaskVals;
4696 SVOp->getMask(MaskVals);
4698 // If we have SSSE3, case 1 is generated when all result bytes come from
4699 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
4700 // present, fall back to case 3.
4701 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4702 bool V1Only = true;
4703 bool V2Only = true;
4704 for (unsigned i = 0; i < 16; ++i) {
4705 int EltIdx = MaskVals[i];
4706 if (EltIdx < 0)
4707 continue;
4708 if (EltIdx < 16)
4709 V2Only = false;
4710 else
4711 V1Only = false;
4714 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4715 if (TLI.getSubtarget()->hasSSSE3()) {
4716 SmallVector<SDValue,16> pshufbMask;
4718 // If all result elements are from one input vector, then only translate
4719 // undef mask values to 0x80 (zero out result) in the pshufb mask.
4721 // Otherwise, we have elements from both input vectors, and must zero out
4722 // elements that come from V2 in the first mask, and V1 in the second mask
4723 // so that we can OR them together.
4724 bool TwoInputs = !(V1Only || V2Only);
4725 for (unsigned i = 0; i != 16; ++i) {
4726 int EltIdx = MaskVals[i];
4727 if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4728 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4729 continue;
4731 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4733 // If all the elements are from V2, assign it to V1 and return after
4734 // building the first pshufb.
4735 if (V2Only)
4736 V1 = V2;
4737 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4738 DAG.getNode(ISD::BUILD_VECTOR, dl,
4739 MVT::v16i8, &pshufbMask[0], 16));
4740 if (!TwoInputs)
4741 return V1;
4743 // Calculate the shuffle mask for the second input, shuffle it, and
4744 // OR it with the first shuffled input.
4745 pshufbMask.clear();
4746 for (unsigned i = 0; i != 16; ++i) {
4747 int EltIdx = MaskVals[i];
4748 if (EltIdx < 16) {
4749 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4750 continue;
4752 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4754 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4755 DAG.getNode(ISD::BUILD_VECTOR, dl,
4756 MVT::v16i8, &pshufbMask[0], 16));
4757 return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4760 // No SSSE3 - Calculate in place words and then fix all out of place words
4761 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
4762 // the 16 different words that comprise the two doublequadword input vectors.
4763 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4764 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
4765 SDValue NewV = V2Only ? V2 : V1;
4766 for (int i = 0; i != 8; ++i) {
4767 int Elt0 = MaskVals[i*2];
4768 int Elt1 = MaskVals[i*2+1];
4770 // This word of the result is all undef, skip it.
4771 if (Elt0 < 0 && Elt1 < 0)
4772 continue;
4774 // This word of the result is already in the correct place, skip it.
4775 if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4776 continue;
4777 if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4778 continue;
4780 SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4781 SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4782 SDValue InsElt;
4784 // If Elt0 and Elt1 are defined, are consecutive, and can be load
4785 // using a single extract together, load it and store it.
4786 if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4787 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4788 DAG.getIntPtrConstant(Elt1 / 2));
4789 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4790 DAG.getIntPtrConstant(i));
4791 continue;
4794 // If Elt1 is defined, extract it from the appropriate source. If the
4795 // source byte is not also odd, shift the extracted word left 8 bits
4796 // otherwise clear the bottom 8 bits if we need to do an or.
4797 if (Elt1 >= 0) {
4798 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4799 DAG.getIntPtrConstant(Elt1 / 2));
4800 if ((Elt1 & 1) == 0)
4801 InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4802 DAG.getConstant(8, TLI.getShiftAmountTy()));
4803 else if (Elt0 >= 0)
4804 InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4805 DAG.getConstant(0xFF00, MVT::i16));
4807 // If Elt0 is defined, extract it from the appropriate source. If the
4808 // source byte is not also even, shift the extracted word right 8 bits. If
4809 // Elt1 was also defined, OR the extracted values together before
4810 // inserting them in the result.
4811 if (Elt0 >= 0) {
4812 SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4813 Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4814 if ((Elt0 & 1) != 0)
4815 InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4816 DAG.getConstant(8, TLI.getShiftAmountTy()));
4817 else if (Elt1 >= 0)
4818 InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4819 DAG.getConstant(0x00FF, MVT::i16));
4820 InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4821 : InsElt0;
4823 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4824 DAG.getIntPtrConstant(i));
4826 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
4829 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4830 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
4831 /// done when every pair / quad of shuffle mask elements point to elements in
4832 /// the right sequence. e.g.
4833 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
4834 static
4835 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4836 SelectionDAG &DAG, DebugLoc dl) {
4837 EVT VT = SVOp->getValueType(0);
4838 SDValue V1 = SVOp->getOperand(0);
4839 SDValue V2 = SVOp->getOperand(1);
4840 unsigned NumElems = VT.getVectorNumElements();
4841 unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4842 EVT NewVT;
4843 switch (VT.getSimpleVT().SimpleTy) {
4844 default: assert(false && "Unexpected!");
4845 case MVT::v4f32: NewVT = MVT::v2f64; break;
4846 case MVT::v4i32: NewVT = MVT::v2i64; break;
4847 case MVT::v8i16: NewVT = MVT::v4i32; break;
4848 case MVT::v16i8: NewVT = MVT::v4i32; break;
4851 int Scale = NumElems / NewWidth;
4852 SmallVector<int, 8> MaskVec;
4853 for (unsigned i = 0; i < NumElems; i += Scale) {
4854 int StartIdx = -1;
4855 for (int j = 0; j < Scale; ++j) {
4856 int EltIdx = SVOp->getMaskElt(i+j);
4857 if (EltIdx < 0)
4858 continue;
4859 if (StartIdx == -1)
4860 StartIdx = EltIdx - (EltIdx % Scale);
4861 if (EltIdx != StartIdx + j)
4862 return SDValue();
4864 if (StartIdx == -1)
4865 MaskVec.push_back(-1);
4866 else
4867 MaskVec.push_back(StartIdx / Scale);
4870 V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
4871 V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
4872 return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4875 /// getVZextMovL - Return a zero-extending vector move low node.
4877 static SDValue getVZextMovL(EVT VT, EVT OpVT,
4878 SDValue SrcOp, SelectionDAG &DAG,
4879 const X86Subtarget *Subtarget, DebugLoc dl) {
4880 if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4881 LoadSDNode *LD = NULL;
4882 if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4883 LD = dyn_cast<LoadSDNode>(SrcOp);
4884 if (!LD) {
4885 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4886 // instead.
4887 MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4888 if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
4889 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4890 SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
4891 SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4892 // PR2108
4893 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4894 return DAG.getNode(ISD::BITCAST, dl, VT,
4895 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4896 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4897 OpVT,
4898 SrcOp.getOperand(0)
4899 .getOperand(0))));
4904 return DAG.getNode(ISD::BITCAST, dl, VT,
4905 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4906 DAG.getNode(ISD::BITCAST, dl,
4907 OpVT, SrcOp)));
4910 /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4911 /// shuffles.
4912 static SDValue
4913 LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4914 SDValue V1 = SVOp->getOperand(0);
4915 SDValue V2 = SVOp->getOperand(1);
4916 DebugLoc dl = SVOp->getDebugLoc();
4917 EVT VT = SVOp->getValueType(0);
4919 SmallVector<std::pair<int, int>, 8> Locs;
4920 Locs.resize(4);
4921 SmallVector<int, 8> Mask1(4U, -1);
4922 SmallVector<int, 8> PermMask;
4923 SVOp->getMask(PermMask);
4925 unsigned NumHi = 0;
4926 unsigned NumLo = 0;
4927 for (unsigned i = 0; i != 4; ++i) {
4928 int Idx = PermMask[i];
4929 if (Idx < 0) {
4930 Locs[i] = std::make_pair(-1, -1);
4931 } else {
4932 assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4933 if (Idx < 4) {
4934 Locs[i] = std::make_pair(0, NumLo);
4935 Mask1[NumLo] = Idx;
4936 NumLo++;
4937 } else {
4938 Locs[i] = std::make_pair(1, NumHi);
4939 if (2+NumHi < 4)
4940 Mask1[2+NumHi] = Idx;
4941 NumHi++;
4946 if (NumLo <= 2 && NumHi <= 2) {
4947 // If no more than two elements come from either vector. This can be
4948 // implemented with two shuffles. First shuffle gather the elements.
4949 // The second shuffle, which takes the first shuffle as both of its
4950 // vector operands, put the elements into the right order.
4951 V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4953 SmallVector<int, 8> Mask2(4U, -1);
4955 for (unsigned i = 0; i != 4; ++i) {
4956 if (Locs[i].first == -1)
4957 continue;
4958 else {
4959 unsigned Idx = (i < 2) ? 0 : 4;
4960 Idx += Locs[i].first * 2 + Locs[i].second;
4961 Mask2[i] = Idx;
4965 return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4966 } else if (NumLo == 3 || NumHi == 3) {
4967 // Otherwise, we must have three elements from one vector, call it X, and
4968 // one element from the other, call it Y. First, use a shufps to build an
4969 // intermediate vector with the one element from Y and the element from X
4970 // that will be in the same half in the final destination (the indexes don't
4971 // matter). Then, use a shufps to build the final vector, taking the half
4972 // containing the element from Y from the intermediate, and the other half
4973 // from X.
4974 if (NumHi == 3) {
4975 // Normalize it so the 3 elements come from V1.
4976 CommuteVectorShuffleMask(PermMask, VT);
4977 std::swap(V1, V2);
4980 // Find the element from V2.
4981 unsigned HiIndex;
4982 for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4983 int Val = PermMask[HiIndex];
4984 if (Val < 0)
4985 continue;
4986 if (Val >= 4)
4987 break;
4990 Mask1[0] = PermMask[HiIndex];
4991 Mask1[1] = -1;
4992 Mask1[2] = PermMask[HiIndex^1];
4993 Mask1[3] = -1;
4994 V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4996 if (HiIndex >= 2) {
4997 Mask1[0] = PermMask[0];
4998 Mask1[1] = PermMask[1];
4999 Mask1[2] = HiIndex & 1 ? 6 : 4;
5000 Mask1[3] = HiIndex & 1 ? 4 : 6;
5001 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5002 } else {
5003 Mask1[0] = HiIndex & 1 ? 2 : 0;
5004 Mask1[1] = HiIndex & 1 ? 0 : 2;
5005 Mask1[2] = PermMask[2];
5006 Mask1[3] = PermMask[3];
5007 if (Mask1[2] >= 0)
5008 Mask1[2] += 4;
5009 if (Mask1[3] >= 0)
5010 Mask1[3] += 4;
5011 return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5015 // Break it into (shuffle shuffle_hi, shuffle_lo).
5016 Locs.clear();
5017 SmallVector<int,8> LoMask(4U, -1);
5018 SmallVector<int,8> HiMask(4U, -1);
5020 SmallVector<int,8> *MaskPtr = &LoMask;
5021 unsigned MaskIdx = 0;
5022 unsigned LoIdx = 0;
5023 unsigned HiIdx = 2;
5024 for (unsigned i = 0; i != 4; ++i) {
5025 if (i == 2) {
5026 MaskPtr = &HiMask;
5027 MaskIdx = 1;
5028 LoIdx = 0;
5029 HiIdx = 2;
5031 int Idx = PermMask[i];
5032 if (Idx < 0) {
5033 Locs[i] = std::make_pair(-1, -1);
5034 } else if (Idx < 4) {
5035 Locs[i] = std::make_pair(MaskIdx, LoIdx);
5036 (*MaskPtr)[LoIdx] = Idx;
5037 LoIdx++;
5038 } else {
5039 Locs[i] = std::make_pair(MaskIdx, HiIdx);
5040 (*MaskPtr)[HiIdx] = Idx;
5041 HiIdx++;
5045 SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5046 SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5047 SmallVector<int, 8> MaskOps;
5048 for (unsigned i = 0; i != 4; ++i) {
5049 if (Locs[i].first == -1) {
5050 MaskOps.push_back(-1);
5051 } else {
5052 unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5053 MaskOps.push_back(Idx);
5056 return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5059 static bool MayFoldVectorLoad(SDValue V) {
5060 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5061 V = V.getOperand(0);
5062 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5063 V = V.getOperand(0);
5064 if (MayFoldLoad(V))
5065 return true;
5066 return false;
5069 // FIXME: the version above should always be used. Since there's
5070 // a bug where several vector shuffles can't be folded because the
5071 // DAG is not updated during lowering and a node claims to have two
5072 // uses while it only has one, use this version, and let isel match
5073 // another instruction if the load really happens to have more than
5074 // one use. Remove this version after this bug get fixed.
5075 // rdar://8434668, PR8156
5076 static bool RelaxedMayFoldVectorLoad(SDValue V) {
5077 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5078 V = V.getOperand(0);
5079 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5080 V = V.getOperand(0);
5081 if (ISD::isNormalLoad(V.getNode()))
5082 return true;
5083 return false;
5086 /// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5087 /// a vector extract, and if both can be later optimized into a single load.
5088 /// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5089 /// here because otherwise a target specific shuffle node is going to be
5090 /// emitted for this shuffle, and the optimization not done.
5091 /// FIXME: This is probably not the best approach, but fix the problem
5092 /// until the right path is decided.
5093 static
5094 bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5095 const TargetLowering &TLI) {
5096 EVT VT = V.getValueType();
5097 ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5099 // Be sure that the vector shuffle is present in a pattern like this:
5100 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5101 if (!V.hasOneUse())
5102 return false;
5104 SDNode *N = *V.getNode()->use_begin();
5105 if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5106 return false;
5108 SDValue EltNo = N->getOperand(1);
5109 if (!isa<ConstantSDNode>(EltNo))
5110 return false;
5112 // If the bit convert changed the number of elements, it is unsafe
5113 // to examine the mask.
5114 bool HasShuffleIntoBitcast = false;
5115 if (V.getOpcode() == ISD::BITCAST) {
5116 EVT SrcVT = V.getOperand(0).getValueType();
5117 if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5118 return false;
5119 V = V.getOperand(0);
5120 HasShuffleIntoBitcast = true;
5123 // Select the input vector, guarding against out of range extract vector.
5124 unsigned NumElems = VT.getVectorNumElements();
5125 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5126 int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5127 V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5129 // Skip one more bit_convert if necessary
5130 if (V.getOpcode() == ISD::BITCAST)
5131 V = V.getOperand(0);
5133 if (ISD::isNormalLoad(V.getNode())) {
5134 // Is the original load suitable?
5135 LoadSDNode *LN0 = cast<LoadSDNode>(V);
5137 // FIXME: avoid the multi-use bug that is preventing lots of
5138 // of foldings to be detected, this is still wrong of course, but
5139 // give the temporary desired behavior, and if it happens that
5140 // the load has real more uses, during isel it will not fold, and
5141 // will generate poor code.
5142 if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5143 return false;
5145 if (!HasShuffleIntoBitcast)
5146 return true;
5148 // If there's a bitcast before the shuffle, check if the load type and
5149 // alignment is valid.
5150 unsigned Align = LN0->getAlignment();
5151 unsigned NewAlign =
5152 TLI.getTargetData()->getABITypeAlignment(
5153 VT.getTypeForEVT(*DAG.getContext()));
5155 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5156 return false;
5159 return true;
5162 static
5163 SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5164 EVT VT = Op.getValueType();
5166 // Canonizalize to v2f64.
5167 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5168 return DAG.getNode(ISD::BITCAST, dl, VT,
5169 getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5170 V1, DAG));
5173 static
5174 SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5175 bool HasSSE2) {
5176 SDValue V1 = Op.getOperand(0);
5177 SDValue V2 = Op.getOperand(1);
5178 EVT VT = Op.getValueType();
5180 assert(VT != MVT::v2i64 && "unsupported shuffle type");
5182 if (HasSSE2 && VT == MVT::v2f64)
5183 return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5185 // v4f32 or v4i32
5186 return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5189 static
5190 SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5191 SDValue V1 = Op.getOperand(0);
5192 SDValue V2 = Op.getOperand(1);
5193 EVT VT = Op.getValueType();
5195 assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5196 "unsupported shuffle type");
5198 if (V2.getOpcode() == ISD::UNDEF)
5199 V2 = V1;
5201 // v4i32 or v4f32
5202 return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5205 static
5206 SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5207 SDValue V1 = Op.getOperand(0);
5208 SDValue V2 = Op.getOperand(1);
5209 EVT VT = Op.getValueType();
5210 unsigned NumElems = VT.getVectorNumElements();
5212 // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5213 // operand of these instructions is only memory, so check if there's a
5214 // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5215 // same masks.
5216 bool CanFoldLoad = false;
5218 // Trivial case, when V2 comes from a load.
5219 if (MayFoldVectorLoad(V2))
5220 CanFoldLoad = true;
5222 // When V1 is a load, it can be folded later into a store in isel, example:
5223 // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5224 // turns into:
5225 // (MOVLPSmr addr:$src1, VR128:$src2)
5226 // So, recognize this potential and also use MOVLPS or MOVLPD
5227 if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5228 CanFoldLoad = true;
5230 if (CanFoldLoad) {
5231 if (HasSSE2 && NumElems == 2)
5232 return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5234 if (NumElems == 4)
5235 return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5238 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5239 // movl and movlp will both match v2i64, but v2i64 is never matched by
5240 // movl earlier because we make it strict to avoid messing with the movlp load
5241 // folding logic (see the code above getMOVLP call). Match it here then,
5242 // this is horrible, but will stay like this until we move all shuffle
5243 // matching to x86 specific nodes. Note that for the 1st condition all
5244 // types are matched with movsd.
5245 if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5246 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5247 else if (HasSSE2)
5248 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5251 assert(VT != MVT::v4i32 && "unsupported shuffle type");
5253 // Invert the operand order and use SHUFPS to match it.
5254 return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5255 X86::getShuffleSHUFImmediate(SVOp), DAG);
5258 static inline unsigned getUNPCKLOpcode(EVT VT) {
5259 switch(VT.getSimpleVT().SimpleTy) {
5260 case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5261 case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5262 case MVT::v4f32: return X86ISD::UNPCKLPS;
5263 case MVT::v2f64: return X86ISD::UNPCKLPD;
5264 case MVT::v16i8: return X86ISD::PUNPCKLBW;
5265 case MVT::v8i16: return X86ISD::PUNPCKLWD;
5266 default:
5267 llvm_unreachable("Unknow type for unpckl");
5269 return 0;
5272 static inline unsigned getUNPCKHOpcode(EVT VT) {
5273 switch(VT.getSimpleVT().SimpleTy) {
5274 case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5275 case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5276 case MVT::v4f32: return X86ISD::UNPCKHPS;
5277 case MVT::v2f64: return X86ISD::UNPCKHPD;
5278 case MVT::v16i8: return X86ISD::PUNPCKHBW;
5279 case MVT::v8i16: return X86ISD::PUNPCKHWD;
5280 default:
5281 llvm_unreachable("Unknow type for unpckh");
5283 return 0;
5286 static
5287 SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5288 const TargetLowering &TLI,
5289 const X86Subtarget *Subtarget) {
5290 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5291 EVT VT = Op.getValueType();
5292 DebugLoc dl = Op.getDebugLoc();
5293 SDValue V1 = Op.getOperand(0);
5294 SDValue V2 = Op.getOperand(1);
5296 if (isZeroShuffle(SVOp))
5297 return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5299 // Handle splat operations
5300 if (SVOp->isSplat()) {
5301 // Special case, this is the only place now where it's
5302 // allowed to return a vector_shuffle operation without
5303 // using a target specific node, because *hopefully* it
5304 // will be optimized away by the dag combiner.
5305 if (VT.getVectorNumElements() <= 4 &&
5306 CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5307 return Op;
5309 // Handle splats by matching through known masks
5310 if (VT.getVectorNumElements() <= 4)
5311 return SDValue();
5313 // Canonicalize all of the remaining to v4f32.
5314 return PromoteSplat(SVOp, DAG);
5317 // If the shuffle can be profitably rewritten as a narrower shuffle, then
5318 // do it!
5319 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5320 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5321 if (NewOp.getNode())
5322 return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5323 } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5324 // FIXME: Figure out a cleaner way to do this.
5325 // Try to make use of movq to zero out the top part.
5326 if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5327 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5328 if (NewOp.getNode()) {
5329 if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5330 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5331 DAG, Subtarget, dl);
5333 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5334 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5335 if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5336 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5337 DAG, Subtarget, dl);
5340 return SDValue();
5343 SDValue
5344 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5345 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5346 SDValue V1 = Op.getOperand(0);
5347 SDValue V2 = Op.getOperand(1);
5348 EVT VT = Op.getValueType();
5349 DebugLoc dl = Op.getDebugLoc();
5350 unsigned NumElems = VT.getVectorNumElements();
5351 bool isMMX = VT.getSizeInBits() == 64;
5352 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5353 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5354 bool V1IsSplat = false;
5355 bool V2IsSplat = false;
5356 bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5357 bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5358 bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5359 MachineFunction &MF = DAG.getMachineFunction();
5360 bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5362 // Shuffle operations on MMX not supported.
5363 if (isMMX)
5364 return Op;
5366 // Vector shuffle lowering takes 3 steps:
5368 // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5369 // narrowing and commutation of operands should be handled.
5370 // 2) Matching of shuffles with known shuffle masks to x86 target specific
5371 // shuffle nodes.
5372 // 3) Rewriting of unmatched masks into new generic shuffle operations,
5373 // so the shuffle can be broken into other shuffles and the legalizer can
5374 // try the lowering again.
5376 // The general ideia is that no vector_shuffle operation should be left to
5377 // be matched during isel, all of them must be converted to a target specific
5378 // node here.
5380 // Normalize the input vectors. Here splats, zeroed vectors, profitable
5381 // narrowing and commutation of operands should be handled. The actual code
5382 // doesn't include all of those, work in progress...
5383 SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5384 if (NewOp.getNode())
5385 return NewOp;
5387 // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5388 // unpckh_undef). Only use pshufd if speed is more important than size.
5389 if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5390 if (VT != MVT::v2i64 && VT != MVT::v2f64)
5391 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5392 if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5393 if (VT != MVT::v2i64 && VT != MVT::v2f64)
5394 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5396 if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5397 RelaxedMayFoldVectorLoad(V1))
5398 return getMOVDDup(Op, dl, V1, DAG);
5400 if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5401 return getMOVHighToLow(Op, dl, DAG);
5403 // Use to match splats
5404 if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5405 (VT == MVT::v2f64 || VT == MVT::v2i64))
5406 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5408 if (X86::isPSHUFDMask(SVOp)) {
5409 // The actual implementation will match the mask in the if above and then
5410 // during isel it can match several different instructions, not only pshufd
5411 // as its name says, sad but true, emulate the behavior for now...
5412 if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5413 return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5415 unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5417 if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5418 return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5420 if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5421 return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5422 TargetMask, DAG);
5424 if (VT == MVT::v4f32)
5425 return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5426 TargetMask, DAG);
5429 // Check if this can be converted into a logical shift.
5430 bool isLeft = false;
5431 unsigned ShAmt = 0;
5432 SDValue ShVal;
5433 bool isShift = getSubtarget()->hasSSE2() &&
5434 isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5435 if (isShift && ShVal.hasOneUse()) {
5436 // If the shifted value has multiple uses, it may be cheaper to use
5437 // v_set0 + movlhps or movhlps, etc.
5438 EVT EltVT = VT.getVectorElementType();
5439 ShAmt *= EltVT.getSizeInBits();
5440 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5443 if (X86::isMOVLMask(SVOp)) {
5444 if (V1IsUndef)
5445 return V2;
5446 if (ISD::isBuildVectorAllZeros(V1.getNode()))
5447 return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5448 if (!X86::isMOVLPMask(SVOp)) {
5449 if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5450 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5452 if (VT == MVT::v4i32 || VT == MVT::v4f32)
5453 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5457 // FIXME: fold these into legal mask.
5458 if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5459 return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5461 if (X86::isMOVHLPSMask(SVOp))
5462 return getMOVHighToLow(Op, dl, DAG);
5464 if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5465 return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5467 if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5468 return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5470 if (X86::isMOVLPMask(SVOp))
5471 return getMOVLP(Op, dl, DAG, HasSSE2);
5473 if (ShouldXformToMOVHLPS(SVOp) ||
5474 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5475 return CommuteVectorShuffle(SVOp, DAG);
5477 if (isShift) {
5478 // No better options. Use a vshl / vsrl.
5479 EVT EltVT = VT.getVectorElementType();
5480 ShAmt *= EltVT.getSizeInBits();
5481 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5484 bool Commuted = false;
5485 // FIXME: This should also accept a bitcast of a splat? Be careful, not
5486 // 1,1,1,1 -> v8i16 though.
5487 V1IsSplat = isSplatVector(V1.getNode());
5488 V2IsSplat = isSplatVector(V2.getNode());
5490 // Canonicalize the splat or undef, if present, to be on the RHS.
5491 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5492 Op = CommuteVectorShuffle(SVOp, DAG);
5493 SVOp = cast<ShuffleVectorSDNode>(Op);
5494 V1 = SVOp->getOperand(0);
5495 V2 = SVOp->getOperand(1);
5496 std::swap(V1IsSplat, V2IsSplat);
5497 std::swap(V1IsUndef, V2IsUndef);
5498 Commuted = true;
5501 if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5502 // Shuffling low element of v1 into undef, just return v1.
5503 if (V2IsUndef)
5504 return V1;
5505 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5506 // the instruction selector will not match, so get a canonical MOVL with
5507 // swapped operands to undo the commute.
5508 return getMOVL(DAG, dl, VT, V2, V1);
5511 if (X86::isUNPCKLMask(SVOp))
5512 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
5514 if (X86::isUNPCKHMask(SVOp))
5515 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5517 if (V2IsSplat) {
5518 // Normalize mask so all entries that point to V2 points to its first
5519 // element then try to match unpck{h|l} again. If match, return a
5520 // new vector_shuffle with the corrected mask.
5521 SDValue NewMask = NormalizeMask(SVOp, DAG);
5522 ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5523 if (NSVOp != SVOp) {
5524 if (X86::isUNPCKLMask(NSVOp, true)) {
5525 return NewMask;
5526 } else if (X86::isUNPCKHMask(NSVOp, true)) {
5527 return NewMask;
5532 if (Commuted) {
5533 // Commute is back and try unpck* again.
5534 // FIXME: this seems wrong.
5535 SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5536 ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5538 if (X86::isUNPCKLMask(NewSVOp))
5539 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
5541 if (X86::isUNPCKHMask(NewSVOp))
5542 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5545 // Normalize the node to match x86 shuffle ops if needed
5546 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5547 return CommuteVectorShuffle(SVOp, DAG);
5549 // The checks below are all present in isShuffleMaskLegal, but they are
5550 // inlined here right now to enable us to directly emit target specific
5551 // nodes, and remove one by one until they don't return Op anymore.
5552 SmallVector<int, 16> M;
5553 SVOp->getMask(M);
5555 if (isPALIGNRMask(M, VT, HasSSSE3))
5556 return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5557 X86::getShufflePALIGNRImmediate(SVOp),
5558 DAG);
5560 if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5561 SVOp->getSplatIndex() == 0 && V2IsUndef) {
5562 if (VT == MVT::v2f64)
5563 return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
5564 if (VT == MVT::v2i64)
5565 return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5568 if (isPSHUFHWMask(M, VT))
5569 return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5570 X86::getShufflePSHUFHWImmediate(SVOp),
5571 DAG);
5573 if (isPSHUFLWMask(M, VT))
5574 return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5575 X86::getShufflePSHUFLWImmediate(SVOp),
5576 DAG);
5578 if (isSHUFPMask(M, VT)) {
5579 unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5580 if (VT == MVT::v4f32 || VT == MVT::v4i32)
5581 return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5582 TargetMask, DAG);
5583 if (VT == MVT::v2f64 || VT == MVT::v2i64)
5584 return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5585 TargetMask, DAG);
5588 if (X86::isUNPCKL_v_undef_Mask(SVOp))
5589 if (VT != MVT::v2i64 && VT != MVT::v2f64)
5590 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5591 if (X86::isUNPCKH_v_undef_Mask(SVOp))
5592 if (VT != MVT::v2i64 && VT != MVT::v2f64)
5593 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5595 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5596 if (VT == MVT::v8i16) {
5597 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5598 if (NewOp.getNode())
5599 return NewOp;
5602 if (VT == MVT::v16i8) {
5603 SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5604 if (NewOp.getNode())
5605 return NewOp;
5608 // Handle all 4 wide cases with a number of shuffles.
5609 if (NumElems == 4)
5610 return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5612 return SDValue();
5615 SDValue
5616 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5617 SelectionDAG &DAG) const {
5618 EVT VT = Op.getValueType();
5619 DebugLoc dl = Op.getDebugLoc();
5620 if (VT.getSizeInBits() == 8) {
5621 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5622 Op.getOperand(0), Op.getOperand(1));
5623 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5624 DAG.getValueType(VT));
5625 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5626 } else if (VT.getSizeInBits() == 16) {
5627 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5628 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5629 if (Idx == 0)
5630 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5631 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5632 DAG.getNode(ISD::BITCAST, dl,
5633 MVT::v4i32,
5634 Op.getOperand(0)),
5635 Op.getOperand(1)));
5636 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5637 Op.getOperand(0), Op.getOperand(1));
5638 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5639 DAG.getValueType(VT));
5640 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5641 } else if (VT == MVT::f32) {
5642 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5643 // the result back to FR32 register. It's only worth matching if the
5644 // result has a single use which is a store or a bitcast to i32. And in
5645 // the case of a store, it's not worth it if the index is a constant 0,
5646 // because a MOVSSmr can be used instead, which is smaller and faster.
5647 if (!Op.hasOneUse())
5648 return SDValue();
5649 SDNode *User = *Op.getNode()->use_begin();
5650 if ((User->getOpcode() != ISD::STORE ||
5651 (isa<ConstantSDNode>(Op.getOperand(1)) &&
5652 cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5653 (User->getOpcode() != ISD::BITCAST ||
5654 User->getValueType(0) != MVT::i32))
5655 return SDValue();
5656 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5657 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
5658 Op.getOperand(0)),
5659 Op.getOperand(1));
5660 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
5661 } else if (VT == MVT::i32) {
5662 // ExtractPS works with constant index.
5663 if (isa<ConstantSDNode>(Op.getOperand(1)))
5664 return Op;
5666 return SDValue();
5670 SDValue
5671 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5672 SelectionDAG &DAG) const {
5673 if (!isa<ConstantSDNode>(Op.getOperand(1)))
5674 return SDValue();
5676 if (Subtarget->hasSSE41()) {
5677 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5678 if (Res.getNode())
5679 return Res;
5682 EVT VT = Op.getValueType();
5683 DebugLoc dl = Op.getDebugLoc();
5684 // TODO: handle v16i8.
5685 if (VT.getSizeInBits() == 16) {
5686 SDValue Vec = Op.getOperand(0);
5687 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5688 if (Idx == 0)
5689 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5690 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5691 DAG.getNode(ISD::BITCAST, dl,
5692 MVT::v4i32, Vec),
5693 Op.getOperand(1)));
5694 // Transform it so it match pextrw which produces a 32-bit result.
5695 EVT EltVT = MVT::i32;
5696 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5697 Op.getOperand(0), Op.getOperand(1));
5698 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5699 DAG.getValueType(VT));
5700 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5701 } else if (VT.getSizeInBits() == 32) {
5702 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5703 if (Idx == 0)
5704 return Op;
5706 // SHUFPS the element to the lowest double word, then movss.
5707 int Mask[4] = { Idx, -1, -1, -1 };
5708 EVT VVT = Op.getOperand(0).getValueType();
5709 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5710 DAG.getUNDEF(VVT), Mask);
5711 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5712 DAG.getIntPtrConstant(0));
5713 } else if (VT.getSizeInBits() == 64) {
5714 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5715 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5716 // to match extract_elt for f64.
5717 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5718 if (Idx == 0)
5719 return Op;
5721 // UNPCKHPD the element to the lowest double word, then movsd.
5722 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5723 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5724 int Mask[2] = { 1, -1 };
5725 EVT VVT = Op.getOperand(0).getValueType();
5726 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5727 DAG.getUNDEF(VVT), Mask);
5728 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5729 DAG.getIntPtrConstant(0));
5732 return SDValue();
5735 SDValue
5736 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5737 SelectionDAG &DAG) const {
5738 EVT VT = Op.getValueType();
5739 EVT EltVT = VT.getVectorElementType();
5740 DebugLoc dl = Op.getDebugLoc();
5742 SDValue N0 = Op.getOperand(0);
5743 SDValue N1 = Op.getOperand(1);
5744 SDValue N2 = Op.getOperand(2);
5746 if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5747 isa<ConstantSDNode>(N2)) {
5748 unsigned Opc;
5749 if (VT == MVT::v8i16)
5750 Opc = X86ISD::PINSRW;
5751 else if (VT == MVT::v16i8)
5752 Opc = X86ISD::PINSRB;
5753 else
5754 Opc = X86ISD::PINSRB;
5756 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5757 // argument.
5758 if (N1.getValueType() != MVT::i32)
5759 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5760 if (N2.getValueType() != MVT::i32)
5761 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5762 return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5763 } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5764 // Bits [7:6] of the constant are the source select. This will always be
5765 // zero here. The DAG Combiner may combine an extract_elt index into these
5766 // bits. For example (insert (extract, 3), 2) could be matched by putting
5767 // the '3' into bits [7:6] of X86ISD::INSERTPS.
5768 // Bits [5:4] of the constant are the destination select. This is the
5769 // value of the incoming immediate.
5770 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
5771 // combine either bitwise AND or insert of float 0.0 to set these bits.
5772 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5773 // Create this as a scalar to vector..
5774 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5775 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5776 } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5777 // PINSR* works with constant index.
5778 return Op;
5780 return SDValue();
5783 SDValue
5784 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5785 EVT VT = Op.getValueType();
5786 EVT EltVT = VT.getVectorElementType();
5788 if (Subtarget->hasSSE41())
5789 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5791 if (EltVT == MVT::i8)
5792 return SDValue();
5794 DebugLoc dl = Op.getDebugLoc();
5795 SDValue N0 = Op.getOperand(0);
5796 SDValue N1 = Op.getOperand(1);
5797 SDValue N2 = Op.getOperand(2);
5799 if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5800 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5801 // as its second argument.
5802 if (N1.getValueType() != MVT::i32)
5803 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5804 if (N2.getValueType() != MVT::i32)
5805 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5806 return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
5808 return SDValue();
5811 SDValue
5812 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5813 DebugLoc dl = Op.getDebugLoc();
5815 if (Op.getValueType() == MVT::v1i64 &&
5816 Op.getOperand(0).getValueType() == MVT::i64)
5817 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5819 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5820 assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
5821 "Expected an SSE type!");
5822 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
5823 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
5826 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5827 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5828 // one of the above mentioned nodes. It has to be wrapped because otherwise
5829 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5830 // be used to form addressing mode. These wrapped nodes will be selected
5831 // into MOV32ri.
5832 SDValue
5833 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5834 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5836 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5837 // global base reg.
5838 unsigned char OpFlag = 0;
5839 unsigned WrapperKind = X86ISD::Wrapper;
5840 CodeModel::Model M = getTargetMachine().getCodeModel();
5842 if (Subtarget->isPICStyleRIPRel() &&
5843 (M == CodeModel::Small || M == CodeModel::Kernel))
5844 WrapperKind = X86ISD::WrapperRIP;
5845 else if (Subtarget->isPICStyleGOT())
5846 OpFlag = X86II::MO_GOTOFF;
5847 else if (Subtarget->isPICStyleStubPIC())
5848 OpFlag = X86II::MO_PIC_BASE_OFFSET;
5850 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5851 CP->getAlignment(),
5852 CP->getOffset(), OpFlag);
5853 DebugLoc DL = CP->getDebugLoc();
5854 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5855 // With PIC, the address is actually $g + Offset.
5856 if (OpFlag) {
5857 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5858 DAG.getNode(X86ISD::GlobalBaseReg,
5859 DebugLoc(), getPointerTy()),
5860 Result);
5863 return Result;
5866 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5867 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5869 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5870 // global base reg.
5871 unsigned char OpFlag = 0;
5872 unsigned WrapperKind = X86ISD::Wrapper;
5873 CodeModel::Model M = getTargetMachine().getCodeModel();
5875 if (Subtarget->isPICStyleRIPRel() &&
5876 (M == CodeModel::Small || M == CodeModel::Kernel))
5877 WrapperKind = X86ISD::WrapperRIP;
5878 else if (Subtarget->isPICStyleGOT())
5879 OpFlag = X86II::MO_GOTOFF;
5880 else if (Subtarget->isPICStyleStubPIC())
5881 OpFlag = X86II::MO_PIC_BASE_OFFSET;
5883 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5884 OpFlag);
5885 DebugLoc DL = JT->getDebugLoc();
5886 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5888 // With PIC, the address is actually $g + Offset.
5889 if (OpFlag)
5890 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5891 DAG.getNode(X86ISD::GlobalBaseReg,
5892 DebugLoc(), getPointerTy()),
5893 Result);
5895 return Result;
5898 SDValue
5899 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5900 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5902 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5903 // global base reg.
5904 unsigned char OpFlag = 0;
5905 unsigned WrapperKind = X86ISD::Wrapper;
5906 CodeModel::Model M = getTargetMachine().getCodeModel();
5908 if (Subtarget->isPICStyleRIPRel() &&
5909 (M == CodeModel::Small || M == CodeModel::Kernel))
5910 WrapperKind = X86ISD::WrapperRIP;
5911 else if (Subtarget->isPICStyleGOT())
5912 OpFlag = X86II::MO_GOTOFF;
5913 else if (Subtarget->isPICStyleStubPIC())
5914 OpFlag = X86II::MO_PIC_BASE_OFFSET;
5916 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5918 DebugLoc DL = Op.getDebugLoc();
5919 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5922 // With PIC, the address is actually $g + Offset.
5923 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5924 !Subtarget->is64Bit()) {
5925 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5926 DAG.getNode(X86ISD::GlobalBaseReg,
5927 DebugLoc(), getPointerTy()),
5928 Result);
5931 return Result;
5934 SDValue
5935 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5936 // Create the TargetBlockAddressAddress node.
5937 unsigned char OpFlags =
5938 Subtarget->ClassifyBlockAddressReference();
5939 CodeModel::Model M = getTargetMachine().getCodeModel();
5940 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5941 DebugLoc dl = Op.getDebugLoc();
5942 SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5943 /*isTarget=*/true, OpFlags);
5945 if (Subtarget->isPICStyleRIPRel() &&
5946 (M == CodeModel::Small || M == CodeModel::Kernel))
5947 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5948 else
5949 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5951 // With PIC, the address is actually $g + Offset.
5952 if (isGlobalRelativeToPICBase(OpFlags)) {
5953 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5954 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5955 Result);
5958 return Result;
5961 SDValue
5962 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5963 int64_t Offset,
5964 SelectionDAG &DAG) const {
5965 // Create the TargetGlobalAddress node, folding in the constant
5966 // offset if it is legal.
5967 unsigned char OpFlags =
5968 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5969 CodeModel::Model M = getTargetMachine().getCodeModel();
5970 SDValue Result;
5971 if (OpFlags == X86II::MO_NO_FLAG &&
5972 X86::isOffsetSuitableForCodeModel(Offset, M)) {
5973 // A direct static reference to a global.
5974 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5975 Offset = 0;
5976 } else {
5977 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5980 if (Subtarget->isPICStyleRIPRel() &&
5981 (M == CodeModel::Small || M == CodeModel::Kernel))
5982 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5983 else
5984 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5986 // With PIC, the address is actually $g + Offset.
5987 if (isGlobalRelativeToPICBase(OpFlags)) {
5988 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5989 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5990 Result);
5993 // For globals that require a load from a stub to get the address, emit the
5994 // load.
5995 if (isGlobalStubReference(OpFlags))
5996 Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5997 MachinePointerInfo::getGOT(), false, false, 0);
5999 // If there was a non-zero offset that we didn't fold, create an explicit
6000 // addition for it.
6001 if (Offset != 0)
6002 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6003 DAG.getConstant(Offset, getPointerTy()));
6005 return Result;
6008 SDValue
6009 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6010 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6011 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6012 return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6015 static SDValue
6016 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6017 SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6018 unsigned char OperandFlags) {
6019 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6020 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6021 DebugLoc dl = GA->getDebugLoc();
6022 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6023 GA->getValueType(0),
6024 GA->getOffset(),
6025 OperandFlags);
6026 if (InFlag) {
6027 SDValue Ops[] = { Chain, TGA, *InFlag };
6028 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6029 } else {
6030 SDValue Ops[] = { Chain, TGA };
6031 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6034 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6035 MFI->setAdjustsStack(true);
6037 SDValue Flag = Chain.getValue(1);
6038 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6041 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6042 static SDValue
6043 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6044 const EVT PtrVT) {
6045 SDValue InFlag;
6046 DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
6047 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6048 DAG.getNode(X86ISD::GlobalBaseReg,
6049 DebugLoc(), PtrVT), InFlag);
6050 InFlag = Chain.getValue(1);
6052 return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6055 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6056 static SDValue
6057 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6058 const EVT PtrVT) {
6059 return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6060 X86::RAX, X86II::MO_TLSGD);
6063 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6064 // "local exec" model.
6065 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6066 const EVT PtrVT, TLSModel::Model model,
6067 bool is64Bit) {
6068 DebugLoc dl = GA->getDebugLoc();
6070 // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6071 Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6072 is64Bit ? 257 : 256));
6074 SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6075 DAG.getIntPtrConstant(0),
6076 MachinePointerInfo(Ptr), false, false, 0);
6078 unsigned char OperandFlags = 0;
6079 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
6080 // initialexec.
6081 unsigned WrapperKind = X86ISD::Wrapper;
6082 if (model == TLSModel::LocalExec) {
6083 OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6084 } else if (is64Bit) {
6085 assert(model == TLSModel::InitialExec);
6086 OperandFlags = X86II::MO_GOTTPOFF;
6087 WrapperKind = X86ISD::WrapperRIP;
6088 } else {
6089 assert(model == TLSModel::InitialExec);
6090 OperandFlags = X86II::MO_INDNTPOFF;
6093 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6094 // exec)
6095 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6096 GA->getValueType(0),
6097 GA->getOffset(), OperandFlags);
6098 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6100 if (model == TLSModel::InitialExec)
6101 Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6102 MachinePointerInfo::getGOT(), false, false, 0);
6104 // The address of the thread local variable is the add of the thread
6105 // pointer with the offset of the variable.
6106 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6109 SDValue
6110 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6112 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6113 const GlobalValue *GV = GA->getGlobal();
6115 if (Subtarget->isTargetELF()) {
6116 // TODO: implement the "local dynamic" model
6117 // TODO: implement the "initial exec"model for pic executables
6119 // If GV is an alias then use the aliasee for determining
6120 // thread-localness.
6121 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6122 GV = GA->resolveAliasedGlobal(false);
6124 TLSModel::Model model
6125 = getTLSModel(GV, getTargetMachine().getRelocationModel());
6127 switch (model) {
6128 case TLSModel::GeneralDynamic:
6129 case TLSModel::LocalDynamic: // not implemented
6130 if (Subtarget->is64Bit())
6131 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6132 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6134 case TLSModel::InitialExec:
6135 case TLSModel::LocalExec:
6136 return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6137 Subtarget->is64Bit());
6139 } else if (Subtarget->isTargetDarwin()) {
6140 // Darwin only has one model of TLS. Lower to that.
6141 unsigned char OpFlag = 0;
6142 unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6143 X86ISD::WrapperRIP : X86ISD::Wrapper;
6145 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6146 // global base reg.
6147 bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6148 !Subtarget->is64Bit();
6149 if (PIC32)
6150 OpFlag = X86II::MO_TLVP_PIC_BASE;
6151 else
6152 OpFlag = X86II::MO_TLVP;
6153 DebugLoc DL = Op.getDebugLoc();
6154 SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6155 getPointerTy(),
6156 GA->getOffset(), OpFlag);
6157 SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6159 // With PIC32, the address is actually $g + Offset.
6160 if (PIC32)
6161 Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6162 DAG.getNode(X86ISD::GlobalBaseReg,
6163 DebugLoc(), getPointerTy()),
6164 Offset);
6166 // Lowering the machine isd will make sure everything is in the right
6167 // location.
6168 SDValue Args[] = { Offset };
6169 SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
6171 // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6172 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6173 MFI->setAdjustsStack(true);
6175 // And our return value (tls address) is in the standard call return value
6176 // location.
6177 unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6178 return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6181 assert(false &&
6182 "TLS not implemented for this target.");
6184 llvm_unreachable("Unreachable");
6185 return SDValue();
6189 /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6190 /// take a 2 x i32 value to shift plus a shift amount.
6191 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6192 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6193 EVT VT = Op.getValueType();
6194 unsigned VTBits = VT.getSizeInBits();
6195 DebugLoc dl = Op.getDebugLoc();
6196 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6197 SDValue ShOpLo = Op.getOperand(0);
6198 SDValue ShOpHi = Op.getOperand(1);
6199 SDValue ShAmt = Op.getOperand(2);
6200 SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6201 DAG.getConstant(VTBits - 1, MVT::i8))
6202 : DAG.getConstant(0, VT);
6204 SDValue Tmp2, Tmp3;
6205 if (Op.getOpcode() == ISD::SHL_PARTS) {
6206 Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6207 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6208 } else {
6209 Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6210 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6213 SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6214 DAG.getConstant(VTBits, MVT::i8));
6215 SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6216 AndNode, DAG.getConstant(0, MVT::i8));
6218 SDValue Hi, Lo;
6219 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6220 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6221 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6223 if (Op.getOpcode() == ISD::SHL_PARTS) {
6224 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6225 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6226 } else {
6227 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6228 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6231 SDValue Ops[2] = { Lo, Hi };
6232 return DAG.getMergeValues(Ops, 2, dl);
6235 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6236 SelectionDAG &DAG) const {
6237 EVT SrcVT = Op.getOperand(0).getValueType();
6239 if (SrcVT.isVector())
6240 return SDValue();
6242 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6243 "Unknown SINT_TO_FP to lower!");
6245 // These are really Legal; return the operand so the caller accepts it as
6246 // Legal.
6247 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6248 return Op;
6249 if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6250 Subtarget->is64Bit()) {
6251 return Op;
6254 DebugLoc dl = Op.getDebugLoc();
6255 unsigned Size = SrcVT.getSizeInBits()/8;
6256 MachineFunction &MF = DAG.getMachineFunction();
6257 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6258 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6259 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6260 StackSlot,
6261 MachinePointerInfo::getFixedStack(SSFI),
6262 false, false, 0);
6263 return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6266 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6267 SDValue StackSlot,
6268 SelectionDAG &DAG) const {
6269 // Build the FILD
6270 DebugLoc DL = Op.getDebugLoc();
6271 SDVTList Tys;
6272 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6273 if (useSSE)
6274 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
6275 else
6276 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6278 unsigned ByteSize = SrcVT.getSizeInBits()/8;
6280 int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6281 MachineMemOperand *MMO =
6282 DAG.getMachineFunction()
6283 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6284 MachineMemOperand::MOLoad, ByteSize, ByteSize);
6286 SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6287 SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6288 X86ISD::FILD, DL,
6289 Tys, Ops, array_lengthof(Ops),
6290 SrcVT, MMO);
6292 if (useSSE) {
6293 Chain = Result.getValue(1);
6294 SDValue InFlag = Result.getValue(2);
6296 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6297 // shouldn't be necessary except that RFP cannot be live across
6298 // multiple blocks. When stackifier is fixed, they can be uncoupled.
6299 MachineFunction &MF = DAG.getMachineFunction();
6300 unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6301 int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6302 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6303 Tys = DAG.getVTList(MVT::Other);
6304 SDValue Ops[] = {
6305 Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6307 MachineMemOperand *MMO =
6308 DAG.getMachineFunction()
6309 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6310 MachineMemOperand::MOStore, SSFISize, SSFISize);
6312 Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6313 Ops, array_lengthof(Ops),
6314 Op.getValueType(), MMO);
6315 Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6316 MachinePointerInfo::getFixedStack(SSFI),
6317 false, false, 0);
6320 return Result;
6323 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6324 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6325 SelectionDAG &DAG) const {
6326 // This algorithm is not obvious. Here it is in C code, more or less:
6328 double uint64_to_double( uint32_t hi, uint32_t lo ) {
6329 static const __m128i exp = { 0x4330000045300000ULL, 0 };
6330 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6332 // Copy ints to xmm registers.
6333 __m128i xh = _mm_cvtsi32_si128( hi );
6334 __m128i xl = _mm_cvtsi32_si128( lo );
6336 // Combine into low half of a single xmm register.
6337 __m128i x = _mm_unpacklo_epi32( xh, xl );
6338 __m128d d;
6339 double sd;
6341 // Merge in appropriate exponents to give the integer bits the right
6342 // magnitude.
6343 x = _mm_unpacklo_epi32( x, exp );
6345 // Subtract away the biases to deal with the IEEE-754 double precision
6346 // implicit 1.
6347 d = _mm_sub_pd( (__m128d) x, bias );
6349 // All conversions up to here are exact. The correctly rounded result is
6350 // calculated using the current rounding mode using the following
6351 // horizontal add.
6352 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6353 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
6354 // store doesn't really need to be here (except
6355 // maybe to zero the other double)
6356 return sd;
6360 DebugLoc dl = Op.getDebugLoc();
6361 LLVMContext *Context = DAG.getContext();
6363 // Build some magic constants.
6364 std::vector<Constant*> CV0;
6365 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6366 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6367 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6368 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6369 Constant *C0 = ConstantVector::get(CV0);
6370 SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6372 std::vector<Constant*> CV1;
6373 CV1.push_back(
6374 ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6375 CV1.push_back(
6376 ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6377 Constant *C1 = ConstantVector::get(CV1);
6378 SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6380 SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6381 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6382 Op.getOperand(0),
6383 DAG.getIntPtrConstant(1)));
6384 SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6385 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6386 Op.getOperand(0),
6387 DAG.getIntPtrConstant(0)));
6388 SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6389 SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6390 MachinePointerInfo::getConstantPool(),
6391 false, false, 16);
6392 SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6393 SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
6394 SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6395 MachinePointerInfo::getConstantPool(),
6396 false, false, 16);
6397 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6399 // Add the halves; easiest way is to swap them into another reg first.
6400 int ShufMask[2] = { 1, -1 };
6401 SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6402 DAG.getUNDEF(MVT::v2f64), ShufMask);
6403 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6404 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6405 DAG.getIntPtrConstant(0));
6408 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6409 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6410 SelectionDAG &DAG) const {
6411 DebugLoc dl = Op.getDebugLoc();
6412 // FP constant to bias correct the final result.
6413 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6414 MVT::f64);
6416 // Load the 32-bit value into an XMM register.
6417 SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6418 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6419 Op.getOperand(0),
6420 DAG.getIntPtrConstant(0)));
6422 Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6423 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
6424 DAG.getIntPtrConstant(0));
6426 // Or the load with the bias.
6427 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6428 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6429 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6430 MVT::v2f64, Load)),
6431 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6432 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6433 MVT::v2f64, Bias)));
6434 Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6435 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
6436 DAG.getIntPtrConstant(0));
6438 // Subtract the bias.
6439 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6441 // Handle final rounding.
6442 EVT DestVT = Op.getValueType();
6444 if (DestVT.bitsLT(MVT::f64)) {
6445 return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6446 DAG.getIntPtrConstant(0));
6447 } else if (DestVT.bitsGT(MVT::f64)) {
6448 return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6451 // Handle final rounding.
6452 return Sub;
6455 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6456 SelectionDAG &DAG) const {
6457 SDValue N0 = Op.getOperand(0);
6458 DebugLoc dl = Op.getDebugLoc();
6460 // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6461 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6462 // the optimization here.
6463 if (DAG.SignBitIsZero(N0))
6464 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6466 EVT SrcVT = N0.getValueType();
6467 EVT DstVT = Op.getValueType();
6468 if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6469 return LowerUINT_TO_FP_i64(Op, DAG);
6470 else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6471 return LowerUINT_TO_FP_i32(Op, DAG);
6473 // Make a 64-bit buffer, and use it to build an FILD.
6474 SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6475 if (SrcVT == MVT::i32) {
6476 SDValue WordOff = DAG.getConstant(4, getPointerTy());
6477 SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6478 getPointerTy(), StackSlot, WordOff);
6479 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6480 StackSlot, MachinePointerInfo(),
6481 false, false, 0);
6482 SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6483 OffsetSlot, MachinePointerInfo(),
6484 false, false, 0);
6485 SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6486 return Fild;
6489 assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6490 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6491 StackSlot, MachinePointerInfo(),
6492 false, false, 0);
6493 // For i64 source, we need to add the appropriate power of 2 if the input
6494 // was negative. This is the same as the optimization in
6495 // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6496 // we must be careful to do the computation in x87 extended precision, not
6497 // in SSE. (The generic code can't know it's OK to do this, or how to.)
6498 int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6499 MachineMemOperand *MMO =
6500 DAG.getMachineFunction()
6501 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6502 MachineMemOperand::MOLoad, 8, 8);
6504 SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6505 SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6506 SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6507 MVT::i64, MMO);
6509 APInt FF(32, 0x5F800000ULL);
6511 // Check whether the sign bit is set.
6512 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6513 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6514 ISD::SETLT);
6516 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6517 SDValue FudgePtr = DAG.getConstantPool(
6518 ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6519 getPointerTy());
6521 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6522 SDValue Zero = DAG.getIntPtrConstant(0);
6523 SDValue Four = DAG.getIntPtrConstant(4);
6524 SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6525 Zero, Four);
6526 FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6528 // Load the value out, extending it from f32 to f80.
6529 // FIXME: Avoid the extend by constructing the right constant pool?
6530 SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
6531 FudgePtr, MachinePointerInfo::getConstantPool(),
6532 MVT::f32, false, false, 4);
6533 // Extend everything to 80 bits to force it to be done on x87.
6534 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6535 return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6538 std::pair<SDValue,SDValue> X86TargetLowering::
6539 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6540 DebugLoc DL = Op.getDebugLoc();
6542 EVT DstTy = Op.getValueType();
6544 if (!IsSigned) {
6545 assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6546 DstTy = MVT::i64;
6549 assert(DstTy.getSimpleVT() <= MVT::i64 &&
6550 DstTy.getSimpleVT() >= MVT::i16 &&
6551 "Unknown FP_TO_SINT to lower!");
6553 // These are really Legal.
6554 if (DstTy == MVT::i32 &&
6555 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6556 return std::make_pair(SDValue(), SDValue());
6557 if (Subtarget->is64Bit() &&
6558 DstTy == MVT::i64 &&
6559 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6560 return std::make_pair(SDValue(), SDValue());
6562 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6563 // stack slot.
6564 MachineFunction &MF = DAG.getMachineFunction();
6565 unsigned MemSize = DstTy.getSizeInBits()/8;
6566 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6567 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6571 unsigned Opc;
6572 switch (DstTy.getSimpleVT().SimpleTy) {
6573 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6574 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6575 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6576 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6579 SDValue Chain = DAG.getEntryNode();
6580 SDValue Value = Op.getOperand(0);
6581 EVT TheVT = Op.getOperand(0).getValueType();
6582 if (isScalarFPTypeInSSEReg(TheVT)) {
6583 assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6584 Chain = DAG.getStore(Chain, DL, Value, StackSlot,
6585 MachinePointerInfo::getFixedStack(SSFI),
6586 false, false, 0);
6587 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6588 SDValue Ops[] = {
6589 Chain, StackSlot, DAG.getValueType(TheVT)
6592 MachineMemOperand *MMO =
6593 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6594 MachineMemOperand::MOLoad, MemSize, MemSize);
6595 Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
6596 DstTy, MMO);
6597 Chain = Value.getValue(1);
6598 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6599 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6602 MachineMemOperand *MMO =
6603 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6604 MachineMemOperand::MOStore, MemSize, MemSize);
6606 // Build the FP_TO_INT*_IN_MEM
6607 SDValue Ops[] = { Chain, Value, StackSlot };
6608 SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
6609 Ops, 3, DstTy, MMO);
6611 return std::make_pair(FIST, StackSlot);
6614 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6615 SelectionDAG &DAG) const {
6616 if (Op.getValueType().isVector())
6617 return SDValue();
6619 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6620 SDValue FIST = Vals.first, StackSlot = Vals.second;
6621 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6622 if (FIST.getNode() == 0) return Op;
6624 // Load the result.
6625 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6626 FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6629 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6630 SelectionDAG &DAG) const {
6631 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6632 SDValue FIST = Vals.first, StackSlot = Vals.second;
6633 assert(FIST.getNode() && "Unexpected failure");
6635 // Load the result.
6636 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6637 FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6640 SDValue X86TargetLowering::LowerFABS(SDValue Op,
6641 SelectionDAG &DAG) const {
6642 LLVMContext *Context = DAG.getContext();
6643 DebugLoc dl = Op.getDebugLoc();
6644 EVT VT = Op.getValueType();
6645 EVT EltVT = VT;
6646 if (VT.isVector())
6647 EltVT = VT.getVectorElementType();
6648 std::vector<Constant*> CV;
6649 if (EltVT == MVT::f64) {
6650 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6651 CV.push_back(C);
6652 CV.push_back(C);
6653 } else {
6654 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6655 CV.push_back(C);
6656 CV.push_back(C);
6657 CV.push_back(C);
6658 CV.push_back(C);
6660 Constant *C = ConstantVector::get(CV);
6661 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6662 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6663 MachinePointerInfo::getConstantPool(),
6664 false, false, 16);
6665 return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6668 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6669 LLVMContext *Context = DAG.getContext();
6670 DebugLoc dl = Op.getDebugLoc();
6671 EVT VT = Op.getValueType();
6672 EVT EltVT = VT;
6673 if (VT.isVector())
6674 EltVT = VT.getVectorElementType();
6675 std::vector<Constant*> CV;
6676 if (EltVT == MVT::f64) {
6677 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6678 CV.push_back(C);
6679 CV.push_back(C);
6680 } else {
6681 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6682 CV.push_back(C);
6683 CV.push_back(C);
6684 CV.push_back(C);
6685 CV.push_back(C);
6687 Constant *C = ConstantVector::get(CV);
6688 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6689 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6690 MachinePointerInfo::getConstantPool(),
6691 false, false, 16);
6692 if (VT.isVector()) {
6693 return DAG.getNode(ISD::BITCAST, dl, VT,
6694 DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6695 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6696 Op.getOperand(0)),
6697 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
6698 } else {
6699 return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6703 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6704 LLVMContext *Context = DAG.getContext();
6705 SDValue Op0 = Op.getOperand(0);
6706 SDValue Op1 = Op.getOperand(1);
6707 DebugLoc dl = Op.getDebugLoc();
6708 EVT VT = Op.getValueType();
6709 EVT SrcVT = Op1.getValueType();
6711 // If second operand is smaller, extend it first.
6712 if (SrcVT.bitsLT(VT)) {
6713 Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6714 SrcVT = VT;
6716 // And if it is bigger, shrink it first.
6717 if (SrcVT.bitsGT(VT)) {
6718 Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6719 SrcVT = VT;
6722 // At this point the operands and the result should have the same
6723 // type, and that won't be f80 since that is not custom lowered.
6725 // First get the sign bit of second operand.
6726 std::vector<Constant*> CV;
6727 if (SrcVT == MVT::f64) {
6728 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6729 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6730 } else {
6731 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6732 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6733 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6734 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6736 Constant *C = ConstantVector::get(CV);
6737 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6738 SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6739 MachinePointerInfo::getConstantPool(),
6740 false, false, 16);
6741 SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6743 // Shift sign bit right or left if the two operands have different types.
6744 if (SrcVT.bitsGT(VT)) {
6745 // Op0 is MVT::f32, Op1 is MVT::f64.
6746 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6747 SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6748 DAG.getConstant(32, MVT::i32));
6749 SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
6750 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6751 DAG.getIntPtrConstant(0));
6754 // Clear first operand sign bit.
6755 CV.clear();
6756 if (VT == MVT::f64) {
6757 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6758 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6759 } else {
6760 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6761 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6762 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6763 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6765 C = ConstantVector::get(CV);
6766 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6767 SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6768 MachinePointerInfo::getConstantPool(),
6769 false, false, 16);
6770 SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6772 // Or the value with the sign bit.
6773 return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6776 /// Emit nodes that will be selected as "test Op0,Op0", or something
6777 /// equivalent.
6778 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6779 SelectionDAG &DAG) const {
6780 DebugLoc dl = Op.getDebugLoc();
6782 // CF and OF aren't always set the way we want. Determine which
6783 // of these we need.
6784 bool NeedCF = false;
6785 bool NeedOF = false;
6786 switch (X86CC) {
6787 default: break;
6788 case X86::COND_A: case X86::COND_AE:
6789 case X86::COND_B: case X86::COND_BE:
6790 NeedCF = true;
6791 break;
6792 case X86::COND_G: case X86::COND_GE:
6793 case X86::COND_L: case X86::COND_LE:
6794 case X86::COND_O: case X86::COND_NO:
6795 NeedOF = true;
6796 break;
6799 // See if we can use the EFLAGS value from the operand instead of
6800 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6801 // we prove that the arithmetic won't overflow, we can't use OF or CF.
6802 if (Op.getResNo() != 0 || NeedOF || NeedCF)
6803 // Emit a CMP with 0, which is the TEST pattern.
6804 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6805 DAG.getConstant(0, Op.getValueType()));
6807 unsigned Opcode = 0;
6808 unsigned NumOperands = 0;
6809 switch (Op.getNode()->getOpcode()) {
6810 case ISD::ADD:
6811 // Due to an isel shortcoming, be conservative if this add is likely to be
6812 // selected as part of a load-modify-store instruction. When the root node
6813 // in a match is a store, isel doesn't know how to remap non-chain non-flag
6814 // uses of other nodes in the match, such as the ADD in this case. This
6815 // leads to the ADD being left around and reselected, with the result being
6816 // two adds in the output. Alas, even if none our users are stores, that
6817 // doesn't prove we're O.K. Ergo, if we have any parents that aren't
6818 // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
6819 // climbing the DAG back to the root, and it doesn't seem to be worth the
6820 // effort.
6821 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6822 UE = Op.getNode()->use_end(); UI != UE; ++UI)
6823 if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6824 goto default_case;
6826 if (ConstantSDNode *C =
6827 dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6828 // An add of one will be selected as an INC.
6829 if (C->getAPIntValue() == 1) {
6830 Opcode = X86ISD::INC;
6831 NumOperands = 1;
6832 break;
6835 // An add of negative one (subtract of one) will be selected as a DEC.
6836 if (C->getAPIntValue().isAllOnesValue()) {
6837 Opcode = X86ISD::DEC;
6838 NumOperands = 1;
6839 break;
6843 // Otherwise use a regular EFLAGS-setting add.
6844 Opcode = X86ISD::ADD;
6845 NumOperands = 2;
6846 break;
6847 case ISD::AND: {
6848 // If the primary and result isn't used, don't bother using X86ISD::AND,
6849 // because a TEST instruction will be better.
6850 bool NonFlagUse = false;
6851 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6852 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6853 SDNode *User = *UI;
6854 unsigned UOpNo = UI.getOperandNo();
6855 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6856 // Look pass truncate.
6857 UOpNo = User->use_begin().getOperandNo();
6858 User = *User->use_begin();
6861 if (User->getOpcode() != ISD::BRCOND &&
6862 User->getOpcode() != ISD::SETCC &&
6863 (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6864 NonFlagUse = true;
6865 break;
6869 if (!NonFlagUse)
6870 break;
6872 // FALL THROUGH
6873 case ISD::SUB:
6874 case ISD::OR:
6875 case ISD::XOR:
6876 // Due to the ISEL shortcoming noted above, be conservative if this op is
6877 // likely to be selected as part of a load-modify-store instruction.
6878 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6879 UE = Op.getNode()->use_end(); UI != UE; ++UI)
6880 if (UI->getOpcode() == ISD::STORE)
6881 goto default_case;
6883 // Otherwise use a regular EFLAGS-setting instruction.
6884 switch (Op.getNode()->getOpcode()) {
6885 default: llvm_unreachable("unexpected operator!");
6886 case ISD::SUB: Opcode = X86ISD::SUB; break;
6887 case ISD::OR: Opcode = X86ISD::OR; break;
6888 case ISD::XOR: Opcode = X86ISD::XOR; break;
6889 case ISD::AND: Opcode = X86ISD::AND; break;
6892 NumOperands = 2;
6893 break;
6894 case X86ISD::ADD:
6895 case X86ISD::SUB:
6896 case X86ISD::INC:
6897 case X86ISD::DEC:
6898 case X86ISD::OR:
6899 case X86ISD::XOR:
6900 case X86ISD::AND:
6901 return SDValue(Op.getNode(), 1);
6902 default:
6903 default_case:
6904 break;
6907 if (Opcode == 0)
6908 // Emit a CMP with 0, which is the TEST pattern.
6909 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6910 DAG.getConstant(0, Op.getValueType()));
6912 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6913 SmallVector<SDValue, 4> Ops;
6914 for (unsigned i = 0; i != NumOperands; ++i)
6915 Ops.push_back(Op.getOperand(i));
6917 SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6918 DAG.ReplaceAllUsesWith(Op, New);
6919 return SDValue(New.getNode(), 1);
6922 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
6923 /// equivalent.
6924 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6925 SelectionDAG &DAG) const {
6926 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6927 if (C->getAPIntValue() == 0)
6928 return EmitTest(Op0, X86CC, DAG);
6930 DebugLoc dl = Op0.getDebugLoc();
6931 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6934 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6935 /// if it's possible.
6936 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6937 DebugLoc dl, SelectionDAG &DAG) const {
6938 SDValue Op0 = And.getOperand(0);
6939 SDValue Op1 = And.getOperand(1);
6940 if (Op0.getOpcode() == ISD::TRUNCATE)
6941 Op0 = Op0.getOperand(0);
6942 if (Op1.getOpcode() == ISD::TRUNCATE)
6943 Op1 = Op1.getOperand(0);
6945 SDValue LHS, RHS;
6946 if (Op1.getOpcode() == ISD::SHL)
6947 std::swap(Op0, Op1);
6948 if (Op0.getOpcode() == ISD::SHL) {
6949 if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6950 if (And00C->getZExtValue() == 1) {
6951 // If we looked past a truncate, check that it's only truncating away
6952 // known zeros.
6953 unsigned BitWidth = Op0.getValueSizeInBits();
6954 unsigned AndBitWidth = And.getValueSizeInBits();
6955 if (BitWidth > AndBitWidth) {
6956 APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6957 DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6958 if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6959 return SDValue();
6961 LHS = Op1;
6962 RHS = Op0.getOperand(1);
6964 } else if (Op1.getOpcode() == ISD::Constant) {
6965 ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6966 SDValue AndLHS = Op0;
6967 if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6968 LHS = AndLHS.getOperand(0);
6969 RHS = AndLHS.getOperand(1);
6973 if (LHS.getNode()) {
6974 // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
6975 // instruction. Since the shift amount is in-range-or-undefined, we know
6976 // that doing a bittest on the i32 value is ok. We extend to i32 because
6977 // the encoding for the i16 version is larger than the i32 version.
6978 // Also promote i16 to i32 for performance / code size reason.
6979 if (LHS.getValueType() == MVT::i8 ||
6980 LHS.getValueType() == MVT::i16)
6981 LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6983 // If the operand types disagree, extend the shift amount to match. Since
6984 // BT ignores high bits (like shifts) we can use anyextend.
6985 if (LHS.getValueType() != RHS.getValueType())
6986 RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6988 SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6989 unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6990 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6991 DAG.getConstant(Cond, MVT::i8), BT);
6994 return SDValue();
6997 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6998 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6999 SDValue Op0 = Op.getOperand(0);
7000 SDValue Op1 = Op.getOperand(1);
7001 DebugLoc dl = Op.getDebugLoc();
7002 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7004 // Optimize to BT if possible.
7005 // Lower (X & (1 << N)) == 0 to BT(X, N).
7006 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7007 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7008 if (Op0.getOpcode() == ISD::AND &&
7009 Op0.hasOneUse() &&
7010 Op1.getOpcode() == ISD::Constant &&
7011 cast<ConstantSDNode>(Op1)->isNullValue() &&
7012 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7013 SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7014 if (NewSetCC.getNode())
7015 return NewSetCC;
7018 // Look for "(setcc) == / != 1" to avoid unncessary setcc.
7019 if (Op0.getOpcode() == X86ISD::SETCC &&
7020 Op1.getOpcode() == ISD::Constant &&
7021 (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7022 cast<ConstantSDNode>(Op1)->isNullValue()) &&
7023 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7024 X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7025 bool Invert = (CC == ISD::SETNE) ^
7026 cast<ConstantSDNode>(Op1)->isNullValue();
7027 if (Invert)
7028 CCode = X86::GetOppositeBranchCondition(CCode);
7029 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7030 DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7033 bool isFP = Op1.getValueType().isFloatingPoint();
7034 unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7035 if (X86CC == X86::COND_INVALID)
7036 return SDValue();
7038 SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
7040 // Use sbb x, x to materialize carry bit into a GPR.
7041 if (X86CC == X86::COND_B)
7042 return DAG.getNode(ISD::AND, dl, MVT::i8,
7043 DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
7044 DAG.getConstant(X86CC, MVT::i8), Cond),
7045 DAG.getConstant(1, MVT::i8));
7047 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7048 DAG.getConstant(X86CC, MVT::i8), Cond);
7051 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7052 SDValue Cond;
7053 SDValue Op0 = Op.getOperand(0);
7054 SDValue Op1 = Op.getOperand(1);
7055 SDValue CC = Op.getOperand(2);
7056 EVT VT = Op.getValueType();
7057 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7058 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7059 DebugLoc dl = Op.getDebugLoc();
7061 if (isFP) {
7062 unsigned SSECC = 8;
7063 EVT VT0 = Op0.getValueType();
7064 assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7065 unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7066 bool Swap = false;
7068 switch (SetCCOpcode) {
7069 default: break;
7070 case ISD::SETOEQ:
7071 case ISD::SETEQ: SSECC = 0; break;
7072 case ISD::SETOGT:
7073 case ISD::SETGT: Swap = true; // Fallthrough
7074 case ISD::SETLT:
7075 case ISD::SETOLT: SSECC = 1; break;
7076 case ISD::SETOGE:
7077 case ISD::SETGE: Swap = true; // Fallthrough
7078 case ISD::SETLE:
7079 case ISD::SETOLE: SSECC = 2; break;
7080 case ISD::SETUO: SSECC = 3; break;
7081 case ISD::SETUNE:
7082 case ISD::SETNE: SSECC = 4; break;
7083 case ISD::SETULE: Swap = true;
7084 case ISD::SETUGE: SSECC = 5; break;
7085 case ISD::SETULT: Swap = true;
7086 case ISD::SETUGT: SSECC = 6; break;
7087 case ISD::SETO: SSECC = 7; break;
7089 if (Swap)
7090 std::swap(Op0, Op1);
7092 // In the two special cases we can't handle, emit two comparisons.
7093 if (SSECC == 8) {
7094 if (SetCCOpcode == ISD::SETUEQ) {
7095 SDValue UNORD, EQ;
7096 UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7097 EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7098 return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7100 else if (SetCCOpcode == ISD::SETONE) {
7101 SDValue ORD, NEQ;
7102 ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7103 NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7104 return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7106 llvm_unreachable("Illegal FP comparison");
7108 // Handle all other FP comparisons here.
7109 return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7112 // We are handling one of the integer comparisons here. Since SSE only has
7113 // GT and EQ comparisons for integer, swapping operands and multiple
7114 // operations may be required for some comparisons.
7115 unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7116 bool Swap = false, Invert = false, FlipSigns = false;
7118 switch (VT.getSimpleVT().SimpleTy) {
7119 default: break;
7120 case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7121 case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7122 case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7123 case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7126 switch (SetCCOpcode) {
7127 default: break;
7128 case ISD::SETNE: Invert = true;
7129 case ISD::SETEQ: Opc = EQOpc; break;
7130 case ISD::SETLT: Swap = true;
7131 case ISD::SETGT: Opc = GTOpc; break;
7132 case ISD::SETGE: Swap = true;
7133 case ISD::SETLE: Opc = GTOpc; Invert = true; break;
7134 case ISD::SETULT: Swap = true;
7135 case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7136 case ISD::SETUGE: Swap = true;
7137 case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7139 if (Swap)
7140 std::swap(Op0, Op1);
7142 // Since SSE has no unsigned integer comparisons, we need to flip the sign
7143 // bits of the inputs before performing those operations.
7144 if (FlipSigns) {
7145 EVT EltVT = VT.getVectorElementType();
7146 SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7147 EltVT);
7148 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7149 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7150 SignBits.size());
7151 Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7152 Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7155 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7157 // If the logical-not of the result is required, perform that now.
7158 if (Invert)
7159 Result = DAG.getNOT(dl, Result, VT);
7161 return Result;
7164 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7165 static bool isX86LogicalCmp(SDValue Op) {
7166 unsigned Opc = Op.getNode()->getOpcode();
7167 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7168 return true;
7169 if (Op.getResNo() == 1 &&
7170 (Opc == X86ISD::ADD ||
7171 Opc == X86ISD::SUB ||
7172 Opc == X86ISD::SMUL ||
7173 Opc == X86ISD::UMUL ||
7174 Opc == X86ISD::INC ||
7175 Opc == X86ISD::DEC ||
7176 Opc == X86ISD::OR ||
7177 Opc == X86ISD::XOR ||
7178 Opc == X86ISD::AND))
7179 return true;
7181 return false;
7184 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7185 bool addTest = true;
7186 SDValue Cond = Op.getOperand(0);
7187 DebugLoc dl = Op.getDebugLoc();
7188 SDValue CC;
7190 if (Cond.getOpcode() == ISD::SETCC) {
7191 SDValue NewCond = LowerSETCC(Cond, DAG);
7192 if (NewCond.getNode())
7193 Cond = NewCond;
7196 // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
7197 SDValue Op1 = Op.getOperand(1);
7198 SDValue Op2 = Op.getOperand(2);
7199 if (Cond.getOpcode() == X86ISD::SETCC &&
7200 cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
7201 SDValue Cmp = Cond.getOperand(1);
7202 if (Cmp.getOpcode() == X86ISD::CMP) {
7203 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
7204 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7205 ConstantSDNode *RHSC =
7206 dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
7207 if (N1C && N1C->isAllOnesValue() &&
7208 N2C && N2C->isNullValue() &&
7209 RHSC && RHSC->isNullValue()) {
7210 SDValue CmpOp0 = Cmp.getOperand(0);
7211 Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7212 CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7213 return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
7214 DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7219 // Look pass (and (setcc_carry (cmp ...)), 1).
7220 if (Cond.getOpcode() == ISD::AND &&
7221 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7222 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7223 if (C && C->getAPIntValue() == 1)
7224 Cond = Cond.getOperand(0);
7227 // If condition flag is set by a X86ISD::CMP, then use it as the condition
7228 // setting operand in place of the X86ISD::SETCC.
7229 if (Cond.getOpcode() == X86ISD::SETCC ||
7230 Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7231 CC = Cond.getOperand(0);
7233 SDValue Cmp = Cond.getOperand(1);
7234 unsigned Opc = Cmp.getOpcode();
7235 EVT VT = Op.getValueType();
7237 bool IllegalFPCMov = false;
7238 if (VT.isFloatingPoint() && !VT.isVector() &&
7239 !isScalarFPTypeInSSEReg(VT)) // FPStack?
7240 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7242 if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7243 Opc == X86ISD::BT) { // FIXME
7244 Cond = Cmp;
7245 addTest = false;
7249 if (addTest) {
7250 // Look pass the truncate.
7251 if (Cond.getOpcode() == ISD::TRUNCATE)
7252 Cond = Cond.getOperand(0);
7254 // We know the result of AND is compared against zero. Try to match
7255 // it to BT.
7256 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7257 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7258 if (NewSetCC.getNode()) {
7259 CC = NewSetCC.getOperand(0);
7260 Cond = NewSetCC.getOperand(1);
7261 addTest = false;
7266 if (addTest) {
7267 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7268 Cond = EmitTest(Cond, X86::COND_NE, DAG);
7271 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7272 // condition is true.
7273 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
7274 SDValue Ops[] = { Op2, Op1, CC, Cond };
7275 return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
7278 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7279 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7280 // from the AND / OR.
7281 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7282 Opc = Op.getOpcode();
7283 if (Opc != ISD::OR && Opc != ISD::AND)
7284 return false;
7285 return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7286 Op.getOperand(0).hasOneUse() &&
7287 Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7288 Op.getOperand(1).hasOneUse());
7291 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7292 // 1 and that the SETCC node has a single use.
7293 static bool isXor1OfSetCC(SDValue Op) {
7294 if (Op.getOpcode() != ISD::XOR)
7295 return false;
7296 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7297 if (N1C && N1C->getAPIntValue() == 1) {
7298 return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7299 Op.getOperand(0).hasOneUse();
7301 return false;
7304 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7305 bool addTest = true;
7306 SDValue Chain = Op.getOperand(0);
7307 SDValue Cond = Op.getOperand(1);
7308 SDValue Dest = Op.getOperand(2);
7309 DebugLoc dl = Op.getDebugLoc();
7310 SDValue CC;
7312 if (Cond.getOpcode() == ISD::SETCC) {
7313 SDValue NewCond = LowerSETCC(Cond, DAG);
7314 if (NewCond.getNode())
7315 Cond = NewCond;
7317 #if 0
7318 // FIXME: LowerXALUO doesn't handle these!!
7319 else if (Cond.getOpcode() == X86ISD::ADD ||
7320 Cond.getOpcode() == X86ISD::SUB ||
7321 Cond.getOpcode() == X86ISD::SMUL ||
7322 Cond.getOpcode() == X86ISD::UMUL)
7323 Cond = LowerXALUO(Cond, DAG);
7324 #endif
7326 // Look pass (and (setcc_carry (cmp ...)), 1).
7327 if (Cond.getOpcode() == ISD::AND &&
7328 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7329 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7330 if (C && C->getAPIntValue() == 1)
7331 Cond = Cond.getOperand(0);
7334 // If condition flag is set by a X86ISD::CMP, then use it as the condition
7335 // setting operand in place of the X86ISD::SETCC.
7336 if (Cond.getOpcode() == X86ISD::SETCC ||
7337 Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7338 CC = Cond.getOperand(0);
7340 SDValue Cmp = Cond.getOperand(1);
7341 unsigned Opc = Cmp.getOpcode();
7342 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7343 if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7344 Cond = Cmp;
7345 addTest = false;
7346 } else {
7347 switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7348 default: break;
7349 case X86::COND_O:
7350 case X86::COND_B:
7351 // These can only come from an arithmetic instruction with overflow,
7352 // e.g. SADDO, UADDO.
7353 Cond = Cond.getNode()->getOperand(1);
7354 addTest = false;
7355 break;
7358 } else {
7359 unsigned CondOpc;
7360 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7361 SDValue Cmp = Cond.getOperand(0).getOperand(1);
7362 if (CondOpc == ISD::OR) {
7363 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7364 // two branches instead of an explicit OR instruction with a
7365 // separate test.
7366 if (Cmp == Cond.getOperand(1).getOperand(1) &&
7367 isX86LogicalCmp(Cmp)) {
7368 CC = Cond.getOperand(0).getOperand(0);
7369 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7370 Chain, Dest, CC, Cmp);
7371 CC = Cond.getOperand(1).getOperand(0);
7372 Cond = Cmp;
7373 addTest = false;
7375 } else { // ISD::AND
7376 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7377 // two branches instead of an explicit AND instruction with a
7378 // separate test. However, we only do this if this block doesn't
7379 // have a fall-through edge, because this requires an explicit
7380 // jmp when the condition is false.
7381 if (Cmp == Cond.getOperand(1).getOperand(1) &&
7382 isX86LogicalCmp(Cmp) &&
7383 Op.getNode()->hasOneUse()) {
7384 X86::CondCode CCode =
7385 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7386 CCode = X86::GetOppositeBranchCondition(CCode);
7387 CC = DAG.getConstant(CCode, MVT::i8);
7388 SDNode *User = *Op.getNode()->use_begin();
7389 // Look for an unconditional branch following this conditional branch.
7390 // We need this because we need to reverse the successors in order
7391 // to implement FCMP_OEQ.
7392 if (User->getOpcode() == ISD::BR) {
7393 SDValue FalseBB = User->getOperand(1);
7394 SDNode *NewBR =
7395 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7396 assert(NewBR == User);
7397 (void)NewBR;
7398 Dest = FalseBB;
7400 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7401 Chain, Dest, CC, Cmp);
7402 X86::CondCode CCode =
7403 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7404 CCode = X86::GetOppositeBranchCondition(CCode);
7405 CC = DAG.getConstant(CCode, MVT::i8);
7406 Cond = Cmp;
7407 addTest = false;
7411 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7412 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7413 // It should be transformed during dag combiner except when the condition
7414 // is set by a arithmetics with overflow node.
7415 X86::CondCode CCode =
7416 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7417 CCode = X86::GetOppositeBranchCondition(CCode);
7418 CC = DAG.getConstant(CCode, MVT::i8);
7419 Cond = Cond.getOperand(0).getOperand(1);
7420 addTest = false;
7424 if (addTest) {
7425 // Look pass the truncate.
7426 if (Cond.getOpcode() == ISD::TRUNCATE)
7427 Cond = Cond.getOperand(0);
7429 // We know the result of AND is compared against zero. Try to match
7430 // it to BT.
7431 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7432 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7433 if (NewSetCC.getNode()) {
7434 CC = NewSetCC.getOperand(0);
7435 Cond = NewSetCC.getOperand(1);
7436 addTest = false;
7441 if (addTest) {
7442 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7443 Cond = EmitTest(Cond, X86::COND_NE, DAG);
7445 return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7446 Chain, Dest, CC, Cond);
7450 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7451 // Calls to _alloca is needed to probe the stack when allocating more than 4k
7452 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
7453 // that the guard pages used by the OS virtual memory manager are allocated in
7454 // correct sequence.
7455 SDValue
7456 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7457 SelectionDAG &DAG) const {
7458 assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7459 "This should be used only on Windows targets");
7460 DebugLoc dl = Op.getDebugLoc();
7462 // Get the inputs.
7463 SDValue Chain = Op.getOperand(0);
7464 SDValue Size = Op.getOperand(1);
7465 // FIXME: Ensure alignment here
7467 SDValue Flag;
7469 EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7471 Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7472 Flag = Chain.getValue(1);
7474 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
7476 Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7477 Flag = Chain.getValue(1);
7479 Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7481 SDValue Ops1[2] = { Chain.getValue(0), Chain };
7482 return DAG.getMergeValues(Ops1, 2, dl);
7485 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7486 MachineFunction &MF = DAG.getMachineFunction();
7487 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7489 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7490 DebugLoc DL = Op.getDebugLoc();
7492 if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7493 // vastart just stores the address of the VarArgsFrameIndex slot into the
7494 // memory location argument.
7495 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7496 getPointerTy());
7497 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7498 MachinePointerInfo(SV), false, false, 0);
7501 // __va_list_tag:
7502 // gp_offset (0 - 6 * 8)
7503 // fp_offset (48 - 48 + 8 * 16)
7504 // overflow_arg_area (point to parameters coming in memory).
7505 // reg_save_area
7506 SmallVector<SDValue, 8> MemOps;
7507 SDValue FIN = Op.getOperand(1);
7508 // Store gp_offset
7509 SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7510 DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7511 MVT::i32),
7512 FIN, MachinePointerInfo(SV), false, false, 0);
7513 MemOps.push_back(Store);
7515 // Store fp_offset
7516 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7517 FIN, DAG.getIntPtrConstant(4));
7518 Store = DAG.getStore(Op.getOperand(0), DL,
7519 DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7520 MVT::i32),
7521 FIN, MachinePointerInfo(SV, 4), false, false, 0);
7522 MemOps.push_back(Store);
7524 // Store ptr to overflow_arg_area
7525 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7526 FIN, DAG.getIntPtrConstant(4));
7527 SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7528 getPointerTy());
7529 Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
7530 MachinePointerInfo(SV, 8),
7531 false, false, 0);
7532 MemOps.push_back(Store);
7534 // Store ptr to reg_save_area.
7535 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7536 FIN, DAG.getIntPtrConstant(8));
7537 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7538 getPointerTy());
7539 Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
7540 MachinePointerInfo(SV, 16), false, false, 0);
7541 MemOps.push_back(Store);
7542 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
7543 &MemOps[0], MemOps.size());
7546 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7547 assert(Subtarget->is64Bit() &&
7548 "LowerVAARG only handles 64-bit va_arg!");
7549 assert((Subtarget->isTargetLinux() ||
7550 Subtarget->isTargetDarwin()) &&
7551 "Unhandled target in LowerVAARG");
7552 assert(Op.getNode()->getNumOperands() == 4);
7553 SDValue Chain = Op.getOperand(0);
7554 SDValue SrcPtr = Op.getOperand(1);
7555 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7556 unsigned Align = Op.getConstantOperandVal(3);
7557 DebugLoc dl = Op.getDebugLoc();
7559 EVT ArgVT = Op.getNode()->getValueType(0);
7560 const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7561 uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
7562 uint8_t ArgMode;
7564 // Decide which area this value should be read from.
7565 // TODO: Implement the AMD64 ABI in its entirety. This simple
7566 // selection mechanism works only for the basic types.
7567 if (ArgVT == MVT::f80) {
7568 llvm_unreachable("va_arg for f80 not yet implemented");
7569 } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
7570 ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
7571 } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
7572 ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
7573 } else {
7574 llvm_unreachable("Unhandled argument type in LowerVAARG");
7577 if (ArgMode == 2) {
7578 // Sanity Check: Make sure using fp_offset makes sense.
7579 assert(!UseSoftFloat &&
7580 !(DAG.getMachineFunction()
7581 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
7582 Subtarget->hasSSE1());
7585 // Insert VAARG_64 node into the DAG
7586 // VAARG_64 returns two values: Variable Argument Address, Chain
7587 SmallVector<SDValue, 11> InstOps;
7588 InstOps.push_back(Chain);
7589 InstOps.push_back(SrcPtr);
7590 InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
7591 InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
7592 InstOps.push_back(DAG.getConstant(Align, MVT::i32));
7593 SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
7594 SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
7595 VTs, &InstOps[0], InstOps.size(),
7596 MVT::i64,
7597 MachinePointerInfo(SV),
7598 /*Align=*/0,
7599 /*Volatile=*/false,
7600 /*ReadMem=*/true,
7601 /*WriteMem=*/true);
7602 Chain = VAARG.getValue(1);
7604 // Load the next argument and return it
7605 return DAG.getLoad(ArgVT, dl,
7606 Chain,
7607 VAARG,
7608 MachinePointerInfo(),
7609 false, false, 0);
7612 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
7613 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7614 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
7615 SDValue Chain = Op.getOperand(0);
7616 SDValue DstPtr = Op.getOperand(1);
7617 SDValue SrcPtr = Op.getOperand(2);
7618 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7619 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7620 DebugLoc DL = Op.getDebugLoc();
7622 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
7623 DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
7624 false,
7625 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
7628 SDValue
7629 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
7630 DebugLoc dl = Op.getDebugLoc();
7631 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7632 switch (IntNo) {
7633 default: return SDValue(); // Don't custom lower most intrinsics.
7634 // Comparison intrinsics.
7635 case Intrinsic::x86_sse_comieq_ss:
7636 case Intrinsic::x86_sse_comilt_ss:
7637 case Intrinsic::x86_sse_comile_ss:
7638 case Intrinsic::x86_sse_comigt_ss:
7639 case Intrinsic::x86_sse_comige_ss:
7640 case Intrinsic::x86_sse_comineq_ss:
7641 case Intrinsic::x86_sse_ucomieq_ss:
7642 case Intrinsic::x86_sse_ucomilt_ss:
7643 case Intrinsic::x86_sse_ucomile_ss:
7644 case Intrinsic::x86_sse_ucomigt_ss:
7645 case Intrinsic::x86_sse_ucomige_ss:
7646 case Intrinsic::x86_sse_ucomineq_ss:
7647 case Intrinsic::x86_sse2_comieq_sd:
7648 case Intrinsic::x86_sse2_comilt_sd:
7649 case Intrinsic::x86_sse2_comile_sd:
7650 case Intrinsic::x86_sse2_comigt_sd:
7651 case Intrinsic::x86_sse2_comige_sd:
7652 case Intrinsic::x86_sse2_comineq_sd:
7653 case Intrinsic::x86_sse2_ucomieq_sd:
7654 case Intrinsic::x86_sse2_ucomilt_sd:
7655 case Intrinsic::x86_sse2_ucomile_sd:
7656 case Intrinsic::x86_sse2_ucomigt_sd:
7657 case Intrinsic::x86_sse2_ucomige_sd:
7658 case Intrinsic::x86_sse2_ucomineq_sd: {
7659 unsigned Opc = 0;
7660 ISD::CondCode CC = ISD::SETCC_INVALID;
7661 switch (IntNo) {
7662 default: break;
7663 case Intrinsic::x86_sse_comieq_ss:
7664 case Intrinsic::x86_sse2_comieq_sd:
7665 Opc = X86ISD::COMI;
7666 CC = ISD::SETEQ;
7667 break;
7668 case Intrinsic::x86_sse_comilt_ss:
7669 case Intrinsic::x86_sse2_comilt_sd:
7670 Opc = X86ISD::COMI;
7671 CC = ISD::SETLT;
7672 break;
7673 case Intrinsic::x86_sse_comile_ss:
7674 case Intrinsic::x86_sse2_comile_sd:
7675 Opc = X86ISD::COMI;
7676 CC = ISD::SETLE;
7677 break;
7678 case Intrinsic::x86_sse_comigt_ss:
7679 case Intrinsic::x86_sse2_comigt_sd:
7680 Opc = X86ISD::COMI;
7681 CC = ISD::SETGT;
7682 break;
7683 case Intrinsic::x86_sse_comige_ss:
7684 case Intrinsic::x86_sse2_comige_sd:
7685 Opc = X86ISD::COMI;
7686 CC = ISD::SETGE;
7687 break;
7688 case Intrinsic::x86_sse_comineq_ss:
7689 case Intrinsic::x86_sse2_comineq_sd:
7690 Opc = X86ISD::COMI;
7691 CC = ISD::SETNE;
7692 break;
7693 case Intrinsic::x86_sse_ucomieq_ss:
7694 case Intrinsic::x86_sse2_ucomieq_sd:
7695 Opc = X86ISD::UCOMI;
7696 CC = ISD::SETEQ;
7697 break;
7698 case Intrinsic::x86_sse_ucomilt_ss:
7699 case Intrinsic::x86_sse2_ucomilt_sd:
7700 Opc = X86ISD::UCOMI;
7701 CC = ISD::SETLT;
7702 break;
7703 case Intrinsic::x86_sse_ucomile_ss:
7704 case Intrinsic::x86_sse2_ucomile_sd:
7705 Opc = X86ISD::UCOMI;
7706 CC = ISD::SETLE;
7707 break;
7708 case Intrinsic::x86_sse_ucomigt_ss:
7709 case Intrinsic::x86_sse2_ucomigt_sd:
7710 Opc = X86ISD::UCOMI;
7711 CC = ISD::SETGT;
7712 break;
7713 case Intrinsic::x86_sse_ucomige_ss:
7714 case Intrinsic::x86_sse2_ucomige_sd:
7715 Opc = X86ISD::UCOMI;
7716 CC = ISD::SETGE;
7717 break;
7718 case Intrinsic::x86_sse_ucomineq_ss:
7719 case Intrinsic::x86_sse2_ucomineq_sd:
7720 Opc = X86ISD::UCOMI;
7721 CC = ISD::SETNE;
7722 break;
7725 SDValue LHS = Op.getOperand(1);
7726 SDValue RHS = Op.getOperand(2);
7727 unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7728 assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7729 SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7730 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7731 DAG.getConstant(X86CC, MVT::i8), Cond);
7732 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7734 // ptest and testp intrinsics. The intrinsic these come from are designed to
7735 // return an integer value, not just an instruction so lower it to the ptest
7736 // or testp pattern and a setcc for the result.
7737 case Intrinsic::x86_sse41_ptestz:
7738 case Intrinsic::x86_sse41_ptestc:
7739 case Intrinsic::x86_sse41_ptestnzc:
7740 case Intrinsic::x86_avx_ptestz_256:
7741 case Intrinsic::x86_avx_ptestc_256:
7742 case Intrinsic::x86_avx_ptestnzc_256:
7743 case Intrinsic::x86_avx_vtestz_ps:
7744 case Intrinsic::x86_avx_vtestc_ps:
7745 case Intrinsic::x86_avx_vtestnzc_ps:
7746 case Intrinsic::x86_avx_vtestz_pd:
7747 case Intrinsic::x86_avx_vtestc_pd:
7748 case Intrinsic::x86_avx_vtestnzc_pd:
7749 case Intrinsic::x86_avx_vtestz_ps_256:
7750 case Intrinsic::x86_avx_vtestc_ps_256:
7751 case Intrinsic::x86_avx_vtestnzc_ps_256:
7752 case Intrinsic::x86_avx_vtestz_pd_256:
7753 case Intrinsic::x86_avx_vtestc_pd_256:
7754 case Intrinsic::x86_avx_vtestnzc_pd_256: {
7755 bool IsTestPacked = false;
7756 unsigned X86CC = 0;
7757 switch (IntNo) {
7758 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7759 case Intrinsic::x86_avx_vtestz_ps:
7760 case Intrinsic::x86_avx_vtestz_pd:
7761 case Intrinsic::x86_avx_vtestz_ps_256:
7762 case Intrinsic::x86_avx_vtestz_pd_256:
7763 IsTestPacked = true; // Fallthrough
7764 case Intrinsic::x86_sse41_ptestz:
7765 case Intrinsic::x86_avx_ptestz_256:
7766 // ZF = 1
7767 X86CC = X86::COND_E;
7768 break;
7769 case Intrinsic::x86_avx_vtestc_ps:
7770 case Intrinsic::x86_avx_vtestc_pd:
7771 case Intrinsic::x86_avx_vtestc_ps_256:
7772 case Intrinsic::x86_avx_vtestc_pd_256:
7773 IsTestPacked = true; // Fallthrough
7774 case Intrinsic::x86_sse41_ptestc:
7775 case Intrinsic::x86_avx_ptestc_256:
7776 // CF = 1
7777 X86CC = X86::COND_B;
7778 break;
7779 case Intrinsic::x86_avx_vtestnzc_ps:
7780 case Intrinsic::x86_avx_vtestnzc_pd:
7781 case Intrinsic::x86_avx_vtestnzc_ps_256:
7782 case Intrinsic::x86_avx_vtestnzc_pd_256:
7783 IsTestPacked = true; // Fallthrough
7784 case Intrinsic::x86_sse41_ptestnzc:
7785 case Intrinsic::x86_avx_ptestnzc_256:
7786 // ZF and CF = 0
7787 X86CC = X86::COND_A;
7788 break;
7791 SDValue LHS = Op.getOperand(1);
7792 SDValue RHS = Op.getOperand(2);
7793 unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7794 SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7795 SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7796 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7797 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7800 // Fix vector shift instructions where the last operand is a non-immediate
7801 // i32 value.
7802 case Intrinsic::x86_sse2_pslli_w:
7803 case Intrinsic::x86_sse2_pslli_d:
7804 case Intrinsic::x86_sse2_pslli_q:
7805 case Intrinsic::x86_sse2_psrli_w:
7806 case Intrinsic::x86_sse2_psrli_d:
7807 case Intrinsic::x86_sse2_psrli_q:
7808 case Intrinsic::x86_sse2_psrai_w:
7809 case Intrinsic::x86_sse2_psrai_d:
7810 case Intrinsic::x86_mmx_pslli_w:
7811 case Intrinsic::x86_mmx_pslli_d:
7812 case Intrinsic::x86_mmx_pslli_q:
7813 case Intrinsic::x86_mmx_psrli_w:
7814 case Intrinsic::x86_mmx_psrli_d:
7815 case Intrinsic::x86_mmx_psrli_q:
7816 case Intrinsic::x86_mmx_psrai_w:
7817 case Intrinsic::x86_mmx_psrai_d: {
7818 SDValue ShAmt = Op.getOperand(2);
7819 if (isa<ConstantSDNode>(ShAmt))
7820 return SDValue();
7822 unsigned NewIntNo = 0;
7823 EVT ShAmtVT = MVT::v4i32;
7824 switch (IntNo) {
7825 case Intrinsic::x86_sse2_pslli_w:
7826 NewIntNo = Intrinsic::x86_sse2_psll_w;
7827 break;
7828 case Intrinsic::x86_sse2_pslli_d:
7829 NewIntNo = Intrinsic::x86_sse2_psll_d;
7830 break;
7831 case Intrinsic::x86_sse2_pslli_q:
7832 NewIntNo = Intrinsic::x86_sse2_psll_q;
7833 break;
7834 case Intrinsic::x86_sse2_psrli_w:
7835 NewIntNo = Intrinsic::x86_sse2_psrl_w;
7836 break;
7837 case Intrinsic::x86_sse2_psrli_d:
7838 NewIntNo = Intrinsic::x86_sse2_psrl_d;
7839 break;
7840 case Intrinsic::x86_sse2_psrli_q:
7841 NewIntNo = Intrinsic::x86_sse2_psrl_q;
7842 break;
7843 case Intrinsic::x86_sse2_psrai_w:
7844 NewIntNo = Intrinsic::x86_sse2_psra_w;
7845 break;
7846 case Intrinsic::x86_sse2_psrai_d:
7847 NewIntNo = Intrinsic::x86_sse2_psra_d;
7848 break;
7849 default: {
7850 ShAmtVT = MVT::v2i32;
7851 switch (IntNo) {
7852 case Intrinsic::x86_mmx_pslli_w:
7853 NewIntNo = Intrinsic::x86_mmx_psll_w;
7854 break;
7855 case Intrinsic::x86_mmx_pslli_d:
7856 NewIntNo = Intrinsic::x86_mmx_psll_d;
7857 break;
7858 case Intrinsic::x86_mmx_pslli_q:
7859 NewIntNo = Intrinsic::x86_mmx_psll_q;
7860 break;
7861 case Intrinsic::x86_mmx_psrli_w:
7862 NewIntNo = Intrinsic::x86_mmx_psrl_w;
7863 break;
7864 case Intrinsic::x86_mmx_psrli_d:
7865 NewIntNo = Intrinsic::x86_mmx_psrl_d;
7866 break;
7867 case Intrinsic::x86_mmx_psrli_q:
7868 NewIntNo = Intrinsic::x86_mmx_psrl_q;
7869 break;
7870 case Intrinsic::x86_mmx_psrai_w:
7871 NewIntNo = Intrinsic::x86_mmx_psra_w;
7872 break;
7873 case Intrinsic::x86_mmx_psrai_d:
7874 NewIntNo = Intrinsic::x86_mmx_psra_d;
7875 break;
7876 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
7878 break;
7882 // The vector shift intrinsics with scalars uses 32b shift amounts but
7883 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7884 // to be zero.
7885 SDValue ShOps[4];
7886 ShOps[0] = ShAmt;
7887 ShOps[1] = DAG.getConstant(0, MVT::i32);
7888 if (ShAmtVT == MVT::v4i32) {
7889 ShOps[2] = DAG.getUNDEF(MVT::i32);
7890 ShOps[3] = DAG.getUNDEF(MVT::i32);
7891 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7892 } else {
7893 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7894 // FIXME this must be lowered to get rid of the invalid type.
7897 EVT VT = Op.getValueType();
7898 ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
7899 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7900 DAG.getConstant(NewIntNo, MVT::i32),
7901 Op.getOperand(1), ShAmt);
7906 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7907 SelectionDAG &DAG) const {
7908 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7909 MFI->setReturnAddressIsTaken(true);
7911 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7912 DebugLoc dl = Op.getDebugLoc();
7914 if (Depth > 0) {
7915 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7916 SDValue Offset =
7917 DAG.getConstant(TD->getPointerSize(),
7918 Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7919 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7920 DAG.getNode(ISD::ADD, dl, getPointerTy(),
7921 FrameAddr, Offset),
7922 MachinePointerInfo(), false, false, 0);
7925 // Just load the return address.
7926 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7927 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7928 RetAddrFI, MachinePointerInfo(), false, false, 0);
7931 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7932 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7933 MFI->setFrameAddressIsTaken(true);
7935 EVT VT = Op.getValueType();
7936 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
7937 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7938 unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7939 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7940 while (Depth--)
7941 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
7942 MachinePointerInfo(),
7943 false, false, 0);
7944 return FrameAddr;
7947 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7948 SelectionDAG &DAG) const {
7949 return DAG.getIntPtrConstant(2*TD->getPointerSize());
7952 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7953 MachineFunction &MF = DAG.getMachineFunction();
7954 SDValue Chain = Op.getOperand(0);
7955 SDValue Offset = Op.getOperand(1);
7956 SDValue Handler = Op.getOperand(2);
7957 DebugLoc dl = Op.getDebugLoc();
7959 SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7960 Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7961 getPointerTy());
7962 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7964 SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7965 DAG.getIntPtrConstant(TD->getPointerSize()));
7966 StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7967 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
7968 false, false, 0);
7969 Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7970 MF.getRegInfo().addLiveOut(StoreAddrReg);
7972 return DAG.getNode(X86ISD::EH_RETURN, dl,
7973 MVT::Other,
7974 Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7977 SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7978 SelectionDAG &DAG) const {
7979 SDValue Root = Op.getOperand(0);
7980 SDValue Trmp = Op.getOperand(1); // trampoline
7981 SDValue FPtr = Op.getOperand(2); // nested function
7982 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7983 DebugLoc dl = Op.getDebugLoc();
7985 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7987 if (Subtarget->is64Bit()) {
7988 SDValue OutChains[6];
7990 // Large code-model.
7991 const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
7992 const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7994 const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7995 const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7997 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7999 // Load the pointer to the nested function into R11.
8000 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8001 SDValue Addr = Trmp;
8002 OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8003 Addr, MachinePointerInfo(TrmpAddr),
8004 false, false, 0);
8006 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8007 DAG.getConstant(2, MVT::i64));
8008 OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8009 MachinePointerInfo(TrmpAddr, 2),
8010 false, false, 2);
8012 // Load the 'nest' parameter value into R10.
8013 // R10 is specified in X86CallingConv.td
8014 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8015 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8016 DAG.getConstant(10, MVT::i64));
8017 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8018 Addr, MachinePointerInfo(TrmpAddr, 10),
8019 false, false, 0);
8021 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8022 DAG.getConstant(12, MVT::i64));
8023 OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8024 MachinePointerInfo(TrmpAddr, 12),
8025 false, false, 2);
8027 // Jump to the nested function.
8028 OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8029 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8030 DAG.getConstant(20, MVT::i64));
8031 OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8032 Addr, MachinePointerInfo(TrmpAddr, 20),
8033 false, false, 0);
8035 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8036 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8037 DAG.getConstant(22, MVT::i64));
8038 OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8039 MachinePointerInfo(TrmpAddr, 22),
8040 false, false, 0);
8042 SDValue Ops[] =
8043 { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8044 return DAG.getMergeValues(Ops, 2, dl);
8045 } else {
8046 const Function *Func =
8047 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8048 CallingConv::ID CC = Func->getCallingConv();
8049 unsigned NestReg;
8051 switch (CC) {
8052 default:
8053 llvm_unreachable("Unsupported calling convention");
8054 case CallingConv::C:
8055 case CallingConv::X86_StdCall: {
8056 // Pass 'nest' parameter in ECX.
8057 // Must be kept in sync with X86CallingConv.td
8058 NestReg = X86::ECX;
8060 // Check that ECX wasn't needed by an 'inreg' parameter.
8061 const FunctionType *FTy = Func->getFunctionType();
8062 const AttrListPtr &Attrs = Func->getAttributes();
8064 if (!Attrs.isEmpty() && !Func->isVarArg()) {
8065 unsigned InRegCount = 0;
8066 unsigned Idx = 1;
8068 for (FunctionType::param_iterator I = FTy->param_begin(),
8069 E = FTy->param_end(); I != E; ++I, ++Idx)
8070 if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8071 // FIXME: should only count parameters that are lowered to integers.
8072 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8074 if (InRegCount > 2) {
8075 report_fatal_error("Nest register in use - reduce number of inreg"
8076 " parameters!");
8079 break;
8081 case CallingConv::X86_FastCall:
8082 case CallingConv::X86_ThisCall:
8083 case CallingConv::Fast:
8084 // Pass 'nest' parameter in EAX.
8085 // Must be kept in sync with X86CallingConv.td
8086 NestReg = X86::EAX;
8087 break;
8090 SDValue OutChains[4];
8091 SDValue Addr, Disp;
8093 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8094 DAG.getConstant(10, MVT::i32));
8095 Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8097 // This is storing the opcode for MOV32ri.
8098 const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8099 const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8100 OutChains[0] = DAG.getStore(Root, dl,
8101 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8102 Trmp, MachinePointerInfo(TrmpAddr),
8103 false, false, 0);
8105 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8106 DAG.getConstant(1, MVT::i32));
8107 OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8108 MachinePointerInfo(TrmpAddr, 1),
8109 false, false, 1);
8111 const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8112 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8113 DAG.getConstant(5, MVT::i32));
8114 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8115 MachinePointerInfo(TrmpAddr, 5),
8116 false, false, 1);
8118 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8119 DAG.getConstant(6, MVT::i32));
8120 OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8121 MachinePointerInfo(TrmpAddr, 6),
8122 false, false, 1);
8124 SDValue Ops[] =
8125 { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8126 return DAG.getMergeValues(Ops, 2, dl);
8130 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8131 SelectionDAG &DAG) const {
8133 The rounding mode is in bits 11:10 of FPSR, and has the following
8134 settings:
8135 00 Round to nearest
8136 01 Round to -inf
8137 10 Round to +inf
8138 11 Round to 0
8140 FLT_ROUNDS, on the other hand, expects the following:
8141 -1 Undefined
8142 0 Round to 0
8143 1 Round to nearest
8144 2 Round to +inf
8145 3 Round to -inf
8147 To perform the conversion, we do:
8148 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8151 MachineFunction &MF = DAG.getMachineFunction();
8152 const TargetMachine &TM = MF.getTarget();
8153 const TargetFrameInfo &TFI = *TM.getFrameInfo();
8154 unsigned StackAlignment = TFI.getStackAlignment();
8155 EVT VT = Op.getValueType();
8156 DebugLoc DL = Op.getDebugLoc();
8158 // Save FP Control Word to stack slot
8159 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8160 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8163 MachineMemOperand *MMO =
8164 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8165 MachineMemOperand::MOStore, 2, 2);
8167 SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8168 SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8169 DAG.getVTList(MVT::Other),
8170 Ops, 2, MVT::i16, MMO);
8172 // Load FP Control Word from stack slot
8173 SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8174 MachinePointerInfo(), false, false, 0);
8176 // Transform as necessary
8177 SDValue CWD1 =
8178 DAG.getNode(ISD::SRL, DL, MVT::i16,
8179 DAG.getNode(ISD::AND, DL, MVT::i16,
8180 CWD, DAG.getConstant(0x800, MVT::i16)),
8181 DAG.getConstant(11, MVT::i8));
8182 SDValue CWD2 =
8183 DAG.getNode(ISD::SRL, DL, MVT::i16,
8184 DAG.getNode(ISD::AND, DL, MVT::i16,
8185 CWD, DAG.getConstant(0x400, MVT::i16)),
8186 DAG.getConstant(9, MVT::i8));
8188 SDValue RetVal =
8189 DAG.getNode(ISD::AND, DL, MVT::i16,
8190 DAG.getNode(ISD::ADD, DL, MVT::i16,
8191 DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8192 DAG.getConstant(1, MVT::i16)),
8193 DAG.getConstant(3, MVT::i16));
8196 return DAG.getNode((VT.getSizeInBits() < 16 ?
8197 ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8200 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8201 EVT VT = Op.getValueType();
8202 EVT OpVT = VT;
8203 unsigned NumBits = VT.getSizeInBits();
8204 DebugLoc dl = Op.getDebugLoc();
8206 Op = Op.getOperand(0);
8207 if (VT == MVT::i8) {
8208 // Zero extend to i32 since there is not an i8 bsr.
8209 OpVT = MVT::i32;
8210 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8213 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8214 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8215 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8217 // If src is zero (i.e. bsr sets ZF), returns NumBits.
8218 SDValue Ops[] = {
8220 DAG.getConstant(NumBits+NumBits-1, OpVT),
8221 DAG.getConstant(X86::COND_E, MVT::i8),
8222 Op.getValue(1)
8224 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8226 // Finally xor with NumBits-1.
8227 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8229 if (VT == MVT::i8)
8230 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8231 return Op;
8234 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8235 EVT VT = Op.getValueType();
8236 EVT OpVT = VT;
8237 unsigned NumBits = VT.getSizeInBits();
8238 DebugLoc dl = Op.getDebugLoc();
8240 Op = Op.getOperand(0);
8241 if (VT == MVT::i8) {
8242 OpVT = MVT::i32;
8243 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8246 // Issue a bsf (scan bits forward) which also sets EFLAGS.
8247 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8248 Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8250 // If src is zero (i.e. bsf sets ZF), returns NumBits.
8251 SDValue Ops[] = {
8253 DAG.getConstant(NumBits, OpVT),
8254 DAG.getConstant(X86::COND_E, MVT::i8),
8255 Op.getValue(1)
8257 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8259 if (VT == MVT::i8)
8260 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8261 return Op;
8264 SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8265 EVT VT = Op.getValueType();
8266 assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8267 DebugLoc dl = Op.getDebugLoc();
8269 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8270 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8271 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8272 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8273 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8275 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8276 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8277 // return AloBlo + AloBhi + AhiBlo;
8279 SDValue A = Op.getOperand(0);
8280 SDValue B = Op.getOperand(1);
8282 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8283 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8284 A, DAG.getConstant(32, MVT::i32));
8285 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8286 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8287 B, DAG.getConstant(32, MVT::i32));
8288 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8289 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8290 A, B);
8291 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8292 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8293 A, Bhi);
8294 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8295 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8296 Ahi, B);
8297 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8298 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8299 AloBhi, DAG.getConstant(32, MVT::i32));
8300 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8301 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8302 AhiBlo, DAG.getConstant(32, MVT::i32));
8303 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8304 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8305 return Res;
8308 SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8309 EVT VT = Op.getValueType();
8310 DebugLoc dl = Op.getDebugLoc();
8311 SDValue R = Op.getOperand(0);
8313 LLVMContext *Context = DAG.getContext();
8315 assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8317 if (VT == MVT::v4i32) {
8318 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8319 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8320 Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8322 ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8324 std::vector<Constant*> CV(4, CI);
8325 Constant *C = ConstantVector::get(CV);
8326 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8327 SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8328 MachinePointerInfo::getConstantPool(),
8329 false, false, 16);
8331 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8332 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
8333 Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8334 return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8336 if (VT == MVT::v16i8) {
8337 // a = a << 5;
8338 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8339 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8340 Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8342 ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8343 ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8345 std::vector<Constant*> CVM1(16, CM1);
8346 std::vector<Constant*> CVM2(16, CM2);
8347 Constant *C = ConstantVector::get(CVM1);
8348 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8349 SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8350 MachinePointerInfo::getConstantPool(),
8351 false, false, 16);
8353 // r = pblendv(r, psllw(r & (char16)15, 4), a);
8354 M = DAG.getNode(ISD::AND, dl, VT, R, M);
8355 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8356 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8357 DAG.getConstant(4, MVT::i32));
8358 R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8359 DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8360 R, M, Op);
8361 // a += a
8362 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8364 C = ConstantVector::get(CVM2);
8365 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8366 M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8367 MachinePointerInfo::getConstantPool(),
8368 false, false, 16);
8370 // r = pblendv(r, psllw(r & (char16)63, 2), a);
8371 M = DAG.getNode(ISD::AND, dl, VT, R, M);
8372 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8373 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8374 DAG.getConstant(2, MVT::i32));
8375 R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8376 DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8377 R, M, Op);
8378 // a += a
8379 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8381 // return pblendv(r, r+r, a);
8382 R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8383 DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8384 R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8385 return R;
8387 return SDValue();
8390 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8391 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8392 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8393 // looks for this combo and may remove the "setcc" instruction if the "setcc"
8394 // has only one use.
8395 SDNode *N = Op.getNode();
8396 SDValue LHS = N->getOperand(0);
8397 SDValue RHS = N->getOperand(1);
8398 unsigned BaseOp = 0;
8399 unsigned Cond = 0;
8400 DebugLoc dl = Op.getDebugLoc();
8402 switch (Op.getOpcode()) {
8403 default: llvm_unreachable("Unknown ovf instruction!");
8404 case ISD::SADDO:
8405 // A subtract of one will be selected as a INC. Note that INC doesn't
8406 // set CF, so we can't do this for UADDO.
8407 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8408 if (C->getAPIntValue() == 1) {
8409 BaseOp = X86ISD::INC;
8410 Cond = X86::COND_O;
8411 break;
8413 BaseOp = X86ISD::ADD;
8414 Cond = X86::COND_O;
8415 break;
8416 case ISD::UADDO:
8417 BaseOp = X86ISD::ADD;
8418 Cond = X86::COND_B;
8419 break;
8420 case ISD::SSUBO:
8421 // A subtract of one will be selected as a DEC. Note that DEC doesn't
8422 // set CF, so we can't do this for USUBO.
8423 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8424 if (C->getAPIntValue() == 1) {
8425 BaseOp = X86ISD::DEC;
8426 Cond = X86::COND_O;
8427 break;
8429 BaseOp = X86ISD::SUB;
8430 Cond = X86::COND_O;
8431 break;
8432 case ISD::USUBO:
8433 BaseOp = X86ISD::SUB;
8434 Cond = X86::COND_B;
8435 break;
8436 case ISD::SMULO:
8437 BaseOp = X86ISD::SMUL;
8438 Cond = X86::COND_O;
8439 break;
8440 case ISD::UMULO:
8441 BaseOp = X86ISD::UMUL;
8442 Cond = X86::COND_B;
8443 break;
8446 // Also sets EFLAGS.
8447 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8448 SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
8450 SDValue SetCC =
8451 DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
8452 DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
8454 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8455 return Sum;
8458 SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8459 DebugLoc dl = Op.getDebugLoc();
8461 if (!Subtarget->hasSSE2()) {
8462 SDValue Chain = Op.getOperand(0);
8463 SDValue Zero = DAG.getConstant(0,
8464 Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8465 SDValue Ops[] = {
8466 DAG.getRegister(X86::ESP, MVT::i32), // Base
8467 DAG.getTargetConstant(1, MVT::i8), // Scale
8468 DAG.getRegister(0, MVT::i32), // Index
8469 DAG.getTargetConstant(0, MVT::i32), // Disp
8470 DAG.getRegister(0, MVT::i32), // Segment.
8471 Zero,
8472 Chain
8474 SDNode *Res =
8475 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8476 array_lengthof(Ops));
8477 return SDValue(Res, 0);
8480 unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8481 if (!isDev)
8482 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8484 unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8485 unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8486 unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8487 unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8489 // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8490 if (!Op1 && !Op2 && !Op3 && Op4)
8491 return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8493 // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8494 if (Op1 && !Op2 && !Op3 && !Op4)
8495 return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8497 // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8498 // (MFENCE)>;
8499 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8502 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8503 EVT T = Op.getValueType();
8504 DebugLoc DL = Op.getDebugLoc();
8505 unsigned Reg = 0;
8506 unsigned size = 0;
8507 switch(T.getSimpleVT().SimpleTy) {
8508 default:
8509 assert(false && "Invalid value type!");
8510 case MVT::i8: Reg = X86::AL; size = 1; break;
8511 case MVT::i16: Reg = X86::AX; size = 2; break;
8512 case MVT::i32: Reg = X86::EAX; size = 4; break;
8513 case MVT::i64:
8514 assert(Subtarget->is64Bit() && "Node not type legal!");
8515 Reg = X86::RAX; size = 8;
8516 break;
8518 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
8519 Op.getOperand(2), SDValue());
8520 SDValue Ops[] = { cpIn.getValue(0),
8521 Op.getOperand(1),
8522 Op.getOperand(3),
8523 DAG.getTargetConstant(size, MVT::i8),
8524 cpIn.getValue(1) };
8525 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8526 MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
8527 SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
8528 Ops, 5, T, MMO);
8529 SDValue cpOut =
8530 DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
8531 return cpOut;
8534 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8535 SelectionDAG &DAG) const {
8536 assert(Subtarget->is64Bit() && "Result not type legalized?");
8537 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8538 SDValue TheChain = Op.getOperand(0);
8539 DebugLoc dl = Op.getDebugLoc();
8540 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8541 SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8542 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8543 rax.getValue(2));
8544 SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8545 DAG.getConstant(32, MVT::i8));
8546 SDValue Ops[] = {
8547 DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8548 rdx.getValue(1)
8550 return DAG.getMergeValues(Ops, 2, dl);
8553 SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
8554 SelectionDAG &DAG) const {
8555 EVT SrcVT = Op.getOperand(0).getValueType();
8556 EVT DstVT = Op.getValueType();
8557 assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8558 Subtarget->hasMMX() && !DisableMMX) &&
8559 "Unexpected custom BITCAST");
8560 assert((DstVT == MVT::i64 ||
8561 (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8562 "Unexpected custom BITCAST");
8563 // i64 <=> MMX conversions are Legal.
8564 if (SrcVT==MVT::i64 && DstVT.isVector())
8565 return Op;
8566 if (DstVT==MVT::i64 && SrcVT.isVector())
8567 return Op;
8568 // MMX <=> MMX conversions are Legal.
8569 if (SrcVT.isVector() && DstVT.isVector())
8570 return Op;
8571 // All other conversions need to be expanded.
8572 return SDValue();
8574 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
8575 SDNode *Node = Op.getNode();
8576 DebugLoc dl = Node->getDebugLoc();
8577 EVT T = Node->getValueType(0);
8578 SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
8579 DAG.getConstant(0, T), Node->getOperand(2));
8580 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
8581 cast<AtomicSDNode>(Node)->getMemoryVT(),
8582 Node->getOperand(0),
8583 Node->getOperand(1), negOp,
8584 cast<AtomicSDNode>(Node)->getSrcValue(),
8585 cast<AtomicSDNode>(Node)->getAlignment());
8588 /// LowerOperation - Provide custom lowering hooks for some operations.
8590 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8591 switch (Op.getOpcode()) {
8592 default: llvm_unreachable("Should not custom lower this!");
8593 case ISD::MEMBARRIER: return LowerMEMBARRIER(Op,DAG);
8594 case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
8595 case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
8596 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
8597 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
8598 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
8599 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8600 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
8601 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
8602 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
8603 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
8604 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
8605 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
8606 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
8607 case ISD::SHL_PARTS:
8608 case ISD::SRA_PARTS:
8609 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
8610 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
8611 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
8612 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
8613 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
8614 case ISD::FABS: return LowerFABS(Op, DAG);
8615 case ISD::FNEG: return LowerFNEG(Op, DAG);
8616 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
8617 case ISD::SETCC: return LowerSETCC(Op, DAG);
8618 case ISD::VSETCC: return LowerVSETCC(Op, DAG);
8619 case ISD::SELECT: return LowerSELECT(Op, DAG);
8620 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
8621 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
8622 case ISD::VASTART: return LowerVASTART(Op, DAG);
8623 case ISD::VAARG: return LowerVAARG(Op, DAG);
8624 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
8625 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8626 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
8627 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
8628 case ISD::FRAME_TO_ARGS_OFFSET:
8629 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
8630 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
8631 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
8632 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
8633 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
8634 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
8635 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
8636 case ISD::MUL: return LowerMUL_V2I64(Op, DAG);
8637 case ISD::SHL: return LowerSHL(Op, DAG);
8638 case ISD::SADDO:
8639 case ISD::UADDO:
8640 case ISD::SSUBO:
8641 case ISD::USUBO:
8642 case ISD::SMULO:
8643 case ISD::UMULO: return LowerXALUO(Op, DAG);
8644 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
8645 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
8649 void X86TargetLowering::
8650 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
8651 SelectionDAG &DAG, unsigned NewOp) const {
8652 EVT T = Node->getValueType(0);
8653 DebugLoc dl = Node->getDebugLoc();
8654 assert (T == MVT::i64 && "Only know how to expand i64 atomics");
8656 SDValue Chain = Node->getOperand(0);
8657 SDValue In1 = Node->getOperand(1);
8658 SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8659 Node->getOperand(2), DAG.getIntPtrConstant(0));
8660 SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8661 Node->getOperand(2), DAG.getIntPtrConstant(1));
8662 SDValue Ops[] = { Chain, In1, In2L, In2H };
8663 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8664 SDValue Result =
8665 DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
8666 cast<MemSDNode>(Node)->getMemOperand());
8667 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
8668 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8669 Results.push_back(Result.getValue(2));
8672 /// ReplaceNodeResults - Replace a node with an illegal result type
8673 /// with a new node built out of custom code.
8674 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8675 SmallVectorImpl<SDValue>&Results,
8676 SelectionDAG &DAG) const {
8677 DebugLoc dl = N->getDebugLoc();
8678 switch (N->getOpcode()) {
8679 default:
8680 assert(false && "Do not know how to custom type legalize this operation!");
8681 return;
8682 case ISD::FP_TO_SINT: {
8683 std::pair<SDValue,SDValue> Vals =
8684 FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8685 SDValue FIST = Vals.first, StackSlot = Vals.second;
8686 if (FIST.getNode() != 0) {
8687 EVT VT = N->getValueType(0);
8688 // Return a load from the stack slot.
8689 Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
8690 MachinePointerInfo(), false, false, 0));
8692 return;
8694 case ISD::READCYCLECOUNTER: {
8695 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8696 SDValue TheChain = N->getOperand(0);
8697 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8698 SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8699 rd.getValue(1));
8700 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8701 eax.getValue(2));
8702 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8703 SDValue Ops[] = { eax, edx };
8704 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8705 Results.push_back(edx.getValue(1));
8706 return;
8708 case ISD::ATOMIC_CMP_SWAP: {
8709 EVT T = N->getValueType(0);
8710 assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8711 SDValue cpInL, cpInH;
8712 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8713 DAG.getConstant(0, MVT::i32));
8714 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8715 DAG.getConstant(1, MVT::i32));
8716 cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8717 cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8718 cpInL.getValue(1));
8719 SDValue swapInL, swapInH;
8720 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8721 DAG.getConstant(0, MVT::i32));
8722 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8723 DAG.getConstant(1, MVT::i32));
8724 swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8725 cpInH.getValue(1));
8726 swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8727 swapInL.getValue(1));
8728 SDValue Ops[] = { swapInH.getValue(0),
8729 N->getOperand(1),
8730 swapInH.getValue(1) };
8731 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8732 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
8733 SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
8734 Ops, 3, T, MMO);
8735 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8736 MVT::i32, Result.getValue(1));
8737 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8738 MVT::i32, cpOutL.getValue(2));
8739 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8740 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8741 Results.push_back(cpOutH.getValue(1));
8742 return;
8744 case ISD::ATOMIC_LOAD_ADD:
8745 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8746 return;
8747 case ISD::ATOMIC_LOAD_AND:
8748 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8749 return;
8750 case ISD::ATOMIC_LOAD_NAND:
8751 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8752 return;
8753 case ISD::ATOMIC_LOAD_OR:
8754 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8755 return;
8756 case ISD::ATOMIC_LOAD_SUB:
8757 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8758 return;
8759 case ISD::ATOMIC_LOAD_XOR:
8760 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8761 return;
8762 case ISD::ATOMIC_SWAP:
8763 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8764 return;
8768 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8769 switch (Opcode) {
8770 default: return NULL;
8771 case X86ISD::BSF: return "X86ISD::BSF";
8772 case X86ISD::BSR: return "X86ISD::BSR";
8773 case X86ISD::SHLD: return "X86ISD::SHLD";
8774 case X86ISD::SHRD: return "X86ISD::SHRD";
8775 case X86ISD::FAND: return "X86ISD::FAND";
8776 case X86ISD::FOR: return "X86ISD::FOR";
8777 case X86ISD::FXOR: return "X86ISD::FXOR";
8778 case X86ISD::FSRL: return "X86ISD::FSRL";
8779 case X86ISD::FILD: return "X86ISD::FILD";
8780 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
8781 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8782 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8783 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8784 case X86ISD::FLD: return "X86ISD::FLD";
8785 case X86ISD::FST: return "X86ISD::FST";
8786 case X86ISD::CALL: return "X86ISD::CALL";
8787 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
8788 case X86ISD::BT: return "X86ISD::BT";
8789 case X86ISD::CMP: return "X86ISD::CMP";
8790 case X86ISD::COMI: return "X86ISD::COMI";
8791 case X86ISD::UCOMI: return "X86ISD::UCOMI";
8792 case X86ISD::SETCC: return "X86ISD::SETCC";
8793 case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
8794 case X86ISD::CMOV: return "X86ISD::CMOV";
8795 case X86ISD::BRCOND: return "X86ISD::BRCOND";
8796 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
8797 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
8798 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
8799 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
8800 case X86ISD::Wrapper: return "X86ISD::Wrapper";
8801 case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
8802 case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
8803 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
8804 case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
8805 case X86ISD::PINSRB: return "X86ISD::PINSRB";
8806 case X86ISD::PINSRW: return "X86ISD::PINSRW";
8807 case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
8808 case X86ISD::FMAX: return "X86ISD::FMAX";
8809 case X86ISD::FMIN: return "X86ISD::FMIN";
8810 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
8811 case X86ISD::FRCP: return "X86ISD::FRCP";
8812 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
8813 case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
8814 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
8815 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
8816 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
8817 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
8818 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
8819 case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
8820 case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
8821 case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
8822 case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
8823 case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
8824 case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
8825 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
8826 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
8827 case X86ISD::VSHL: return "X86ISD::VSHL";
8828 case X86ISD::VSRL: return "X86ISD::VSRL";
8829 case X86ISD::CMPPD: return "X86ISD::CMPPD";
8830 case X86ISD::CMPPS: return "X86ISD::CMPPS";
8831 case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB";
8832 case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW";
8833 case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD";
8834 case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ";
8835 case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB";
8836 case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW";
8837 case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD";
8838 case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ";
8839 case X86ISD::ADD: return "X86ISD::ADD";
8840 case X86ISD::SUB: return "X86ISD::SUB";
8841 case X86ISD::SMUL: return "X86ISD::SMUL";
8842 case X86ISD::UMUL: return "X86ISD::UMUL";
8843 case X86ISD::INC: return "X86ISD::INC";
8844 case X86ISD::DEC: return "X86ISD::DEC";
8845 case X86ISD::OR: return "X86ISD::OR";
8846 case X86ISD::XOR: return "X86ISD::XOR";
8847 case X86ISD::AND: return "X86ISD::AND";
8848 case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
8849 case X86ISD::PTEST: return "X86ISD::PTEST";
8850 case X86ISD::TESTP: return "X86ISD::TESTP";
8851 case X86ISD::PALIGN: return "X86ISD::PALIGN";
8852 case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
8853 case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
8854 case X86ISD::PSHUFHW_LD: return "X86ISD::PSHUFHW_LD";
8855 case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
8856 case X86ISD::PSHUFLW_LD: return "X86ISD::PSHUFLW_LD";
8857 case X86ISD::SHUFPS: return "X86ISD::SHUFPS";
8858 case X86ISD::SHUFPD: return "X86ISD::SHUFPD";
8859 case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
8860 case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
8861 case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
8862 case X86ISD::MOVHLPD: return "X86ISD::MOVHLPD";
8863 case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
8864 case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
8865 case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
8866 case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
8867 case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
8868 case X86ISD::MOVSHDUP_LD: return "X86ISD::MOVSHDUP_LD";
8869 case X86ISD::MOVSLDUP_LD: return "X86ISD::MOVSLDUP_LD";
8870 case X86ISD::MOVSD: return "X86ISD::MOVSD";
8871 case X86ISD::MOVSS: return "X86ISD::MOVSS";
8872 case X86ISD::UNPCKLPS: return "X86ISD::UNPCKLPS";
8873 case X86ISD::UNPCKLPD: return "X86ISD::UNPCKLPD";
8874 case X86ISD::UNPCKHPS: return "X86ISD::UNPCKHPS";
8875 case X86ISD::UNPCKHPD: return "X86ISD::UNPCKHPD";
8876 case X86ISD::PUNPCKLBW: return "X86ISD::PUNPCKLBW";
8877 case X86ISD::PUNPCKLWD: return "X86ISD::PUNPCKLWD";
8878 case X86ISD::PUNPCKLDQ: return "X86ISD::PUNPCKLDQ";
8879 case X86ISD::PUNPCKLQDQ: return "X86ISD::PUNPCKLQDQ";
8880 case X86ISD::PUNPCKHBW: return "X86ISD::PUNPCKHBW";
8881 case X86ISD::PUNPCKHWD: return "X86ISD::PUNPCKHWD";
8882 case X86ISD::PUNPCKHDQ: return "X86ISD::PUNPCKHDQ";
8883 case X86ISD::PUNPCKHQDQ: return "X86ISD::PUNPCKHQDQ";
8884 case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8885 case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
8886 case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
8890 // isLegalAddressingMode - Return true if the addressing mode represented
8891 // by AM is legal for this target, for a load/store of the specified type.
8892 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8893 const Type *Ty) const {
8894 // X86 supports extremely general addressing modes.
8895 CodeModel::Model M = getTargetMachine().getCodeModel();
8896 Reloc::Model R = getTargetMachine().getRelocationModel();
8898 // X86 allows a sign-extended 32-bit immediate field as a displacement.
8899 if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8900 return false;
8902 if (AM.BaseGV) {
8903 unsigned GVFlags =
8904 Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8906 // If a reference to this global requires an extra load, we can't fold it.
8907 if (isGlobalStubReference(GVFlags))
8908 return false;
8910 // If BaseGV requires a register for the PIC base, we cannot also have a
8911 // BaseReg specified.
8912 if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8913 return false;
8915 // If lower 4G is not available, then we must use rip-relative addressing.
8916 if ((M != CodeModel::Small || R != Reloc::Static) &&
8917 Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8918 return false;
8921 switch (AM.Scale) {
8922 case 0:
8923 case 1:
8924 case 2:
8925 case 4:
8926 case 8:
8927 // These scales always work.
8928 break;
8929 case 3:
8930 case 5:
8931 case 9:
8932 // These scales are formed with basereg+scalereg. Only accept if there is
8933 // no basereg yet.
8934 if (AM.HasBaseReg)
8935 return false;
8936 break;
8937 default: // Other stuff never works.
8938 return false;
8941 return true;
8945 bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8946 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8947 return false;
8948 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8949 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8950 if (NumBits1 <= NumBits2)
8951 return false;
8952 return true;
8955 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8956 if (!VT1.isInteger() || !VT2.isInteger())
8957 return false;
8958 unsigned NumBits1 = VT1.getSizeInBits();
8959 unsigned NumBits2 = VT2.getSizeInBits();
8960 if (NumBits1 <= NumBits2)
8961 return false;
8962 return true;
8965 bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8966 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8967 return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8970 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8971 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8972 return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8975 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8976 // i16 instructions are longer (0x66 prefix) and potentially slower.
8977 return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8980 /// isShuffleMaskLegal - Targets can use this to indicate that they only
8981 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8982 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8983 /// are assumed to be legal.
8984 bool
8985 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8986 EVT VT) const {
8987 // Very little shuffling can be done for 64-bit vectors right now.
8988 if (VT.getSizeInBits() == 64)
8989 return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8991 // FIXME: pshufb, blends, shifts.
8992 return (VT.getVectorNumElements() == 2 ||
8993 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8994 isMOVLMask(M, VT) ||
8995 isSHUFPMask(M, VT) ||
8996 isPSHUFDMask(M, VT) ||
8997 isPSHUFHWMask(M, VT) ||
8998 isPSHUFLWMask(M, VT) ||
8999 isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9000 isUNPCKLMask(M, VT) ||
9001 isUNPCKHMask(M, VT) ||
9002 isUNPCKL_v_undef_Mask(M, VT) ||
9003 isUNPCKH_v_undef_Mask(M, VT));
9006 bool
9007 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9008 EVT VT) const {
9009 unsigned NumElts = VT.getVectorNumElements();
9010 // FIXME: This collection of masks seems suspect.
9011 if (NumElts == 2)
9012 return true;
9013 if (NumElts == 4 && VT.getSizeInBits() == 128) {
9014 return (isMOVLMask(Mask, VT) ||
9015 isCommutedMOVLMask(Mask, VT, true) ||
9016 isSHUFPMask(Mask, VT) ||
9017 isCommutedSHUFPMask(Mask, VT));
9019 return false;
9022 //===----------------------------------------------------------------------===//
9023 // X86 Scheduler Hooks
9024 //===----------------------------------------------------------------------===//
9026 // private utility function
9027 MachineBasicBlock *
9028 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9029 MachineBasicBlock *MBB,
9030 unsigned regOpc,
9031 unsigned immOpc,
9032 unsigned LoadOpc,
9033 unsigned CXchgOpc,
9034 unsigned notOpc,
9035 unsigned EAXreg,
9036 TargetRegisterClass *RC,
9037 bool invSrc) const {
9038 // For the atomic bitwise operator, we generate
9039 // thisMBB:
9040 // newMBB:
9041 // ld t1 = [bitinstr.addr]
9042 // op t2 = t1, [bitinstr.val]
9043 // mov EAX = t1
9044 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
9045 // bz newMBB
9046 // fallthrough -->nextMBB
9047 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9048 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9049 MachineFunction::iterator MBBIter = MBB;
9050 ++MBBIter;
9052 /// First build the CFG
9053 MachineFunction *F = MBB->getParent();
9054 MachineBasicBlock *thisMBB = MBB;
9055 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9056 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9057 F->insert(MBBIter, newMBB);
9058 F->insert(MBBIter, nextMBB);
9060 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9061 nextMBB->splice(nextMBB->begin(), thisMBB,
9062 llvm::next(MachineBasicBlock::iterator(bInstr)),
9063 thisMBB->end());
9064 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9066 // Update thisMBB to fall through to newMBB
9067 thisMBB->addSuccessor(newMBB);
9069 // newMBB jumps to itself and fall through to nextMBB
9070 newMBB->addSuccessor(nextMBB);
9071 newMBB->addSuccessor(newMBB);
9073 // Insert instructions into newMBB based on incoming instruction
9074 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9075 "unexpected number of operands");
9076 DebugLoc dl = bInstr->getDebugLoc();
9077 MachineOperand& destOper = bInstr->getOperand(0);
9078 MachineOperand* argOpers[2 + X86::AddrNumOperands];
9079 int numArgs = bInstr->getNumOperands() - 1;
9080 for (int i=0; i < numArgs; ++i)
9081 argOpers[i] = &bInstr->getOperand(i+1);
9083 // x86 address has 4 operands: base, index, scale, and displacement
9084 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9085 int valArgIndx = lastAddrIndx + 1;
9087 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9088 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9089 for (int i=0; i <= lastAddrIndx; ++i)
9090 (*MIB).addOperand(*argOpers[i]);
9092 unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9093 if (invSrc) {
9094 MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9096 else
9097 tt = t1;
9099 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9100 assert((argOpers[valArgIndx]->isReg() ||
9101 argOpers[valArgIndx]->isImm()) &&
9102 "invalid operand");
9103 if (argOpers[valArgIndx]->isReg())
9104 MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9105 else
9106 MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9107 MIB.addReg(tt);
9108 (*MIB).addOperand(*argOpers[valArgIndx]);
9110 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9111 MIB.addReg(t1);
9113 MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9114 for (int i=0; i <= lastAddrIndx; ++i)
9115 (*MIB).addOperand(*argOpers[i]);
9116 MIB.addReg(t2);
9117 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9118 (*MIB).setMemRefs(bInstr->memoperands_begin(),
9119 bInstr->memoperands_end());
9121 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9122 MIB.addReg(EAXreg);
9124 // insert branch
9125 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9127 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
9128 return nextMBB;
9131 // private utility function: 64 bit atomics on 32 bit host.
9132 MachineBasicBlock *
9133 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9134 MachineBasicBlock *MBB,
9135 unsigned regOpcL,
9136 unsigned regOpcH,
9137 unsigned immOpcL,
9138 unsigned immOpcH,
9139 bool invSrc) const {
9140 // For the atomic bitwise operator, we generate
9141 // thisMBB (instructions are in pairs, except cmpxchg8b)
9142 // ld t1,t2 = [bitinstr.addr]
9143 // newMBB:
9144 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9145 // op t5, t6 <- out1, out2, [bitinstr.val]
9146 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
9147 // mov ECX, EBX <- t5, t6
9148 // mov EAX, EDX <- t1, t2
9149 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
9150 // mov t3, t4 <- EAX, EDX
9151 // bz newMBB
9152 // result in out1, out2
9153 // fallthrough -->nextMBB
9155 const TargetRegisterClass *RC = X86::GR32RegisterClass;
9156 const unsigned LoadOpc = X86::MOV32rm;
9157 const unsigned NotOpc = X86::NOT32r;
9158 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9159 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9160 MachineFunction::iterator MBBIter = MBB;
9161 ++MBBIter;
9163 /// First build the CFG
9164 MachineFunction *F = MBB->getParent();
9165 MachineBasicBlock *thisMBB = MBB;
9166 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9167 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9168 F->insert(MBBIter, newMBB);
9169 F->insert(MBBIter, nextMBB);
9171 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9172 nextMBB->splice(nextMBB->begin(), thisMBB,
9173 llvm::next(MachineBasicBlock::iterator(bInstr)),
9174 thisMBB->end());
9175 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9177 // Update thisMBB to fall through to newMBB
9178 thisMBB->addSuccessor(newMBB);
9180 // newMBB jumps to itself and fall through to nextMBB
9181 newMBB->addSuccessor(nextMBB);
9182 newMBB->addSuccessor(newMBB);
9184 DebugLoc dl = bInstr->getDebugLoc();
9185 // Insert instructions into newMBB based on incoming instruction
9186 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9187 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9188 "unexpected number of operands");
9189 MachineOperand& dest1Oper = bInstr->getOperand(0);
9190 MachineOperand& dest2Oper = bInstr->getOperand(1);
9191 MachineOperand* argOpers[2 + X86::AddrNumOperands];
9192 for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9193 argOpers[i] = &bInstr->getOperand(i+2);
9195 // We use some of the operands multiple times, so conservatively just
9196 // clear any kill flags that might be present.
9197 if (argOpers[i]->isReg() && argOpers[i]->isUse())
9198 argOpers[i]->setIsKill(false);
9201 // x86 address has 5 operands: base, index, scale, displacement, and segment.
9202 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9204 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9205 MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9206 for (int i=0; i <= lastAddrIndx; ++i)
9207 (*MIB).addOperand(*argOpers[i]);
9208 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9209 MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9210 // add 4 to displacement.
9211 for (int i=0; i <= lastAddrIndx-2; ++i)
9212 (*MIB).addOperand(*argOpers[i]);
9213 MachineOperand newOp3 = *(argOpers[3]);
9214 if (newOp3.isImm())
9215 newOp3.setImm(newOp3.getImm()+4);
9216 else
9217 newOp3.setOffset(newOp3.getOffset()+4);
9218 (*MIB).addOperand(newOp3);
9219 (*MIB).addOperand(*argOpers[lastAddrIndx]);
9221 // t3/4 are defined later, at the bottom of the loop
9222 unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9223 unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9224 BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9225 .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9226 BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9227 .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9229 // The subsequent operations should be using the destination registers of
9230 //the PHI instructions.
9231 if (invSrc) {
9232 t1 = F->getRegInfo().createVirtualRegister(RC);
9233 t2 = F->getRegInfo().createVirtualRegister(RC);
9234 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9235 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9236 } else {
9237 t1 = dest1Oper.getReg();
9238 t2 = dest2Oper.getReg();
9241 int valArgIndx = lastAddrIndx + 1;
9242 assert((argOpers[valArgIndx]->isReg() ||
9243 argOpers[valArgIndx]->isImm()) &&
9244 "invalid operand");
9245 unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9246 unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9247 if (argOpers[valArgIndx]->isReg())
9248 MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9249 else
9250 MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9251 if (regOpcL != X86::MOV32rr)
9252 MIB.addReg(t1);
9253 (*MIB).addOperand(*argOpers[valArgIndx]);
9254 assert(argOpers[valArgIndx + 1]->isReg() ==
9255 argOpers[valArgIndx]->isReg());
9256 assert(argOpers[valArgIndx + 1]->isImm() ==
9257 argOpers[valArgIndx]->isImm());
9258 if (argOpers[valArgIndx + 1]->isReg())
9259 MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9260 else
9261 MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9262 if (regOpcH != X86::MOV32rr)
9263 MIB.addReg(t2);
9264 (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9266 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9267 MIB.addReg(t1);
9268 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9269 MIB.addReg(t2);
9271 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9272 MIB.addReg(t5);
9273 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9274 MIB.addReg(t6);
9276 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9277 for (int i=0; i <= lastAddrIndx; ++i)
9278 (*MIB).addOperand(*argOpers[i]);
9280 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9281 (*MIB).setMemRefs(bInstr->memoperands_begin(),
9282 bInstr->memoperands_end());
9284 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9285 MIB.addReg(X86::EAX);
9286 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9287 MIB.addReg(X86::EDX);
9289 // insert branch
9290 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9292 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
9293 return nextMBB;
9296 // private utility function
9297 MachineBasicBlock *
9298 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9299 MachineBasicBlock *MBB,
9300 unsigned cmovOpc) const {
9301 // For the atomic min/max operator, we generate
9302 // thisMBB:
9303 // newMBB:
9304 // ld t1 = [min/max.addr]
9305 // mov t2 = [min/max.val]
9306 // cmp t1, t2
9307 // cmov[cond] t2 = t1
9308 // mov EAX = t1
9309 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
9310 // bz newMBB
9311 // fallthrough -->nextMBB
9313 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9314 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9315 MachineFunction::iterator MBBIter = MBB;
9316 ++MBBIter;
9318 /// First build the CFG
9319 MachineFunction *F = MBB->getParent();
9320 MachineBasicBlock *thisMBB = MBB;
9321 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9322 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9323 F->insert(MBBIter, newMBB);
9324 F->insert(MBBIter, nextMBB);
9326 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9327 nextMBB->splice(nextMBB->begin(), thisMBB,
9328 llvm::next(MachineBasicBlock::iterator(mInstr)),
9329 thisMBB->end());
9330 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9332 // Update thisMBB to fall through to newMBB
9333 thisMBB->addSuccessor(newMBB);
9335 // newMBB jumps to newMBB and fall through to nextMBB
9336 newMBB->addSuccessor(nextMBB);
9337 newMBB->addSuccessor(newMBB);
9339 DebugLoc dl = mInstr->getDebugLoc();
9340 // Insert instructions into newMBB based on incoming instruction
9341 assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9342 "unexpected number of operands");
9343 MachineOperand& destOper = mInstr->getOperand(0);
9344 MachineOperand* argOpers[2 + X86::AddrNumOperands];
9345 int numArgs = mInstr->getNumOperands() - 1;
9346 for (int i=0; i < numArgs; ++i)
9347 argOpers[i] = &mInstr->getOperand(i+1);
9349 // x86 address has 4 operands: base, index, scale, and displacement
9350 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9351 int valArgIndx = lastAddrIndx + 1;
9353 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9354 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9355 for (int i=0; i <= lastAddrIndx; ++i)
9356 (*MIB).addOperand(*argOpers[i]);
9358 // We only support register and immediate values
9359 assert((argOpers[valArgIndx]->isReg() ||
9360 argOpers[valArgIndx]->isImm()) &&
9361 "invalid operand");
9363 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9364 if (argOpers[valArgIndx]->isReg())
9365 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9366 else
9367 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9368 (*MIB).addOperand(*argOpers[valArgIndx]);
9370 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9371 MIB.addReg(t1);
9373 MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9374 MIB.addReg(t1);
9375 MIB.addReg(t2);
9377 // Generate movc
9378 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9379 MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9380 MIB.addReg(t2);
9381 MIB.addReg(t1);
9383 // Cmp and exchange if none has modified the memory location
9384 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9385 for (int i=0; i <= lastAddrIndx; ++i)
9386 (*MIB).addOperand(*argOpers[i]);
9387 MIB.addReg(t3);
9388 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9389 (*MIB).setMemRefs(mInstr->memoperands_begin(),
9390 mInstr->memoperands_end());
9392 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9393 MIB.addReg(X86::EAX);
9395 // insert branch
9396 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9398 mInstr->eraseFromParent(); // The pseudo instruction is gone now.
9399 return nextMBB;
9402 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9403 // or XMM0_V32I8 in AVX all of this code can be replaced with that
9404 // in the .td file.
9405 MachineBasicBlock *
9406 X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9407 unsigned numArgs, bool memArg) const {
9409 assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9410 "Target must have SSE4.2 or AVX features enabled");
9412 DebugLoc dl = MI->getDebugLoc();
9413 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9415 unsigned Opc;
9417 if (!Subtarget->hasAVX()) {
9418 if (memArg)
9419 Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9420 else
9421 Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9422 } else {
9423 if (memArg)
9424 Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9425 else
9426 Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9429 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
9431 for (unsigned i = 0; i < numArgs; ++i) {
9432 MachineOperand &Op = MI->getOperand(i+1);
9434 if (!(Op.isReg() && Op.isImplicit()))
9435 MIB.addOperand(Op);
9438 BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9439 .addReg(X86::XMM0);
9441 MI->eraseFromParent();
9443 return BB;
9446 MachineBasicBlock *
9447 X86TargetLowering::EmitVAARG64WithCustomInserter(
9448 MachineInstr *MI,
9449 MachineBasicBlock *MBB) const {
9450 // Emit va_arg instruction on X86-64.
9452 // Operands to this pseudo-instruction:
9453 // 0 ) Output : destination address (reg)
9454 // 1-5) Input : va_list address (addr, i64mem)
9455 // 6 ) ArgSize : Size (in bytes) of vararg type
9456 // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
9457 // 8 ) Align : Alignment of type
9458 // 9 ) EFLAGS (implicit-def)
9460 assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
9461 assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
9463 unsigned DestReg = MI->getOperand(0).getReg();
9464 MachineOperand &Base = MI->getOperand(1);
9465 MachineOperand &Scale = MI->getOperand(2);
9466 MachineOperand &Index = MI->getOperand(3);
9467 MachineOperand &Disp = MI->getOperand(4);
9468 MachineOperand &Segment = MI->getOperand(5);
9469 unsigned ArgSize = MI->getOperand(6).getImm();
9470 unsigned ArgMode = MI->getOperand(7).getImm();
9471 unsigned Align = MI->getOperand(8).getImm();
9473 // Memory Reference
9474 assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
9475 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
9476 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
9478 // Machine Information
9479 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9480 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9481 const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
9482 const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
9483 DebugLoc DL = MI->getDebugLoc();
9485 // struct va_list {
9486 // i32 gp_offset
9487 // i32 fp_offset
9488 // i64 overflow_area (address)
9489 // i64 reg_save_area (address)
9490 // }
9491 // sizeof(va_list) = 24
9492 // alignment(va_list) = 8
9494 unsigned TotalNumIntRegs = 6;
9495 unsigned TotalNumXMMRegs = 8;
9496 bool UseGPOffset = (ArgMode == 1);
9497 bool UseFPOffset = (ArgMode == 2);
9498 unsigned MaxOffset = TotalNumIntRegs * 8 +
9499 (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
9501 /* Align ArgSize to a multiple of 8 */
9502 unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
9503 bool NeedsAlign = (Align > 8);
9505 MachineBasicBlock *thisMBB = MBB;
9506 MachineBasicBlock *overflowMBB;
9507 MachineBasicBlock *offsetMBB;
9508 MachineBasicBlock *endMBB;
9510 unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
9511 unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
9512 unsigned OffsetReg = 0;
9514 if (!UseGPOffset && !UseFPOffset) {
9515 // If we only pull from the overflow region, we don't create a branch.
9516 // We don't need to alter control flow.
9517 OffsetDestReg = 0; // unused
9518 OverflowDestReg = DestReg;
9520 offsetMBB = NULL;
9521 overflowMBB = thisMBB;
9522 endMBB = thisMBB;
9523 } else {
9524 // First emit code to check if gp_offset (or fp_offset) is below the bound.
9525 // If so, pull the argument from reg_save_area. (branch to offsetMBB)
9526 // If not, pull from overflow_area. (branch to overflowMBB)
9528 // thisMBB
9529 // | .
9530 // | .
9531 // offsetMBB overflowMBB
9532 // | .
9533 // | .
9534 // endMBB
9536 // Registers for the PHI in endMBB
9537 OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
9538 OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
9540 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9541 MachineFunction *MF = MBB->getParent();
9542 overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9543 offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9544 endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9546 MachineFunction::iterator MBBIter = MBB;
9547 ++MBBIter;
9549 // Insert the new basic blocks
9550 MF->insert(MBBIter, offsetMBB);
9551 MF->insert(MBBIter, overflowMBB);
9552 MF->insert(MBBIter, endMBB);
9554 // Transfer the remainder of MBB and its successor edges to endMBB.
9555 endMBB->splice(endMBB->begin(), thisMBB,
9556 llvm::next(MachineBasicBlock::iterator(MI)),
9557 thisMBB->end());
9558 endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9560 // Make offsetMBB and overflowMBB successors of thisMBB
9561 thisMBB->addSuccessor(offsetMBB);
9562 thisMBB->addSuccessor(overflowMBB);
9564 // endMBB is a successor of both offsetMBB and overflowMBB
9565 offsetMBB->addSuccessor(endMBB);
9566 overflowMBB->addSuccessor(endMBB);
9568 // Load the offset value into a register
9569 OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9570 BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
9571 .addOperand(Base)
9572 .addOperand(Scale)
9573 .addOperand(Index)
9574 .addDisp(Disp, UseFPOffset ? 4 : 0)
9575 .addOperand(Segment)
9576 .setMemRefs(MMOBegin, MMOEnd);
9578 // Check if there is enough room left to pull this argument.
9579 BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
9580 .addReg(OffsetReg)
9581 .addImm(MaxOffset + 8 - ArgSizeA8);
9583 // Branch to "overflowMBB" if offset >= max
9584 // Fall through to "offsetMBB" otherwise
9585 BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
9586 .addMBB(overflowMBB);
9589 // In offsetMBB, emit code to use the reg_save_area.
9590 if (offsetMBB) {
9591 assert(OffsetReg != 0);
9593 // Read the reg_save_area address.
9594 unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
9595 BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
9596 .addOperand(Base)
9597 .addOperand(Scale)
9598 .addOperand(Index)
9599 .addDisp(Disp, 16)
9600 .addOperand(Segment)
9601 .setMemRefs(MMOBegin, MMOEnd);
9603 // Zero-extend the offset
9604 unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
9605 BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
9606 .addImm(0)
9607 .addReg(OffsetReg)
9608 .addImm(X86::sub_32bit);
9610 // Add the offset to the reg_save_area to get the final address.
9611 BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
9612 .addReg(OffsetReg64)
9613 .addReg(RegSaveReg);
9615 // Compute the offset for the next argument
9616 unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9617 BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
9618 .addReg(OffsetReg)
9619 .addImm(UseFPOffset ? 16 : 8);
9621 // Store it back into the va_list.
9622 BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
9623 .addOperand(Base)
9624 .addOperand(Scale)
9625 .addOperand(Index)
9626 .addDisp(Disp, UseFPOffset ? 4 : 0)
9627 .addOperand(Segment)
9628 .addReg(NextOffsetReg)
9629 .setMemRefs(MMOBegin, MMOEnd);
9631 // Jump to endMBB
9632 BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
9633 .addMBB(endMBB);
9637 // Emit code to use overflow area
9640 // Load the overflow_area address into a register.
9641 unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
9642 BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
9643 .addOperand(Base)
9644 .addOperand(Scale)
9645 .addOperand(Index)
9646 .addDisp(Disp, 8)
9647 .addOperand(Segment)
9648 .setMemRefs(MMOBegin, MMOEnd);
9650 // If we need to align it, do so. Otherwise, just copy the address
9651 // to OverflowDestReg.
9652 if (NeedsAlign) {
9653 // Align the overflow address
9654 assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
9655 unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
9657 // aligned_addr = (addr + (align-1)) & ~(align-1)
9658 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
9659 .addReg(OverflowAddrReg)
9660 .addImm(Align-1);
9662 BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
9663 .addReg(TmpReg)
9664 .addImm(~(uint64_t)(Align-1));
9665 } else {
9666 BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
9667 .addReg(OverflowAddrReg);
9670 // Compute the next overflow address after this argument.
9671 // (the overflow address should be kept 8-byte aligned)
9672 unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
9673 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
9674 .addReg(OverflowDestReg)
9675 .addImm(ArgSizeA8);
9677 // Store the new overflow address.
9678 BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
9679 .addOperand(Base)
9680 .addOperand(Scale)
9681 .addOperand(Index)
9682 .addDisp(Disp, 8)
9683 .addOperand(Segment)
9684 .addReg(NextAddrReg)
9685 .setMemRefs(MMOBegin, MMOEnd);
9687 // If we branched, emit the PHI to the front of endMBB.
9688 if (offsetMBB) {
9689 BuildMI(*endMBB, endMBB->begin(), DL,
9690 TII->get(X86::PHI), DestReg)
9691 .addReg(OffsetDestReg).addMBB(offsetMBB)
9692 .addReg(OverflowDestReg).addMBB(overflowMBB);
9695 // Erase the pseudo instruction
9696 MI->eraseFromParent();
9698 return endMBB;
9701 MachineBasicBlock *
9702 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
9703 MachineInstr *MI,
9704 MachineBasicBlock *MBB) const {
9705 // Emit code to save XMM registers to the stack. The ABI says that the
9706 // number of registers to save is given in %al, so it's theoretically
9707 // possible to do an indirect jump trick to avoid saving all of them,
9708 // however this code takes a simpler approach and just executes all
9709 // of the stores if %al is non-zero. It's less code, and it's probably
9710 // easier on the hardware branch predictor, and stores aren't all that
9711 // expensive anyway.
9713 // Create the new basic blocks. One block contains all the XMM stores,
9714 // and one block is the final destination regardless of whether any
9715 // stores were performed.
9716 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9717 MachineFunction *F = MBB->getParent();
9718 MachineFunction::iterator MBBIter = MBB;
9719 ++MBBIter;
9720 MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
9721 MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
9722 F->insert(MBBIter, XMMSaveMBB);
9723 F->insert(MBBIter, EndMBB);
9725 // Transfer the remainder of MBB and its successor edges to EndMBB.
9726 EndMBB->splice(EndMBB->begin(), MBB,
9727 llvm::next(MachineBasicBlock::iterator(MI)),
9728 MBB->end());
9729 EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
9731 // The original block will now fall through to the XMM save block.
9732 MBB->addSuccessor(XMMSaveMBB);
9733 // The XMMSaveMBB will fall through to the end block.
9734 XMMSaveMBB->addSuccessor(EndMBB);
9736 // Now add the instructions.
9737 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9738 DebugLoc DL = MI->getDebugLoc();
9740 unsigned CountReg = MI->getOperand(0).getReg();
9741 int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
9742 int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
9744 if (!Subtarget->isTargetWin64()) {
9745 // If %al is 0, branch around the XMM save block.
9746 BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
9747 BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
9748 MBB->addSuccessor(EndMBB);
9751 // In the XMM save block, save all the XMM argument registers.
9752 for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
9753 int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
9754 MachineMemOperand *MMO =
9755 F->getMachineMemOperand(
9756 MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
9757 MachineMemOperand::MOStore,
9758 /*Size=*/16, /*Align=*/16);
9759 BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
9760 .addFrameIndex(RegSaveFrameIndex)
9761 .addImm(/*Scale=*/1)
9762 .addReg(/*IndexReg=*/0)
9763 .addImm(/*Disp=*/Offset)
9764 .addReg(/*Segment=*/0)
9765 .addReg(MI->getOperand(i).getReg())
9766 .addMemOperand(MMO);
9769 MI->eraseFromParent(); // The pseudo instruction is gone now.
9771 return EndMBB;
9774 MachineBasicBlock *
9775 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
9776 MachineBasicBlock *BB) const {
9777 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9778 DebugLoc DL = MI->getDebugLoc();
9780 // To "insert" a SELECT_CC instruction, we actually have to insert the
9781 // diamond control-flow pattern. The incoming instruction knows the
9782 // destination vreg to set, the condition code register to branch on, the
9783 // true/false values to select between, and a branch opcode to use.
9784 const BasicBlock *LLVM_BB = BB->getBasicBlock();
9785 MachineFunction::iterator It = BB;
9786 ++It;
9788 // thisMBB:
9789 // ...
9790 // TrueVal = ...
9791 // cmpTY ccX, r1, r2
9792 // bCC copy1MBB
9793 // fallthrough --> copy0MBB
9794 MachineBasicBlock *thisMBB = BB;
9795 MachineFunction *F = BB->getParent();
9796 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9797 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9798 F->insert(It, copy0MBB);
9799 F->insert(It, sinkMBB);
9801 // If the EFLAGS register isn't dead in the terminator, then claim that it's
9802 // live into the sink and copy blocks.
9803 const MachineFunction *MF = BB->getParent();
9804 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
9805 BitVector ReservedRegs = TRI->getReservedRegs(*MF);
9807 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
9808 const MachineOperand &MO = MI->getOperand(I);
9809 if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
9810 unsigned Reg = MO.getReg();
9811 if (Reg != X86::EFLAGS) continue;
9812 copy0MBB->addLiveIn(Reg);
9813 sinkMBB->addLiveIn(Reg);
9816 // Transfer the remainder of BB and its successor edges to sinkMBB.
9817 sinkMBB->splice(sinkMBB->begin(), BB,
9818 llvm::next(MachineBasicBlock::iterator(MI)),
9819 BB->end());
9820 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9822 // Add the true and fallthrough blocks as its successors.
9823 BB->addSuccessor(copy0MBB);
9824 BB->addSuccessor(sinkMBB);
9826 // Create the conditional branch instruction.
9827 unsigned Opc =
9828 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
9829 BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
9831 // copy0MBB:
9832 // %FalseValue = ...
9833 // # fallthrough to sinkMBB
9834 copy0MBB->addSuccessor(sinkMBB);
9836 // sinkMBB:
9837 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9838 // ...
9839 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9840 TII->get(X86::PHI), MI->getOperand(0).getReg())
9841 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
9842 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
9844 MI->eraseFromParent(); // The pseudo instruction is gone now.
9845 return sinkMBB;
9848 MachineBasicBlock *
9849 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
9850 MachineBasicBlock *BB) const {
9851 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9852 DebugLoc DL = MI->getDebugLoc();
9854 // The lowering is pretty easy: we're just emitting the call to _alloca. The
9855 // non-trivial part is impdef of ESP.
9856 // FIXME: The code should be tweaked as soon as we'll try to do codegen for
9857 // mingw-w64.
9859 const char *StackProbeSymbol =
9860 Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
9862 BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
9863 .addExternalSymbol(StackProbeSymbol)
9864 .addReg(X86::EAX, RegState::Implicit)
9865 .addReg(X86::ESP, RegState::Implicit)
9866 .addReg(X86::EAX, RegState::Define | RegState::Implicit)
9867 .addReg(X86::ESP, RegState::Define | RegState::Implicit)
9868 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
9870 MI->eraseFromParent(); // The pseudo instruction is gone now.
9871 return BB;
9874 MachineBasicBlock *
9875 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
9876 MachineBasicBlock *BB) const {
9877 // This is pretty easy. We're taking the value that we received from
9878 // our load from the relocation, sticking it in either RDI (x86-64)
9879 // or EAX and doing an indirect call. The return value will then
9880 // be in the normal return register.
9881 const X86InstrInfo *TII
9882 = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
9883 DebugLoc DL = MI->getDebugLoc();
9884 MachineFunction *F = BB->getParent();
9886 assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
9887 assert(MI->getOperand(3).isGlobal() && "This should be a global");
9889 if (Subtarget->is64Bit()) {
9890 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9891 TII->get(X86::MOV64rm), X86::RDI)
9892 .addReg(X86::RIP)
9893 .addImm(0).addReg(0)
9894 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9895 MI->getOperand(3).getTargetFlags())
9896 .addReg(0);
9897 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
9898 addDirectMem(MIB, X86::RDI);
9899 } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
9900 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9901 TII->get(X86::MOV32rm), X86::EAX)
9902 .addReg(0)
9903 .addImm(0).addReg(0)
9904 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9905 MI->getOperand(3).getTargetFlags())
9906 .addReg(0);
9907 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9908 addDirectMem(MIB, X86::EAX);
9909 } else {
9910 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9911 TII->get(X86::MOV32rm), X86::EAX)
9912 .addReg(TII->getGlobalBaseReg(F))
9913 .addImm(0).addReg(0)
9914 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9915 MI->getOperand(3).getTargetFlags())
9916 .addReg(0);
9917 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9918 addDirectMem(MIB, X86::EAX);
9921 MI->eraseFromParent(); // The pseudo instruction is gone now.
9922 return BB;
9925 MachineBasicBlock *
9926 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
9927 MachineBasicBlock *BB) const {
9928 switch (MI->getOpcode()) {
9929 default: assert(false && "Unexpected instr type to insert");
9930 case X86::WIN_ALLOCA:
9931 return EmitLoweredWinAlloca(MI, BB);
9932 case X86::TLSCall_32:
9933 case X86::TLSCall_64:
9934 return EmitLoweredTLSCall(MI, BB);
9935 case X86::CMOV_GR8:
9936 case X86::CMOV_FR32:
9937 case X86::CMOV_FR64:
9938 case X86::CMOV_V4F32:
9939 case X86::CMOV_V2F64:
9940 case X86::CMOV_V2I64:
9941 case X86::CMOV_GR16:
9942 case X86::CMOV_GR32:
9943 case X86::CMOV_RFP32:
9944 case X86::CMOV_RFP64:
9945 case X86::CMOV_RFP80:
9946 return EmitLoweredSelect(MI, BB);
9948 case X86::FP32_TO_INT16_IN_MEM:
9949 case X86::FP32_TO_INT32_IN_MEM:
9950 case X86::FP32_TO_INT64_IN_MEM:
9951 case X86::FP64_TO_INT16_IN_MEM:
9952 case X86::FP64_TO_INT32_IN_MEM:
9953 case X86::FP64_TO_INT64_IN_MEM:
9954 case X86::FP80_TO_INT16_IN_MEM:
9955 case X86::FP80_TO_INT32_IN_MEM:
9956 case X86::FP80_TO_INT64_IN_MEM: {
9957 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9958 DebugLoc DL = MI->getDebugLoc();
9960 // Change the floating point control register to use "round towards zero"
9961 // mode when truncating to an integer value.
9962 MachineFunction *F = BB->getParent();
9963 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
9964 addFrameReference(BuildMI(*BB, MI, DL,
9965 TII->get(X86::FNSTCW16m)), CWFrameIdx);
9967 // Load the old value of the high byte of the control word...
9968 unsigned OldCW =
9969 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
9970 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
9971 CWFrameIdx);
9973 // Set the high part to be round to zero...
9974 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
9975 .addImm(0xC7F);
9977 // Reload the modified control word now...
9978 addFrameReference(BuildMI(*BB, MI, DL,
9979 TII->get(X86::FLDCW16m)), CWFrameIdx);
9981 // Restore the memory image of control word to original value
9982 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
9983 .addReg(OldCW);
9985 // Get the X86 opcode to use.
9986 unsigned Opc;
9987 switch (MI->getOpcode()) {
9988 default: llvm_unreachable("illegal opcode!");
9989 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
9990 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
9991 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
9992 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
9993 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
9994 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
9995 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
9996 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
9997 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10000 X86AddressMode AM;
10001 MachineOperand &Op = MI->getOperand(0);
10002 if (Op.isReg()) {
10003 AM.BaseType = X86AddressMode::RegBase;
10004 AM.Base.Reg = Op.getReg();
10005 } else {
10006 AM.BaseType = X86AddressMode::FrameIndexBase;
10007 AM.Base.FrameIndex = Op.getIndex();
10009 Op = MI->getOperand(1);
10010 if (Op.isImm())
10011 AM.Scale = Op.getImm();
10012 Op = MI->getOperand(2);
10013 if (Op.isImm())
10014 AM.IndexReg = Op.getImm();
10015 Op = MI->getOperand(3);
10016 if (Op.isGlobal()) {
10017 AM.GV = Op.getGlobal();
10018 } else {
10019 AM.Disp = Op.getImm();
10021 addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10022 .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10024 // Reload the original control word now.
10025 addFrameReference(BuildMI(*BB, MI, DL,
10026 TII->get(X86::FLDCW16m)), CWFrameIdx);
10028 MI->eraseFromParent(); // The pseudo instruction is gone now.
10029 return BB;
10031 // String/text processing lowering.
10032 case X86::PCMPISTRM128REG:
10033 case X86::VPCMPISTRM128REG:
10034 return EmitPCMP(MI, BB, 3, false /* in-mem */);
10035 case X86::PCMPISTRM128MEM:
10036 case X86::VPCMPISTRM128MEM:
10037 return EmitPCMP(MI, BB, 3, true /* in-mem */);
10038 case X86::PCMPESTRM128REG:
10039 case X86::VPCMPESTRM128REG:
10040 return EmitPCMP(MI, BB, 5, false /* in mem */);
10041 case X86::PCMPESTRM128MEM:
10042 case X86::VPCMPESTRM128MEM:
10043 return EmitPCMP(MI, BB, 5, true /* in mem */);
10045 // Atomic Lowering.
10046 case X86::ATOMAND32:
10047 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10048 X86::AND32ri, X86::MOV32rm,
10049 X86::LCMPXCHG32,
10050 X86::NOT32r, X86::EAX,
10051 X86::GR32RegisterClass);
10052 case X86::ATOMOR32:
10053 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10054 X86::OR32ri, X86::MOV32rm,
10055 X86::LCMPXCHG32,
10056 X86::NOT32r, X86::EAX,
10057 X86::GR32RegisterClass);
10058 case X86::ATOMXOR32:
10059 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10060 X86::XOR32ri, X86::MOV32rm,
10061 X86::LCMPXCHG32,
10062 X86::NOT32r, X86::EAX,
10063 X86::GR32RegisterClass);
10064 case X86::ATOMNAND32:
10065 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10066 X86::AND32ri, X86::MOV32rm,
10067 X86::LCMPXCHG32,
10068 X86::NOT32r, X86::EAX,
10069 X86::GR32RegisterClass, true);
10070 case X86::ATOMMIN32:
10071 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10072 case X86::ATOMMAX32:
10073 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10074 case X86::ATOMUMIN32:
10075 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10076 case X86::ATOMUMAX32:
10077 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10079 case X86::ATOMAND16:
10080 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10081 X86::AND16ri, X86::MOV16rm,
10082 X86::LCMPXCHG16,
10083 X86::NOT16r, X86::AX,
10084 X86::GR16RegisterClass);
10085 case X86::ATOMOR16:
10086 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10087 X86::OR16ri, X86::MOV16rm,
10088 X86::LCMPXCHG16,
10089 X86::NOT16r, X86::AX,
10090 X86::GR16RegisterClass);
10091 case X86::ATOMXOR16:
10092 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10093 X86::XOR16ri, X86::MOV16rm,
10094 X86::LCMPXCHG16,
10095 X86::NOT16r, X86::AX,
10096 X86::GR16RegisterClass);
10097 case X86::ATOMNAND16:
10098 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10099 X86::AND16ri, X86::MOV16rm,
10100 X86::LCMPXCHG16,
10101 X86::NOT16r, X86::AX,
10102 X86::GR16RegisterClass, true);
10103 case X86::ATOMMIN16:
10104 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10105 case X86::ATOMMAX16:
10106 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10107 case X86::ATOMUMIN16:
10108 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10109 case X86::ATOMUMAX16:
10110 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10112 case X86::ATOMAND8:
10113 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10114 X86::AND8ri, X86::MOV8rm,
10115 X86::LCMPXCHG8,
10116 X86::NOT8r, X86::AL,
10117 X86::GR8RegisterClass);
10118 case X86::ATOMOR8:
10119 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10120 X86::OR8ri, X86::MOV8rm,
10121 X86::LCMPXCHG8,
10122 X86::NOT8r, X86::AL,
10123 X86::GR8RegisterClass);
10124 case X86::ATOMXOR8:
10125 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10126 X86::XOR8ri, X86::MOV8rm,
10127 X86::LCMPXCHG8,
10128 X86::NOT8r, X86::AL,
10129 X86::GR8RegisterClass);
10130 case X86::ATOMNAND8:
10131 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10132 X86::AND8ri, X86::MOV8rm,
10133 X86::LCMPXCHG8,
10134 X86::NOT8r, X86::AL,
10135 X86::GR8RegisterClass, true);
10136 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10137 // This group is for 64-bit host.
10138 case X86::ATOMAND64:
10139 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10140 X86::AND64ri32, X86::MOV64rm,
10141 X86::LCMPXCHG64,
10142 X86::NOT64r, X86::RAX,
10143 X86::GR64RegisterClass);
10144 case X86::ATOMOR64:
10145 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10146 X86::OR64ri32, X86::MOV64rm,
10147 X86::LCMPXCHG64,
10148 X86::NOT64r, X86::RAX,
10149 X86::GR64RegisterClass);
10150 case X86::ATOMXOR64:
10151 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10152 X86::XOR64ri32, X86::MOV64rm,
10153 X86::LCMPXCHG64,
10154 X86::NOT64r, X86::RAX,
10155 X86::GR64RegisterClass);
10156 case X86::ATOMNAND64:
10157 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10158 X86::AND64ri32, X86::MOV64rm,
10159 X86::LCMPXCHG64,
10160 X86::NOT64r, X86::RAX,
10161 X86::GR64RegisterClass, true);
10162 case X86::ATOMMIN64:
10163 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10164 case X86::ATOMMAX64:
10165 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10166 case X86::ATOMUMIN64:
10167 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10168 case X86::ATOMUMAX64:
10169 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10171 // This group does 64-bit operations on a 32-bit host.
10172 case X86::ATOMAND6432:
10173 return EmitAtomicBit6432WithCustomInserter(MI, BB,
10174 X86::AND32rr, X86::AND32rr,
10175 X86::AND32ri, X86::AND32ri,
10176 false);
10177 case X86::ATOMOR6432:
10178 return EmitAtomicBit6432WithCustomInserter(MI, BB,
10179 X86::OR32rr, X86::OR32rr,
10180 X86::OR32ri, X86::OR32ri,
10181 false);
10182 case X86::ATOMXOR6432:
10183 return EmitAtomicBit6432WithCustomInserter(MI, BB,
10184 X86::XOR32rr, X86::XOR32rr,
10185 X86::XOR32ri, X86::XOR32ri,
10186 false);
10187 case X86::ATOMNAND6432:
10188 return EmitAtomicBit6432WithCustomInserter(MI, BB,
10189 X86::AND32rr, X86::AND32rr,
10190 X86::AND32ri, X86::AND32ri,
10191 true);
10192 case X86::ATOMADD6432:
10193 return EmitAtomicBit6432WithCustomInserter(MI, BB,
10194 X86::ADD32rr, X86::ADC32rr,
10195 X86::ADD32ri, X86::ADC32ri,
10196 false);
10197 case X86::ATOMSUB6432:
10198 return EmitAtomicBit6432WithCustomInserter(MI, BB,
10199 X86::SUB32rr, X86::SBB32rr,
10200 X86::SUB32ri, X86::SBB32ri,
10201 false);
10202 case X86::ATOMSWAP6432:
10203 return EmitAtomicBit6432WithCustomInserter(MI, BB,
10204 X86::MOV32rr, X86::MOV32rr,
10205 X86::MOV32ri, X86::MOV32ri,
10206 false);
10207 case X86::VASTART_SAVE_XMM_REGS:
10208 return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10210 case X86::VAARG_64:
10211 return EmitVAARG64WithCustomInserter(MI, BB);
10215 //===----------------------------------------------------------------------===//
10216 // X86 Optimization Hooks
10217 //===----------------------------------------------------------------------===//
10219 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10220 const APInt &Mask,
10221 APInt &KnownZero,
10222 APInt &KnownOne,
10223 const SelectionDAG &DAG,
10224 unsigned Depth) const {
10225 unsigned Opc = Op.getOpcode();
10226 assert((Opc >= ISD::BUILTIN_OP_END ||
10227 Opc == ISD::INTRINSIC_WO_CHAIN ||
10228 Opc == ISD::INTRINSIC_W_CHAIN ||
10229 Opc == ISD::INTRINSIC_VOID) &&
10230 "Should use MaskedValueIsZero if you don't know whether Op"
10231 " is a target node!");
10233 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
10234 switch (Opc) {
10235 default: break;
10236 case X86ISD::ADD:
10237 case X86ISD::SUB:
10238 case X86ISD::SMUL:
10239 case X86ISD::UMUL:
10240 case X86ISD::INC:
10241 case X86ISD::DEC:
10242 case X86ISD::OR:
10243 case X86ISD::XOR:
10244 case X86ISD::AND:
10245 // These nodes' second result is a boolean.
10246 if (Op.getResNo() == 0)
10247 break;
10248 // Fallthrough
10249 case X86ISD::SETCC:
10250 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10251 Mask.getBitWidth() - 1);
10252 break;
10256 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10257 unsigned Depth) const {
10258 // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10259 if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10260 return Op.getValueType().getScalarType().getSizeInBits();
10262 // Fallback case.
10263 return 1;
10266 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10267 /// node is a GlobalAddress + offset.
10268 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10269 const GlobalValue* &GA,
10270 int64_t &Offset) const {
10271 if (N->getOpcode() == X86ISD::Wrapper) {
10272 if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10273 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10274 Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10275 return true;
10278 return TargetLowering::isGAPlusOffset(N, GA, Offset);
10281 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10282 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10283 /// if the load addresses are consecutive, non-overlapping, and in the right
10284 /// order.
10285 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10286 const TargetLowering &TLI) {
10287 DebugLoc dl = N->getDebugLoc();
10288 EVT VT = N->getValueType(0);
10290 if (VT.getSizeInBits() != 128)
10291 return SDValue();
10293 SmallVector<SDValue, 16> Elts;
10294 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10295 Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10297 return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10300 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10301 /// generation and convert it from being a bunch of shuffles and extracts
10302 /// to a simple store and scalar loads to extract the elements.
10303 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10304 const TargetLowering &TLI) {
10305 SDValue InputVector = N->getOperand(0);
10307 // Only operate on vectors of 4 elements, where the alternative shuffling
10308 // gets to be more expensive.
10309 if (InputVector.getValueType() != MVT::v4i32)
10310 return SDValue();
10312 // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
10313 // single use which is a sign-extend or zero-extend, and all elements are
10314 // used.
10315 SmallVector<SDNode *, 4> Uses;
10316 unsigned ExtractedElements = 0;
10317 for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
10318 UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
10319 if (UI.getUse().getResNo() != InputVector.getResNo())
10320 return SDValue();
10322 SDNode *Extract = *UI;
10323 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10324 return SDValue();
10326 if (Extract->getValueType(0) != MVT::i32)
10327 return SDValue();
10328 if (!Extract->hasOneUse())
10329 return SDValue();
10330 if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
10331 Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
10332 return SDValue();
10333 if (!isa<ConstantSDNode>(Extract->getOperand(1)))
10334 return SDValue();
10336 // Record which element was extracted.
10337 ExtractedElements |=
10338 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
10340 Uses.push_back(Extract);
10343 // If not all the elements were used, this may not be worthwhile.
10344 if (ExtractedElements != 15)
10345 return SDValue();
10347 // Ok, we've now decided to do the transformation.
10348 DebugLoc dl = InputVector.getDebugLoc();
10350 // Store the value to a temporary stack slot.
10351 SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
10352 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
10353 MachinePointerInfo(), false, false, 0);
10355 // Replace each use (extract) with a load of the appropriate element.
10356 for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
10357 UE = Uses.end(); UI != UE; ++UI) {
10358 SDNode *Extract = *UI;
10360 // Compute the element's address.
10361 SDValue Idx = Extract->getOperand(1);
10362 unsigned EltSize =
10363 InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
10364 uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
10365 SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
10367 SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
10368 StackPtr, OffsetVal);
10370 // Load the scalar.
10371 SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
10372 ScalarAddr, MachinePointerInfo(),
10373 false, false, 0);
10375 // Replace the exact with the load.
10376 DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
10379 // The replacement was made in place; don't return anything.
10380 return SDValue();
10383 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10384 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
10385 const X86Subtarget *Subtarget) {
10386 DebugLoc DL = N->getDebugLoc();
10387 SDValue Cond = N->getOperand(0);
10388 // Get the LHS/RHS of the select.
10389 SDValue LHS = N->getOperand(1);
10390 SDValue RHS = N->getOperand(2);
10392 // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10393 // instructions match the semantics of the common C idiom x<y?x:y but not
10394 // x<=y?x:y, because of how they handle negative zero (which can be
10395 // ignored in unsafe-math mode).
10396 if (Subtarget->hasSSE2() &&
10397 (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
10398 Cond.getOpcode() == ISD::SETCC) {
10399 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
10401 unsigned Opcode = 0;
10402 // Check for x CC y ? x : y.
10403 if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
10404 DAG.isEqualTo(RHS, Cond.getOperand(1))) {
10405 switch (CC) {
10406 default: break;
10407 case ISD::SETULT:
10408 // Converting this to a min would handle NaNs incorrectly, and swapping
10409 // the operands would cause it to handle comparisons between positive
10410 // and negative zero incorrectly.
10411 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10412 if (!UnsafeFPMath &&
10413 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10414 break;
10415 std::swap(LHS, RHS);
10417 Opcode = X86ISD::FMIN;
10418 break;
10419 case ISD::SETOLE:
10420 // Converting this to a min would handle comparisons between positive
10421 // and negative zero incorrectly.
10422 if (!UnsafeFPMath &&
10423 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
10424 break;
10425 Opcode = X86ISD::FMIN;
10426 break;
10427 case ISD::SETULE:
10428 // Converting this to a min would handle both negative zeros and NaNs
10429 // incorrectly, but we can swap the operands to fix both.
10430 std::swap(LHS, RHS);
10431 case ISD::SETOLT:
10432 case ISD::SETLT:
10433 case ISD::SETLE:
10434 Opcode = X86ISD::FMIN;
10435 break;
10437 case ISD::SETOGE:
10438 // Converting this to a max would handle comparisons between positive
10439 // and negative zero incorrectly.
10440 if (!UnsafeFPMath &&
10441 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
10442 break;
10443 Opcode = X86ISD::FMAX;
10444 break;
10445 case ISD::SETUGT:
10446 // Converting this to a max would handle NaNs incorrectly, and swapping
10447 // the operands would cause it to handle comparisons between positive
10448 // and negative zero incorrectly.
10449 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10450 if (!UnsafeFPMath &&
10451 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10452 break;
10453 std::swap(LHS, RHS);
10455 Opcode = X86ISD::FMAX;
10456 break;
10457 case ISD::SETUGE:
10458 // Converting this to a max would handle both negative zeros and NaNs
10459 // incorrectly, but we can swap the operands to fix both.
10460 std::swap(LHS, RHS);
10461 case ISD::SETOGT:
10462 case ISD::SETGT:
10463 case ISD::SETGE:
10464 Opcode = X86ISD::FMAX;
10465 break;
10467 // Check for x CC y ? y : x -- a min/max with reversed arms.
10468 } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
10469 DAG.isEqualTo(RHS, Cond.getOperand(0))) {
10470 switch (CC) {
10471 default: break;
10472 case ISD::SETOGE:
10473 // Converting this to a min would handle comparisons between positive
10474 // and negative zero incorrectly, and swapping the operands would
10475 // cause it to handle NaNs incorrectly.
10476 if (!UnsafeFPMath &&
10477 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
10478 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10479 break;
10480 std::swap(LHS, RHS);
10482 Opcode = X86ISD::FMIN;
10483 break;
10484 case ISD::SETUGT:
10485 // Converting this to a min would handle NaNs incorrectly.
10486 if (!UnsafeFPMath &&
10487 (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
10488 break;
10489 Opcode = X86ISD::FMIN;
10490 break;
10491 case ISD::SETUGE:
10492 // Converting this to a min would handle both negative zeros and NaNs
10493 // incorrectly, but we can swap the operands to fix both.
10494 std::swap(LHS, RHS);
10495 case ISD::SETOGT:
10496 case ISD::SETGT:
10497 case ISD::SETGE:
10498 Opcode = X86ISD::FMIN;
10499 break;
10501 case ISD::SETULT:
10502 // Converting this to a max would handle NaNs incorrectly.
10503 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10504 break;
10505 Opcode = X86ISD::FMAX;
10506 break;
10507 case ISD::SETOLE:
10508 // Converting this to a max would handle comparisons between positive
10509 // and negative zero incorrectly, and swapping the operands would
10510 // cause it to handle NaNs incorrectly.
10511 if (!UnsafeFPMath &&
10512 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
10513 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10514 break;
10515 std::swap(LHS, RHS);
10517 Opcode = X86ISD::FMAX;
10518 break;
10519 case ISD::SETULE:
10520 // Converting this to a max would handle both negative zeros and NaNs
10521 // incorrectly, but we can swap the operands to fix both.
10522 std::swap(LHS, RHS);
10523 case ISD::SETOLT:
10524 case ISD::SETLT:
10525 case ISD::SETLE:
10526 Opcode = X86ISD::FMAX;
10527 break;
10531 if (Opcode)
10532 return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
10535 // If this is a select between two integer constants, try to do some
10536 // optimizations.
10537 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
10538 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
10539 // Don't do this for crazy integer types.
10540 if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
10541 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
10542 // so that TrueC (the true value) is larger than FalseC.
10543 bool NeedsCondInvert = false;
10545 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
10546 // Efficiently invertible.
10547 (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
10548 (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
10549 isa<ConstantSDNode>(Cond.getOperand(1))))) {
10550 NeedsCondInvert = true;
10551 std::swap(TrueC, FalseC);
10554 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
10555 if (FalseC->getAPIntValue() == 0 &&
10556 TrueC->getAPIntValue().isPowerOf2()) {
10557 if (NeedsCondInvert) // Invert the condition if needed.
10558 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10559 DAG.getConstant(1, Cond.getValueType()));
10561 // Zero extend the condition if needed.
10562 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
10564 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10565 return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
10566 DAG.getConstant(ShAmt, MVT::i8));
10569 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
10570 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10571 if (NeedsCondInvert) // Invert the condition if needed.
10572 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10573 DAG.getConstant(1, Cond.getValueType()));
10575 // Zero extend the condition if needed.
10576 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10577 FalseC->getValueType(0), Cond);
10578 return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10579 SDValue(FalseC, 0));
10582 // Optimize cases that will turn into an LEA instruction. This requires
10583 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10584 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10585 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10586 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10588 bool isFastMultiplier = false;
10589 if (Diff < 10) {
10590 switch ((unsigned char)Diff) {
10591 default: break;
10592 case 1: // result = add base, cond
10593 case 2: // result = lea base( , cond*2)
10594 case 3: // result = lea base(cond, cond*2)
10595 case 4: // result = lea base( , cond*4)
10596 case 5: // result = lea base(cond, cond*4)
10597 case 8: // result = lea base( , cond*8)
10598 case 9: // result = lea base(cond, cond*8)
10599 isFastMultiplier = true;
10600 break;
10604 if (isFastMultiplier) {
10605 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10606 if (NeedsCondInvert) // Invert the condition if needed.
10607 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10608 DAG.getConstant(1, Cond.getValueType()));
10610 // Zero extend the condition if needed.
10611 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10612 Cond);
10613 // Scale the condition by the difference.
10614 if (Diff != 1)
10615 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10616 DAG.getConstant(Diff, Cond.getValueType()));
10618 // Add the base if non-zero.
10619 if (FalseC->getAPIntValue() != 0)
10620 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10621 SDValue(FalseC, 0));
10622 return Cond;
10628 return SDValue();
10631 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
10632 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
10633 TargetLowering::DAGCombinerInfo &DCI) {
10634 DebugLoc DL = N->getDebugLoc();
10636 // If the flag operand isn't dead, don't touch this CMOV.
10637 if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
10638 return SDValue();
10640 // If this is a select between two integer constants, try to do some
10641 // optimizations. Note that the operands are ordered the opposite of SELECT
10642 // operands.
10643 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
10644 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10645 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
10646 // larger than FalseC (the false value).
10647 X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
10649 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
10650 CC = X86::GetOppositeBranchCondition(CC);
10651 std::swap(TrueC, FalseC);
10654 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
10655 // This is efficient for any integer data type (including i8/i16) and
10656 // shift amount.
10657 if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
10658 SDValue Cond = N->getOperand(3);
10659 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10660 DAG.getConstant(CC, MVT::i8), Cond);
10662 // Zero extend the condition if needed.
10663 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
10665 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10666 Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
10667 DAG.getConstant(ShAmt, MVT::i8));
10668 if (N->getNumValues() == 2) // Dead flag value?
10669 return DCI.CombineTo(N, Cond, SDValue());
10670 return Cond;
10673 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
10674 // for any integer data type, including i8/i16.
10675 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10676 SDValue Cond = N->getOperand(3);
10677 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10678 DAG.getConstant(CC, MVT::i8), Cond);
10680 // Zero extend the condition if needed.
10681 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10682 FalseC->getValueType(0), Cond);
10683 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10684 SDValue(FalseC, 0));
10686 if (N->getNumValues() == 2) // Dead flag value?
10687 return DCI.CombineTo(N, Cond, SDValue());
10688 return Cond;
10691 // Optimize cases that will turn into an LEA instruction. This requires
10692 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10693 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10694 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10695 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10697 bool isFastMultiplier = false;
10698 if (Diff < 10) {
10699 switch ((unsigned char)Diff) {
10700 default: break;
10701 case 1: // result = add base, cond
10702 case 2: // result = lea base( , cond*2)
10703 case 3: // result = lea base(cond, cond*2)
10704 case 4: // result = lea base( , cond*4)
10705 case 5: // result = lea base(cond, cond*4)
10706 case 8: // result = lea base( , cond*8)
10707 case 9: // result = lea base(cond, cond*8)
10708 isFastMultiplier = true;
10709 break;
10713 if (isFastMultiplier) {
10714 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10715 SDValue Cond = N->getOperand(3);
10716 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10717 DAG.getConstant(CC, MVT::i8), Cond);
10718 // Zero extend the condition if needed.
10719 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10720 Cond);
10721 // Scale the condition by the difference.
10722 if (Diff != 1)
10723 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10724 DAG.getConstant(Diff, Cond.getValueType()));
10726 // Add the base if non-zero.
10727 if (FalseC->getAPIntValue() != 0)
10728 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10729 SDValue(FalseC, 0));
10730 if (N->getNumValues() == 2) // Dead flag value?
10731 return DCI.CombineTo(N, Cond, SDValue());
10732 return Cond;
10737 return SDValue();
10741 /// PerformMulCombine - Optimize a single multiply with constant into two
10742 /// in order to implement it with two cheaper instructions, e.g.
10743 /// LEA + SHL, LEA + LEA.
10744 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
10745 TargetLowering::DAGCombinerInfo &DCI) {
10746 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10747 return SDValue();
10749 EVT VT = N->getValueType(0);
10750 if (VT != MVT::i64)
10751 return SDValue();
10753 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10754 if (!C)
10755 return SDValue();
10756 uint64_t MulAmt = C->getZExtValue();
10757 if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
10758 return SDValue();
10760 uint64_t MulAmt1 = 0;
10761 uint64_t MulAmt2 = 0;
10762 if ((MulAmt % 9) == 0) {
10763 MulAmt1 = 9;
10764 MulAmt2 = MulAmt / 9;
10765 } else if ((MulAmt % 5) == 0) {
10766 MulAmt1 = 5;
10767 MulAmt2 = MulAmt / 5;
10768 } else if ((MulAmt % 3) == 0) {
10769 MulAmt1 = 3;
10770 MulAmt2 = MulAmt / 3;
10772 if (MulAmt2 &&
10773 (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
10774 DebugLoc DL = N->getDebugLoc();
10776 if (isPowerOf2_64(MulAmt2) &&
10777 !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
10778 // If second multiplifer is pow2, issue it first. We want the multiply by
10779 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
10780 // is an add.
10781 std::swap(MulAmt1, MulAmt2);
10783 SDValue NewMul;
10784 if (isPowerOf2_64(MulAmt1))
10785 NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
10786 DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
10787 else
10788 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
10789 DAG.getConstant(MulAmt1, VT));
10791 if (isPowerOf2_64(MulAmt2))
10792 NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
10793 DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
10794 else
10795 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
10796 DAG.getConstant(MulAmt2, VT));
10798 // Do not add new nodes to DAG combiner worklist.
10799 DCI.CombineTo(N, NewMul, false);
10801 return SDValue();
10804 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
10805 SDValue N0 = N->getOperand(0);
10806 SDValue N1 = N->getOperand(1);
10807 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10808 EVT VT = N0.getValueType();
10810 // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
10811 // since the result of setcc_c is all zero's or all ones.
10812 if (N1C && N0.getOpcode() == ISD::AND &&
10813 N0.getOperand(1).getOpcode() == ISD::Constant) {
10814 SDValue N00 = N0.getOperand(0);
10815 if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
10816 ((N00.getOpcode() == ISD::ANY_EXTEND ||
10817 N00.getOpcode() == ISD::ZERO_EXTEND) &&
10818 N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
10819 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
10820 APInt ShAmt = N1C->getAPIntValue();
10821 Mask = Mask.shl(ShAmt);
10822 if (Mask != 0)
10823 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
10824 N00, DAG.getConstant(Mask, VT));
10828 return SDValue();
10831 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
10832 /// when possible.
10833 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
10834 const X86Subtarget *Subtarget) {
10835 EVT VT = N->getValueType(0);
10836 if (!VT.isVector() && VT.isInteger() &&
10837 N->getOpcode() == ISD::SHL)
10838 return PerformSHLCombine(N, DAG);
10840 // On X86 with SSE2 support, we can transform this to a vector shift if
10841 // all elements are shifted by the same amount. We can't do this in legalize
10842 // because the a constant vector is typically transformed to a constant pool
10843 // so we have no knowledge of the shift amount.
10844 if (!Subtarget->hasSSE2())
10845 return SDValue();
10847 if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
10848 return SDValue();
10850 SDValue ShAmtOp = N->getOperand(1);
10851 EVT EltVT = VT.getVectorElementType();
10852 DebugLoc DL = N->getDebugLoc();
10853 SDValue BaseShAmt = SDValue();
10854 if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
10855 unsigned NumElts = VT.getVectorNumElements();
10856 unsigned i = 0;
10857 for (; i != NumElts; ++i) {
10858 SDValue Arg = ShAmtOp.getOperand(i);
10859 if (Arg.getOpcode() == ISD::UNDEF) continue;
10860 BaseShAmt = Arg;
10861 break;
10863 for (; i != NumElts; ++i) {
10864 SDValue Arg = ShAmtOp.getOperand(i);
10865 if (Arg.getOpcode() == ISD::UNDEF) continue;
10866 if (Arg != BaseShAmt) {
10867 return SDValue();
10870 } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
10871 cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
10872 SDValue InVec = ShAmtOp.getOperand(0);
10873 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
10874 unsigned NumElts = InVec.getValueType().getVectorNumElements();
10875 unsigned i = 0;
10876 for (; i != NumElts; ++i) {
10877 SDValue Arg = InVec.getOperand(i);
10878 if (Arg.getOpcode() == ISD::UNDEF) continue;
10879 BaseShAmt = Arg;
10880 break;
10882 } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
10883 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
10884 unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
10885 if (C->getZExtValue() == SplatIdx)
10886 BaseShAmt = InVec.getOperand(1);
10889 if (BaseShAmt.getNode() == 0)
10890 BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
10891 DAG.getIntPtrConstant(0));
10892 } else
10893 return SDValue();
10895 // The shift amount is an i32.
10896 if (EltVT.bitsGT(MVT::i32))
10897 BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
10898 else if (EltVT.bitsLT(MVT::i32))
10899 BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
10901 // The shift amount is identical so we can do a vector shift.
10902 SDValue ValOp = N->getOperand(0);
10903 switch (N->getOpcode()) {
10904 default:
10905 llvm_unreachable("Unknown shift opcode!");
10906 break;
10907 case ISD::SHL:
10908 if (VT == MVT::v2i64)
10909 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10910 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10911 ValOp, BaseShAmt);
10912 if (VT == MVT::v4i32)
10913 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10914 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10915 ValOp, BaseShAmt);
10916 if (VT == MVT::v8i16)
10917 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10918 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10919 ValOp, BaseShAmt);
10920 break;
10921 case ISD::SRA:
10922 if (VT == MVT::v4i32)
10923 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10924 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10925 ValOp, BaseShAmt);
10926 if (VT == MVT::v8i16)
10927 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10928 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10929 ValOp, BaseShAmt);
10930 break;
10931 case ISD::SRL:
10932 if (VT == MVT::v2i64)
10933 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10934 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10935 ValOp, BaseShAmt);
10936 if (VT == MVT::v4i32)
10937 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10938 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10939 ValOp, BaseShAmt);
10940 if (VT == MVT::v8i16)
10941 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10942 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10943 ValOp, BaseShAmt);
10944 break;
10946 return SDValue();
10949 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
10950 TargetLowering::DAGCombinerInfo &DCI,
10951 const X86Subtarget *Subtarget) {
10952 if (DCI.isBeforeLegalizeOps())
10953 return SDValue();
10955 EVT VT = N->getValueType(0);
10956 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
10957 return SDValue();
10959 // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
10960 SDValue N0 = N->getOperand(0);
10961 SDValue N1 = N->getOperand(1);
10962 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
10963 std::swap(N0, N1);
10964 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
10965 return SDValue();
10966 if (!N0.hasOneUse() || !N1.hasOneUse())
10967 return SDValue();
10969 SDValue ShAmt0 = N0.getOperand(1);
10970 if (ShAmt0.getValueType() != MVT::i8)
10971 return SDValue();
10972 SDValue ShAmt1 = N1.getOperand(1);
10973 if (ShAmt1.getValueType() != MVT::i8)
10974 return SDValue();
10975 if (ShAmt0.getOpcode() == ISD::TRUNCATE)
10976 ShAmt0 = ShAmt0.getOperand(0);
10977 if (ShAmt1.getOpcode() == ISD::TRUNCATE)
10978 ShAmt1 = ShAmt1.getOperand(0);
10980 DebugLoc DL = N->getDebugLoc();
10981 unsigned Opc = X86ISD::SHLD;
10982 SDValue Op0 = N0.getOperand(0);
10983 SDValue Op1 = N1.getOperand(0);
10984 if (ShAmt0.getOpcode() == ISD::SUB) {
10985 Opc = X86ISD::SHRD;
10986 std::swap(Op0, Op1);
10987 std::swap(ShAmt0, ShAmt1);
10990 unsigned Bits = VT.getSizeInBits();
10991 if (ShAmt1.getOpcode() == ISD::SUB) {
10992 SDValue Sum = ShAmt1.getOperand(0);
10993 if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
10994 SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
10995 if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
10996 ShAmt1Op1 = ShAmt1Op1.getOperand(0);
10997 if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
10998 return DAG.getNode(Opc, DL, VT,
10999 Op0, Op1,
11000 DAG.getNode(ISD::TRUNCATE, DL,
11001 MVT::i8, ShAmt0));
11003 } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11004 ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11005 if (ShAmt0C &&
11006 ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11007 return DAG.getNode(Opc, DL, VT,
11008 N0.getOperand(0), N1.getOperand(0),
11009 DAG.getNode(ISD::TRUNCATE, DL,
11010 MVT::i8, ShAmt0));
11013 return SDValue();
11016 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11017 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11018 const X86Subtarget *Subtarget) {
11019 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
11020 // the FP state in cases where an emms may be missing.
11021 // A preferable solution to the general problem is to figure out the right
11022 // places to insert EMMS. This qualifies as a quick hack.
11024 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11025 StoreSDNode *St = cast<StoreSDNode>(N);
11026 EVT VT = St->getValue().getValueType();
11027 if (VT.getSizeInBits() != 64)
11028 return SDValue();
11030 const Function *F = DAG.getMachineFunction().getFunction();
11031 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11032 bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11033 && Subtarget->hasSSE2();
11034 if ((VT.isVector() ||
11035 (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11036 isa<LoadSDNode>(St->getValue()) &&
11037 !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11038 St->getChain().hasOneUse() && !St->isVolatile()) {
11039 SDNode* LdVal = St->getValue().getNode();
11040 LoadSDNode *Ld = 0;
11041 int TokenFactorIndex = -1;
11042 SmallVector<SDValue, 8> Ops;
11043 SDNode* ChainVal = St->getChain().getNode();
11044 // Must be a store of a load. We currently handle two cases: the load
11045 // is a direct child, and it's under an intervening TokenFactor. It is
11046 // possible to dig deeper under nested TokenFactors.
11047 if (ChainVal == LdVal)
11048 Ld = cast<LoadSDNode>(St->getChain());
11049 else if (St->getValue().hasOneUse() &&
11050 ChainVal->getOpcode() == ISD::TokenFactor) {
11051 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11052 if (ChainVal->getOperand(i).getNode() == LdVal) {
11053 TokenFactorIndex = i;
11054 Ld = cast<LoadSDNode>(St->getValue());
11055 } else
11056 Ops.push_back(ChainVal->getOperand(i));
11060 if (!Ld || !ISD::isNormalLoad(Ld))
11061 return SDValue();
11063 // If this is not the MMX case, i.e. we are just turning i64 load/store
11064 // into f64 load/store, avoid the transformation if there are multiple
11065 // uses of the loaded value.
11066 if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11067 return SDValue();
11069 DebugLoc LdDL = Ld->getDebugLoc();
11070 DebugLoc StDL = N->getDebugLoc();
11071 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11072 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11073 // pair instead.
11074 if (Subtarget->is64Bit() || F64IsLegal) {
11075 EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11076 SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11077 Ld->getPointerInfo(), Ld->isVolatile(),
11078 Ld->isNonTemporal(), Ld->getAlignment());
11079 SDValue NewChain = NewLd.getValue(1);
11080 if (TokenFactorIndex != -1) {
11081 Ops.push_back(NewChain);
11082 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11083 Ops.size());
11085 return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11086 St->getPointerInfo(),
11087 St->isVolatile(), St->isNonTemporal(),
11088 St->getAlignment());
11091 // Otherwise, lower to two pairs of 32-bit loads / stores.
11092 SDValue LoAddr = Ld->getBasePtr();
11093 SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11094 DAG.getConstant(4, MVT::i32));
11096 SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11097 Ld->getPointerInfo(),
11098 Ld->isVolatile(), Ld->isNonTemporal(),
11099 Ld->getAlignment());
11100 SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11101 Ld->getPointerInfo().getWithOffset(4),
11102 Ld->isVolatile(), Ld->isNonTemporal(),
11103 MinAlign(Ld->getAlignment(), 4));
11105 SDValue NewChain = LoLd.getValue(1);
11106 if (TokenFactorIndex != -1) {
11107 Ops.push_back(LoLd);
11108 Ops.push_back(HiLd);
11109 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11110 Ops.size());
11113 LoAddr = St->getBasePtr();
11114 HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11115 DAG.getConstant(4, MVT::i32));
11117 SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11118 St->getPointerInfo(),
11119 St->isVolatile(), St->isNonTemporal(),
11120 St->getAlignment());
11121 SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11122 St->getPointerInfo().getWithOffset(4),
11123 St->isVolatile(),
11124 St->isNonTemporal(),
11125 MinAlign(St->getAlignment(), 4));
11126 return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11128 return SDValue();
11131 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11132 /// X86ISD::FXOR nodes.
11133 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11134 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11135 // F[X]OR(0.0, x) -> x
11136 // F[X]OR(x, 0.0) -> x
11137 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11138 if (C->getValueAPF().isPosZero())
11139 return N->getOperand(1);
11140 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11141 if (C->getValueAPF().isPosZero())
11142 return N->getOperand(0);
11143 return SDValue();
11146 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11147 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11148 // FAND(0.0, x) -> 0.0
11149 // FAND(x, 0.0) -> 0.0
11150 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11151 if (C->getValueAPF().isPosZero())
11152 return N->getOperand(0);
11153 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11154 if (C->getValueAPF().isPosZero())
11155 return N->getOperand(1);
11156 return SDValue();
11159 static SDValue PerformBTCombine(SDNode *N,
11160 SelectionDAG &DAG,
11161 TargetLowering::DAGCombinerInfo &DCI) {
11162 // BT ignores high bits in the bit index operand.
11163 SDValue Op1 = N->getOperand(1);
11164 if (Op1.hasOneUse()) {
11165 unsigned BitWidth = Op1.getValueSizeInBits();
11166 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11167 APInt KnownZero, KnownOne;
11168 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11169 !DCI.isBeforeLegalizeOps());
11170 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11171 if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11172 TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11173 DCI.CommitTargetLoweringOpt(TLO);
11175 return SDValue();
11178 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
11179 SDValue Op = N->getOperand(0);
11180 if (Op.getOpcode() == ISD::BITCAST)
11181 Op = Op.getOperand(0);
11182 EVT VT = N->getValueType(0), OpVT = Op.getValueType();
11183 if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
11184 VT.getVectorElementType().getSizeInBits() ==
11185 OpVT.getVectorElementType().getSizeInBits()) {
11186 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
11188 return SDValue();
11191 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
11192 // (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
11193 // (and (i32 x86isd::setcc_carry), 1)
11194 // This eliminates the zext. This transformation is necessary because
11195 // ISD::SETCC is always legalized to i8.
11196 DebugLoc dl = N->getDebugLoc();
11197 SDValue N0 = N->getOperand(0);
11198 EVT VT = N->getValueType(0);
11199 if (N0.getOpcode() == ISD::AND &&
11200 N0.hasOneUse() &&
11201 N0.getOperand(0).hasOneUse()) {
11202 SDValue N00 = N0.getOperand(0);
11203 if (N00.getOpcode() != X86ISD::SETCC_CARRY)
11204 return SDValue();
11205 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11206 if (!C || C->getZExtValue() != 1)
11207 return SDValue();
11208 return DAG.getNode(ISD::AND, dl, VT,
11209 DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
11210 N00.getOperand(0), N00.getOperand(1)),
11211 DAG.getConstant(1, VT));
11214 return SDValue();
11217 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
11218 DAGCombinerInfo &DCI) const {
11219 SelectionDAG &DAG = DCI.DAG;
11220 switch (N->getOpcode()) {
11221 default: break;
11222 case ISD::EXTRACT_VECTOR_ELT:
11223 return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
11224 case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget);
11225 case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
11226 case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
11227 case ISD::SHL:
11228 case ISD::SRA:
11229 case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
11230 case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
11231 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
11232 case X86ISD::FXOR:
11233 case X86ISD::FOR: return PerformFORCombine(N, DAG);
11234 case X86ISD::FAND: return PerformFANDCombine(N, DAG);
11235 case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
11236 case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
11237 case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG);
11238 case X86ISD::SHUFPS: // Handle all target specific shuffles
11239 case X86ISD::SHUFPD:
11240 case X86ISD::PALIGN:
11241 case X86ISD::PUNPCKHBW:
11242 case X86ISD::PUNPCKHWD:
11243 case X86ISD::PUNPCKHDQ:
11244 case X86ISD::PUNPCKHQDQ:
11245 case X86ISD::UNPCKHPS:
11246 case X86ISD::UNPCKHPD:
11247 case X86ISD::PUNPCKLBW:
11248 case X86ISD::PUNPCKLWD:
11249 case X86ISD::PUNPCKLDQ:
11250 case X86ISD::PUNPCKLQDQ:
11251 case X86ISD::UNPCKLPS:
11252 case X86ISD::UNPCKLPD:
11253 case X86ISD::MOVHLPS:
11254 case X86ISD::MOVLHPS:
11255 case X86ISD::PSHUFD:
11256 case X86ISD::PSHUFHW:
11257 case X86ISD::PSHUFLW:
11258 case X86ISD::MOVSS:
11259 case X86ISD::MOVSD:
11260 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
11263 return SDValue();
11266 /// isTypeDesirableForOp - Return true if the target has native support for
11267 /// the specified value type and it is 'desirable' to use the type for the
11268 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
11269 /// instruction encodings are longer and some i16 instructions are slow.
11270 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
11271 if (!isTypeLegal(VT))
11272 return false;
11273 if (VT != MVT::i16)
11274 return true;
11276 switch (Opc) {
11277 default:
11278 return true;
11279 case ISD::LOAD:
11280 case ISD::SIGN_EXTEND:
11281 case ISD::ZERO_EXTEND:
11282 case ISD::ANY_EXTEND:
11283 case ISD::SHL:
11284 case ISD::SRL:
11285 case ISD::SUB:
11286 case ISD::ADD:
11287 case ISD::MUL:
11288 case ISD::AND:
11289 case ISD::OR:
11290 case ISD::XOR:
11291 return false;
11295 /// IsDesirableToPromoteOp - This method query the target whether it is
11296 /// beneficial for dag combiner to promote the specified node. If true, it
11297 /// should return the desired promotion type by reference.
11298 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
11299 EVT VT = Op.getValueType();
11300 if (VT != MVT::i16)
11301 return false;
11303 bool Promote = false;
11304 bool Commute = false;
11305 switch (Op.getOpcode()) {
11306 default: break;
11307 case ISD::LOAD: {
11308 LoadSDNode *LD = cast<LoadSDNode>(Op);
11309 // If the non-extending load has a single use and it's not live out, then it
11310 // might be folded.
11311 if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
11312 Op.hasOneUse()*/) {
11313 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
11314 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
11315 // The only case where we'd want to promote LOAD (rather then it being
11316 // promoted as an operand is when it's only use is liveout.
11317 if (UI->getOpcode() != ISD::CopyToReg)
11318 return false;
11321 Promote = true;
11322 break;
11324 case ISD::SIGN_EXTEND:
11325 case ISD::ZERO_EXTEND:
11326 case ISD::ANY_EXTEND:
11327 Promote = true;
11328 break;
11329 case ISD::SHL:
11330 case ISD::SRL: {
11331 SDValue N0 = Op.getOperand(0);
11332 // Look out for (store (shl (load), x)).
11333 if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
11334 return false;
11335 Promote = true;
11336 break;
11338 case ISD::ADD:
11339 case ISD::MUL:
11340 case ISD::AND:
11341 case ISD::OR:
11342 case ISD::XOR:
11343 Commute = true;
11344 // fallthrough
11345 case ISD::SUB: {
11346 SDValue N0 = Op.getOperand(0);
11347 SDValue N1 = Op.getOperand(1);
11348 if (!Commute && MayFoldLoad(N1))
11349 return false;
11350 // Avoid disabling potential load folding opportunities.
11351 if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
11352 return false;
11353 if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
11354 return false;
11355 Promote = true;
11359 PVT = MVT::i32;
11360 return Promote;
11363 //===----------------------------------------------------------------------===//
11364 // X86 Inline Assembly Support
11365 //===----------------------------------------------------------------------===//
11367 static bool LowerToBSwap(CallInst *CI) {
11368 // FIXME: this should verify that we are targetting a 486 or better. If not,
11369 // we will turn this bswap into something that will be lowered to logical ops
11370 // instead of emitting the bswap asm. For now, we don't support 486 or lower
11371 // so don't worry about this.
11373 // Verify this is a simple bswap.
11374 if (CI->getNumArgOperands() != 1 ||
11375 CI->getType() != CI->getArgOperand(0)->getType() ||
11376 !CI->getType()->isIntegerTy())
11377 return false;
11379 const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11380 if (!Ty || Ty->getBitWidth() % 16 != 0)
11381 return false;
11383 // Okay, we can do this xform, do so now.
11384 const Type *Tys[] = { Ty };
11385 Module *M = CI->getParent()->getParent()->getParent();
11386 Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
11388 Value *Op = CI->getArgOperand(0);
11389 Op = CallInst::Create(Int, Op, CI->getName(), CI);
11391 CI->replaceAllUsesWith(Op);
11392 CI->eraseFromParent();
11393 return true;
11396 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
11397 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
11398 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
11400 std::string AsmStr = IA->getAsmString();
11402 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
11403 SmallVector<StringRef, 4> AsmPieces;
11404 SplitString(AsmStr, AsmPieces, ";\n");
11406 switch (AsmPieces.size()) {
11407 default: return false;
11408 case 1:
11409 AsmStr = AsmPieces[0];
11410 AsmPieces.clear();
11411 SplitString(AsmStr, AsmPieces, " \t"); // Split with whitespace.
11413 // bswap $0
11414 if (AsmPieces.size() == 2 &&
11415 (AsmPieces[0] == "bswap" ||
11416 AsmPieces[0] == "bswapq" ||
11417 AsmPieces[0] == "bswapl") &&
11418 (AsmPieces[1] == "$0" ||
11419 AsmPieces[1] == "${0:q}")) {
11420 // No need to check constraints, nothing other than the equivalent of
11421 // "=r,0" would be valid here.
11422 return LowerToBSwap(CI);
11424 // rorw $$8, ${0:w} --> llvm.bswap.i16
11425 if (CI->getType()->isIntegerTy(16) &&
11426 AsmPieces.size() == 3 &&
11427 (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
11428 AsmPieces[1] == "$$8," &&
11429 AsmPieces[2] == "${0:w}" &&
11430 IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11431 AsmPieces.clear();
11432 const std::string &Constraints = IA->getConstraintString();
11433 SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
11434 std::sort(AsmPieces.begin(), AsmPieces.end());
11435 if (AsmPieces.size() == 4 &&
11436 AsmPieces[0] == "~{cc}" &&
11437 AsmPieces[1] == "~{dirflag}" &&
11438 AsmPieces[2] == "~{flags}" &&
11439 AsmPieces[3] == "~{fpsr}") {
11440 return LowerToBSwap(CI);
11443 break;
11444 case 3:
11445 if (CI->getType()->isIntegerTy(32) &&
11446 IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11447 SmallVector<StringRef, 4> Words;
11448 SplitString(AsmPieces[0], Words, " \t,");
11449 if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
11450 Words[2] == "${0:w}") {
11451 Words.clear();
11452 SplitString(AsmPieces[1], Words, " \t,");
11453 if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
11454 Words[2] == "$0") {
11455 Words.clear();
11456 SplitString(AsmPieces[2], Words, " \t,");
11457 if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
11458 Words[2] == "${0:w}") {
11459 AsmPieces.clear();
11460 const std::string &Constraints = IA->getConstraintString();
11461 SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
11462 std::sort(AsmPieces.begin(), AsmPieces.end());
11463 if (AsmPieces.size() == 4 &&
11464 AsmPieces[0] == "~{cc}" &&
11465 AsmPieces[1] == "~{dirflag}" &&
11466 AsmPieces[2] == "~{flags}" &&
11467 AsmPieces[3] == "~{fpsr}") {
11468 return LowerToBSwap(CI);
11474 if (CI->getType()->isIntegerTy(64) &&
11475 Constraints.size() >= 2 &&
11476 Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
11477 Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
11478 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
11479 SmallVector<StringRef, 4> Words;
11480 SplitString(AsmPieces[0], Words, " \t");
11481 if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
11482 Words.clear();
11483 SplitString(AsmPieces[1], Words, " \t");
11484 if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
11485 Words.clear();
11486 SplitString(AsmPieces[2], Words, " \t,");
11487 if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
11488 Words[2] == "%edx") {
11489 return LowerToBSwap(CI);
11494 break;
11496 return false;
11501 /// getConstraintType - Given a constraint letter, return the type of
11502 /// constraint it is for this target.
11503 X86TargetLowering::ConstraintType
11504 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
11505 if (Constraint.size() == 1) {
11506 switch (Constraint[0]) {
11507 case 'R':
11508 case 'q':
11509 case 'Q':
11510 case 'f':
11511 case 't':
11512 case 'u':
11513 case 'y':
11514 case 'x':
11515 case 'Y':
11516 return C_RegisterClass;
11517 case 'a':
11518 case 'b':
11519 case 'c':
11520 case 'd':
11521 case 'S':
11522 case 'D':
11523 case 'A':
11524 return C_Register;
11525 case 'I':
11526 case 'J':
11527 case 'K':
11528 case 'L':
11529 case 'M':
11530 case 'N':
11531 case 'G':
11532 case 'C':
11533 case 'e':
11534 case 'Z':
11535 return C_Other;
11536 default:
11537 break;
11540 return TargetLowering::getConstraintType(Constraint);
11543 /// Examine constraint type and operand type and determine a weight value.
11544 /// This object must already have been set up with the operand type
11545 /// and the current alternative constraint selected.
11546 TargetLowering::ConstraintWeight
11547 X86TargetLowering::getSingleConstraintMatchWeight(
11548 AsmOperandInfo &info, const char *constraint) const {
11549 ConstraintWeight weight = CW_Invalid;
11550 Value *CallOperandVal = info.CallOperandVal;
11551 // If we don't have a value, we can't do a match,
11552 // but allow it at the lowest weight.
11553 if (CallOperandVal == NULL)
11554 return CW_Default;
11555 const Type *type = CallOperandVal->getType();
11556 // Look at the constraint type.
11557 switch (*constraint) {
11558 default:
11559 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11560 case 'R':
11561 case 'q':
11562 case 'Q':
11563 case 'a':
11564 case 'b':
11565 case 'c':
11566 case 'd':
11567 case 'S':
11568 case 'D':
11569 case 'A':
11570 if (CallOperandVal->getType()->isIntegerTy())
11571 weight = CW_SpecificReg;
11572 break;
11573 case 'f':
11574 case 't':
11575 case 'u':
11576 if (type->isFloatingPointTy())
11577 weight = CW_SpecificReg;
11578 break;
11579 case 'y':
11580 if (type->isX86_MMXTy() && !DisableMMX && Subtarget->hasMMX())
11581 weight = CW_SpecificReg;
11582 break;
11583 case 'x':
11584 case 'Y':
11585 if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1())
11586 weight = CW_Register;
11587 break;
11588 case 'I':
11589 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
11590 if (C->getZExtValue() <= 31)
11591 weight = CW_Constant;
11593 break;
11594 case 'J':
11595 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11596 if (C->getZExtValue() <= 63)
11597 weight = CW_Constant;
11599 break;
11600 case 'K':
11601 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11602 if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
11603 weight = CW_Constant;
11605 break;
11606 case 'L':
11607 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11608 if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
11609 weight = CW_Constant;
11611 break;
11612 case 'M':
11613 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11614 if (C->getZExtValue() <= 3)
11615 weight = CW_Constant;
11617 break;
11618 case 'N':
11619 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11620 if (C->getZExtValue() <= 0xff)
11621 weight = CW_Constant;
11623 break;
11624 case 'G':
11625 case 'C':
11626 if (dyn_cast<ConstantFP>(CallOperandVal)) {
11627 weight = CW_Constant;
11629 break;
11630 case 'e':
11631 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11632 if ((C->getSExtValue() >= -0x80000000LL) &&
11633 (C->getSExtValue() <= 0x7fffffffLL))
11634 weight = CW_Constant;
11636 break;
11637 case 'Z':
11638 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11639 if (C->getZExtValue() <= 0xffffffff)
11640 weight = CW_Constant;
11642 break;
11644 return weight;
11647 /// LowerXConstraint - try to replace an X constraint, which matches anything,
11648 /// with another that has more specific requirements based on the type of the
11649 /// corresponding operand.
11650 const char *X86TargetLowering::
11651 LowerXConstraint(EVT ConstraintVT) const {
11652 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
11653 // 'f' like normal targets.
11654 if (ConstraintVT.isFloatingPoint()) {
11655 if (Subtarget->hasSSE2())
11656 return "Y";
11657 if (Subtarget->hasSSE1())
11658 return "x";
11661 return TargetLowering::LowerXConstraint(ConstraintVT);
11664 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11665 /// vector. If it is invalid, don't add anything to Ops.
11666 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11667 char Constraint,
11668 std::vector<SDValue>&Ops,
11669 SelectionDAG &DAG) const {
11670 SDValue Result(0, 0);
11672 switch (Constraint) {
11673 default: break;
11674 case 'I':
11675 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11676 if (C->getZExtValue() <= 31) {
11677 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11678 break;
11681 return;
11682 case 'J':
11683 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11684 if (C->getZExtValue() <= 63) {
11685 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11686 break;
11689 return;
11690 case 'K':
11691 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11692 if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
11693 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11694 break;
11697 return;
11698 case 'N':
11699 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11700 if (C->getZExtValue() <= 255) {
11701 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11702 break;
11705 return;
11706 case 'e': {
11707 // 32-bit signed value
11708 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11709 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11710 C->getSExtValue())) {
11711 // Widen to 64 bits here to get it sign extended.
11712 Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
11713 break;
11715 // FIXME gcc accepts some relocatable values here too, but only in certain
11716 // memory models; it's complicated.
11718 return;
11720 case 'Z': {
11721 // 32-bit unsigned value
11722 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11723 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11724 C->getZExtValue())) {
11725 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11726 break;
11729 // FIXME gcc accepts some relocatable values here too, but only in certain
11730 // memory models; it's complicated.
11731 return;
11733 case 'i': {
11734 // Literal immediates are always ok.
11735 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
11736 // Widen to 64 bits here to get it sign extended.
11737 Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
11738 break;
11741 // In any sort of PIC mode addresses need to be computed at runtime by
11742 // adding in a register or some sort of table lookup. These can't
11743 // be used as immediates.
11744 if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
11745 return;
11747 // If we are in non-pic codegen mode, we allow the address of a global (with
11748 // an optional displacement) to be used with 'i'.
11749 GlobalAddressSDNode *GA = 0;
11750 int64_t Offset = 0;
11752 // Match either (GA), (GA+C), (GA+C1+C2), etc.
11753 while (1) {
11754 if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
11755 Offset += GA->getOffset();
11756 break;
11757 } else if (Op.getOpcode() == ISD::ADD) {
11758 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11759 Offset += C->getZExtValue();
11760 Op = Op.getOperand(0);
11761 continue;
11763 } else if (Op.getOpcode() == ISD::SUB) {
11764 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11765 Offset += -C->getZExtValue();
11766 Op = Op.getOperand(0);
11767 continue;
11771 // Otherwise, this isn't something we can handle, reject it.
11772 return;
11775 const GlobalValue *GV = GA->getGlobal();
11776 // If we require an extra load to get this address, as in PIC mode, we
11777 // can't accept it.
11778 if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
11779 getTargetMachine())))
11780 return;
11782 Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
11783 GA->getValueType(0), Offset);
11784 break;
11788 if (Result.getNode()) {
11789 Ops.push_back(Result);
11790 return;
11792 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11795 std::vector<unsigned> X86TargetLowering::
11796 getRegClassForInlineAsmConstraint(const std::string &Constraint,
11797 EVT VT) const {
11798 if (Constraint.size() == 1) {
11799 // FIXME: not handling fp-stack yet!
11800 switch (Constraint[0]) { // GCC X86 Constraint Letters
11801 default: break; // Unknown constraint letter
11802 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
11803 if (Subtarget->is64Bit()) {
11804 if (VT == MVT::i32)
11805 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
11806 X86::ESI, X86::EDI, X86::R8D, X86::R9D,
11807 X86::R10D,X86::R11D,X86::R12D,
11808 X86::R13D,X86::R14D,X86::R15D,
11809 X86::EBP, X86::ESP, 0);
11810 else if (VT == MVT::i16)
11811 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
11812 X86::SI, X86::DI, X86::R8W,X86::R9W,
11813 X86::R10W,X86::R11W,X86::R12W,
11814 X86::R13W,X86::R14W,X86::R15W,
11815 X86::BP, X86::SP, 0);
11816 else if (VT == MVT::i8)
11817 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL,
11818 X86::SIL, X86::DIL, X86::R8B,X86::R9B,
11819 X86::R10B,X86::R11B,X86::R12B,
11820 X86::R13B,X86::R14B,X86::R15B,
11821 X86::BPL, X86::SPL, 0);
11823 else if (VT == MVT::i64)
11824 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
11825 X86::RSI, X86::RDI, X86::R8, X86::R9,
11826 X86::R10, X86::R11, X86::R12,
11827 X86::R13, X86::R14, X86::R15,
11828 X86::RBP, X86::RSP, 0);
11830 break;
11832 // 32-bit fallthrough
11833 case 'Q': // Q_REGS
11834 if (VT == MVT::i32)
11835 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
11836 else if (VT == MVT::i16)
11837 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
11838 else if (VT == MVT::i8)
11839 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
11840 else if (VT == MVT::i64)
11841 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
11842 break;
11846 return std::vector<unsigned>();
11849 std::pair<unsigned, const TargetRegisterClass*>
11850 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
11851 EVT VT) const {
11852 // First, see if this is a constraint that directly corresponds to an LLVM
11853 // register class.
11854 if (Constraint.size() == 1) {
11855 // GCC Constraint Letters
11856 switch (Constraint[0]) {
11857 default: break;
11858 case 'r': // GENERAL_REGS
11859 case 'l': // INDEX_REGS
11860 if (VT == MVT::i8)
11861 return std::make_pair(0U, X86::GR8RegisterClass);
11862 if (VT == MVT::i16)
11863 return std::make_pair(0U, X86::GR16RegisterClass);
11864 if (VT == MVT::i32 || !Subtarget->is64Bit())
11865 return std::make_pair(0U, X86::GR32RegisterClass);
11866 return std::make_pair(0U, X86::GR64RegisterClass);
11867 case 'R': // LEGACY_REGS
11868 if (VT == MVT::i8)
11869 return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
11870 if (VT == MVT::i16)
11871 return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
11872 if (VT == MVT::i32 || !Subtarget->is64Bit())
11873 return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
11874 return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
11875 case 'f': // FP Stack registers.
11876 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
11877 // value to the correct fpstack register class.
11878 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
11879 return std::make_pair(0U, X86::RFP32RegisterClass);
11880 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
11881 return std::make_pair(0U, X86::RFP64RegisterClass);
11882 return std::make_pair(0U, X86::RFP80RegisterClass);
11883 case 'y': // MMX_REGS if MMX allowed.
11884 if (!Subtarget->hasMMX()) break;
11885 return std::make_pair(0U, X86::VR64RegisterClass);
11886 case 'Y': // SSE_REGS if SSE2 allowed
11887 if (!Subtarget->hasSSE2()) break;
11888 // FALL THROUGH.
11889 case 'x': // SSE_REGS if SSE1 allowed
11890 if (!Subtarget->hasSSE1()) break;
11892 switch (VT.getSimpleVT().SimpleTy) {
11893 default: break;
11894 // Scalar SSE types.
11895 case MVT::f32:
11896 case MVT::i32:
11897 return std::make_pair(0U, X86::FR32RegisterClass);
11898 case MVT::f64:
11899 case MVT::i64:
11900 return std::make_pair(0U, X86::FR64RegisterClass);
11901 // Vector types.
11902 case MVT::v16i8:
11903 case MVT::v8i16:
11904 case MVT::v4i32:
11905 case MVT::v2i64:
11906 case MVT::v4f32:
11907 case MVT::v2f64:
11908 return std::make_pair(0U, X86::VR128RegisterClass);
11910 break;
11914 // Use the default implementation in TargetLowering to convert the register
11915 // constraint into a member of a register class.
11916 std::pair<unsigned, const TargetRegisterClass*> Res;
11917 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
11919 // Not found as a standard register?
11920 if (Res.second == 0) {
11921 // Map st(0) -> st(7) -> ST0
11922 if (Constraint.size() == 7 && Constraint[0] == '{' &&
11923 tolower(Constraint[1]) == 's' &&
11924 tolower(Constraint[2]) == 't' &&
11925 Constraint[3] == '(' &&
11926 (Constraint[4] >= '0' && Constraint[4] <= '7') &&
11927 Constraint[5] == ')' &&
11928 Constraint[6] == '}') {
11930 Res.first = X86::ST0+Constraint[4]-'0';
11931 Res.second = X86::RFP80RegisterClass;
11932 return Res;
11935 // GCC allows "st(0)" to be called just plain "st".
11936 if (StringRef("{st}").equals_lower(Constraint)) {
11937 Res.first = X86::ST0;
11938 Res.second = X86::RFP80RegisterClass;
11939 return Res;
11942 // flags -> EFLAGS
11943 if (StringRef("{flags}").equals_lower(Constraint)) {
11944 Res.first = X86::EFLAGS;
11945 Res.second = X86::CCRRegisterClass;
11946 return Res;
11949 // 'A' means EAX + EDX.
11950 if (Constraint == "A") {
11951 Res.first = X86::EAX;
11952 Res.second = X86::GR32_ADRegisterClass;
11953 return Res;
11955 return Res;
11958 // Otherwise, check to see if this is a register class of the wrong value
11959 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
11960 // turn into {ax},{dx}.
11961 if (Res.second->hasType(VT))
11962 return Res; // Correct type already, nothing to do.
11964 // All of the single-register GCC register classes map their values onto
11965 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
11966 // really want an 8-bit or 32-bit register, map to the appropriate register
11967 // class and return the appropriate register.
11968 if (Res.second == X86::GR16RegisterClass) {
11969 if (VT == MVT::i8) {
11970 unsigned DestReg = 0;
11971 switch (Res.first) {
11972 default: break;
11973 case X86::AX: DestReg = X86::AL; break;
11974 case X86::DX: DestReg = X86::DL; break;
11975 case X86::CX: DestReg = X86::CL; break;
11976 case X86::BX: DestReg = X86::BL; break;
11978 if (DestReg) {
11979 Res.first = DestReg;
11980 Res.second = X86::GR8RegisterClass;
11982 } else if (VT == MVT::i32) {
11983 unsigned DestReg = 0;
11984 switch (Res.first) {
11985 default: break;
11986 case X86::AX: DestReg = X86::EAX; break;
11987 case X86::DX: DestReg = X86::EDX; break;
11988 case X86::CX: DestReg = X86::ECX; break;
11989 case X86::BX: DestReg = X86::EBX; break;
11990 case X86::SI: DestReg = X86::ESI; break;
11991 case X86::DI: DestReg = X86::EDI; break;
11992 case X86::BP: DestReg = X86::EBP; break;
11993 case X86::SP: DestReg = X86::ESP; break;
11995 if (DestReg) {
11996 Res.first = DestReg;
11997 Res.second = X86::GR32RegisterClass;
11999 } else if (VT == MVT::i64) {
12000 unsigned DestReg = 0;
12001 switch (Res.first) {
12002 default: break;
12003 case X86::AX: DestReg = X86::RAX; break;
12004 case X86::DX: DestReg = X86::RDX; break;
12005 case X86::CX: DestReg = X86::RCX; break;
12006 case X86::BX: DestReg = X86::RBX; break;
12007 case X86::SI: DestReg = X86::RSI; break;
12008 case X86::DI: DestReg = X86::RDI; break;
12009 case X86::BP: DestReg = X86::RBP; break;
12010 case X86::SP: DestReg = X86::RSP; break;
12012 if (DestReg) {
12013 Res.first = DestReg;
12014 Res.second = X86::GR64RegisterClass;
12017 } else if (Res.second == X86::FR32RegisterClass ||
12018 Res.second == X86::FR64RegisterClass ||
12019 Res.second == X86::VR128RegisterClass) {
12020 // Handle references to XMM physical registers that got mapped into the
12021 // wrong class. This can happen with constraints like {xmm0} where the
12022 // target independent register mapper will just pick the first match it can
12023 // find, ignoring the required type.
12024 if (VT == MVT::f32)
12025 Res.second = X86::FR32RegisterClass;
12026 else if (VT == MVT::f64)
12027 Res.second = X86::FR64RegisterClass;
12028 else if (X86::VR128RegisterClass->hasType(VT))
12029 Res.second = X86::VR128RegisterClass;
12032 return Res;