MC/Mach-O: Implement support for setting indirect symbol table offset in section...
[llvm.git] / lib / MC / MachObjectWriter.cpp
blob5a4bb7ad33e731bd3d50bb56610691e318a3abf3
1 //===- lib/MC/MachObjectWriter.cpp - Mach-O File Writer -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/MC/MachObjectWriter.h"
11 #include "llvm/ADT/StringMap.h"
12 #include "llvm/ADT/Twine.h"
13 #include "llvm/MC/MCAssembler.h"
14 #include "llvm/MC/MCAsmLayout.h"
15 #include "llvm/MC/MCExpr.h"
16 #include "llvm/MC/MCObjectWriter.h"
17 #include "llvm/MC/MCSectionMachO.h"
18 #include "llvm/MC/MCSymbol.h"
19 #include "llvm/MC/MCMachOSymbolFlags.h"
20 #include "llvm/MC/MCValue.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/MachO.h"
23 #include "llvm/Target/TargetAsmBackend.h"
25 // FIXME: Gross.
26 #include "../Target/X86/X86FixupKinds.h"
28 #include <vector>
29 using namespace llvm;
31 static unsigned getFixupKindLog2Size(unsigned Kind) {
32 switch (Kind) {
33 default: llvm_unreachable("invalid fixup kind!");
34 case X86::reloc_pcrel_1byte:
35 case FK_Data_1: return 0;
36 case FK_Data_2: return 1;
37 case X86::reloc_pcrel_4byte:
38 case X86::reloc_riprel_4byte:
39 case X86::reloc_riprel_4byte_movq_load:
40 case FK_Data_4: return 2;
41 case FK_Data_8: return 3;
45 static bool isFixupKindPCRel(unsigned Kind) {
46 switch (Kind) {
47 default:
48 return false;
49 case X86::reloc_pcrel_1byte:
50 case X86::reloc_pcrel_4byte:
51 case X86::reloc_riprel_4byte:
52 case X86::reloc_riprel_4byte_movq_load:
53 return true;
57 static bool isFixupKindRIPRel(unsigned Kind) {
58 return Kind == X86::reloc_riprel_4byte ||
59 Kind == X86::reloc_riprel_4byte_movq_load;
62 static bool doesSymbolRequireExternRelocation(MCSymbolData *SD) {
63 // Undefined symbols are always extern.
64 if (SD->Symbol->isUndefined())
65 return true;
67 // References to weak definitions require external relocation entries; the
68 // definition may not always be the one in the same object file.
69 if (SD->getFlags() & SF_WeakDefinition)
70 return true;
72 // Otherwise, we can use an internal relocation.
73 return false;
76 namespace {
78 class MachObjectWriterImpl {
79 // See <mach-o/loader.h>.
80 enum {
81 Header_Magic32 = 0xFEEDFACE,
82 Header_Magic64 = 0xFEEDFACF
85 enum {
86 Header32Size = 28,
87 Header64Size = 32,
88 SegmentLoadCommand32Size = 56,
89 SegmentLoadCommand64Size = 72,
90 Section32Size = 68,
91 Section64Size = 80,
92 SymtabLoadCommandSize = 24,
93 DysymtabLoadCommandSize = 80,
94 Nlist32Size = 12,
95 Nlist64Size = 16,
96 RelocationInfoSize = 8
99 enum HeaderFileType {
100 HFT_Object = 0x1
103 enum HeaderFlags {
104 HF_SubsectionsViaSymbols = 0x2000
107 enum LoadCommandType {
108 LCT_Segment = 0x1,
109 LCT_Symtab = 0x2,
110 LCT_Dysymtab = 0xb,
111 LCT_Segment64 = 0x19
114 // See <mach-o/nlist.h>.
115 enum SymbolTypeType {
116 STT_Undefined = 0x00,
117 STT_Absolute = 0x02,
118 STT_Section = 0x0e
121 enum SymbolTypeFlags {
122 // If any of these bits are set, then the entry is a stab entry number (see
123 // <mach-o/stab.h>. Otherwise the other masks apply.
124 STF_StabsEntryMask = 0xe0,
126 STF_TypeMask = 0x0e,
127 STF_External = 0x01,
128 STF_PrivateExtern = 0x10
131 /// IndirectSymbolFlags - Flags for encoding special values in the indirect
132 /// symbol entry.
133 enum IndirectSymbolFlags {
134 ISF_Local = 0x80000000,
135 ISF_Absolute = 0x40000000
138 /// RelocationFlags - Special flags for addresses.
139 enum RelocationFlags {
140 RF_Scattered = 0x80000000
143 enum RelocationInfoType {
144 RIT_Vanilla = 0,
145 RIT_Pair = 1,
146 RIT_Difference = 2,
147 RIT_PreboundLazyPointer = 3,
148 RIT_LocalDifference = 4
151 /// X86_64 uses its own relocation types.
152 enum RelocationInfoTypeX86_64 {
153 RIT_X86_64_Unsigned = 0,
154 RIT_X86_64_Signed = 1,
155 RIT_X86_64_Branch = 2,
156 RIT_X86_64_GOTLoad = 3,
157 RIT_X86_64_GOT = 4,
158 RIT_X86_64_Subtractor = 5,
159 RIT_X86_64_Signed1 = 6,
160 RIT_X86_64_Signed2 = 7,
161 RIT_X86_64_Signed4 = 8
164 /// MachSymbolData - Helper struct for containing some precomputed information
165 /// on symbols.
166 struct MachSymbolData {
167 MCSymbolData *SymbolData;
168 uint64_t StringIndex;
169 uint8_t SectionIndex;
171 // Support lexicographic sorting.
172 bool operator<(const MachSymbolData &RHS) const {
173 const std::string &Name = SymbolData->getSymbol().getName();
174 return Name < RHS.SymbolData->getSymbol().getName();
178 /// @name Relocation Data
179 /// @{
181 struct MachRelocationEntry {
182 uint32_t Word0;
183 uint32_t Word1;
186 llvm::DenseMap<const MCSectionData*,
187 std::vector<MachRelocationEntry> > Relocations;
188 llvm::DenseMap<const MCSectionData*, unsigned> IndirectSymBase;
190 /// @}
191 /// @name Symbol Table Data
192 /// @{
194 SmallString<256> StringTable;
195 std::vector<MachSymbolData> LocalSymbolData;
196 std::vector<MachSymbolData> ExternalSymbolData;
197 std::vector<MachSymbolData> UndefinedSymbolData;
199 /// @}
201 MachObjectWriter *Writer;
203 raw_ostream &OS;
205 unsigned Is64Bit : 1;
207 public:
208 MachObjectWriterImpl(MachObjectWriter *_Writer, bool _Is64Bit)
209 : Writer(_Writer), OS(Writer->getStream()), Is64Bit(_Is64Bit) {
212 void Write8(uint8_t Value) { Writer->Write8(Value); }
213 void Write16(uint16_t Value) { Writer->Write16(Value); }
214 void Write32(uint32_t Value) { Writer->Write32(Value); }
215 void Write64(uint64_t Value) { Writer->Write64(Value); }
216 void WriteZeros(unsigned N) { Writer->WriteZeros(N); }
217 void WriteBytes(StringRef Str, unsigned ZeroFillSize = 0) {
218 Writer->WriteBytes(Str, ZeroFillSize);
221 void WriteHeader(unsigned NumLoadCommands, unsigned LoadCommandsSize,
222 bool SubsectionsViaSymbols) {
223 uint32_t Flags = 0;
225 if (SubsectionsViaSymbols)
226 Flags |= HF_SubsectionsViaSymbols;
228 // struct mach_header (28 bytes) or
229 // struct mach_header_64 (32 bytes)
231 uint64_t Start = OS.tell();
232 (void) Start;
234 Write32(Is64Bit ? Header_Magic64 : Header_Magic32);
236 // FIXME: Support cputype.
237 Write32(Is64Bit ? MachO::CPUTypeX86_64 : MachO::CPUTypeI386);
238 // FIXME: Support cpusubtype.
239 Write32(MachO::CPUSubType_I386_ALL);
240 Write32(HFT_Object);
241 Write32(NumLoadCommands); // Object files have a single load command, the
242 // segment.
243 Write32(LoadCommandsSize);
244 Write32(Flags);
245 if (Is64Bit)
246 Write32(0); // reserved
248 assert(OS.tell() - Start == Is64Bit ? Header64Size : Header32Size);
251 /// WriteSegmentLoadCommand - Write a segment load command.
253 /// \arg NumSections - The number of sections in this segment.
254 /// \arg SectionDataSize - The total size of the sections.
255 void WriteSegmentLoadCommand(unsigned NumSections,
256 uint64_t VMSize,
257 uint64_t SectionDataStartOffset,
258 uint64_t SectionDataSize) {
259 // struct segment_command (56 bytes) or
260 // struct segment_command_64 (72 bytes)
262 uint64_t Start = OS.tell();
263 (void) Start;
265 unsigned SegmentLoadCommandSize = Is64Bit ? SegmentLoadCommand64Size :
266 SegmentLoadCommand32Size;
267 Write32(Is64Bit ? LCT_Segment64 : LCT_Segment);
268 Write32(SegmentLoadCommandSize +
269 NumSections * (Is64Bit ? Section64Size : Section32Size));
271 WriteBytes("", 16);
272 if (Is64Bit) {
273 Write64(0); // vmaddr
274 Write64(VMSize); // vmsize
275 Write64(SectionDataStartOffset); // file offset
276 Write64(SectionDataSize); // file size
277 } else {
278 Write32(0); // vmaddr
279 Write32(VMSize); // vmsize
280 Write32(SectionDataStartOffset); // file offset
281 Write32(SectionDataSize); // file size
283 Write32(0x7); // maxprot
284 Write32(0x7); // initprot
285 Write32(NumSections);
286 Write32(0); // flags
288 assert(OS.tell() - Start == SegmentLoadCommandSize);
291 void WriteSection(const MCAssembler &Asm, const MCAsmLayout &Layout,
292 const MCSectionData &SD, uint64_t FileOffset,
293 uint64_t RelocationsStart, unsigned NumRelocations) {
294 uint64_t SectionSize = Layout.getSectionSize(&SD);
296 // The offset is unused for virtual sections.
297 if (Asm.getBackend().isVirtualSection(SD.getSection())) {
298 assert(Layout.getSectionFileSize(&SD) == 0 && "Invalid file size!");
299 FileOffset = 0;
302 // struct section (68 bytes) or
303 // struct section_64 (80 bytes)
305 uint64_t Start = OS.tell();
306 (void) Start;
308 const MCSectionMachO &Section = cast<MCSectionMachO>(SD.getSection());
309 WriteBytes(Section.getSectionName(), 16);
310 WriteBytes(Section.getSegmentName(), 16);
311 if (Is64Bit) {
312 Write64(Layout.getSectionAddress(&SD)); // address
313 Write64(SectionSize); // size
314 } else {
315 Write32(Layout.getSectionAddress(&SD)); // address
316 Write32(SectionSize); // size
318 Write32(FileOffset);
320 unsigned Flags = Section.getTypeAndAttributes();
321 if (SD.hasInstructions())
322 Flags |= MCSectionMachO::S_ATTR_SOME_INSTRUCTIONS;
324 assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!");
325 Write32(Log2_32(SD.getAlignment()));
326 Write32(NumRelocations ? RelocationsStart : 0);
327 Write32(NumRelocations);
328 Write32(Flags);
329 Write32(IndirectSymBase.lookup(&SD)); // reserved1
330 Write32(Section.getStubSize()); // reserved2
331 if (Is64Bit)
332 Write32(0); // reserved3
334 assert(OS.tell() - Start == Is64Bit ? Section64Size : Section32Size);
337 void WriteSymtabLoadCommand(uint32_t SymbolOffset, uint32_t NumSymbols,
338 uint32_t StringTableOffset,
339 uint32_t StringTableSize) {
340 // struct symtab_command (24 bytes)
342 uint64_t Start = OS.tell();
343 (void) Start;
345 Write32(LCT_Symtab);
346 Write32(SymtabLoadCommandSize);
347 Write32(SymbolOffset);
348 Write32(NumSymbols);
349 Write32(StringTableOffset);
350 Write32(StringTableSize);
352 assert(OS.tell() - Start == SymtabLoadCommandSize);
355 void WriteDysymtabLoadCommand(uint32_t FirstLocalSymbol,
356 uint32_t NumLocalSymbols,
357 uint32_t FirstExternalSymbol,
358 uint32_t NumExternalSymbols,
359 uint32_t FirstUndefinedSymbol,
360 uint32_t NumUndefinedSymbols,
361 uint32_t IndirectSymbolOffset,
362 uint32_t NumIndirectSymbols) {
363 // struct dysymtab_command (80 bytes)
365 uint64_t Start = OS.tell();
366 (void) Start;
368 Write32(LCT_Dysymtab);
369 Write32(DysymtabLoadCommandSize);
370 Write32(FirstLocalSymbol);
371 Write32(NumLocalSymbols);
372 Write32(FirstExternalSymbol);
373 Write32(NumExternalSymbols);
374 Write32(FirstUndefinedSymbol);
375 Write32(NumUndefinedSymbols);
376 Write32(0); // tocoff
377 Write32(0); // ntoc
378 Write32(0); // modtaboff
379 Write32(0); // nmodtab
380 Write32(0); // extrefsymoff
381 Write32(0); // nextrefsyms
382 Write32(IndirectSymbolOffset);
383 Write32(NumIndirectSymbols);
384 Write32(0); // extreloff
385 Write32(0); // nextrel
386 Write32(0); // locreloff
387 Write32(0); // nlocrel
389 assert(OS.tell() - Start == DysymtabLoadCommandSize);
392 void WriteNlist(MachSymbolData &MSD, const MCAsmLayout &Layout) {
393 MCSymbolData &Data = *MSD.SymbolData;
394 const MCSymbol &Symbol = Data.getSymbol();
395 uint8_t Type = 0;
396 uint16_t Flags = Data.getFlags();
397 uint32_t Address = 0;
399 // Set the N_TYPE bits. See <mach-o/nlist.h>.
401 // FIXME: Are the prebound or indirect fields possible here?
402 if (Symbol.isUndefined())
403 Type = STT_Undefined;
404 else if (Symbol.isAbsolute())
405 Type = STT_Absolute;
406 else
407 Type = STT_Section;
409 // FIXME: Set STAB bits.
411 if (Data.isPrivateExtern())
412 Type |= STF_PrivateExtern;
414 // Set external bit.
415 if (Data.isExternal() || Symbol.isUndefined())
416 Type |= STF_External;
418 // Compute the symbol address.
419 if (Symbol.isDefined()) {
420 if (Symbol.isAbsolute()) {
421 Address = cast<MCConstantExpr>(Symbol.getVariableValue())->getValue();
422 } else {
423 Address = Layout.getSymbolAddress(&Data);
425 } else if (Data.isCommon()) {
426 // Common symbols are encoded with the size in the address
427 // field, and their alignment in the flags.
428 Address = Data.getCommonSize();
430 // Common alignment is packed into the 'desc' bits.
431 if (unsigned Align = Data.getCommonAlignment()) {
432 unsigned Log2Size = Log2_32(Align);
433 assert((1U << Log2Size) == Align && "Invalid 'common' alignment!");
434 if (Log2Size > 15)
435 report_fatal_error("invalid 'common' alignment '" +
436 Twine(Align) + "'");
437 // FIXME: Keep this mask with the SymbolFlags enumeration.
438 Flags = (Flags & 0xF0FF) | (Log2Size << 8);
442 // struct nlist (12 bytes)
444 Write32(MSD.StringIndex);
445 Write8(Type);
446 Write8(MSD.SectionIndex);
448 // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc'
449 // value.
450 Write16(Flags);
451 if (Is64Bit)
452 Write64(Address);
453 else
454 Write32(Address);
457 // FIXME: We really need to improve the relocation validation. Basically, we
458 // want to implement a separate computation which evaluates the relocation
459 // entry as the linker would, and verifies that the resultant fixup value is
460 // exactly what the encoder wanted. This will catch several classes of
461 // problems:
463 // - Relocation entry bugs, the two algorithms are unlikely to have the same
464 // exact bug.
466 // - Relaxation issues, where we forget to relax something.
468 // - Input errors, where something cannot be correctly encoded. 'as' allows
469 // these through in many cases.
471 void RecordX86_64Relocation(const MCAssembler &Asm, const MCAsmLayout &Layout,
472 const MCFragment *Fragment,
473 const MCAsmFixup &Fixup, MCValue Target,
474 uint64_t &FixedValue) {
475 unsigned IsPCRel = isFixupKindPCRel(Fixup.Kind);
476 unsigned IsRIPRel = isFixupKindRIPRel(Fixup.Kind);
477 unsigned Log2Size = getFixupKindLog2Size(Fixup.Kind);
479 // See <reloc.h>.
480 uint32_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.Offset;
481 uint32_t FixupAddress = Layout.getFragmentAddress(Fragment) + Fixup.Offset;
482 int64_t Value = 0;
483 unsigned Index = 0;
484 unsigned IsExtern = 0;
485 unsigned Type = 0;
487 Value = Target.getConstant();
489 if (IsPCRel) {
490 // Compensate for the relocation offset, Darwin x86_64 relocations only
491 // have the addend and appear to have attempted to define it to be the
492 // actual expression addend without the PCrel bias. However, instructions
493 // with data following the relocation are not accomodated for (see comment
494 // below regarding SIGNED{1,2,4}), so it isn't exactly that either.
495 Value += 1LL << Log2Size;
498 if (Target.isAbsolute()) { // constant
499 // SymbolNum of 0 indicates the absolute section.
500 Type = RIT_X86_64_Unsigned;
501 Index = 0;
503 // FIXME: I believe this is broken, I don't think the linker can
504 // understand it. I think it would require a local relocation, but I'm not
505 // sure if that would work either. The official way to get an absolute
506 // PCrel relocation is to use an absolute symbol (which we don't support
507 // yet).
508 if (IsPCRel) {
509 IsExtern = 1;
510 Type = RIT_X86_64_Branch;
512 } else if (Target.getSymB()) { // A - B + constant
513 const MCSymbol *A = &Target.getSymA()->getSymbol();
514 MCSymbolData &A_SD = Asm.getSymbolData(*A);
515 const MCSymbolData *A_Base = Asm.getAtom(Layout, &A_SD);
517 const MCSymbol *B = &Target.getSymB()->getSymbol();
518 MCSymbolData &B_SD = Asm.getSymbolData(*B);
519 const MCSymbolData *B_Base = Asm.getAtom(Layout, &B_SD);
521 // Neither symbol can be modified.
522 if (Target.getSymA()->getKind() != MCSymbolRefExpr::VK_None ||
523 Target.getSymB()->getKind() != MCSymbolRefExpr::VK_None)
524 report_fatal_error("unsupported relocation of modified symbol");
526 // We don't support PCrel relocations of differences. Darwin 'as' doesn't
527 // implement most of these correctly.
528 if (IsPCRel)
529 report_fatal_error("unsupported pc-relative relocation of difference");
531 // We don't currently support any situation where one or both of the
532 // symbols would require a local relocation. This is almost certainly
533 // unused and may not be possible to encode correctly.
534 if (!A_Base || !B_Base)
535 report_fatal_error("unsupported local relocations in difference");
537 // Darwin 'as' doesn't emit correct relocations for this (it ends up with
538 // a single SIGNED relocation); reject it for now.
539 if (A_Base == B_Base)
540 report_fatal_error("unsupported relocation with identical base");
542 Value += Layout.getSymbolAddress(&A_SD) - Layout.getSymbolAddress(A_Base);
543 Value -= Layout.getSymbolAddress(&B_SD) - Layout.getSymbolAddress(B_Base);
545 Index = A_Base->getIndex();
546 IsExtern = 1;
547 Type = RIT_X86_64_Unsigned;
549 MachRelocationEntry MRE;
550 MRE.Word0 = FixupOffset;
551 MRE.Word1 = ((Index << 0) |
552 (IsPCRel << 24) |
553 (Log2Size << 25) |
554 (IsExtern << 27) |
555 (Type << 28));
556 Relocations[Fragment->getParent()].push_back(MRE);
558 Index = B_Base->getIndex();
559 IsExtern = 1;
560 Type = RIT_X86_64_Subtractor;
561 } else {
562 const MCSymbol *Symbol = &Target.getSymA()->getSymbol();
563 MCSymbolData &SD = Asm.getSymbolData(*Symbol);
564 const MCSymbolData *Base = Asm.getAtom(Layout, &SD);
566 // Relocations inside debug sections always use local relocations when
567 // possible. This seems to be done because the debugger doesn't fully
568 // understand x86_64 relocation entries, and expects to find values that
569 // have already been fixed up.
570 if (Symbol->isInSection()) {
571 const MCSectionMachO &Section = static_cast<const MCSectionMachO&>(
572 Fragment->getParent()->getSection());
573 if (Section.hasAttribute(MCSectionMachO::S_ATTR_DEBUG))
574 Base = 0;
577 // x86_64 almost always uses external relocations, except when there is no
578 // symbol to use as a base address (a local symbol with no preceeding
579 // non-local symbol).
580 if (Base) {
581 Index = Base->getIndex();
582 IsExtern = 1;
584 // Add the local offset, if needed.
585 if (Base != &SD)
586 Value += Layout.getSymbolAddress(&SD) - Layout.getSymbolAddress(Base);
587 } else if (Symbol->isInSection()) {
588 // The index is the section ordinal (1-based).
589 Index = SD.getFragment()->getParent()->getOrdinal() + 1;
590 IsExtern = 0;
591 Value += Layout.getSymbolAddress(&SD);
593 if (IsPCRel)
594 Value -= FixupAddress + (1 << Log2Size);
595 } else {
596 report_fatal_error("unsupported relocation of undefined symbol '" +
597 Symbol->getName() + "'");
600 MCSymbolRefExpr::VariantKind Modifier = Target.getSymA()->getKind();
601 if (IsPCRel) {
602 if (IsRIPRel) {
603 if (Modifier == MCSymbolRefExpr::VK_GOTPCREL) {
604 // x86_64 distinguishes movq foo@GOTPCREL so that the linker can
605 // rewrite the movq to an leaq at link time if the symbol ends up in
606 // the same linkage unit.
607 if (unsigned(Fixup.Kind) == X86::reloc_riprel_4byte_movq_load)
608 Type = RIT_X86_64_GOTLoad;
609 else
610 Type = RIT_X86_64_GOT;
611 } else if (Modifier != MCSymbolRefExpr::VK_None) {
612 report_fatal_error("unsupported symbol modifier in relocation");
613 } else {
614 Type = RIT_X86_64_Signed;
616 // The Darwin x86_64 relocation format has a problem where it cannot
617 // encode an address (L<foo> + <constant>) which is outside the atom
618 // containing L<foo>. Generally, this shouldn't occur but it does
619 // happen when we have a RIPrel instruction with data following the
620 // relocation entry (e.g., movb $012, L0(%rip)). Even with the PCrel
621 // adjustment Darwin x86_64 uses, the offset is still negative and
622 // the linker has no way to recognize this.
624 // To work around this, Darwin uses several special relocation types
625 // to indicate the offsets. However, the specification or
626 // implementation of these seems to also be incomplete; they should
627 // adjust the addend as well based on the actual encoded instruction
628 // (the additional bias), but instead appear to just look at the
629 // final offset.
630 switch (-(Target.getConstant() + (1LL << Log2Size))) {
631 case 1: Type = RIT_X86_64_Signed1; break;
632 case 2: Type = RIT_X86_64_Signed2; break;
633 case 4: Type = RIT_X86_64_Signed4; break;
636 } else {
637 if (Modifier != MCSymbolRefExpr::VK_None)
638 report_fatal_error("unsupported symbol modifier in branch "
639 "relocation");
641 Type = RIT_X86_64_Branch;
643 } else {
644 if (Modifier == MCSymbolRefExpr::VK_GOT) {
645 Type = RIT_X86_64_GOT;
646 } else if (Modifier == MCSymbolRefExpr::VK_GOTPCREL) {
647 // GOTPCREL is allowed as a modifier on non-PCrel instructions, in
648 // which case all we do is set the PCrel bit in the relocation entry;
649 // this is used with exception handling, for example. The source is
650 // required to include any necessary offset directly.
651 Type = RIT_X86_64_GOT;
652 IsPCRel = 1;
653 } else if (Modifier != MCSymbolRefExpr::VK_None)
654 report_fatal_error("unsupported symbol modifier in relocation");
655 else
656 Type = RIT_X86_64_Unsigned;
660 // x86_64 always writes custom values into the fixups.
661 FixedValue = Value;
663 // struct relocation_info (8 bytes)
664 MachRelocationEntry MRE;
665 MRE.Word0 = FixupOffset;
666 MRE.Word1 = ((Index << 0) |
667 (IsPCRel << 24) |
668 (Log2Size << 25) |
669 (IsExtern << 27) |
670 (Type << 28));
671 Relocations[Fragment->getParent()].push_back(MRE);
674 void RecordScatteredRelocation(const MCAssembler &Asm,
675 const MCAsmLayout &Layout,
676 const MCFragment *Fragment,
677 const MCAsmFixup &Fixup, MCValue Target,
678 uint64_t &FixedValue) {
679 uint32_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.Offset;
680 unsigned IsPCRel = isFixupKindPCRel(Fixup.Kind);
681 unsigned Log2Size = getFixupKindLog2Size(Fixup.Kind);
682 unsigned Type = RIT_Vanilla;
684 // See <reloc.h>.
685 const MCSymbol *A = &Target.getSymA()->getSymbol();
686 MCSymbolData *A_SD = &Asm.getSymbolData(*A);
688 if (!A_SD->getFragment())
689 report_fatal_error("symbol '" + A->getName() +
690 "' can not be undefined in a subtraction expression");
692 uint32_t Value = Layout.getSymbolAddress(A_SD);
693 uint32_t Value2 = 0;
695 if (const MCSymbolRefExpr *B = Target.getSymB()) {
696 MCSymbolData *B_SD = &Asm.getSymbolData(B->getSymbol());
698 if (!B_SD->getFragment())
699 report_fatal_error("symbol '" + B->getSymbol().getName() +
700 "' can not be undefined in a subtraction expression");
702 // Select the appropriate difference relocation type.
704 // Note that there is no longer any semantic difference between these two
705 // relocation types from the linkers point of view, this is done solely
706 // for pedantic compatibility with 'as'.
707 Type = A_SD->isExternal() ? RIT_Difference : RIT_LocalDifference;
708 Value2 = Layout.getSymbolAddress(B_SD);
711 // Relocations are written out in reverse order, so the PAIR comes first.
712 if (Type == RIT_Difference || Type == RIT_LocalDifference) {
713 MachRelocationEntry MRE;
714 MRE.Word0 = ((0 << 0) |
715 (RIT_Pair << 24) |
716 (Log2Size << 28) |
717 (IsPCRel << 30) |
718 RF_Scattered);
719 MRE.Word1 = Value2;
720 Relocations[Fragment->getParent()].push_back(MRE);
723 MachRelocationEntry MRE;
724 MRE.Word0 = ((FixupOffset << 0) |
725 (Type << 24) |
726 (Log2Size << 28) |
727 (IsPCRel << 30) |
728 RF_Scattered);
729 MRE.Word1 = Value;
730 Relocations[Fragment->getParent()].push_back(MRE);
733 void RecordRelocation(const MCAssembler &Asm, const MCAsmLayout &Layout,
734 const MCFragment *Fragment, const MCAsmFixup &Fixup,
735 MCValue Target, uint64_t &FixedValue) {
736 if (Is64Bit) {
737 RecordX86_64Relocation(Asm, Layout, Fragment, Fixup, Target, FixedValue);
738 return;
741 unsigned IsPCRel = isFixupKindPCRel(Fixup.Kind);
742 unsigned Log2Size = getFixupKindLog2Size(Fixup.Kind);
744 // If this is a difference or a defined symbol plus an offset, then we need
745 // a scattered relocation entry.
746 // Differences always require scattered relocations.
747 if (Target.getSymB())
748 return RecordScatteredRelocation(Asm, Layout, Fragment, Fixup,
749 Target, FixedValue);
751 // Get the symbol data, if any.
752 MCSymbolData *SD = 0;
753 if (Target.getSymA())
754 SD = &Asm.getSymbolData(Target.getSymA()->getSymbol());
756 // If this is an internal relocation with an offset, it also needs a
757 // scattered relocation entry.
758 uint32_t Offset = Target.getConstant();
759 if (IsPCRel)
760 Offset += 1 << Log2Size;
761 if (Offset && SD && !doesSymbolRequireExternRelocation(SD))
762 return RecordScatteredRelocation(Asm, Layout, Fragment, Fixup,
763 Target, FixedValue);
765 // See <reloc.h>.
766 uint32_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.Offset;
767 uint32_t Value = 0;
768 unsigned Index = 0;
769 unsigned IsExtern = 0;
770 unsigned Type = 0;
772 if (Target.isAbsolute()) { // constant
773 // SymbolNum of 0 indicates the absolute section.
775 // FIXME: Currently, these are never generated (see code below). I cannot
776 // find a case where they are actually emitted.
777 Type = RIT_Vanilla;
778 Value = 0;
779 } else {
780 // Check whether we need an external or internal relocation.
781 if (doesSymbolRequireExternRelocation(SD)) {
782 IsExtern = 1;
783 Index = SD->getIndex();
784 // For external relocations, make sure to offset the fixup value to
785 // compensate for the addend of the symbol address, if it was
786 // undefined. This occurs with weak definitions, for example.
787 if (!SD->Symbol->isUndefined())
788 FixedValue -= Layout.getSymbolAddress(SD);
789 Value = 0;
790 } else {
791 // The index is the section ordinal (1-based).
792 Index = SD->getFragment()->getParent()->getOrdinal() + 1;
793 Value = Layout.getSymbolAddress(SD);
796 Type = RIT_Vanilla;
799 // struct relocation_info (8 bytes)
800 MachRelocationEntry MRE;
801 MRE.Word0 = FixupOffset;
802 MRE.Word1 = ((Index << 0) |
803 (IsPCRel << 24) |
804 (Log2Size << 25) |
805 (IsExtern << 27) |
806 (Type << 28));
807 Relocations[Fragment->getParent()].push_back(MRE);
810 void BindIndirectSymbols(MCAssembler &Asm) {
811 // This is the point where 'as' creates actual symbols for indirect symbols
812 // (in the following two passes). It would be easier for us to do this
813 // sooner when we see the attribute, but that makes getting the order in the
814 // symbol table much more complicated than it is worth.
816 // FIXME: Revisit this when the dust settles.
818 // Bind non lazy symbol pointers first.
819 unsigned IndirectIndex = 0;
820 for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(),
821 ie = Asm.indirect_symbol_end(); it != ie; ++it, ++IndirectIndex) {
822 const MCSectionMachO &Section =
823 cast<MCSectionMachO>(it->SectionData->getSection());
825 if (Section.getType() != MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS)
826 continue;
828 // Initialize the section indirect symbol base, if necessary.
829 if (!IndirectSymBase.count(it->SectionData))
830 IndirectSymBase[it->SectionData] = IndirectIndex;
832 Asm.getOrCreateSymbolData(*it->Symbol);
835 // Then lazy symbol pointers and symbol stubs.
836 IndirectIndex = 0;
837 for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(),
838 ie = Asm.indirect_symbol_end(); it != ie; ++it, ++IndirectIndex) {
839 const MCSectionMachO &Section =
840 cast<MCSectionMachO>(it->SectionData->getSection());
842 if (Section.getType() != MCSectionMachO::S_LAZY_SYMBOL_POINTERS &&
843 Section.getType() != MCSectionMachO::S_SYMBOL_STUBS)
844 continue;
846 // Initialize the section indirect symbol base, if necessary.
847 if (!IndirectSymBase.count(it->SectionData))
848 IndirectSymBase[it->SectionData] = IndirectIndex;
850 // Set the symbol type to undefined lazy, but only on construction.
852 // FIXME: Do not hardcode.
853 bool Created;
854 MCSymbolData &Entry = Asm.getOrCreateSymbolData(*it->Symbol, &Created);
855 if (Created)
856 Entry.setFlags(Entry.getFlags() | 0x0001);
860 /// ComputeSymbolTable - Compute the symbol table data
862 /// \param StringTable [out] - The string table data.
863 /// \param StringIndexMap [out] - Map from symbol names to offsets in the
864 /// string table.
865 void ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable,
866 std::vector<MachSymbolData> &LocalSymbolData,
867 std::vector<MachSymbolData> &ExternalSymbolData,
868 std::vector<MachSymbolData> &UndefinedSymbolData) {
869 // Build section lookup table.
870 DenseMap<const MCSection*, uint8_t> SectionIndexMap;
871 unsigned Index = 1;
872 for (MCAssembler::iterator it = Asm.begin(),
873 ie = Asm.end(); it != ie; ++it, ++Index)
874 SectionIndexMap[&it->getSection()] = Index;
875 assert(Index <= 256 && "Too many sections!");
877 // Index 0 is always the empty string.
878 StringMap<uint64_t> StringIndexMap;
879 StringTable += '\x00';
881 // Build the symbol arrays and the string table, but only for non-local
882 // symbols.
884 // The particular order that we collect the symbols and create the string
885 // table, then sort the symbols is chosen to match 'as'. Even though it
886 // doesn't matter for correctness, this is important for letting us diff .o
887 // files.
888 for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
889 ie = Asm.symbol_end(); it != ie; ++it) {
890 const MCSymbol &Symbol = it->getSymbol();
892 // Ignore non-linker visible symbols.
893 if (!Asm.isSymbolLinkerVisible(it))
894 continue;
896 if (!it->isExternal() && !Symbol.isUndefined())
897 continue;
899 uint64_t &Entry = StringIndexMap[Symbol.getName()];
900 if (!Entry) {
901 Entry = StringTable.size();
902 StringTable += Symbol.getName();
903 StringTable += '\x00';
906 MachSymbolData MSD;
907 MSD.SymbolData = it;
908 MSD.StringIndex = Entry;
910 if (Symbol.isUndefined()) {
911 MSD.SectionIndex = 0;
912 UndefinedSymbolData.push_back(MSD);
913 } else if (Symbol.isAbsolute()) {
914 MSD.SectionIndex = 0;
915 ExternalSymbolData.push_back(MSD);
916 } else {
917 MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection());
918 assert(MSD.SectionIndex && "Invalid section index!");
919 ExternalSymbolData.push_back(MSD);
923 // Now add the data for local symbols.
924 for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
925 ie = Asm.symbol_end(); it != ie; ++it) {
926 const MCSymbol &Symbol = it->getSymbol();
928 // Ignore non-linker visible symbols.
929 if (!Asm.isSymbolLinkerVisible(it))
930 continue;
932 if (it->isExternal() || Symbol.isUndefined())
933 continue;
935 uint64_t &Entry = StringIndexMap[Symbol.getName()];
936 if (!Entry) {
937 Entry = StringTable.size();
938 StringTable += Symbol.getName();
939 StringTable += '\x00';
942 MachSymbolData MSD;
943 MSD.SymbolData = it;
944 MSD.StringIndex = Entry;
946 if (Symbol.isAbsolute()) {
947 MSD.SectionIndex = 0;
948 LocalSymbolData.push_back(MSD);
949 } else {
950 MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection());
951 assert(MSD.SectionIndex && "Invalid section index!");
952 LocalSymbolData.push_back(MSD);
956 // External and undefined symbols are required to be in lexicographic order.
957 std::sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
958 std::sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end());
960 // Set the symbol indices.
961 Index = 0;
962 for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
963 LocalSymbolData[i].SymbolData->setIndex(Index++);
964 for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
965 ExternalSymbolData[i].SymbolData->setIndex(Index++);
966 for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
967 UndefinedSymbolData[i].SymbolData->setIndex(Index++);
969 // The string table is padded to a multiple of 4.
970 while (StringTable.size() % 4)
971 StringTable += '\x00';
974 void ExecutePostLayoutBinding(MCAssembler &Asm) {
975 // Create symbol data for any indirect symbols.
976 BindIndirectSymbols(Asm);
978 // Compute symbol table information and bind symbol indices.
979 ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData,
980 UndefinedSymbolData);
983 void WriteObject(const MCAssembler &Asm, const MCAsmLayout &Layout) {
984 unsigned NumSections = Asm.size();
986 // The section data starts after the header, the segment load command (and
987 // section headers) and the symbol table.
988 unsigned NumLoadCommands = 1;
989 uint64_t LoadCommandsSize = Is64Bit ?
990 SegmentLoadCommand64Size + NumSections * Section64Size :
991 SegmentLoadCommand32Size + NumSections * Section32Size;
993 // Add the symbol table load command sizes, if used.
994 unsigned NumSymbols = LocalSymbolData.size() + ExternalSymbolData.size() +
995 UndefinedSymbolData.size();
996 if (NumSymbols) {
997 NumLoadCommands += 2;
998 LoadCommandsSize += SymtabLoadCommandSize + DysymtabLoadCommandSize;
1001 // Compute the total size of the section data, as well as its file size and
1002 // vm size.
1003 uint64_t SectionDataStart = (Is64Bit ? Header64Size : Header32Size)
1004 + LoadCommandsSize;
1005 uint64_t SectionDataSize = 0;
1006 uint64_t SectionDataFileSize = 0;
1007 uint64_t VMSize = 0;
1008 for (MCAssembler::const_iterator it = Asm.begin(),
1009 ie = Asm.end(); it != ie; ++it) {
1010 const MCSectionData &SD = *it;
1011 uint64_t Address = Layout.getSectionAddress(&SD);
1012 uint64_t Size = Layout.getSectionSize(&SD);
1013 uint64_t FileSize = Layout.getSectionFileSize(&SD);
1015 VMSize = std::max(VMSize, Address + Size);
1017 if (Asm.getBackend().isVirtualSection(SD.getSection()))
1018 continue;
1020 SectionDataSize = std::max(SectionDataSize, Address + Size);
1021 SectionDataFileSize = std::max(SectionDataFileSize, Address + FileSize);
1024 // The section data is padded to 4 bytes.
1026 // FIXME: Is this machine dependent?
1027 unsigned SectionDataPadding = OffsetToAlignment(SectionDataFileSize, 4);
1028 SectionDataFileSize += SectionDataPadding;
1030 // Write the prolog, starting with the header and load command...
1031 WriteHeader(NumLoadCommands, LoadCommandsSize,
1032 Asm.getSubsectionsViaSymbols());
1033 WriteSegmentLoadCommand(NumSections, VMSize,
1034 SectionDataStart, SectionDataSize);
1036 // ... and then the section headers.
1037 uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize;
1038 for (MCAssembler::const_iterator it = Asm.begin(),
1039 ie = Asm.end(); it != ie; ++it) {
1040 std::vector<MachRelocationEntry> &Relocs = Relocations[it];
1041 unsigned NumRelocs = Relocs.size();
1042 uint64_t SectionStart = SectionDataStart + Layout.getSectionAddress(it);
1043 WriteSection(Asm, Layout, *it, SectionStart, RelocTableEnd, NumRelocs);
1044 RelocTableEnd += NumRelocs * RelocationInfoSize;
1047 // Write the symbol table load command, if used.
1048 if (NumSymbols) {
1049 unsigned FirstLocalSymbol = 0;
1050 unsigned NumLocalSymbols = LocalSymbolData.size();
1051 unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols;
1052 unsigned NumExternalSymbols = ExternalSymbolData.size();
1053 unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols;
1054 unsigned NumUndefinedSymbols = UndefinedSymbolData.size();
1055 unsigned NumIndirectSymbols = Asm.indirect_symbol_size();
1056 unsigned NumSymTabSymbols =
1057 NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols;
1058 uint64_t IndirectSymbolSize = NumIndirectSymbols * 4;
1059 uint64_t IndirectSymbolOffset = 0;
1061 // If used, the indirect symbols are written after the section data.
1062 if (NumIndirectSymbols)
1063 IndirectSymbolOffset = RelocTableEnd;
1065 // The symbol table is written after the indirect symbol data.
1066 uint64_t SymbolTableOffset = RelocTableEnd + IndirectSymbolSize;
1068 // The string table is written after symbol table.
1069 uint64_t StringTableOffset =
1070 SymbolTableOffset + NumSymTabSymbols * (Is64Bit ? Nlist64Size :
1071 Nlist32Size);
1072 WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols,
1073 StringTableOffset, StringTable.size());
1075 WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols,
1076 FirstExternalSymbol, NumExternalSymbols,
1077 FirstUndefinedSymbol, NumUndefinedSymbols,
1078 IndirectSymbolOffset, NumIndirectSymbols);
1081 // Write the actual section data.
1082 for (MCAssembler::const_iterator it = Asm.begin(),
1083 ie = Asm.end(); it != ie; ++it)
1084 Asm.WriteSectionData(it, Layout, Writer);
1086 // Write the extra padding.
1087 WriteZeros(SectionDataPadding);
1089 // Write the relocation entries.
1090 for (MCAssembler::const_iterator it = Asm.begin(),
1091 ie = Asm.end(); it != ie; ++it) {
1092 // Write the section relocation entries, in reverse order to match 'as'
1093 // (approximately, the exact algorithm is more complicated than this).
1094 std::vector<MachRelocationEntry> &Relocs = Relocations[it];
1095 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1096 Write32(Relocs[e - i - 1].Word0);
1097 Write32(Relocs[e - i - 1].Word1);
1101 // Write the symbol table data, if used.
1102 if (NumSymbols) {
1103 // Write the indirect symbol entries.
1104 for (MCAssembler::const_indirect_symbol_iterator
1105 it = Asm.indirect_symbol_begin(),
1106 ie = Asm.indirect_symbol_end(); it != ie; ++it) {
1107 // Indirect symbols in the non lazy symbol pointer section have some
1108 // special handling.
1109 const MCSectionMachO &Section =
1110 static_cast<const MCSectionMachO&>(it->SectionData->getSection());
1111 if (Section.getType() == MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) {
1112 // If this symbol is defined and internal, mark it as such.
1113 if (it->Symbol->isDefined() &&
1114 !Asm.getSymbolData(*it->Symbol).isExternal()) {
1115 uint32_t Flags = ISF_Local;
1116 if (it->Symbol->isAbsolute())
1117 Flags |= ISF_Absolute;
1118 Write32(Flags);
1119 continue;
1123 Write32(Asm.getSymbolData(*it->Symbol).getIndex());
1126 // FIXME: Check that offsets match computed ones.
1128 // Write the symbol table entries.
1129 for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
1130 WriteNlist(LocalSymbolData[i], Layout);
1131 for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
1132 WriteNlist(ExternalSymbolData[i], Layout);
1133 for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
1134 WriteNlist(UndefinedSymbolData[i], Layout);
1136 // Write the string table.
1137 OS << StringTable.str();
1144 MachObjectWriter::MachObjectWriter(raw_ostream &OS,
1145 bool Is64Bit,
1146 bool IsLittleEndian)
1147 : MCObjectWriter(OS, IsLittleEndian)
1149 Impl = new MachObjectWriterImpl(this, Is64Bit);
1152 MachObjectWriter::~MachObjectWriter() {
1153 delete (MachObjectWriterImpl*) Impl;
1156 void MachObjectWriter::ExecutePostLayoutBinding(MCAssembler &Asm) {
1157 ((MachObjectWriterImpl*) Impl)->ExecutePostLayoutBinding(Asm);
1160 void MachObjectWriter::RecordRelocation(const MCAssembler &Asm,
1161 const MCAsmLayout &Layout,
1162 const MCFragment *Fragment,
1163 const MCAsmFixup &Fixup, MCValue Target,
1164 uint64_t &FixedValue) {
1165 ((MachObjectWriterImpl*) Impl)->RecordRelocation(Asm, Layout, Fragment, Fixup,
1166 Target, FixedValue);
1169 void MachObjectWriter::WriteObject(const MCAssembler &Asm,
1170 const MCAsmLayout &Layout) {
1171 ((MachObjectWriterImpl*) Impl)->WriteObject(Asm, Layout);