SCCP doesn't actually preserve the CFG. It will delete and insert terminator
[llvm.git] / lib / Transforms / InstCombine / InstCombineSimplifyDemanded.cpp
blob48184c0bd28f02e579248604983c542f1291c874
1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
13 //===----------------------------------------------------------------------===//
16 #include "InstCombine.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/IntrinsicInst.h"
20 using namespace llvm;
23 /// ShrinkDemandedConstant - Check to see if the specified operand of the
24 /// specified instruction is a constant integer. If so, check to see if there
25 /// are any bits set in the constant that are not demanded. If so, shrink the
26 /// constant and return true.
27 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
28 APInt Demanded) {
29 assert(I && "No instruction?");
30 assert(OpNo < I->getNumOperands() && "Operand index too large");
32 // If the operand is not a constant integer, nothing to do.
33 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
34 if (!OpC) return false;
36 // If there are no bits set that aren't demanded, nothing to do.
37 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
38 if ((~Demanded & OpC->getValue()) == 0)
39 return false;
41 // This instruction is producing bits that are not demanded. Shrink the RHS.
42 Demanded &= OpC->getValue();
43 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
44 return true;
49 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
50 /// SimplifyDemandedBits knows about. See if the instruction has any
51 /// properties that allow us to simplify its operands.
52 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
53 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
54 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
55 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
57 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
58 KnownZero, KnownOne, 0);
59 if (V == 0) return false;
60 if (V == &Inst) return true;
61 ReplaceInstUsesWith(Inst, V);
62 return true;
65 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
66 /// specified instruction operand if possible, updating it in place. It returns
67 /// true if it made any change and false otherwise.
68 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
69 APInt &KnownZero, APInt &KnownOne,
70 unsigned Depth) {
71 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
72 KnownZero, KnownOne, Depth);
73 if (NewVal == 0) return false;
74 U = NewVal;
75 return true;
79 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
80 /// value based on the demanded bits. When this function is called, it is known
81 /// that only the bits set in DemandedMask of the result of V are ever used
82 /// downstream. Consequently, depending on the mask and V, it may be possible
83 /// to replace V with a constant or one of its operands. In such cases, this
84 /// function does the replacement and returns true. In all other cases, it
85 /// returns false after analyzing the expression and setting KnownOne and known
86 /// to be one in the expression. KnownZero contains all the bits that are known
87 /// to be zero in the expression. These are provided to potentially allow the
88 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
89 /// the expression. KnownOne and KnownZero always follow the invariant that
90 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
91 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
92 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
93 /// and KnownOne must all be the same.
94 ///
95 /// This returns null if it did not change anything and it permits no
96 /// simplification. This returns V itself if it did some simplification of V's
97 /// operands based on the information about what bits are demanded. This returns
98 /// some other non-null value if it found out that V is equal to another value
99 /// in the context where the specified bits are demanded, but not for all users.
100 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
101 APInt &KnownZero, APInt &KnownOne,
102 unsigned Depth) {
103 assert(V != 0 && "Null pointer of Value???");
104 assert(Depth <= 6 && "Limit Search Depth");
105 uint32_t BitWidth = DemandedMask.getBitWidth();
106 const Type *VTy = V->getType();
107 assert((TD || !VTy->isPointerTy()) &&
108 "SimplifyDemandedBits needs to know bit widths!");
109 assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
110 (!VTy->isIntOrIntVectorTy() ||
111 VTy->getScalarSizeInBits() == BitWidth) &&
112 KnownZero.getBitWidth() == BitWidth &&
113 KnownOne.getBitWidth() == BitWidth &&
114 "Value *V, DemandedMask, KnownZero and KnownOne "
115 "must have same BitWidth");
116 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
117 // We know all of the bits for a constant!
118 KnownOne = CI->getValue() & DemandedMask;
119 KnownZero = ~KnownOne & DemandedMask;
120 return 0;
122 if (isa<ConstantPointerNull>(V)) {
123 // We know all of the bits for a constant!
124 KnownOne.clearAllBits();
125 KnownZero = DemandedMask;
126 return 0;
129 KnownZero.clearAllBits();
130 KnownOne.clearAllBits();
131 if (DemandedMask == 0) { // Not demanding any bits from V.
132 if (isa<UndefValue>(V))
133 return 0;
134 return UndefValue::get(VTy);
137 if (Depth == 6) // Limit search depth.
138 return 0;
140 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
141 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
143 Instruction *I = dyn_cast<Instruction>(V);
144 if (!I) {
145 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
146 return 0; // Only analyze instructions.
149 // If there are multiple uses of this value and we aren't at the root, then
150 // we can't do any simplifications of the operands, because DemandedMask
151 // only reflects the bits demanded by *one* of the users.
152 if (Depth != 0 && !I->hasOneUse()) {
153 // Despite the fact that we can't simplify this instruction in all User's
154 // context, we can at least compute the knownzero/knownone bits, and we can
155 // do simplifications that apply to *just* the one user if we know that
156 // this instruction has a simpler value in that context.
157 if (I->getOpcode() == Instruction::And) {
158 // If either the LHS or the RHS are Zero, the result is zero.
159 ComputeMaskedBits(I->getOperand(1), DemandedMask,
160 RHSKnownZero, RHSKnownOne, Depth+1);
161 ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
162 LHSKnownZero, LHSKnownOne, Depth+1);
164 // If all of the demanded bits are known 1 on one side, return the other.
165 // These bits cannot contribute to the result of the 'and' in this
166 // context.
167 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
168 (DemandedMask & ~LHSKnownZero))
169 return I->getOperand(0);
170 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
171 (DemandedMask & ~RHSKnownZero))
172 return I->getOperand(1);
174 // If all of the demanded bits in the inputs are known zeros, return zero.
175 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
176 return Constant::getNullValue(VTy);
178 } else if (I->getOpcode() == Instruction::Or) {
179 // We can simplify (X|Y) -> X or Y in the user's context if we know that
180 // only bits from X or Y are demanded.
182 // If either the LHS or the RHS are One, the result is One.
183 ComputeMaskedBits(I->getOperand(1), DemandedMask,
184 RHSKnownZero, RHSKnownOne, Depth+1);
185 ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
186 LHSKnownZero, LHSKnownOne, Depth+1);
188 // If all of the demanded bits are known zero on one side, return the
189 // other. These bits cannot contribute to the result of the 'or' in this
190 // context.
191 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
192 (DemandedMask & ~LHSKnownOne))
193 return I->getOperand(0);
194 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
195 (DemandedMask & ~RHSKnownOne))
196 return I->getOperand(1);
198 // If all of the potentially set bits on one side are known to be set on
199 // the other side, just use the 'other' side.
200 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
201 (DemandedMask & (~RHSKnownZero)))
202 return I->getOperand(0);
203 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
204 (DemandedMask & (~LHSKnownZero)))
205 return I->getOperand(1);
208 // Compute the KnownZero/KnownOne bits to simplify things downstream.
209 ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
210 return 0;
213 // If this is the root being simplified, allow it to have multiple uses,
214 // just set the DemandedMask to all bits so that we can try to simplify the
215 // operands. This allows visitTruncInst (for example) to simplify the
216 // operand of a trunc without duplicating all the logic below.
217 if (Depth == 0 && !V->hasOneUse())
218 DemandedMask = APInt::getAllOnesValue(BitWidth);
220 switch (I->getOpcode()) {
221 default:
222 ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
223 break;
224 case Instruction::And:
225 // If either the LHS or the RHS are Zero, the result is zero.
226 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
227 RHSKnownZero, RHSKnownOne, Depth+1) ||
228 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
229 LHSKnownZero, LHSKnownOne, Depth+1))
230 return I;
231 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
232 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
234 // If all of the demanded bits are known 1 on one side, return the other.
235 // These bits cannot contribute to the result of the 'and'.
236 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
237 (DemandedMask & ~LHSKnownZero))
238 return I->getOperand(0);
239 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
240 (DemandedMask & ~RHSKnownZero))
241 return I->getOperand(1);
243 // If all of the demanded bits in the inputs are known zeros, return zero.
244 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
245 return Constant::getNullValue(VTy);
247 // If the RHS is a constant, see if we can simplify it.
248 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
249 return I;
251 // Output known-1 bits are only known if set in both the LHS & RHS.
252 KnownOne = RHSKnownOne & LHSKnownOne;
253 // Output known-0 are known to be clear if zero in either the LHS | RHS.
254 KnownZero = RHSKnownZero | LHSKnownZero;
255 break;
256 case Instruction::Or:
257 // If either the LHS or the RHS are One, the result is One.
258 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
259 RHSKnownZero, RHSKnownOne, Depth+1) ||
260 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
261 LHSKnownZero, LHSKnownOne, Depth+1))
262 return I;
263 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
264 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
266 // If all of the demanded bits are known zero on one side, return the other.
267 // These bits cannot contribute to the result of the 'or'.
268 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
269 (DemandedMask & ~LHSKnownOne))
270 return I->getOperand(0);
271 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
272 (DemandedMask & ~RHSKnownOne))
273 return I->getOperand(1);
275 // If all of the potentially set bits on one side are known to be set on
276 // the other side, just use the 'other' side.
277 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
278 (DemandedMask & (~RHSKnownZero)))
279 return I->getOperand(0);
280 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
281 (DemandedMask & (~LHSKnownZero)))
282 return I->getOperand(1);
284 // If the RHS is a constant, see if we can simplify it.
285 if (ShrinkDemandedConstant(I, 1, DemandedMask))
286 return I;
288 // Output known-0 bits are only known if clear in both the LHS & RHS.
289 KnownZero = RHSKnownZero & LHSKnownZero;
290 // Output known-1 are known to be set if set in either the LHS | RHS.
291 KnownOne = RHSKnownOne | LHSKnownOne;
292 break;
293 case Instruction::Xor: {
294 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
295 RHSKnownZero, RHSKnownOne, Depth+1) ||
296 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
297 LHSKnownZero, LHSKnownOne, Depth+1))
298 return I;
299 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
300 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
302 // If all of the demanded bits are known zero on one side, return the other.
303 // These bits cannot contribute to the result of the 'xor'.
304 if ((DemandedMask & RHSKnownZero) == DemandedMask)
305 return I->getOperand(0);
306 if ((DemandedMask & LHSKnownZero) == DemandedMask)
307 return I->getOperand(1);
309 // If all of the demanded bits are known to be zero on one side or the
310 // other, turn this into an *inclusive* or.
311 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
312 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
313 Instruction *Or =
314 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
315 I->getName());
316 return InsertNewInstBefore(Or, *I);
319 // If all of the demanded bits on one side are known, and all of the set
320 // bits on that side are also known to be set on the other side, turn this
321 // into an AND, as we know the bits will be cleared.
322 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
323 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
324 // all known
325 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
326 Constant *AndC = Constant::getIntegerValue(VTy,
327 ~RHSKnownOne & DemandedMask);
328 Instruction *And =
329 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
330 return InsertNewInstBefore(And, *I);
334 // If the RHS is a constant, see if we can simplify it.
335 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
336 if (ShrinkDemandedConstant(I, 1, DemandedMask))
337 return I;
339 // If our LHS is an 'and' and if it has one use, and if any of the bits we
340 // are flipping are known to be set, then the xor is just resetting those
341 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
342 // simplifying both of them.
343 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
344 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
345 isa<ConstantInt>(I->getOperand(1)) &&
346 isa<ConstantInt>(LHSInst->getOperand(1)) &&
347 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
348 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
349 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
350 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
352 Constant *AndC =
353 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
354 Instruction *NewAnd =
355 BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
356 InsertNewInstBefore(NewAnd, *I);
358 Constant *XorC =
359 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
360 Instruction *NewXor =
361 BinaryOperator::CreateXor(NewAnd, XorC, "tmp");
362 return InsertNewInstBefore(NewXor, *I);
365 // Output known-0 bits are known if clear or set in both the LHS & RHS.
366 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
367 // Output known-1 are known to be set if set in only one of the LHS, RHS.
368 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
369 break;
371 case Instruction::Select:
372 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
373 RHSKnownZero, RHSKnownOne, Depth+1) ||
374 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
375 LHSKnownZero, LHSKnownOne, Depth+1))
376 return I;
377 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
378 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
380 // If the operands are constants, see if we can simplify them.
381 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
382 ShrinkDemandedConstant(I, 2, DemandedMask))
383 return I;
385 // Only known if known in both the LHS and RHS.
386 KnownOne = RHSKnownOne & LHSKnownOne;
387 KnownZero = RHSKnownZero & LHSKnownZero;
388 break;
389 case Instruction::Trunc: {
390 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
391 DemandedMask = DemandedMask.zext(truncBf);
392 KnownZero = KnownZero.zext(truncBf);
393 KnownOne = KnownOne.zext(truncBf);
394 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
395 KnownZero, KnownOne, Depth+1))
396 return I;
397 DemandedMask = DemandedMask.trunc(BitWidth);
398 KnownZero = KnownZero.trunc(BitWidth);
399 KnownOne = KnownOne.trunc(BitWidth);
400 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
401 break;
403 case Instruction::BitCast:
404 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
405 return 0; // vector->int or fp->int?
407 if (const VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
408 if (const VectorType *SrcVTy =
409 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
410 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
411 // Don't touch a bitcast between vectors of different element counts.
412 return 0;
413 } else
414 // Don't touch a scalar-to-vector bitcast.
415 return 0;
416 } else if (I->getOperand(0)->getType()->isVectorTy())
417 // Don't touch a vector-to-scalar bitcast.
418 return 0;
420 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
421 KnownZero, KnownOne, Depth+1))
422 return I;
423 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
424 break;
425 case Instruction::ZExt: {
426 // Compute the bits in the result that are not present in the input.
427 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
429 DemandedMask = DemandedMask.trunc(SrcBitWidth);
430 KnownZero = KnownZero.trunc(SrcBitWidth);
431 KnownOne = KnownOne.trunc(SrcBitWidth);
432 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
433 KnownZero, KnownOne, Depth+1))
434 return I;
435 DemandedMask = DemandedMask.zext(BitWidth);
436 KnownZero = KnownZero.zext(BitWidth);
437 KnownOne = KnownOne.zext(BitWidth);
438 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
439 // The top bits are known to be zero.
440 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
441 break;
443 case Instruction::SExt: {
444 // Compute the bits in the result that are not present in the input.
445 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
447 APInt InputDemandedBits = DemandedMask &
448 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
450 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
451 // If any of the sign extended bits are demanded, we know that the sign
452 // bit is demanded.
453 if ((NewBits & DemandedMask) != 0)
454 InputDemandedBits.setBit(SrcBitWidth-1);
456 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
457 KnownZero = KnownZero.trunc(SrcBitWidth);
458 KnownOne = KnownOne.trunc(SrcBitWidth);
459 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
460 KnownZero, KnownOne, Depth+1))
461 return I;
462 InputDemandedBits = InputDemandedBits.zext(BitWidth);
463 KnownZero = KnownZero.zext(BitWidth);
464 KnownOne = KnownOne.zext(BitWidth);
465 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
467 // If the sign bit of the input is known set or clear, then we know the
468 // top bits of the result.
470 // If the input sign bit is known zero, or if the NewBits are not demanded
471 // convert this into a zero extension.
472 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
473 // Convert to ZExt cast
474 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
475 return InsertNewInstBefore(NewCast, *I);
476 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set
477 KnownOne |= NewBits;
479 break;
481 case Instruction::Add: {
482 // Figure out what the input bits are. If the top bits of the and result
483 // are not demanded, then the add doesn't demand them from its input
484 // either.
485 unsigned NLZ = DemandedMask.countLeadingZeros();
487 // If there is a constant on the RHS, there are a variety of xformations
488 // we can do.
489 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
490 // If null, this should be simplified elsewhere. Some of the xforms here
491 // won't work if the RHS is zero.
492 if (RHS->isZero())
493 break;
495 // If the top bit of the output is demanded, demand everything from the
496 // input. Otherwise, we demand all the input bits except NLZ top bits.
497 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
499 // Find information about known zero/one bits in the input.
500 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
501 LHSKnownZero, LHSKnownOne, Depth+1))
502 return I;
504 // If the RHS of the add has bits set that can't affect the input, reduce
505 // the constant.
506 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
507 return I;
509 // Avoid excess work.
510 if (LHSKnownZero == 0 && LHSKnownOne == 0)
511 break;
513 // Turn it into OR if input bits are zero.
514 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
515 Instruction *Or =
516 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
517 I->getName());
518 return InsertNewInstBefore(Or, *I);
521 // We can say something about the output known-zero and known-one bits,
522 // depending on potential carries from the input constant and the
523 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
524 // bits set and the RHS constant is 0x01001, then we know we have a known
525 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
527 // To compute this, we first compute the potential carry bits. These are
528 // the bits which may be modified. I'm not aware of a better way to do
529 // this scan.
530 const APInt &RHSVal = RHS->getValue();
531 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
533 // Now that we know which bits have carries, compute the known-1/0 sets.
535 // Bits are known one if they are known zero in one operand and one in the
536 // other, and there is no input carry.
537 KnownOne = ((LHSKnownZero & RHSVal) |
538 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
540 // Bits are known zero if they are known zero in both operands and there
541 // is no input carry.
542 KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
543 } else {
544 // If the high-bits of this ADD are not demanded, then it does not demand
545 // the high bits of its LHS or RHS.
546 if (DemandedMask[BitWidth-1] == 0) {
547 // Right fill the mask of bits for this ADD to demand the most
548 // significant bit and all those below it.
549 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
550 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
551 LHSKnownZero, LHSKnownOne, Depth+1) ||
552 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
553 LHSKnownZero, LHSKnownOne, Depth+1))
554 return I;
557 break;
559 case Instruction::Sub:
560 // If the high-bits of this SUB are not demanded, then it does not demand
561 // the high bits of its LHS or RHS.
562 if (DemandedMask[BitWidth-1] == 0) {
563 // Right fill the mask of bits for this SUB to demand the most
564 // significant bit and all those below it.
565 uint32_t NLZ = DemandedMask.countLeadingZeros();
566 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
567 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
568 LHSKnownZero, LHSKnownOne, Depth+1) ||
569 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
570 LHSKnownZero, LHSKnownOne, Depth+1))
571 return I;
573 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
574 // the known zeros and ones.
575 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
576 break;
577 case Instruction::Shl:
578 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
579 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
580 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
581 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
582 KnownZero, KnownOne, Depth+1))
583 return I;
584 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
585 KnownZero <<= ShiftAmt;
586 KnownOne <<= ShiftAmt;
587 // low bits known zero.
588 if (ShiftAmt)
589 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
591 break;
592 case Instruction::LShr:
593 // For a logical shift right
594 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
595 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
597 // Unsigned shift right.
598 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
599 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
600 KnownZero, KnownOne, Depth+1))
601 return I;
602 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
603 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
604 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
605 if (ShiftAmt) {
606 // Compute the new bits that are at the top now.
607 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
608 KnownZero |= HighBits; // high bits known zero.
611 break;
612 case Instruction::AShr:
613 // If this is an arithmetic shift right and only the low-bit is set, we can
614 // always convert this into a logical shr, even if the shift amount is
615 // variable. The low bit of the shift cannot be an input sign bit unless
616 // the shift amount is >= the size of the datatype, which is undefined.
617 if (DemandedMask == 1) {
618 // Perform the logical shift right.
619 Instruction *NewVal = BinaryOperator::CreateLShr(
620 I->getOperand(0), I->getOperand(1), I->getName());
621 return InsertNewInstBefore(NewVal, *I);
624 // If the sign bit is the only bit demanded by this ashr, then there is no
625 // need to do it, the shift doesn't change the high bit.
626 if (DemandedMask.isSignBit())
627 return I->getOperand(0);
629 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
630 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
632 // Signed shift right.
633 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
634 // If any of the "high bits" are demanded, we should set the sign bit as
635 // demanded.
636 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
637 DemandedMaskIn.setBit(BitWidth-1);
638 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
639 KnownZero, KnownOne, Depth+1))
640 return I;
641 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
642 // Compute the new bits that are at the top now.
643 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
644 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
645 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
647 // Handle the sign bits.
648 APInt SignBit(APInt::getSignBit(BitWidth));
649 // Adjust to where it is now in the mask.
650 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
652 // If the input sign bit is known to be zero, or if none of the top bits
653 // are demanded, turn this into an unsigned shift right.
654 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
655 (HighBits & ~DemandedMask) == HighBits) {
656 // Perform the logical shift right.
657 Instruction *NewVal = BinaryOperator::CreateLShr(
658 I->getOperand(0), SA, I->getName());
659 return InsertNewInstBefore(NewVal, *I);
660 } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
661 KnownOne |= HighBits;
664 break;
665 case Instruction::SRem:
666 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
667 APInt RA = Rem->getValue().abs();
668 if (RA.isPowerOf2()) {
669 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
670 return I->getOperand(0);
672 APInt LowBits = RA - 1;
673 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
674 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
675 LHSKnownZero, LHSKnownOne, Depth+1))
676 return I;
678 // The low bits of LHS are unchanged by the srem.
679 KnownZero = LHSKnownZero & LowBits;
680 KnownOne = LHSKnownOne & LowBits;
682 // If LHS is non-negative or has all low bits zero, then the upper bits
683 // are all zero.
684 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
685 KnownZero |= ~LowBits;
687 // If LHS is negative and not all low bits are zero, then the upper bits
688 // are all one.
689 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
690 KnownOne |= ~LowBits;
692 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
695 break;
696 case Instruction::URem: {
697 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
698 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
699 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
700 KnownZero2, KnownOne2, Depth+1) ||
701 SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
702 KnownZero2, KnownOne2, Depth+1))
703 return I;
705 unsigned Leaders = KnownZero2.countLeadingOnes();
706 Leaders = std::max(Leaders,
707 KnownZero2.countLeadingOnes());
708 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
709 break;
711 case Instruction::Call:
712 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
713 switch (II->getIntrinsicID()) {
714 default: break;
715 case Intrinsic::bswap: {
716 // If the only bits demanded come from one byte of the bswap result,
717 // just shift the input byte into position to eliminate the bswap.
718 unsigned NLZ = DemandedMask.countLeadingZeros();
719 unsigned NTZ = DemandedMask.countTrailingZeros();
721 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
722 // we need all the bits down to bit 8. Likewise, round NLZ. If we
723 // have 14 leading zeros, round to 8.
724 NLZ &= ~7;
725 NTZ &= ~7;
726 // If we need exactly one byte, we can do this transformation.
727 if (BitWidth-NLZ-NTZ == 8) {
728 unsigned ResultBit = NTZ;
729 unsigned InputBit = BitWidth-NTZ-8;
731 // Replace this with either a left or right shift to get the byte into
732 // the right place.
733 Instruction *NewVal;
734 if (InputBit > ResultBit)
735 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
736 ConstantInt::get(I->getType(), InputBit-ResultBit));
737 else
738 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
739 ConstantInt::get(I->getType(), ResultBit-InputBit));
740 NewVal->takeName(I);
741 return InsertNewInstBefore(NewVal, *I);
744 // TODO: Could compute known zero/one bits based on the input.
745 break;
749 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
750 break;
753 // If the client is only demanding bits that we know, return the known
754 // constant.
755 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
756 return Constant::getIntegerValue(VTy, KnownOne);
757 return 0;
761 /// SimplifyDemandedVectorElts - The specified value produces a vector with
762 /// any number of elements. DemandedElts contains the set of elements that are
763 /// actually used by the caller. This method analyzes which elements of the
764 /// operand are undef and returns that information in UndefElts.
766 /// If the information about demanded elements can be used to simplify the
767 /// operation, the operation is simplified, then the resultant value is
768 /// returned. This returns null if no change was made.
769 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
770 APInt &UndefElts,
771 unsigned Depth) {
772 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
773 APInt EltMask(APInt::getAllOnesValue(VWidth));
774 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
776 if (isa<UndefValue>(V)) {
777 // If the entire vector is undefined, just return this info.
778 UndefElts = EltMask;
779 return 0;
782 if (DemandedElts == 0) { // If nothing is demanded, provide undef.
783 UndefElts = EltMask;
784 return UndefValue::get(V->getType());
787 UndefElts = 0;
788 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
789 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
790 Constant *Undef = UndefValue::get(EltTy);
792 std::vector<Constant*> Elts;
793 for (unsigned i = 0; i != VWidth; ++i)
794 if (!DemandedElts[i]) { // If not demanded, set to undef.
795 Elts.push_back(Undef);
796 UndefElts.setBit(i);
797 } else if (isa<UndefValue>(CV->getOperand(i))) { // Already undef.
798 Elts.push_back(Undef);
799 UndefElts.setBit(i);
800 } else { // Otherwise, defined.
801 Elts.push_back(CV->getOperand(i));
804 // If we changed the constant, return it.
805 Constant *NewCP = ConstantVector::get(Elts);
806 return NewCP != CV ? NewCP : 0;
809 if (isa<ConstantAggregateZero>(V)) {
810 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
811 // set to undef.
813 // Check if this is identity. If so, return 0 since we are not simplifying
814 // anything.
815 if (DemandedElts.isAllOnesValue())
816 return 0;
818 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
819 Constant *Zero = Constant::getNullValue(EltTy);
820 Constant *Undef = UndefValue::get(EltTy);
821 std::vector<Constant*> Elts;
822 for (unsigned i = 0; i != VWidth; ++i) {
823 Constant *Elt = DemandedElts[i] ? Zero : Undef;
824 Elts.push_back(Elt);
826 UndefElts = DemandedElts ^ EltMask;
827 return ConstantVector::get(Elts);
830 // Limit search depth.
831 if (Depth == 10)
832 return 0;
834 // If multiple users are using the root value, procede with
835 // simplification conservatively assuming that all elements
836 // are needed.
837 if (!V->hasOneUse()) {
838 // Quit if we find multiple users of a non-root value though.
839 // They'll be handled when it's their turn to be visited by
840 // the main instcombine process.
841 if (Depth != 0)
842 // TODO: Just compute the UndefElts information recursively.
843 return 0;
845 // Conservatively assume that all elements are needed.
846 DemandedElts = EltMask;
849 Instruction *I = dyn_cast<Instruction>(V);
850 if (!I) return 0; // Only analyze instructions.
852 bool MadeChange = false;
853 APInt UndefElts2(VWidth, 0);
854 Value *TmpV;
855 switch (I->getOpcode()) {
856 default: break;
858 case Instruction::InsertElement: {
859 // If this is a variable index, we don't know which element it overwrites.
860 // demand exactly the same input as we produce.
861 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
862 if (Idx == 0) {
863 // Note that we can't propagate undef elt info, because we don't know
864 // which elt is getting updated.
865 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
866 UndefElts2, Depth+1);
867 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
868 break;
871 // If this is inserting an element that isn't demanded, remove this
872 // insertelement.
873 unsigned IdxNo = Idx->getZExtValue();
874 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
875 Worklist.Add(I);
876 return I->getOperand(0);
879 // Otherwise, the element inserted overwrites whatever was there, so the
880 // input demanded set is simpler than the output set.
881 APInt DemandedElts2 = DemandedElts;
882 DemandedElts2.clearBit(IdxNo);
883 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
884 UndefElts, Depth+1);
885 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
887 // The inserted element is defined.
888 UndefElts.clearBit(IdxNo);
889 break;
891 case Instruction::ShuffleVector: {
892 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
893 uint64_t LHSVWidth =
894 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
895 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
896 for (unsigned i = 0; i < VWidth; i++) {
897 if (DemandedElts[i]) {
898 unsigned MaskVal = Shuffle->getMaskValue(i);
899 if (MaskVal != -1u) {
900 assert(MaskVal < LHSVWidth * 2 &&
901 "shufflevector mask index out of range!");
902 if (MaskVal < LHSVWidth)
903 LeftDemanded.setBit(MaskVal);
904 else
905 RightDemanded.setBit(MaskVal - LHSVWidth);
910 APInt UndefElts4(LHSVWidth, 0);
911 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
912 UndefElts4, Depth+1);
913 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
915 APInt UndefElts3(LHSVWidth, 0);
916 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
917 UndefElts3, Depth+1);
918 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
920 bool NewUndefElts = false;
921 for (unsigned i = 0; i < VWidth; i++) {
922 unsigned MaskVal = Shuffle->getMaskValue(i);
923 if (MaskVal == -1u) {
924 UndefElts.setBit(i);
925 } else if (MaskVal < LHSVWidth) {
926 if (UndefElts4[MaskVal]) {
927 NewUndefElts = true;
928 UndefElts.setBit(i);
930 } else {
931 if (UndefElts3[MaskVal - LHSVWidth]) {
932 NewUndefElts = true;
933 UndefElts.setBit(i);
938 if (NewUndefElts) {
939 // Add additional discovered undefs.
940 std::vector<Constant*> Elts;
941 for (unsigned i = 0; i < VWidth; ++i) {
942 if (UndefElts[i])
943 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
944 else
945 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
946 Shuffle->getMaskValue(i)));
948 I->setOperand(2, ConstantVector::get(Elts));
949 MadeChange = true;
951 break;
953 case Instruction::BitCast: {
954 // Vector->vector casts only.
955 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
956 if (!VTy) break;
957 unsigned InVWidth = VTy->getNumElements();
958 APInt InputDemandedElts(InVWidth, 0);
959 unsigned Ratio;
961 if (VWidth == InVWidth) {
962 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
963 // elements as are demanded of us.
964 Ratio = 1;
965 InputDemandedElts = DemandedElts;
966 } else if (VWidth > InVWidth) {
967 // Untested so far.
968 break;
970 // If there are more elements in the result than there are in the source,
971 // then an input element is live if any of the corresponding output
972 // elements are live.
973 Ratio = VWidth/InVWidth;
974 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
975 if (DemandedElts[OutIdx])
976 InputDemandedElts.setBit(OutIdx/Ratio);
978 } else {
979 // Untested so far.
980 break;
982 // If there are more elements in the source than there are in the result,
983 // then an input element is live if the corresponding output element is
984 // live.
985 Ratio = InVWidth/VWidth;
986 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
987 if (DemandedElts[InIdx/Ratio])
988 InputDemandedElts.setBit(InIdx);
991 // div/rem demand all inputs, because they don't want divide by zero.
992 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
993 UndefElts2, Depth+1);
994 if (TmpV) {
995 I->setOperand(0, TmpV);
996 MadeChange = true;
999 UndefElts = UndefElts2;
1000 if (VWidth > InVWidth) {
1001 llvm_unreachable("Unimp");
1002 // If there are more elements in the result than there are in the source,
1003 // then an output element is undef if the corresponding input element is
1004 // undef.
1005 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1006 if (UndefElts2[OutIdx/Ratio])
1007 UndefElts.setBit(OutIdx);
1008 } else if (VWidth < InVWidth) {
1009 llvm_unreachable("Unimp");
1010 // If there are more elements in the source than there are in the result,
1011 // then a result element is undef if all of the corresponding input
1012 // elements are undef.
1013 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1014 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1015 if (!UndefElts2[InIdx]) // Not undef?
1016 UndefElts.clearBit(InIdx/Ratio); // Clear undef bit.
1018 break;
1020 case Instruction::And:
1021 case Instruction::Or:
1022 case Instruction::Xor:
1023 case Instruction::Add:
1024 case Instruction::Sub:
1025 case Instruction::Mul:
1026 // div/rem demand all inputs, because they don't want divide by zero.
1027 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1028 UndefElts, Depth+1);
1029 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1030 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1031 UndefElts2, Depth+1);
1032 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1034 // Output elements are undefined if both are undefined. Consider things
1035 // like undef&0. The result is known zero, not undef.
1036 UndefElts &= UndefElts2;
1037 break;
1039 case Instruction::Call: {
1040 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1041 if (!II) break;
1042 switch (II->getIntrinsicID()) {
1043 default: break;
1045 // Binary vector operations that work column-wise. A dest element is a
1046 // function of the corresponding input elements from the two inputs.
1047 case Intrinsic::x86_sse_sub_ss:
1048 case Intrinsic::x86_sse_mul_ss:
1049 case Intrinsic::x86_sse_min_ss:
1050 case Intrinsic::x86_sse_max_ss:
1051 case Intrinsic::x86_sse2_sub_sd:
1052 case Intrinsic::x86_sse2_mul_sd:
1053 case Intrinsic::x86_sse2_min_sd:
1054 case Intrinsic::x86_sse2_max_sd:
1055 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1056 UndefElts, Depth+1);
1057 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1058 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1059 UndefElts2, Depth+1);
1060 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1062 // If only the low elt is demanded and this is a scalarizable intrinsic,
1063 // scalarize it now.
1064 if (DemandedElts == 1) {
1065 switch (II->getIntrinsicID()) {
1066 default: break;
1067 case Intrinsic::x86_sse_sub_ss:
1068 case Intrinsic::x86_sse_mul_ss:
1069 case Intrinsic::x86_sse2_sub_sd:
1070 case Intrinsic::x86_sse2_mul_sd:
1071 // TODO: Lower MIN/MAX/ABS/etc
1072 Value *LHS = II->getArgOperand(0);
1073 Value *RHS = II->getArgOperand(1);
1074 // Extract the element as scalars.
1075 LHS = InsertNewInstBefore(ExtractElementInst::Create(LHS,
1076 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1077 RHS = InsertNewInstBefore(ExtractElementInst::Create(RHS,
1078 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1080 switch (II->getIntrinsicID()) {
1081 default: llvm_unreachable("Case stmts out of sync!");
1082 case Intrinsic::x86_sse_sub_ss:
1083 case Intrinsic::x86_sse2_sub_sd:
1084 TmpV = InsertNewInstBefore(BinaryOperator::CreateFSub(LHS, RHS,
1085 II->getName()), *II);
1086 break;
1087 case Intrinsic::x86_sse_mul_ss:
1088 case Intrinsic::x86_sse2_mul_sd:
1089 TmpV = InsertNewInstBefore(BinaryOperator::CreateFMul(LHS, RHS,
1090 II->getName()), *II);
1091 break;
1094 Instruction *New =
1095 InsertElementInst::Create(
1096 UndefValue::get(II->getType()), TmpV,
1097 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1098 II->getName());
1099 InsertNewInstBefore(New, *II);
1100 return New;
1104 // Output elements are undefined if both are undefined. Consider things
1105 // like undef&0. The result is known zero, not undef.
1106 UndefElts &= UndefElts2;
1107 break;
1109 break;
1112 return MadeChange ? I : 0;