SCCP doesn't actually preserve the CFG. It will delete and insert terminator
[llvm.git] / lib / Transforms / Scalar / MemCpyOptimizer.cpp
blob0d3c5c7bdc985bcc29fb421b7ecba750ee1063a5
1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "memcpyopt"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/GlobalVariable.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/GetElementPtrTypeIterator.h"
28 #include "llvm/Support/IRBuilder.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Target/TargetData.h"
31 #include <list>
32 using namespace llvm;
34 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
35 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
36 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
37 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
39 static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
40 bool &VariableIdxFound, const TargetData &TD){
41 // Skip over the first indices.
42 gep_type_iterator GTI = gep_type_begin(GEP);
43 for (unsigned i = 1; i != Idx; ++i, ++GTI)
44 /*skip along*/;
46 // Compute the offset implied by the rest of the indices.
47 int64_t Offset = 0;
48 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
49 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
50 if (OpC == 0)
51 return VariableIdxFound = true;
52 if (OpC->isZero()) continue; // No offset.
54 // Handle struct indices, which add their field offset to the pointer.
55 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
56 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
57 continue;
60 // Otherwise, we have a sequential type like an array or vector. Multiply
61 // the index by the ElementSize.
62 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
63 Offset += Size*OpC->getSExtValue();
66 return Offset;
69 /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
70 /// constant offset, and return that constant offset. For example, Ptr1 might
71 /// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
72 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
73 const TargetData &TD) {
74 Ptr1 = Ptr1->stripPointerCasts();
75 Ptr2 = Ptr2->stripPointerCasts();
76 GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
77 GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
79 bool VariableIdxFound = false;
81 // If one pointer is a GEP and the other isn't, then see if the GEP is a
82 // constant offset from the base, as in "P" and "gep P, 1".
83 if (GEP1 && GEP2 == 0 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
84 Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD);
85 return !VariableIdxFound;
88 if (GEP2 && GEP1 == 0 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
89 Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD);
90 return !VariableIdxFound;
93 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
94 // base. After that base, they may have some number of common (and
95 // potentially variable) indices. After that they handle some constant
96 // offset, which determines their offset from each other. At this point, we
97 // handle no other case.
98 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
99 return false;
101 // Skip any common indices and track the GEP types.
102 unsigned Idx = 1;
103 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
104 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
105 break;
107 int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
108 int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
109 if (VariableIdxFound) return false;
111 Offset = Offset2-Offset1;
112 return true;
116 /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
117 /// This allows us to analyze stores like:
118 /// store 0 -> P+1
119 /// store 0 -> P+0
120 /// store 0 -> P+3
121 /// store 0 -> P+2
122 /// which sometimes happens with stores to arrays of structs etc. When we see
123 /// the first store, we make a range [1, 2). The second store extends the range
124 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
125 /// two ranges into [0, 3) which is memset'able.
126 namespace {
127 struct MemsetRange {
128 // Start/End - A semi range that describes the span that this range covers.
129 // The range is closed at the start and open at the end: [Start, End).
130 int64_t Start, End;
132 /// StartPtr - The getelementptr instruction that points to the start of the
133 /// range.
134 Value *StartPtr;
136 /// Alignment - The known alignment of the first store.
137 unsigned Alignment;
139 /// TheStores - The actual stores that make up this range.
140 SmallVector<Instruction*, 16> TheStores;
142 bool isProfitableToUseMemset(const TargetData &TD) const;
145 } // end anon namespace
147 bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
148 // If we found more than 8 stores to merge or 64 bytes, use memset.
149 if (TheStores.size() >= 8 || End-Start >= 64) return true;
151 // If there is nothing to merge, don't do anything.
152 if (TheStores.size() < 2) return false;
154 // If any of the stores are a memset, then it is always good to extend the
155 // memset.
156 for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
157 if (!isa<StoreInst>(TheStores[i]))
158 return true;
160 // Assume that the code generator is capable of merging pairs of stores
161 // together if it wants to.
162 if (TheStores.size() == 2) return false;
164 // If we have fewer than 8 stores, it can still be worthwhile to do this.
165 // For example, merging 4 i8 stores into an i32 store is useful almost always.
166 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
167 // memset will be split into 2 32-bit stores anyway) and doing so can
168 // pessimize the llvm optimizer.
170 // Since we don't have perfect knowledge here, make some assumptions: assume
171 // the maximum GPR width is the same size as the pointer size and assume that
172 // this width can be stored. If so, check to see whether we will end up
173 // actually reducing the number of stores used.
174 unsigned Bytes = unsigned(End-Start);
175 unsigned NumPointerStores = Bytes/TD.getPointerSize();
177 // Assume the remaining bytes if any are done a byte at a time.
178 unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
180 // If we will reduce the # stores (according to this heuristic), do the
181 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
182 // etc.
183 return TheStores.size() > NumPointerStores+NumByteStores;
187 namespace {
188 class MemsetRanges {
189 /// Ranges - A sorted list of the memset ranges. We use std::list here
190 /// because each element is relatively large and expensive to copy.
191 std::list<MemsetRange> Ranges;
192 typedef std::list<MemsetRange>::iterator range_iterator;
193 const TargetData &TD;
194 public:
195 MemsetRanges(const TargetData &td) : TD(td) {}
197 typedef std::list<MemsetRange>::const_iterator const_iterator;
198 const_iterator begin() const { return Ranges.begin(); }
199 const_iterator end() const { return Ranges.end(); }
200 bool empty() const { return Ranges.empty(); }
202 void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
203 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
204 addStore(OffsetFromFirst, SI);
205 else
206 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
209 void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
210 int64_t StoreSize = TD.getTypeStoreSize(SI->getOperand(0)->getType());
212 addRange(OffsetFromFirst, StoreSize,
213 SI->getPointerOperand(), SI->getAlignment(), SI);
216 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
217 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
218 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
221 void addRange(int64_t Start, int64_t Size, Value *Ptr,
222 unsigned Alignment, Instruction *Inst);
226 } // end anon namespace
229 /// addRange - Add a new store to the MemsetRanges data structure. This adds a
230 /// new range for the specified store at the specified offset, merging into
231 /// existing ranges as appropriate.
233 /// Do a linear search of the ranges to see if this can be joined and/or to
234 /// find the insertion point in the list. We keep the ranges sorted for
235 /// simplicity here. This is a linear search of a linked list, which is ugly,
236 /// however the number of ranges is limited, so this won't get crazy slow.
237 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
238 unsigned Alignment, Instruction *Inst) {
239 int64_t End = Start+Size;
240 range_iterator I = Ranges.begin(), E = Ranges.end();
242 while (I != E && Start > I->End)
243 ++I;
245 // We now know that I == E, in which case we didn't find anything to merge
246 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
247 // to insert a new range. Handle this now.
248 if (I == E || End < I->Start) {
249 MemsetRange &R = *Ranges.insert(I, MemsetRange());
250 R.Start = Start;
251 R.End = End;
252 R.StartPtr = Ptr;
253 R.Alignment = Alignment;
254 R.TheStores.push_back(Inst);
255 return;
258 // This store overlaps with I, add it.
259 I->TheStores.push_back(Inst);
261 // At this point, we may have an interval that completely contains our store.
262 // If so, just add it to the interval and return.
263 if (I->Start <= Start && I->End >= End)
264 return;
266 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
267 // but is not entirely contained within the range.
269 // See if the range extends the start of the range. In this case, it couldn't
270 // possibly cause it to join the prior range, because otherwise we would have
271 // stopped on *it*.
272 if (Start < I->Start) {
273 I->Start = Start;
274 I->StartPtr = Ptr;
275 I->Alignment = Alignment;
278 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
279 // is in or right at the end of I), and that End >= I->Start. Extend I out to
280 // End.
281 if (End > I->End) {
282 I->End = End;
283 range_iterator NextI = I;
284 while (++NextI != E && End >= NextI->Start) {
285 // Merge the range in.
286 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
287 if (NextI->End > I->End)
288 I->End = NextI->End;
289 Ranges.erase(NextI);
290 NextI = I;
295 //===----------------------------------------------------------------------===//
296 // MemCpyOpt Pass
297 //===----------------------------------------------------------------------===//
299 namespace {
300 class MemCpyOpt : public FunctionPass {
301 MemoryDependenceAnalysis *MD;
302 const TargetData *TD;
303 public:
304 static char ID; // Pass identification, replacement for typeid
305 MemCpyOpt() : FunctionPass(ID) {
306 initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
307 MD = 0;
310 bool runOnFunction(Function &F);
312 private:
313 // This transformation requires dominator postdominator info
314 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
315 AU.setPreservesCFG();
316 AU.addRequired<DominatorTree>();
317 AU.addRequired<MemoryDependenceAnalysis>();
318 AU.addRequired<AliasAnalysis>();
319 AU.addPreserved<AliasAnalysis>();
320 AU.addPreserved<MemoryDependenceAnalysis>();
323 // Helper fuctions
324 bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
325 bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
326 bool processMemCpy(MemCpyInst *M);
327 bool processMemMove(MemMoveInst *M);
328 bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
329 uint64_t cpyLen, CallInst *C);
330 bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
331 uint64_t MSize);
332 bool processByValArgument(CallSite CS, unsigned ArgNo);
333 Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
334 Value *ByteVal);
336 bool iterateOnFunction(Function &F);
339 char MemCpyOpt::ID = 0;
342 // createMemCpyOptPass - The public interface to this file...
343 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
345 INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
346 false, false)
347 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
348 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
349 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
350 INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
351 false, false)
353 /// tryMergingIntoMemset - When scanning forward over instructions, we look for
354 /// some other patterns to fold away. In particular, this looks for stores to
355 /// neighboring locations of memory. If it sees enough consequtive ones, it
356 /// attempts to merge them together into a memcpy/memset.
357 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
358 Value *StartPtr, Value *ByteVal) {
359 if (TD == 0) return 0;
361 // Okay, so we now have a single store that can be splatable. Scan to find
362 // all subsequent stores of the same value to offset from the same pointer.
363 // Join these together into ranges, so we can decide whether contiguous blocks
364 // are stored.
365 MemsetRanges Ranges(*TD);
367 BasicBlock::iterator BI = StartInst;
368 for (++BI; !isa<TerminatorInst>(BI); ++BI) {
369 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
370 // If the instruction is readnone, ignore it, otherwise bail out. We
371 // don't even allow readonly here because we don't want something like:
372 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
373 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
374 break;
375 continue;
378 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
379 // If this is a store, see if we can merge it in.
380 if (NextStore->isVolatile()) break;
382 // Check to see if this stored value is of the same byte-splattable value.
383 if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
384 break;
386 // Check to see if this store is to a constant offset from the start ptr.
387 int64_t Offset;
388 if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
389 Offset, *TD))
390 break;
392 Ranges.addStore(Offset, NextStore);
393 } else {
394 MemSetInst *MSI = cast<MemSetInst>(BI);
396 if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
397 !isa<ConstantInt>(MSI->getLength()))
398 break;
400 // Check to see if this store is to a constant offset from the start ptr.
401 int64_t Offset;
402 if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *TD))
403 break;
405 Ranges.addMemSet(Offset, MSI);
409 // If we have no ranges, then we just had a single store with nothing that
410 // could be merged in. This is a very common case of course.
411 if (Ranges.empty())
412 return 0;
414 // If we had at least one store that could be merged in, add the starting
415 // store as well. We try to avoid this unless there is at least something
416 // interesting as a small compile-time optimization.
417 Ranges.addInst(0, StartInst);
419 // If we create any memsets, we put it right before the first instruction that
420 // isn't part of the memset block. This ensure that the memset is dominated
421 // by any addressing instruction needed by the start of the block.
422 IRBuilder<> Builder(BI);
424 // Now that we have full information about ranges, loop over the ranges and
425 // emit memset's for anything big enough to be worthwhile.
426 Instruction *AMemSet = 0;
427 for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
428 I != E; ++I) {
429 const MemsetRange &Range = *I;
431 if (Range.TheStores.size() == 1) continue;
433 // If it is profitable to lower this range to memset, do so now.
434 if (!Range.isProfitableToUseMemset(*TD))
435 continue;
437 // Otherwise, we do want to transform this! Create a new memset.
438 // Get the starting pointer of the block.
439 StartPtr = Range.StartPtr;
441 // Determine alignment
442 unsigned Alignment = Range.Alignment;
443 if (Alignment == 0) {
444 const Type *EltType =
445 cast<PointerType>(StartPtr->getType())->getElementType();
446 Alignment = TD->getABITypeAlignment(EltType);
449 AMemSet =
450 Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
452 DEBUG(dbgs() << "Replace stores:\n";
453 for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
454 dbgs() << *Range.TheStores[i] << '\n';
455 dbgs() << "With: " << *AMemSet << '\n');
457 // Zap all the stores.
458 for (SmallVector<Instruction*, 16>::const_iterator
459 SI = Range.TheStores.begin(),
460 SE = Range.TheStores.end(); SI != SE; ++SI) {
461 MD->removeInstruction(*SI);
462 (*SI)->eraseFromParent();
464 ++NumMemSetInfer;
467 return AMemSet;
471 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
472 if (SI->isVolatile()) return false;
474 if (TD == 0) return false;
476 // Detect cases where we're performing call slot forwarding, but
477 // happen to be using a load-store pair to implement it, rather than
478 // a memcpy.
479 if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
480 if (!LI->isVolatile() && LI->hasOneUse()) {
481 MemDepResult dep = MD->getDependency(LI);
482 CallInst *C = 0;
483 if (dep.isClobber() && !isa<MemCpyInst>(dep.getInst()))
484 C = dyn_cast<CallInst>(dep.getInst());
486 if (C) {
487 bool changed = performCallSlotOptzn(LI,
488 SI->getPointerOperand()->stripPointerCasts(),
489 LI->getPointerOperand()->stripPointerCasts(),
490 TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
491 if (changed) {
492 MD->removeInstruction(SI);
493 SI->eraseFromParent();
494 MD->removeInstruction(LI);
495 LI->eraseFromParent();
496 ++NumMemCpyInstr;
497 return true;
503 // There are two cases that are interesting for this code to handle: memcpy
504 // and memset. Right now we only handle memset.
506 // Ensure that the value being stored is something that can be memset'able a
507 // byte at a time like "0" or "-1" or any width, as well as things like
508 // 0xA0A0A0A0 and 0.0.
509 if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
510 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
511 ByteVal)) {
512 BBI = I; // Don't invalidate iterator.
513 return true;
516 return false;
519 bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
520 // See if there is another memset or store neighboring this memset which
521 // allows us to widen out the memset to do a single larger store.
522 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
523 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
524 MSI->getValue())) {
525 BBI = I; // Don't invalidate iterator.
526 return true;
528 return false;
532 /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
533 /// and checks for the possibility of a call slot optimization by having
534 /// the call write its result directly into the destination of the memcpy.
535 bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
536 Value *cpyDest, Value *cpySrc,
537 uint64_t cpyLen, CallInst *C) {
538 // The general transformation to keep in mind is
540 // call @func(..., src, ...)
541 // memcpy(dest, src, ...)
543 // ->
545 // memcpy(dest, src, ...)
546 // call @func(..., dest, ...)
548 // Since moving the memcpy is technically awkward, we additionally check that
549 // src only holds uninitialized values at the moment of the call, meaning that
550 // the memcpy can be discarded rather than moved.
552 // Deliberately get the source and destination with bitcasts stripped away,
553 // because we'll need to do type comparisons based on the underlying type.
554 CallSite CS(C);
556 // Require that src be an alloca. This simplifies the reasoning considerably.
557 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
558 if (!srcAlloca)
559 return false;
561 // Check that all of src is copied to dest.
562 if (TD == 0) return false;
564 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
565 if (!srcArraySize)
566 return false;
568 uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
569 srcArraySize->getZExtValue();
571 if (cpyLen < srcSize)
572 return false;
574 // Check that accessing the first srcSize bytes of dest will not cause a
575 // trap. Otherwise the transform is invalid since it might cause a trap
576 // to occur earlier than it otherwise would.
577 if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
578 // The destination is an alloca. Check it is larger than srcSize.
579 ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
580 if (!destArraySize)
581 return false;
583 uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
584 destArraySize->getZExtValue();
586 if (destSize < srcSize)
587 return false;
588 } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
589 // If the destination is an sret parameter then only accesses that are
590 // outside of the returned struct type can trap.
591 if (!A->hasStructRetAttr())
592 return false;
594 const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
595 uint64_t destSize = TD->getTypeAllocSize(StructTy);
597 if (destSize < srcSize)
598 return false;
599 } else {
600 return false;
603 // Check that src is not accessed except via the call and the memcpy. This
604 // guarantees that it holds only undefined values when passed in (so the final
605 // memcpy can be dropped), that it is not read or written between the call and
606 // the memcpy, and that writing beyond the end of it is undefined.
607 SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
608 srcAlloca->use_end());
609 while (!srcUseList.empty()) {
610 User *UI = srcUseList.pop_back_val();
612 if (isa<BitCastInst>(UI)) {
613 for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
614 I != E; ++I)
615 srcUseList.push_back(*I);
616 } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
617 if (G->hasAllZeroIndices())
618 for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
619 I != E; ++I)
620 srcUseList.push_back(*I);
621 else
622 return false;
623 } else if (UI != C && UI != cpy) {
624 return false;
628 // Since we're changing the parameter to the callsite, we need to make sure
629 // that what would be the new parameter dominates the callsite.
630 DominatorTree &DT = getAnalysis<DominatorTree>();
631 if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
632 if (!DT.dominates(cpyDestInst, C))
633 return false;
635 // In addition to knowing that the call does not access src in some
636 // unexpected manner, for example via a global, which we deduce from
637 // the use analysis, we also need to know that it does not sneakily
638 // access dest. We rely on AA to figure this out for us.
639 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
640 if (AA.getModRefInfo(C, cpyDest, srcSize) != AliasAnalysis::NoModRef)
641 return false;
643 // All the checks have passed, so do the transformation.
644 bool changedArgument = false;
645 for (unsigned i = 0; i < CS.arg_size(); ++i)
646 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
647 if (cpySrc->getType() != cpyDest->getType())
648 cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
649 cpyDest->getName(), C);
650 changedArgument = true;
651 if (CS.getArgument(i)->getType() == cpyDest->getType())
652 CS.setArgument(i, cpyDest);
653 else
654 CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
655 CS.getArgument(i)->getType(), cpyDest->getName(), C));
658 if (!changedArgument)
659 return false;
661 // Drop any cached information about the call, because we may have changed
662 // its dependence information by changing its parameter.
663 MD->removeInstruction(C);
665 // Remove the memcpy.
666 MD->removeInstruction(cpy);
667 ++NumMemCpyInstr;
669 return true;
672 /// processMemCpyMemCpyDependence - We've found that the (upward scanning)
673 /// memory dependence of memcpy 'M' is the memcpy 'MDep'. Try to simplify M to
674 /// copy from MDep's input if we can. MSize is the size of M's copy.
675 ///
676 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
677 uint64_t MSize) {
678 // We can only transforms memcpy's where the dest of one is the source of the
679 // other.
680 if (M->getSource() != MDep->getDest() || MDep->isVolatile())
681 return false;
683 // If dep instruction is reading from our current input, then it is a noop
684 // transfer and substituting the input won't change this instruction. Just
685 // ignore the input and let someone else zap MDep. This handles cases like:
686 // memcpy(a <- a)
687 // memcpy(b <- a)
688 if (M->getSource() == MDep->getSource())
689 return false;
691 // Second, the length of the memcpy's must be the same, or the preceeding one
692 // must be larger than the following one.
693 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
694 if (!C1) return false;
696 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
698 // Verify that the copied-from memory doesn't change in between the two
699 // transfers. For example, in:
700 // memcpy(a <- b)
701 // *b = 42;
702 // memcpy(c <- a)
703 // It would be invalid to transform the second memcpy into memcpy(c <- b).
705 // TODO: If the code between M and MDep is transparent to the destination "c",
706 // then we could still perform the xform by moving M up to the first memcpy.
708 // NOTE: This is conservative, it will stop on any read from the source loc,
709 // not just the defining memcpy.
710 MemDepResult SourceDep =
711 MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
712 false, M, M->getParent());
713 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
714 return false;
716 // If the dest of the second might alias the source of the first, then the
717 // source and dest might overlap. We still want to eliminate the intermediate
718 // value, but we have to generate a memmove instead of memcpy.
719 bool UseMemMove = false;
720 if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
721 UseMemMove = true;
723 // If all checks passed, then we can transform M.
725 // Make sure to use the lesser of the alignment of the source and the dest
726 // since we're changing where we're reading from, but don't want to increase
727 // the alignment past what can be read from or written to.
728 // TODO: Is this worth it if we're creating a less aligned memcpy? For
729 // example we could be moving from movaps -> movq on x86.
730 unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
732 IRBuilder<> Builder(M);
733 if (UseMemMove)
734 Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
735 Align, M->isVolatile());
736 else
737 Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
738 Align, M->isVolatile());
740 // Remove the instruction we're replacing.
741 MD->removeInstruction(M);
742 M->eraseFromParent();
743 ++NumMemCpyInstr;
744 return true;
748 /// processMemCpy - perform simplification of memcpy's. If we have memcpy A
749 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
750 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
751 /// circumstances). This allows later passes to remove the first memcpy
752 /// altogether.
753 bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
754 // We can only optimize statically-sized memcpy's that are non-volatile.
755 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
756 if (CopySize == 0 || M->isVolatile()) return false;
758 // If the source and destination of the memcpy are the same, then zap it.
759 if (M->getSource() == M->getDest()) {
760 MD->removeInstruction(M);
761 M->eraseFromParent();
762 return false;
765 // If copying from a constant, try to turn the memcpy into a memset.
766 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
767 if (GV->isConstant() && GV->hasDefinitiveInitializer())
768 if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
769 IRBuilder<> Builder(M);
770 Builder.CreateMemSet(M->getRawDest(), ByteVal, CopySize,
771 M->getAlignment(), false);
772 MD->removeInstruction(M);
773 M->eraseFromParent();
774 ++NumCpyToSet;
775 return true;
778 // The are two possible optimizations we can do for memcpy:
779 // a) memcpy-memcpy xform which exposes redundance for DSE.
780 // b) call-memcpy xform for return slot optimization.
781 MemDepResult DepInfo = MD->getDependency(M);
782 if (!DepInfo.isClobber())
783 return false;
785 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()))
786 return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
788 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
789 if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
790 CopySize->getZExtValue(), C)) {
791 MD->removeInstruction(M);
792 M->eraseFromParent();
793 return true;
797 return false;
800 /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
801 /// are guaranteed not to alias.
802 bool MemCpyOpt::processMemMove(MemMoveInst *M) {
803 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
805 // See if the pointers alias.
806 if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
807 return false;
809 DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
811 // If not, then we know we can transform this.
812 Module *Mod = M->getParent()->getParent()->getParent();
813 const Type *ArgTys[3] = { M->getRawDest()->getType(),
814 M->getRawSource()->getType(),
815 M->getLength()->getType() };
816 M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
817 ArgTys, 3));
819 // MemDep may have over conservative information about this instruction, just
820 // conservatively flush it from the cache.
821 MD->removeInstruction(M);
823 ++NumMoveToCpy;
824 return true;
827 /// processByValArgument - This is called on every byval argument in call sites.
828 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
829 if (TD == 0) return false;
831 // Find out what feeds this byval argument.
832 Value *ByValArg = CS.getArgument(ArgNo);
833 const Type *ByValTy =cast<PointerType>(ByValArg->getType())->getElementType();
834 uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
835 MemDepResult DepInfo =
836 MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
837 true, CS.getInstruction(),
838 CS.getInstruction()->getParent());
839 if (!DepInfo.isClobber())
840 return false;
842 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
843 // a memcpy, see if we can byval from the source of the memcpy instead of the
844 // result.
845 MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
846 if (MDep == 0 || MDep->isVolatile() ||
847 ByValArg->stripPointerCasts() != MDep->getDest())
848 return false;
850 // The length of the memcpy must be larger or equal to the size of the byval.
851 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
852 if (C1 == 0 || C1->getValue().getZExtValue() < ByValSize)
853 return false;
855 // Get the alignment of the byval. If it is greater than the memcpy, then we
856 // can't do the substitution. If the call doesn't specify the alignment, then
857 // it is some target specific value that we can't know.
858 unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
859 if (ByValAlign == 0 || MDep->getAlignment() < ByValAlign)
860 return false;
862 // Verify that the copied-from memory doesn't change in between the memcpy and
863 // the byval call.
864 // memcpy(a <- b)
865 // *b = 42;
866 // foo(*a)
867 // It would be invalid to transform the second memcpy into foo(*b).
869 // NOTE: This is conservative, it will stop on any read from the source loc,
870 // not just the defining memcpy.
871 MemDepResult SourceDep =
872 MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
873 false, CS.getInstruction(), MDep->getParent());
874 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
875 return false;
877 Value *TmpCast = MDep->getSource();
878 if (MDep->getSource()->getType() != ByValArg->getType())
879 TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
880 "tmpcast", CS.getInstruction());
882 DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
883 << " " << *MDep << "\n"
884 << " " << *CS.getInstruction() << "\n");
886 // Otherwise we're good! Update the byval argument.
887 CS.setArgument(ArgNo, TmpCast);
888 ++NumMemCpyInstr;
889 return true;
892 /// iterateOnFunction - Executes one iteration of MemCpyOpt.
893 bool MemCpyOpt::iterateOnFunction(Function &F) {
894 bool MadeChange = false;
896 // Walk all instruction in the function.
897 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
898 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
899 // Avoid invalidating the iterator.
900 Instruction *I = BI++;
902 bool RepeatInstruction = false;
904 if (StoreInst *SI = dyn_cast<StoreInst>(I))
905 MadeChange |= processStore(SI, BI);
906 else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
907 RepeatInstruction = processMemSet(M, BI);
908 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
909 RepeatInstruction = processMemCpy(M);
910 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
911 RepeatInstruction = processMemMove(M);
912 else if (CallSite CS = (Value*)I) {
913 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
914 if (CS.paramHasAttr(i+1, Attribute::ByVal))
915 MadeChange |= processByValArgument(CS, i);
918 // Reprocess the instruction if desired.
919 if (RepeatInstruction) {
920 if (BI != BB->begin()) --BI;
921 MadeChange = true;
926 return MadeChange;
929 // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
930 // function.
932 bool MemCpyOpt::runOnFunction(Function &F) {
933 bool MadeChange = false;
934 MD = &getAnalysis<MemoryDependenceAnalysis>();
935 TD = getAnalysisIfAvailable<TargetData>();
936 while (1) {
937 if (!iterateOnFunction(F))
938 break;
939 MadeChange = true;
942 MD = 0;
943 return MadeChange;