Add a missing SCEV simplification sext(zext x) --> zext x.
[llvm.git] / include / llvm / Constants.h
blob738c90cee741f05572e423327c43791eab55921e
1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// @file
11 /// This file contains the declarations for the subclasses of Constant,
12 /// which represent the different flavors of constant values that live in LLVM.
13 /// Note that Constants are immutable (once created they never change) and are
14 /// fully shared by structural equivalence. This means that two structurally
15 /// equivalent constants will always have the same address. Constant's are
16 /// created on demand as needed and never deleted: thus clients don't have to
17 /// worry about the lifetime of the objects.
19 //===----------------------------------------------------------------------===//
21 #ifndef LLVM_CONSTANTS_H
22 #define LLVM_CONSTANTS_H
24 #include "llvm/Constant.h"
25 #include "llvm/OperandTraits.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/APFloat.h"
28 #include <vector>
30 namespace llvm {
32 class ArrayType;
33 class IntegerType;
34 class StructType;
35 class PointerType;
36 class VectorType;
38 template<class ConstantClass, class TypeClass, class ValType>
39 struct ConstantCreator;
40 template<class ConstantClass, class TypeClass>
41 struct ConvertConstantType;
42 template<typename T, unsigned N>
43 class SmallVector;
45 //===----------------------------------------------------------------------===//
46 /// This is the shared class of boolean and integer constants. This class
47 /// represents both boolean and integral constants.
48 /// @brief Class for constant integers.
49 class ConstantInt : public Constant {
50 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
51 ConstantInt(const ConstantInt &); // DO NOT IMPLEMENT
52 ConstantInt(const IntegerType *Ty, const APInt& V);
53 APInt Val;
54 protected:
55 // allocate space for exactly zero operands
56 void *operator new(size_t s) {
57 return User::operator new(s, 0);
59 public:
60 static ConstantInt *getTrue(LLVMContext &Context);
61 static ConstantInt *getFalse(LLVMContext &Context);
63 /// If Ty is a vector type, return a Constant with a splat of the given
64 /// value. Otherwise return a ConstantInt for the given value.
65 static Constant *get(const Type *Ty, uint64_t V, bool isSigned = false);
67 /// Return a ConstantInt with the specified integer value for the specified
68 /// type. If the type is wider than 64 bits, the value will be zero-extended
69 /// to fit the type, unless isSigned is true, in which case the value will
70 /// be interpreted as a 64-bit signed integer and sign-extended to fit
71 /// the type.
72 /// @brief Get a ConstantInt for a specific value.
73 static ConstantInt *get(const IntegerType *Ty, uint64_t V,
74 bool isSigned = false);
76 /// Return a ConstantInt with the specified value for the specified type. The
77 /// value V will be canonicalized to a an unsigned APInt. Accessing it with
78 /// either getSExtValue() or getZExtValue() will yield a correctly sized and
79 /// signed value for the type Ty.
80 /// @brief Get a ConstantInt for a specific signed value.
81 static ConstantInt *getSigned(const IntegerType *Ty, int64_t V);
82 static Constant *getSigned(const Type *Ty, int64_t V);
84 /// Return a ConstantInt with the specified value and an implied Type. The
85 /// type is the integer type that corresponds to the bit width of the value.
86 static ConstantInt *get(LLVMContext &Context, const APInt &V);
88 /// Return a ConstantInt constructed from the string strStart with the given
89 /// radix.
90 static ConstantInt *get(const IntegerType *Ty, StringRef Str,
91 uint8_t radix);
93 /// If Ty is a vector type, return a Constant with a splat of the given
94 /// value. Otherwise return a ConstantInt for the given value.
95 static Constant *get(const Type* Ty, const APInt& V);
97 /// Return the constant as an APInt value reference. This allows clients to
98 /// obtain a copy of the value, with all its precision in tact.
99 /// @brief Return the constant's value.
100 inline const APInt &getValue() const {
101 return Val;
104 /// getBitWidth - Return the bitwidth of this constant.
105 unsigned getBitWidth() const { return Val.getBitWidth(); }
107 /// Return the constant as a 64-bit unsigned integer value after it
108 /// has been zero extended as appropriate for the type of this constant. Note
109 /// that this method can assert if the value does not fit in 64 bits.
110 /// @deprecated
111 /// @brief Return the zero extended value.
112 inline uint64_t getZExtValue() const {
113 return Val.getZExtValue();
116 /// Return the constant as a 64-bit integer value after it has been sign
117 /// extended as appropriate for the type of this constant. Note that
118 /// this method can assert if the value does not fit in 64 bits.
119 /// @deprecated
120 /// @brief Return the sign extended value.
121 inline int64_t getSExtValue() const {
122 return Val.getSExtValue();
125 /// A helper method that can be used to determine if the constant contained
126 /// within is equal to a constant. This only works for very small values,
127 /// because this is all that can be represented with all types.
128 /// @brief Determine if this constant's value is same as an unsigned char.
129 bool equalsInt(uint64_t V) const {
130 return Val == V;
133 /// getType - Specialize the getType() method to always return an IntegerType,
134 /// which reduces the amount of casting needed in parts of the compiler.
136 inline const IntegerType *getType() const {
137 return reinterpret_cast<const IntegerType*>(Value::getType());
140 /// This static method returns true if the type Ty is big enough to
141 /// represent the value V. This can be used to avoid having the get method
142 /// assert when V is larger than Ty can represent. Note that there are two
143 /// versions of this method, one for unsigned and one for signed integers.
144 /// Although ConstantInt canonicalizes everything to an unsigned integer,
145 /// the signed version avoids callers having to convert a signed quantity
146 /// to the appropriate unsigned type before calling the method.
147 /// @returns true if V is a valid value for type Ty
148 /// @brief Determine if the value is in range for the given type.
149 static bool isValueValidForType(const Type *Ty, uint64_t V);
150 static bool isValueValidForType(const Type *Ty, int64_t V);
152 /// This function will return true iff this constant represents the "null"
153 /// value that would be returned by the getNullValue method.
154 /// @returns true if this is the null integer value.
155 /// @brief Determine if the value is null.
156 virtual bool isNullValue() const {
157 return Val == 0;
160 /// This is just a convenience method to make client code smaller for a
161 /// common code. It also correctly performs the comparison without the
162 /// potential for an assertion from getZExtValue().
163 bool isZero() const {
164 return Val == 0;
167 /// This is just a convenience method to make client code smaller for a
168 /// common case. It also correctly performs the comparison without the
169 /// potential for an assertion from getZExtValue().
170 /// @brief Determine if the value is one.
171 bool isOne() const {
172 return Val == 1;
175 /// This function will return true iff every bit in this constant is set
176 /// to true.
177 /// @returns true iff this constant's bits are all set to true.
178 /// @brief Determine if the value is all ones.
179 bool isAllOnesValue() const {
180 return Val.isAllOnesValue();
183 /// This function will return true iff this constant represents the largest
184 /// value that may be represented by the constant's type.
185 /// @returns true iff this is the largest value that may be represented
186 /// by this type.
187 /// @brief Determine if the value is maximal.
188 bool isMaxValue(bool isSigned) const {
189 if (isSigned)
190 return Val.isMaxSignedValue();
191 else
192 return Val.isMaxValue();
195 /// This function will return true iff this constant represents the smallest
196 /// value that may be represented by this constant's type.
197 /// @returns true if this is the smallest value that may be represented by
198 /// this type.
199 /// @brief Determine if the value is minimal.
200 bool isMinValue(bool isSigned) const {
201 if (isSigned)
202 return Val.isMinSignedValue();
203 else
204 return Val.isMinValue();
207 /// This function will return true iff this constant represents a value with
208 /// active bits bigger than 64 bits or a value greater than the given uint64_t
209 /// value.
210 /// @returns true iff this constant is greater or equal to the given number.
211 /// @brief Determine if the value is greater or equal to the given number.
212 bool uge(uint64_t Num) {
213 return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
216 /// getLimitedValue - If the value is smaller than the specified limit,
217 /// return it, otherwise return the limit value. This causes the value
218 /// to saturate to the limit.
219 /// @returns the min of the value of the constant and the specified value
220 /// @brief Get the constant's value with a saturation limit
221 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
222 return Val.getLimitedValue(Limit);
225 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
226 static inline bool classof(const ConstantInt *) { return true; }
227 static bool classof(const Value *V) {
228 return V->getValueID() == ConstantIntVal;
233 //===----------------------------------------------------------------------===//
234 /// ConstantFP - Floating Point Values [float, double]
236 class ConstantFP : public Constant {
237 APFloat Val;
238 void *operator new(size_t, unsigned);// DO NOT IMPLEMENT
239 ConstantFP(const ConstantFP &); // DO NOT IMPLEMENT
240 friend class LLVMContextImpl;
241 protected:
242 ConstantFP(const Type *Ty, const APFloat& V);
243 protected:
244 // allocate space for exactly zero operands
245 void *operator new(size_t s) {
246 return User::operator new(s, 0);
248 public:
249 /// Floating point negation must be implemented with f(x) = -0.0 - x. This
250 /// method returns the negative zero constant for floating point or vector
251 /// floating point types; for all other types, it returns the null value.
252 static Constant *getZeroValueForNegation(const Type *Ty);
254 /// get() - This returns a ConstantFP, or a vector containing a splat of a
255 /// ConstantFP, for the specified value in the specified type. This should
256 /// only be used for simple constant values like 2.0/1.0 etc, that are
257 /// known-valid both as host double and as the target format.
258 static Constant *get(const Type* Ty, double V);
259 static Constant *get(const Type* Ty, StringRef Str);
260 static ConstantFP *get(LLVMContext &Context, const APFloat &V);
261 static ConstantFP *getNegativeZero(const Type* Ty);
262 static ConstantFP *getInfinity(const Type *Ty, bool Negative = false);
264 /// isValueValidForType - return true if Ty is big enough to represent V.
265 static bool isValueValidForType(const Type *Ty, const APFloat &V);
266 inline const APFloat& getValueAPF() const { return Val; }
268 /// isNullValue - Return true if this is the value that would be returned by
269 /// getNullValue. For ConstantFP, this is +0.0, but not -0.0. To handle the
270 /// two the same, use isZero().
271 virtual bool isNullValue() const;
273 /// isNegativeZeroValue - Return true if the value is what would be returned
274 /// by getZeroValueForNegation.
275 virtual bool isNegativeZeroValue() const {
276 return Val.isZero() && Val.isNegative();
279 /// isZero - Return true if the value is positive or negative zero.
280 bool isZero() const { return Val.isZero(); }
282 /// isNaN - Return true if the value is a NaN.
283 bool isNaN() const { return Val.isNaN(); }
285 /// isExactlyValue - We don't rely on operator== working on double values, as
286 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
287 /// As such, this method can be used to do an exact bit-for-bit comparison of
288 /// two floating point values. The version with a double operand is retained
289 /// because it's so convenient to write isExactlyValue(2.0), but please use
290 /// it only for simple constants.
291 bool isExactlyValue(const APFloat &V) const;
293 bool isExactlyValue(double V) const {
294 bool ignored;
295 // convert is not supported on this type
296 if (&Val.getSemantics() == &APFloat::PPCDoubleDouble)
297 return false;
298 APFloat FV(V);
299 FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
300 return isExactlyValue(FV);
302 /// Methods for support type inquiry through isa, cast, and dyn_cast:
303 static inline bool classof(const ConstantFP *) { return true; }
304 static bool classof(const Value *V) {
305 return V->getValueID() == ConstantFPVal;
309 //===----------------------------------------------------------------------===//
310 /// ConstantAggregateZero - All zero aggregate value
312 class ConstantAggregateZero : public Constant {
313 friend struct ConstantCreator<ConstantAggregateZero, Type, char>;
314 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
315 ConstantAggregateZero(const ConstantAggregateZero &); // DO NOT IMPLEMENT
316 protected:
317 explicit ConstantAggregateZero(const Type *ty)
318 : Constant(ty, ConstantAggregateZeroVal, 0, 0) {}
319 protected:
320 // allocate space for exactly zero operands
321 void *operator new(size_t s) {
322 return User::operator new(s, 0);
324 public:
325 static ConstantAggregateZero* get(const Type *Ty);
327 /// isNullValue - Return true if this is the value that would be returned by
328 /// getNullValue.
329 virtual bool isNullValue() const { return true; }
331 virtual void destroyConstant();
333 /// Methods for support type inquiry through isa, cast, and dyn_cast:
335 static bool classof(const ConstantAggregateZero *) { return true; }
336 static bool classof(const Value *V) {
337 return V->getValueID() == ConstantAggregateZeroVal;
342 //===----------------------------------------------------------------------===//
343 /// ConstantArray - Constant Array Declarations
345 class ConstantArray : public Constant {
346 friend struct ConstantCreator<ConstantArray, ArrayType,
347 std::vector<Constant*> >;
348 ConstantArray(const ConstantArray &); // DO NOT IMPLEMENT
349 protected:
350 ConstantArray(const ArrayType *T, const std::vector<Constant*> &Val);
351 public:
352 // ConstantArray accessors
353 static Constant *get(const ArrayType *T, const std::vector<Constant*> &V);
354 static Constant *get(const ArrayType *T, Constant *const *Vals,
355 unsigned NumVals);
357 /// This method constructs a ConstantArray and initializes it with a text
358 /// string. The default behavior (AddNull==true) causes a null terminator to
359 /// be placed at the end of the array. This effectively increases the length
360 /// of the array by one (you've been warned). However, in some situations
361 /// this is not desired so if AddNull==false then the string is copied without
362 /// null termination.
363 static Constant *get(LLVMContext &Context, StringRef Initializer,
364 bool AddNull = true);
366 /// Transparently provide more efficient getOperand methods.
367 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
369 /// getType - Specialize the getType() method to always return an ArrayType,
370 /// which reduces the amount of casting needed in parts of the compiler.
372 inline const ArrayType *getType() const {
373 return reinterpret_cast<const ArrayType*>(Value::getType());
376 /// isString - This method returns true if the array is an array of i8 and
377 /// the elements of the array are all ConstantInt's.
378 bool isString() const;
380 /// isCString - This method returns true if the array is a string (see
381 /// @verbatim
382 /// isString) and it ends in a null byte \0 and does not contains any other
383 /// @endverbatim
384 /// null bytes except its terminator.
385 bool isCString() const;
387 /// getAsString - If this array is isString(), then this method converts the
388 /// array to an std::string and returns it. Otherwise, it asserts out.
390 std::string getAsString() const;
392 /// isNullValue - Return true if this is the value that would be returned by
393 /// getNullValue. This always returns false because zero arrays are always
394 /// created as ConstantAggregateZero objects.
395 virtual bool isNullValue() const { return false; }
397 virtual void destroyConstant();
398 virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
400 /// Methods for support type inquiry through isa, cast, and dyn_cast:
401 static inline bool classof(const ConstantArray *) { return true; }
402 static bool classof(const Value *V) {
403 return V->getValueID() == ConstantArrayVal;
407 template <>
408 struct OperandTraits<ConstantArray> :
409 public VariadicOperandTraits<ConstantArray> {
412 DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantArray, Constant)
414 //===----------------------------------------------------------------------===//
415 // ConstantStruct - Constant Struct Declarations
417 class ConstantStruct : public Constant {
418 friend struct ConstantCreator<ConstantStruct, StructType,
419 std::vector<Constant*> >;
420 ConstantStruct(const ConstantStruct &); // DO NOT IMPLEMENT
421 protected:
422 ConstantStruct(const StructType *T, const std::vector<Constant*> &Val);
423 public:
424 // ConstantStruct accessors
425 static Constant *get(const StructType *T, const std::vector<Constant*> &V);
426 static Constant *get(LLVMContext &Context,
427 const std::vector<Constant*> &V, bool Packed);
428 static Constant *get(LLVMContext &Context,
429 Constant *const *Vals, unsigned NumVals, bool Packed);
431 /// Transparently provide more efficient getOperand methods.
432 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
434 /// getType() specialization - Reduce amount of casting...
436 inline const StructType *getType() const {
437 return reinterpret_cast<const StructType*>(Value::getType());
440 /// isNullValue - Return true if this is the value that would be returned by
441 /// getNullValue. This always returns false because zero structs are always
442 /// created as ConstantAggregateZero objects.
443 virtual bool isNullValue() const {
444 return false;
447 virtual void destroyConstant();
448 virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
450 /// Methods for support type inquiry through isa, cast, and dyn_cast:
451 static inline bool classof(const ConstantStruct *) { return true; }
452 static bool classof(const Value *V) {
453 return V->getValueID() == ConstantStructVal;
457 template <>
458 struct OperandTraits<ConstantStruct> :
459 public VariadicOperandTraits<ConstantStruct> {
462 DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantStruct, Constant)
465 //===----------------------------------------------------------------------===//
466 /// ConstantVector - Constant Vector Declarations
468 class ConstantVector : public Constant {
469 friend struct ConstantCreator<ConstantVector, VectorType,
470 std::vector<Constant*> >;
471 ConstantVector(const ConstantVector &); // DO NOT IMPLEMENT
472 protected:
473 ConstantVector(const VectorType *T, const std::vector<Constant*> &Val);
474 public:
475 // ConstantVector accessors
476 static Constant *get(const VectorType *T, const std::vector<Constant*> &V);
477 static Constant *get(const std::vector<Constant*> &V);
478 static Constant *get(Constant *const *Vals, unsigned NumVals);
480 /// Transparently provide more efficient getOperand methods.
481 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
483 /// getType - Specialize the getType() method to always return a VectorType,
484 /// which reduces the amount of casting needed in parts of the compiler.
486 inline const VectorType *getType() const {
487 return reinterpret_cast<const VectorType*>(Value::getType());
490 /// isNullValue - Return true if this is the value that would be returned by
491 /// getNullValue. This always returns false because zero vectors are always
492 /// created as ConstantAggregateZero objects.
493 virtual bool isNullValue() const { return false; }
495 /// This function will return true iff every element in this vector constant
496 /// is set to all ones.
497 /// @returns true iff this constant's emements are all set to all ones.
498 /// @brief Determine if the value is all ones.
499 bool isAllOnesValue() const;
501 /// getSplatValue - If this is a splat constant, meaning that all of the
502 /// elements have the same value, return that value. Otherwise return NULL.
503 Constant *getSplatValue();
505 virtual void destroyConstant();
506 virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
508 /// Methods for support type inquiry through isa, cast, and dyn_cast:
509 static inline bool classof(const ConstantVector *) { return true; }
510 static bool classof(const Value *V) {
511 return V->getValueID() == ConstantVectorVal;
515 template <>
516 struct OperandTraits<ConstantVector> :
517 public VariadicOperandTraits<ConstantVector> {
520 DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantVector, Constant)
522 //===----------------------------------------------------------------------===//
523 /// ConstantPointerNull - a constant pointer value that points to null
525 class ConstantPointerNull : public Constant {
526 friend struct ConstantCreator<ConstantPointerNull, PointerType, char>;
527 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
528 ConstantPointerNull(const ConstantPointerNull &); // DO NOT IMPLEMENT
529 protected:
530 explicit ConstantPointerNull(const PointerType *T)
531 : Constant(reinterpret_cast<const Type*>(T),
532 Value::ConstantPointerNullVal, 0, 0) {}
534 protected:
535 // allocate space for exactly zero operands
536 void *operator new(size_t s) {
537 return User::operator new(s, 0);
539 public:
540 /// get() - Static factory methods - Return objects of the specified value
541 static ConstantPointerNull *get(const PointerType *T);
543 /// isNullValue - Return true if this is the value that would be returned by
544 /// getNullValue.
545 virtual bool isNullValue() const { return true; }
547 virtual void destroyConstant();
549 /// getType - Specialize the getType() method to always return an PointerType,
550 /// which reduces the amount of casting needed in parts of the compiler.
552 inline const PointerType *getType() const {
553 return reinterpret_cast<const PointerType*>(Value::getType());
556 /// Methods for support type inquiry through isa, cast, and dyn_cast:
557 static inline bool classof(const ConstantPointerNull *) { return true; }
558 static bool classof(const Value *V) {
559 return V->getValueID() == ConstantPointerNullVal;
563 /// BlockAddress - The address of a basic block.
565 class BlockAddress : public Constant {
566 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
567 void *operator new(size_t s) { return User::operator new(s, 2); }
568 BlockAddress(Function *F, BasicBlock *BB);
569 public:
570 /// get - Return a BlockAddress for the specified function and basic block.
571 static BlockAddress *get(Function *F, BasicBlock *BB);
573 /// get - Return a BlockAddress for the specified basic block. The basic
574 /// block must be embedded into a function.
575 static BlockAddress *get(BasicBlock *BB);
577 /// Transparently provide more efficient getOperand methods.
578 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
580 Function *getFunction() const { return (Function*)Op<0>().get(); }
581 BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
583 /// isNullValue - Return true if this is the value that would be returned by
584 /// getNullValue.
585 virtual bool isNullValue() const { return false; }
587 virtual void destroyConstant();
588 virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
590 /// Methods for support type inquiry through isa, cast, and dyn_cast:
591 static inline bool classof(const BlockAddress *) { return true; }
592 static inline bool classof(const Value *V) {
593 return V->getValueID() == BlockAddressVal;
597 template <>
598 struct OperandTraits<BlockAddress> :
599 public FixedNumOperandTraits<BlockAddress, 2> {
602 DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(BlockAddress, Value)
604 //===----------------------------------------------------------------------===//
605 /// ConstantExpr - a constant value that is initialized with an expression using
606 /// other constant values.
608 /// This class uses the standard Instruction opcodes to define the various
609 /// constant expressions. The Opcode field for the ConstantExpr class is
610 /// maintained in the Value::SubclassData field.
611 class ConstantExpr : public Constant {
612 friend struct ConstantCreator<ConstantExpr,Type,
613 std::pair<unsigned, std::vector<Constant*> > >;
614 friend struct ConvertConstantType<ConstantExpr, Type>;
616 protected:
617 ConstantExpr(const Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
618 : Constant(ty, ConstantExprVal, Ops, NumOps) {
619 // Operation type (an Instruction opcode) is stored as the SubclassData.
620 setValueSubclassData(Opcode);
623 // These private methods are used by the type resolution code to create
624 // ConstantExprs in intermediate forms.
625 static Constant *getTy(const Type *Ty, unsigned Opcode,
626 Constant *C1, Constant *C2,
627 unsigned Flags = 0);
628 static Constant *getCompareTy(unsigned short pred, Constant *C1,
629 Constant *C2);
630 static Constant *getSelectTy(const Type *Ty,
631 Constant *C1, Constant *C2, Constant *C3);
632 template<typename IndexTy>
633 static Constant *getGetElementPtrTy(const Type *Ty, Constant *C,
634 IndexTy const *Idxs, unsigned NumIdxs);
635 template<typename IndexTy>
636 static Constant *getInBoundsGetElementPtrTy(const Type *Ty, Constant *C,
637 IndexTy const *Idxs,
638 unsigned NumIdxs);
639 static Constant *getExtractElementTy(const Type *Ty, Constant *Val,
640 Constant *Idx);
641 static Constant *getInsertElementTy(const Type *Ty, Constant *Val,
642 Constant *Elt, Constant *Idx);
643 static Constant *getShuffleVectorTy(const Type *Ty, Constant *V1,
644 Constant *V2, Constant *Mask);
645 static Constant *getExtractValueTy(const Type *Ty, Constant *Agg,
646 const unsigned *Idxs, unsigned NumIdxs);
647 static Constant *getInsertValueTy(const Type *Ty, Constant *Agg,
648 Constant *Val,
649 const unsigned *Idxs, unsigned NumIdxs);
650 template<typename IndexTy>
651 static Constant *getGetElementPtrImpl(Constant *C,
652 IndexTy const *IdxList,
653 unsigned NumIdx);
654 template<typename IndexTy>
655 static Constant *getInBoundsGetElementPtrImpl(Constant *C,
656 IndexTy const *IdxList,
657 unsigned NumIdx);
659 public:
660 // Static methods to construct a ConstantExpr of different kinds. Note that
661 // these methods may return a object that is not an instance of the
662 // ConstantExpr class, because they will attempt to fold the constant
663 // expression into something simpler if possible.
665 /// getAlignOf constant expr - computes the alignment of a type in a target
666 /// independent way (Note: the return type is an i64).
667 static Constant *getAlignOf(const Type* Ty);
669 /// getSizeOf constant expr - computes the (alloc) size of a type (in
670 /// address-units, not bits) in a target independent way (Note: the return
671 /// type is an i64).
673 static Constant *getSizeOf(const Type* Ty);
675 /// getOffsetOf constant expr - computes the offset of a struct field in a
676 /// target independent way (Note: the return type is an i64).
678 static Constant *getOffsetOf(const StructType* STy, unsigned FieldNo);
680 /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
681 /// which supports any aggregate type, and any Constant index.
683 static Constant *getOffsetOf(const Type* Ty, Constant *FieldNo);
685 static Constant *getNeg(Constant *C);
686 static Constant *getFNeg(Constant *C);
687 static Constant *getNot(Constant *C);
688 static Constant *getAdd(Constant *C1, Constant *C2);
689 static Constant *getFAdd(Constant *C1, Constant *C2);
690 static Constant *getSub(Constant *C1, Constant *C2);
691 static Constant *getFSub(Constant *C1, Constant *C2);
692 static Constant *getMul(Constant *C1, Constant *C2);
693 static Constant *getFMul(Constant *C1, Constant *C2);
694 static Constant *getUDiv(Constant *C1, Constant *C2);
695 static Constant *getSDiv(Constant *C1, Constant *C2);
696 static Constant *getFDiv(Constant *C1, Constant *C2);
697 static Constant *getURem(Constant *C1, Constant *C2);
698 static Constant *getSRem(Constant *C1, Constant *C2);
699 static Constant *getFRem(Constant *C1, Constant *C2);
700 static Constant *getAnd(Constant *C1, Constant *C2);
701 static Constant *getOr(Constant *C1, Constant *C2);
702 static Constant *getXor(Constant *C1, Constant *C2);
703 static Constant *getShl(Constant *C1, Constant *C2);
704 static Constant *getLShr(Constant *C1, Constant *C2);
705 static Constant *getAShr(Constant *C1, Constant *C2);
706 static Constant *getTrunc (Constant *C, const Type *Ty);
707 static Constant *getSExt (Constant *C, const Type *Ty);
708 static Constant *getZExt (Constant *C, const Type *Ty);
709 static Constant *getFPTrunc (Constant *C, const Type *Ty);
710 static Constant *getFPExtend(Constant *C, const Type *Ty);
711 static Constant *getUIToFP (Constant *C, const Type *Ty);
712 static Constant *getSIToFP (Constant *C, const Type *Ty);
713 static Constant *getFPToUI (Constant *C, const Type *Ty);
714 static Constant *getFPToSI (Constant *C, const Type *Ty);
715 static Constant *getPtrToInt(Constant *C, const Type *Ty);
716 static Constant *getIntToPtr(Constant *C, const Type *Ty);
717 static Constant *getBitCast (Constant *C, const Type *Ty);
719 static Constant *getNSWNeg(Constant *C);
720 static Constant *getNUWNeg(Constant *C);
721 static Constant *getNSWAdd(Constant *C1, Constant *C2);
722 static Constant *getNUWAdd(Constant *C1, Constant *C2);
723 static Constant *getNSWSub(Constant *C1, Constant *C2);
724 static Constant *getNUWSub(Constant *C1, Constant *C2);
725 static Constant *getNSWMul(Constant *C1, Constant *C2);
726 static Constant *getNUWMul(Constant *C1, Constant *C2);
727 static Constant *getExactSDiv(Constant *C1, Constant *C2);
729 /// Transparently provide more efficient getOperand methods.
730 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
732 // @brief Convenience function for getting one of the casting operations
733 // using a CastOps opcode.
734 static Constant *getCast(
735 unsigned ops, ///< The opcode for the conversion
736 Constant *C, ///< The constant to be converted
737 const Type *Ty ///< The type to which the constant is converted
740 // @brief Create a ZExt or BitCast cast constant expression
741 static Constant *getZExtOrBitCast(
742 Constant *C, ///< The constant to zext or bitcast
743 const Type *Ty ///< The type to zext or bitcast C to
746 // @brief Create a SExt or BitCast cast constant expression
747 static Constant *getSExtOrBitCast(
748 Constant *C, ///< The constant to sext or bitcast
749 const Type *Ty ///< The type to sext or bitcast C to
752 // @brief Create a Trunc or BitCast cast constant expression
753 static Constant *getTruncOrBitCast(
754 Constant *C, ///< The constant to trunc or bitcast
755 const Type *Ty ///< The type to trunc or bitcast C to
758 /// @brief Create a BitCast or a PtrToInt cast constant expression
759 static Constant *getPointerCast(
760 Constant *C, ///< The pointer value to be casted (operand 0)
761 const Type *Ty ///< The type to which cast should be made
764 /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
765 static Constant *getIntegerCast(
766 Constant *C, ///< The integer constant to be casted
767 const Type *Ty, ///< The integer type to cast to
768 bool isSigned ///< Whether C should be treated as signed or not
771 /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
772 static Constant *getFPCast(
773 Constant *C, ///< The integer constant to be casted
774 const Type *Ty ///< The integer type to cast to
777 /// @brief Return true if this is a convert constant expression
778 bool isCast() const;
780 /// @brief Return true if this is a compare constant expression
781 bool isCompare() const;
783 /// @brief Return true if this is an insertvalue or extractvalue expression,
784 /// and the getIndices() method may be used.
785 bool hasIndices() const;
787 /// @brief Return true if this is a getelementptr expression and all
788 /// the index operands are compile-time known integers within the
789 /// corresponding notional static array extents. Note that this is
790 /// not equivalant to, a subset of, or a superset of the "inbounds"
791 /// property.
792 bool isGEPWithNoNotionalOverIndexing() const;
794 /// Select constant expr
796 static Constant *getSelect(Constant *C, Constant *V1, Constant *V2) {
797 return getSelectTy(V1->getType(), C, V1, V2);
800 /// get - Return a binary or shift operator constant expression,
801 /// folding if possible.
803 static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
804 unsigned Flags = 0);
806 /// @brief Return an ICmp or FCmp comparison operator constant expression.
807 static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2);
809 /// get* - Return some common constants without having to
810 /// specify the full Instruction::OPCODE identifier.
812 static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS);
813 static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS);
815 /// Getelementptr form. std::vector<Value*> is only accepted for convenience:
816 /// all elements must be Constant's.
818 static Constant *getGetElementPtr(Constant *C,
819 Constant *const *IdxList, unsigned NumIdx);
820 static Constant *getGetElementPtr(Constant *C,
821 Value* const *IdxList, unsigned NumIdx);
823 /// Create an "inbounds" getelementptr. See the documentation for the
824 /// "inbounds" flag in LangRef.html for details.
825 static Constant *getInBoundsGetElementPtr(Constant *C,
826 Constant *const *IdxList,
827 unsigned NumIdx);
828 static Constant *getInBoundsGetElementPtr(Constant *C,
829 Value* const *IdxList,
830 unsigned NumIdx);
832 static Constant *getExtractElement(Constant *Vec, Constant *Idx);
833 static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx);
834 static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask);
835 static Constant *getExtractValue(Constant *Agg,
836 const unsigned *IdxList, unsigned NumIdx);
837 static Constant *getInsertValue(Constant *Agg, Constant *Val,
838 const unsigned *IdxList, unsigned NumIdx);
840 /// isNullValue - Return true if this is the value that would be returned by
841 /// getNullValue.
842 virtual bool isNullValue() const { return false; }
844 /// getOpcode - Return the opcode at the root of this constant expression
845 unsigned getOpcode() const { return getSubclassDataFromValue(); }
847 /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
848 /// not an ICMP or FCMP constant expression.
849 unsigned getPredicate() const;
851 /// getIndices - Assert that this is an insertvalue or exactvalue
852 /// expression and return the list of indices.
853 const SmallVector<unsigned, 4> &getIndices() const;
855 /// getOpcodeName - Return a string representation for an opcode.
856 const char *getOpcodeName() const;
858 /// getWithOperandReplaced - Return a constant expression identical to this
859 /// one, but with the specified operand set to the specified value.
860 Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
862 /// getWithOperands - This returns the current constant expression with the
863 /// operands replaced with the specified values. The specified operands must
864 /// match count and type with the existing ones.
865 Constant *getWithOperands(const std::vector<Constant*> &Ops) const {
866 return getWithOperands(&Ops[0], (unsigned)Ops.size());
868 Constant *getWithOperands(Constant *const *Ops, unsigned NumOps) const;
870 virtual void destroyConstant();
871 virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
873 /// Methods for support type inquiry through isa, cast, and dyn_cast:
874 static inline bool classof(const ConstantExpr *) { return true; }
875 static inline bool classof(const Value *V) {
876 return V->getValueID() == ConstantExprVal;
879 private:
880 // Shadow Value::setValueSubclassData with a private forwarding method so that
881 // subclasses cannot accidentally use it.
882 void setValueSubclassData(unsigned short D) {
883 Value::setValueSubclassData(D);
887 template <>
888 struct OperandTraits<ConstantExpr> :
889 public VariadicOperandTraits<ConstantExpr, 1> {
892 DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantExpr, Constant)
894 //===----------------------------------------------------------------------===//
895 /// UndefValue - 'undef' values are things that do not have specified contents.
896 /// These are used for a variety of purposes, including global variable
897 /// initializers and operands to instructions. 'undef' values can occur with
898 /// any first-class type.
900 /// Undef values aren't exactly constants; if they have multiple uses, they
901 /// can appear to have different bit patterns at each use. See
902 /// LangRef.html#undefvalues for details.
904 class UndefValue : public Constant {
905 friend struct ConstantCreator<UndefValue, Type, char>;
906 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
907 UndefValue(const UndefValue &); // DO NOT IMPLEMENT
908 protected:
909 explicit UndefValue(const Type *T) : Constant(T, UndefValueVal, 0, 0) {}
910 protected:
911 // allocate space for exactly zero operands
912 void *operator new(size_t s) {
913 return User::operator new(s, 0);
915 public:
916 /// get() - Static factory methods - Return an 'undef' object of the specified
917 /// type.
919 static UndefValue *get(const Type *T);
921 /// isNullValue - Return true if this is the value that would be returned by
922 /// getNullValue.
923 virtual bool isNullValue() const { return false; }
925 virtual void destroyConstant();
927 /// Methods for support type inquiry through isa, cast, and dyn_cast:
928 static inline bool classof(const UndefValue *) { return true; }
929 static bool classof(const Value *V) {
930 return V->getValueID() == UndefValueVal;
934 } // End llvm namespace
936 #endif