1 //===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Represent a range of possible values that may occur when the program is run
11 // for an integral value. This keeps track of a lower and upper bound for the
12 // constant, which MAY wrap around the end of the numeric range. To do this, it
13 // keeps track of a [lower, upper) bound, which specifies an interval just like
14 // STL iterators. When used with boolean values, the following are important
15 // ranges (other integral ranges use min/max values for special range values):
17 // [F, F) = {} = Empty set
20 // [T, T) = {F, T} = Full set
22 //===----------------------------------------------------------------------===//
24 #include "llvm/Constants.h"
25 #include "llvm/Support/ConstantRange.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Instructions.h"
31 /// Initialize a full (the default) or empty set for the specified type.
33 ConstantRange::ConstantRange(uint32_t BitWidth
, bool Full
) {
35 Lower
= Upper
= APInt::getMaxValue(BitWidth
);
37 Lower
= Upper
= APInt::getMinValue(BitWidth
);
40 /// Initialize a range to hold the single specified value.
42 ConstantRange::ConstantRange(const APInt
&V
) : Lower(V
), Upper(V
+ 1) {}
44 ConstantRange::ConstantRange(const APInt
&L
, const APInt
&U
) :
46 assert(L
.getBitWidth() == U
.getBitWidth() &&
47 "ConstantRange with unequal bit widths");
48 assert((L
!= U
|| (L
.isMaxValue() || L
.isMinValue())) &&
49 "Lower == Upper, but they aren't min or max value!");
52 ConstantRange
ConstantRange::makeICmpRegion(unsigned Pred
,
53 const ConstantRange
&CR
) {
57 uint32_t W
= CR
.getBitWidth();
59 default: assert(!"Invalid ICmp predicate to makeICmpRegion()");
60 case ICmpInst::ICMP_EQ
:
62 case ICmpInst::ICMP_NE
:
63 if (CR
.isSingleElement())
64 return ConstantRange(CR
.getUpper(), CR
.getLower());
65 return ConstantRange(W
);
66 case ICmpInst::ICMP_ULT
: {
67 APInt
UMax(CR
.getUnsignedMax());
68 if (UMax
.isMinValue())
69 return ConstantRange(W
, /* empty */ false);
70 return ConstantRange(APInt::getMinValue(W
), UMax
);
72 case ICmpInst::ICMP_SLT
: {
73 APInt
SMax(CR
.getSignedMax());
74 if (SMax
.isMinSignedValue())
75 return ConstantRange(W
, /* empty */ false);
76 return ConstantRange(APInt::getSignedMinValue(W
), SMax
);
78 case ICmpInst::ICMP_ULE
: {
79 APInt
UMax(CR
.getUnsignedMax());
80 if (UMax
.isMaxValue())
81 return ConstantRange(W
);
82 return ConstantRange(APInt::getMinValue(W
), UMax
+ 1);
84 case ICmpInst::ICMP_SLE
: {
85 APInt
SMax(CR
.getSignedMax());
86 if (SMax
.isMaxSignedValue())
87 return ConstantRange(W
);
88 return ConstantRange(APInt::getSignedMinValue(W
), SMax
+ 1);
90 case ICmpInst::ICMP_UGT
: {
91 APInt
UMin(CR
.getUnsignedMin());
92 if (UMin
.isMaxValue())
93 return ConstantRange(W
, /* empty */ false);
94 return ConstantRange(UMin
+ 1, APInt::getNullValue(W
));
96 case ICmpInst::ICMP_SGT
: {
97 APInt
SMin(CR
.getSignedMin());
98 if (SMin
.isMaxSignedValue())
99 return ConstantRange(W
, /* empty */ false);
100 return ConstantRange(SMin
+ 1, APInt::getSignedMinValue(W
));
102 case ICmpInst::ICMP_UGE
: {
103 APInt
UMin(CR
.getUnsignedMin());
104 if (UMin
.isMinValue())
105 return ConstantRange(W
);
106 return ConstantRange(UMin
, APInt::getNullValue(W
));
108 case ICmpInst::ICMP_SGE
: {
109 APInt
SMin(CR
.getSignedMin());
110 if (SMin
.isMinSignedValue())
111 return ConstantRange(W
);
112 return ConstantRange(SMin
, APInt::getSignedMinValue(W
));
117 /// isFullSet - Return true if this set contains all of the elements possible
118 /// for this data-type
119 bool ConstantRange::isFullSet() const {
120 return Lower
== Upper
&& Lower
.isMaxValue();
123 /// isEmptySet - Return true if this set contains no members.
125 bool ConstantRange::isEmptySet() const {
126 return Lower
== Upper
&& Lower
.isMinValue();
129 /// isWrappedSet - Return true if this set wraps around the top of the range,
130 /// for example: [100, 8)
132 bool ConstantRange::isWrappedSet() const {
133 return Lower
.ugt(Upper
);
136 /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of
137 /// its bitwidth, for example: i8 [120, 140).
139 bool ConstantRange::isSignWrappedSet() const {
140 return contains(APInt::getSignedMaxValue(getBitWidth())) &&
141 contains(APInt::getSignedMinValue(getBitWidth()));
144 /// getSetSize - Return the number of elements in this set.
146 APInt
ConstantRange::getSetSize() const {
148 return APInt(getBitWidth(), 0);
149 if (getBitWidth() == 1) {
150 if (Lower
!= Upper
) // One of T or F in the set...
152 return APInt(2, 2); // Must be full set...
155 // Simply subtract the bounds...
156 return Upper
- Lower
;
159 /// getUnsignedMax - Return the largest unsigned value contained in the
162 APInt
ConstantRange::getUnsignedMax() const {
163 if (isFullSet() || isWrappedSet())
164 return APInt::getMaxValue(getBitWidth());
166 return getUpper() - 1;
169 /// getUnsignedMin - Return the smallest unsigned value contained in the
172 APInt
ConstantRange::getUnsignedMin() const {
173 if (isFullSet() || (isWrappedSet() && getUpper() != 0))
174 return APInt::getMinValue(getBitWidth());
179 /// getSignedMax - Return the largest signed value contained in the
182 APInt
ConstantRange::getSignedMax() const {
183 APInt
SignedMax(APInt::getSignedMaxValue(getBitWidth()));
184 if (!isWrappedSet()) {
185 if (getLower().sle(getUpper() - 1))
186 return getUpper() - 1;
190 if (getLower().isNegative() == getUpper().isNegative())
193 return getUpper() - 1;
197 /// getSignedMin - Return the smallest signed value contained in the
200 APInt
ConstantRange::getSignedMin() const {
201 APInt
SignedMin(APInt::getSignedMinValue(getBitWidth()));
202 if (!isWrappedSet()) {
203 if (getLower().sle(getUpper() - 1))
208 if ((getUpper() - 1).slt(getLower())) {
209 if (getUpper() != SignedMin
)
219 /// contains - Return true if the specified value is in the set.
221 bool ConstantRange::contains(const APInt
&V
) const {
226 return Lower
.ule(V
) && V
.ult(Upper
);
228 return Lower
.ule(V
) || V
.ult(Upper
);
231 /// contains - Return true if the argument is a subset of this range.
232 /// Two equal sets contain each other. The empty set contained by all other
235 bool ConstantRange::contains(const ConstantRange
&Other
) const {
236 if (isFullSet() || Other
.isEmptySet()) return true;
237 if (isEmptySet() || Other
.isFullSet()) return false;
239 if (!isWrappedSet()) {
240 if (Other
.isWrappedSet())
243 return Lower
.ule(Other
.getLower()) && Other
.getUpper().ule(Upper
);
246 if (!Other
.isWrappedSet())
247 return Other
.getUpper().ule(Upper
) ||
248 Lower
.ule(Other
.getLower());
250 return Other
.getUpper().ule(Upper
) && Lower
.ule(Other
.getLower());
253 /// subtract - Subtract the specified constant from the endpoints of this
255 ConstantRange
ConstantRange::subtract(const APInt
&Val
) const {
256 assert(Val
.getBitWidth() == getBitWidth() && "Wrong bit width");
257 // If the set is empty or full, don't modify the endpoints.
260 return ConstantRange(Lower
- Val
, Upper
- Val
);
263 /// intersectWith - Return the range that results from the intersection of this
264 /// range with another range. The resultant range is guaranteed to include all
265 /// elements contained in both input ranges, and to have the smallest possible
266 /// set size that does so. Because there may be two intersections with the
267 /// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
268 ConstantRange
ConstantRange::intersectWith(const ConstantRange
&CR
) const {
269 assert(getBitWidth() == CR
.getBitWidth() &&
270 "ConstantRange types don't agree!");
272 // Handle common cases.
273 if ( isEmptySet() || CR
.isFullSet()) return *this;
274 if (CR
.isEmptySet() || isFullSet()) return CR
;
276 if (!isWrappedSet() && CR
.isWrappedSet())
277 return CR
.intersectWith(*this);
279 if (!isWrappedSet() && !CR
.isWrappedSet()) {
280 if (Lower
.ult(CR
.Lower
)) {
281 if (Upper
.ule(CR
.Lower
))
282 return ConstantRange(getBitWidth(), false);
284 if (Upper
.ult(CR
.Upper
))
285 return ConstantRange(CR
.Lower
, Upper
);
289 if (Upper
.ult(CR
.Upper
))
292 if (Lower
.ult(CR
.Upper
))
293 return ConstantRange(Lower
, CR
.Upper
);
295 return ConstantRange(getBitWidth(), false);
299 if (isWrappedSet() && !CR
.isWrappedSet()) {
300 if (CR
.Lower
.ult(Upper
)) {
301 if (CR
.Upper
.ult(Upper
))
304 if (CR
.Upper
.ult(Lower
))
305 return ConstantRange(CR
.Lower
, Upper
);
307 if (getSetSize().ult(CR
.getSetSize()))
311 } else if (CR
.Lower
.ult(Lower
)) {
312 if (CR
.Upper
.ule(Lower
))
313 return ConstantRange(getBitWidth(), false);
315 return ConstantRange(Lower
, CR
.Upper
);
320 if (CR
.Upper
.ult(Upper
)) {
321 if (CR
.Lower
.ult(Upper
)) {
322 if (getSetSize().ult(CR
.getSetSize()))
328 if (CR
.Lower
.ult(Lower
))
329 return ConstantRange(Lower
, CR
.Upper
);
332 } else if (CR
.Upper
.ult(Lower
)) {
333 if (CR
.Lower
.ult(Lower
))
336 return ConstantRange(CR
.Lower
, Upper
);
338 if (getSetSize().ult(CR
.getSetSize()))
345 /// unionWith - Return the range that results from the union of this range with
346 /// another range. The resultant range is guaranteed to include the elements of
347 /// both sets, but may contain more. For example, [3, 9) union [12,15) is
348 /// [3, 15), which includes 9, 10, and 11, which were not included in either
351 ConstantRange
ConstantRange::unionWith(const ConstantRange
&CR
) const {
352 assert(getBitWidth() == CR
.getBitWidth() &&
353 "ConstantRange types don't agree!");
355 if ( isFullSet() || CR
.isEmptySet()) return *this;
356 if (CR
.isFullSet() || isEmptySet()) return CR
;
358 if (!isWrappedSet() && CR
.isWrappedSet()) return CR
.unionWith(*this);
360 if (!isWrappedSet() && !CR
.isWrappedSet()) {
361 if (CR
.Upper
.ult(Lower
) || Upper
.ult(CR
.Lower
)) {
362 // If the two ranges are disjoint, find the smaller gap and bridge it.
363 APInt d1
= CR
.Lower
- Upper
, d2
= Lower
- CR
.Upper
;
365 return ConstantRange(Lower
, CR
.Upper
);
367 return ConstantRange(CR
.Lower
, Upper
);
370 APInt L
= Lower
, U
= Upper
;
373 if ((CR
.Upper
- 1).ugt(U
- 1))
376 if (L
== 0 && U
== 0)
377 return ConstantRange(getBitWidth());
379 return ConstantRange(L
, U
);
382 if (!CR
.isWrappedSet()) {
383 // ------U L----- and ------U L----- : this
385 if (CR
.Upper
.ule(Upper
) || CR
.Lower
.uge(Lower
))
388 // ------U L----- : this
390 if (CR
.Lower
.ule(Upper
) && Lower
.ule(CR
.Upper
))
391 return ConstantRange(getBitWidth());
393 // ----U L---- : this
396 if (Upper
.ule(CR
.Lower
) && CR
.Upper
.ule(Lower
)) {
397 APInt d1
= CR
.Lower
- Upper
, d2
= Lower
- CR
.Upper
;
399 return ConstantRange(Lower
, CR
.Upper
);
401 return ConstantRange(CR
.Lower
, Upper
);
404 // ----U L----- : this
406 if (Upper
.ult(CR
.Lower
) && Lower
.ult(CR
.Upper
))
407 return ConstantRange(CR
.Lower
, Upper
);
409 // ------U L---- : this
411 if (CR
.Lower
.ult(Upper
) && CR
.Upper
.ult(Lower
))
412 return ConstantRange(Lower
, CR
.Upper
);
415 assert(isWrappedSet() && CR
.isWrappedSet() &&
416 "ConstantRange::unionWith missed wrapped union unwrapped case");
418 // ------U L---- and ------U L---- : this
419 // -U L----------- and ------------U L : CR
420 if (CR
.Lower
.ule(Upper
) || Lower
.ule(CR
.Upper
))
421 return ConstantRange(getBitWidth());
423 APInt L
= Lower
, U
= Upper
;
429 return ConstantRange(L
, U
);
432 /// zeroExtend - Return a new range in the specified integer type, which must
433 /// be strictly larger than the current type. The returned range will
434 /// correspond to the possible range of values as if the source range had been
436 ConstantRange
ConstantRange::zeroExtend(uint32_t DstTySize
) const {
437 if (isEmptySet()) return ConstantRange(DstTySize
, /*isFullSet=*/false);
439 unsigned SrcTySize
= getBitWidth();
440 assert(SrcTySize
< DstTySize
&& "Not a value extension");
441 if (isFullSet() || isWrappedSet())
442 // Change into [0, 1 << src bit width)
443 return ConstantRange(APInt(DstTySize
,0), APInt(DstTySize
,1).shl(SrcTySize
));
445 return ConstantRange(Lower
.zext(DstTySize
), Upper
.zext(DstTySize
));
448 /// signExtend - Return a new range in the specified integer type, which must
449 /// be strictly larger than the current type. The returned range will
450 /// correspond to the possible range of values as if the source range had been
452 ConstantRange
ConstantRange::signExtend(uint32_t DstTySize
) const {
453 if (isEmptySet()) return ConstantRange(DstTySize
, /*isFullSet=*/false);
455 unsigned SrcTySize
= getBitWidth();
456 assert(SrcTySize
< DstTySize
&& "Not a value extension");
457 if (isFullSet() || isSignWrappedSet()) {
458 return ConstantRange(APInt::getHighBitsSet(DstTySize
,DstTySize
-SrcTySize
+1),
459 APInt::getLowBitsSet(DstTySize
, SrcTySize
-1) + 1);
462 return ConstantRange(Lower
.sext(DstTySize
), Upper
.sext(DstTySize
));
465 /// truncate - Return a new range in the specified integer type, which must be
466 /// strictly smaller than the current type. The returned range will
467 /// correspond to the possible range of values as if the source range had been
468 /// truncated to the specified type.
469 ConstantRange
ConstantRange::truncate(uint32_t DstTySize
) const {
470 unsigned SrcTySize
= getBitWidth();
471 assert(SrcTySize
> DstTySize
&& "Not a value truncation");
472 APInt
Size(APInt::getLowBitsSet(SrcTySize
, DstTySize
));
473 if (isFullSet() || getSetSize().ugt(Size
))
474 return ConstantRange(DstTySize
, /*isFullSet=*/true);
476 return ConstantRange(Lower
.trunc(DstTySize
), Upper
.trunc(DstTySize
));
479 /// zextOrTrunc - make this range have the bit width given by \p DstTySize. The
480 /// value is zero extended, truncated, or left alone to make it that width.
481 ConstantRange
ConstantRange::zextOrTrunc(uint32_t DstTySize
) const {
482 unsigned SrcTySize
= getBitWidth();
483 if (SrcTySize
> DstTySize
)
484 return truncate(DstTySize
);
485 else if (SrcTySize
< DstTySize
)
486 return zeroExtend(DstTySize
);
491 /// sextOrTrunc - make this range have the bit width given by \p DstTySize. The
492 /// value is sign extended, truncated, or left alone to make it that width.
493 ConstantRange
ConstantRange::sextOrTrunc(uint32_t DstTySize
) const {
494 unsigned SrcTySize
= getBitWidth();
495 if (SrcTySize
> DstTySize
)
496 return truncate(DstTySize
);
497 else if (SrcTySize
< DstTySize
)
498 return signExtend(DstTySize
);
504 ConstantRange::add(const ConstantRange
&Other
) const {
505 if (isEmptySet() || Other
.isEmptySet())
506 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
507 if (isFullSet() || Other
.isFullSet())
508 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
510 APInt Spread_X
= getSetSize(), Spread_Y
= Other
.getSetSize();
511 APInt NewLower
= getLower() + Other
.getLower();
512 APInt NewUpper
= getUpper() + Other
.getUpper() - 1;
513 if (NewLower
== NewUpper
)
514 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
516 ConstantRange X
= ConstantRange(NewLower
, NewUpper
);
517 if (X
.getSetSize().ult(Spread_X
) || X
.getSetSize().ult(Spread_Y
))
518 // We've wrapped, therefore, full set.
519 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
525 ConstantRange::sub(const ConstantRange
&Other
) const {
526 if (isEmptySet() || Other
.isEmptySet())
527 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
528 if (isFullSet() || Other
.isFullSet())
529 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
531 APInt Spread_X
= getSetSize(), Spread_Y
= Other
.getSetSize();
532 APInt NewLower
= getLower() - Other
.getLower();
533 APInt NewUpper
= getUpper() - Other
.getUpper() + 1;
534 if (NewLower
== NewUpper
)
535 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
537 ConstantRange X
= ConstantRange(NewLower
, NewUpper
);
538 if (X
.getSetSize().ult(Spread_X
) || X
.getSetSize().ult(Spread_Y
))
539 // We've wrapped, therefore, full set.
540 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
546 ConstantRange::multiply(const ConstantRange
&Other
) const {
547 // TODO: If either operand is a single element and the multiply is known to
548 // be non-wrapping, round the result min and max value to the appropriate
549 // multiple of that element. If wrapping is possible, at least adjust the
550 // range according to the greatest power-of-two factor of the single element.
552 if (isEmptySet() || Other
.isEmptySet())
553 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
554 if (isFullSet() || Other
.isFullSet())
555 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
557 APInt this_min
= getUnsignedMin().zext(getBitWidth() * 2);
558 APInt this_max
= getUnsignedMax().zext(getBitWidth() * 2);
559 APInt Other_min
= Other
.getUnsignedMin().zext(getBitWidth() * 2);
560 APInt Other_max
= Other
.getUnsignedMax().zext(getBitWidth() * 2);
562 ConstantRange Result_zext
= ConstantRange(this_min
* Other_min
,
563 this_max
* Other_max
+ 1);
564 return Result_zext
.truncate(getBitWidth());
568 ConstantRange::smax(const ConstantRange
&Other
) const {
569 // X smax Y is: range(smax(X_smin, Y_smin),
570 // smax(X_smax, Y_smax))
571 if (isEmptySet() || Other
.isEmptySet())
572 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
573 APInt NewL
= APIntOps::smax(getSignedMin(), Other
.getSignedMin());
574 APInt NewU
= APIntOps::smax(getSignedMax(), Other
.getSignedMax()) + 1;
576 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
577 return ConstantRange(NewL
, NewU
);
581 ConstantRange::umax(const ConstantRange
&Other
) const {
582 // X umax Y is: range(umax(X_umin, Y_umin),
583 // umax(X_umax, Y_umax))
584 if (isEmptySet() || Other
.isEmptySet())
585 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
586 APInt NewL
= APIntOps::umax(getUnsignedMin(), Other
.getUnsignedMin());
587 APInt NewU
= APIntOps::umax(getUnsignedMax(), Other
.getUnsignedMax()) + 1;
589 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
590 return ConstantRange(NewL
, NewU
);
594 ConstantRange::udiv(const ConstantRange
&RHS
) const {
595 if (isEmptySet() || RHS
.isEmptySet() || RHS
.getUnsignedMax() == 0)
596 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
598 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
600 APInt Lower
= getUnsignedMin().udiv(RHS
.getUnsignedMax());
602 APInt RHS_umin
= RHS
.getUnsignedMin();
604 // We want the lowest value in RHS excluding zero. Usually that would be 1
605 // except for a range in the form of [X, 1) in which case it would be X.
606 if (RHS
.getUpper() == 1)
607 RHS_umin
= RHS
.getLower();
609 RHS_umin
= APInt(getBitWidth(), 1);
612 APInt Upper
= getUnsignedMax().udiv(RHS_umin
) + 1;
614 // If the LHS is Full and the RHS is a wrapped interval containing 1 then
617 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
619 return ConstantRange(Lower
, Upper
);
623 ConstantRange::binaryAnd(const ConstantRange
&Other
) const {
624 if (isEmptySet() || Other
.isEmptySet())
625 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
627 // TODO: replace this with something less conservative
629 APInt umin
= APIntOps::umin(Other
.getUnsignedMax(), getUnsignedMax());
630 if (umin
.isAllOnesValue())
631 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
632 return ConstantRange(APInt::getNullValue(getBitWidth()), umin
+ 1);
636 ConstantRange::binaryOr(const ConstantRange
&Other
) const {
637 if (isEmptySet() || Other
.isEmptySet())
638 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
640 // TODO: replace this with something less conservative
642 APInt umax
= APIntOps::umax(getUnsignedMin(), Other
.getUnsignedMin());
643 if (umax
.isMinValue())
644 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
645 return ConstantRange(umax
, APInt::getNullValue(getBitWidth()));
649 ConstantRange::shl(const ConstantRange
&Other
) const {
650 if (isEmptySet() || Other
.isEmptySet())
651 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
653 APInt min
= getUnsignedMin().shl(Other
.getUnsignedMin());
654 APInt max
= getUnsignedMax().shl(Other
.getUnsignedMax());
656 // there's no overflow!
657 APInt
Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros());
658 if (Zeros
.ugt(Other
.getUnsignedMax()))
659 return ConstantRange(min
, max
+ 1);
661 // FIXME: implement the other tricky cases
662 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
666 ConstantRange::lshr(const ConstantRange
&Other
) const {
667 if (isEmptySet() || Other
.isEmptySet())
668 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
670 APInt max
= getUnsignedMax().lshr(Other
.getUnsignedMin());
671 APInt min
= getUnsignedMin().lshr(Other
.getUnsignedMax());
673 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
675 return ConstantRange(min
, max
+ 1);
678 ConstantRange
ConstantRange::inverse() const {
680 return ConstantRange(getBitWidth(), /*isFullSet=*/false);
681 } else if (isEmptySet()) {
682 return ConstantRange(getBitWidth(), /*isFullSet=*/true);
684 return ConstantRange(Upper
, Lower
);
687 /// print - Print out the bounds to a stream...
689 void ConstantRange::print(raw_ostream
&OS
) const {
692 else if (isEmptySet())
695 OS
<< "[" << Lower
<< "," << Upper
<< ")";
698 /// dump - Allow printing from a debugger easily...
700 void ConstantRange::dump() const {