While DAE can't modify the function signature of an externally visible function,
[llvm.git] / lib / Transforms / IPO / MergeFunctions.cpp
blobb07e22c12f7db053c11557757797b2b089b3ba5b
1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
12 // A hash is computed from the function, based on its type and number of
13 // basic blocks.
15 // Once all hashes are computed, we perform an expensive equality comparison
16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's
17 // important that the hash function be high quality. The equality comparison
18 // iterates through each instruction in each basic block.
20 // When a match is found, the functions are folded. We can only fold two
21 // functions when we know that the definition of one of them is not
22 // overridable.
24 //===----------------------------------------------------------------------===//
26 // Future work:
28 // * fold vector<T*>::push_back and vector<S*>::push_back.
30 // These two functions have different types, but in a way that doesn't matter
31 // to us. As long as we never see an S or T itself, using S* and S** is the
32 // same as using a T* and T**.
34 // * virtual functions.
36 // Many functions have their address taken by the virtual function table for
37 // the object they belong to. However, as long as it's only used for a lookup
38 // and call, this is irrelevant, and we'd like to fold such implementations.
40 //===----------------------------------------------------------------------===//
42 #define DEBUG_TYPE "mergefunc"
43 #include "llvm/Transforms/IPO.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/FoldingSet.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/Constants.h"
48 #include "llvm/InlineAsm.h"
49 #include "llvm/Instructions.h"
50 #include "llvm/LLVMContext.h"
51 #include "llvm/Module.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CallSite.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <map>
58 #include <vector>
59 using namespace llvm;
61 STATISTIC(NumFunctionsMerged, "Number of functions merged");
63 namespace {
64 struct MergeFunctions : public ModulePass {
65 static char ID; // Pass identification, replacement for typeid
66 MergeFunctions() : ModulePass(&ID) {}
68 bool runOnModule(Module &M);
72 char MergeFunctions::ID = 0;
73 static RegisterPass<MergeFunctions>
74 X("mergefunc", "Merge Functions");
76 ModulePass *llvm::createMergeFunctionsPass() {
77 return new MergeFunctions();
80 // ===----------------------------------------------------------------------===
81 // Comparison of functions
82 // ===----------------------------------------------------------------------===
84 static unsigned long hash(const Function *F) {
85 const FunctionType *FTy = F->getFunctionType();
87 FoldingSetNodeID ID;
88 ID.AddInteger(F->size());
89 ID.AddInteger(F->getCallingConv());
90 ID.AddBoolean(F->hasGC());
91 ID.AddBoolean(FTy->isVarArg());
92 ID.AddInteger(FTy->getReturnType()->getTypeID());
93 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
94 ID.AddInteger(FTy->getParamType(i)->getTypeID());
95 return ID.ComputeHash();
98 /// IgnoreBitcasts - given a bitcast, returns the first non-bitcast found by
99 /// walking the chain of cast operands. Otherwise, returns the argument.
100 static Value* IgnoreBitcasts(Value *V) {
101 while (BitCastInst *BC = dyn_cast<BitCastInst>(V))
102 V = BC->getOperand(0);
104 return V;
107 /// isEquivalentType - any two pointers are equivalent. Otherwise, standard
108 /// type equivalence rules apply.
109 static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
110 if (Ty1 == Ty2)
111 return true;
112 if (Ty1->getTypeID() != Ty2->getTypeID())
113 return false;
115 switch(Ty1->getTypeID()) {
116 case Type::VoidTyID:
117 case Type::FloatTyID:
118 case Type::DoubleTyID:
119 case Type::X86_FP80TyID:
120 case Type::FP128TyID:
121 case Type::PPC_FP128TyID:
122 case Type::LabelTyID:
123 case Type::MetadataTyID:
124 return true;
126 case Type::IntegerTyID:
127 case Type::OpaqueTyID:
128 // Ty1 == Ty2 would have returned true earlier.
129 return false;
131 default:
132 llvm_unreachable("Unknown type!");
133 return false;
135 case Type::PointerTyID: {
136 const PointerType *PTy1 = cast<PointerType>(Ty1);
137 const PointerType *PTy2 = cast<PointerType>(Ty2);
138 return PTy1->getAddressSpace() == PTy2->getAddressSpace();
141 case Type::StructTyID: {
142 const StructType *STy1 = cast<StructType>(Ty1);
143 const StructType *STy2 = cast<StructType>(Ty2);
144 if (STy1->getNumElements() != STy2->getNumElements())
145 return false;
147 if (STy1->isPacked() != STy2->isPacked())
148 return false;
150 for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
151 if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
152 return false;
154 return true;
157 case Type::FunctionTyID: {
158 const FunctionType *FTy1 = cast<FunctionType>(Ty1);
159 const FunctionType *FTy2 = cast<FunctionType>(Ty2);
160 if (FTy1->getNumParams() != FTy2->getNumParams() ||
161 FTy1->isVarArg() != FTy2->isVarArg())
162 return false;
164 if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
165 return false;
167 for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
168 if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
169 return false;
171 return true;
174 case Type::ArrayTyID:
175 case Type::VectorTyID: {
176 const SequentialType *STy1 = cast<SequentialType>(Ty1);
177 const SequentialType *STy2 = cast<SequentialType>(Ty2);
178 return isEquivalentType(STy1->getElementType(), STy2->getElementType());
183 /// isEquivalentOperation - determine whether the two operations are the same
184 /// except that pointer-to-A and pointer-to-B are equivalent. This should be
185 /// kept in sync with Instruction::isSameOperationAs.
186 static bool
187 isEquivalentOperation(const Instruction *I1, const Instruction *I2) {
188 if (I1->getOpcode() != I2->getOpcode() ||
189 I1->getNumOperands() != I2->getNumOperands() ||
190 !isEquivalentType(I1->getType(), I2->getType()) ||
191 !I1->hasSameSubclassOptionalData(I2))
192 return false;
194 // We have two instructions of identical opcode and #operands. Check to see
195 // if all operands are the same type
196 for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
197 if (!isEquivalentType(I1->getOperand(i)->getType(),
198 I2->getOperand(i)->getType()))
199 return false;
201 // Check special state that is a part of some instructions.
202 if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
203 return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
204 LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
205 if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
206 return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
207 SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
208 if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
209 return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
210 if (const CallInst *CI = dyn_cast<CallInst>(I1))
211 return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
212 CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
213 CI->getAttributes().getRawPointer() ==
214 cast<CallInst>(I2)->getAttributes().getRawPointer();
215 if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
216 return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
217 CI->getAttributes().getRawPointer() ==
218 cast<InvokeInst>(I2)->getAttributes().getRawPointer();
219 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
220 if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
221 return false;
222 for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
223 if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
224 return false;
225 return true;
227 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
228 if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
229 return false;
230 for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
231 if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
232 return false;
233 return true;
236 return true;
239 static bool compare(const Value *V, const Value *U) {
240 assert(!isa<BasicBlock>(V) && !isa<BasicBlock>(U) &&
241 "Must not compare basic blocks.");
243 assert(isEquivalentType(V->getType(), U->getType()) &&
244 "Two of the same operation have operands of different type.");
246 // TODO: If the constant is an expression of F, we should accept that it's
247 // equal to the same expression in terms of G.
248 if (isa<Constant>(V))
249 return V == U;
251 // The caller has ensured that ValueMap[V] != U. Since Arguments are
252 // pre-loaded into the ValueMap, and Instructions are added as we go, we know
253 // that this can only be a mis-match.
254 if (isa<Instruction>(V) || isa<Argument>(V))
255 return false;
257 if (isa<InlineAsm>(V) && isa<InlineAsm>(U)) {
258 const InlineAsm *IAF = cast<InlineAsm>(V);
259 const InlineAsm *IAG = cast<InlineAsm>(U);
260 return IAF->getAsmString() == IAG->getAsmString() &&
261 IAF->getConstraintString() == IAG->getConstraintString();
264 return false;
267 static bool equals(const BasicBlock *BB1, const BasicBlock *BB2,
268 DenseMap<const Value *, const Value *> &ValueMap,
269 DenseMap<const Value *, const Value *> &SpeculationMap) {
270 // Speculatively add it anyways. If it's false, we'll notice a difference
271 // later, and this won't matter.
272 ValueMap[BB1] = BB2;
274 BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end();
275 BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end();
277 do {
278 if (isa<BitCastInst>(FI)) {
279 ++FI;
280 continue;
282 if (isa<BitCastInst>(GI)) {
283 ++GI;
284 continue;
287 if (!isEquivalentOperation(FI, GI))
288 return false;
290 if (isa<GetElementPtrInst>(FI)) {
291 const GetElementPtrInst *GEPF = cast<GetElementPtrInst>(FI);
292 const GetElementPtrInst *GEPG = cast<GetElementPtrInst>(GI);
293 if (GEPF->hasAllZeroIndices() && GEPG->hasAllZeroIndices()) {
294 // It's effectively a bitcast.
295 ++FI, ++GI;
296 continue;
299 // TODO: we only really care about the elements before the index
300 if (FI->getOperand(0)->getType() != GI->getOperand(0)->getType())
301 return false;
304 if (ValueMap[FI] == GI) {
305 ++FI, ++GI;
306 continue;
309 if (ValueMap[FI] != NULL)
310 return false;
312 for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
313 Value *OpF = IgnoreBitcasts(FI->getOperand(i));
314 Value *OpG = IgnoreBitcasts(GI->getOperand(i));
316 if (ValueMap[OpF] == OpG)
317 continue;
319 if (ValueMap[OpF] != NULL)
320 return false;
322 if (OpF->getValueID() != OpG->getValueID() ||
323 !isEquivalentType(OpF->getType(), OpG->getType()))
324 return false;
326 if (isa<PHINode>(FI)) {
327 if (SpeculationMap[OpF] == NULL)
328 SpeculationMap[OpF] = OpG;
329 else if (SpeculationMap[OpF] != OpG)
330 return false;
331 continue;
332 } else if (isa<BasicBlock>(OpF)) {
333 assert(isa<TerminatorInst>(FI) &&
334 "BasicBlock referenced by non-Terminator non-PHI");
335 // This call changes the ValueMap, hence we can't use
336 // Value *& = ValueMap[...]
337 if (!equals(cast<BasicBlock>(OpF), cast<BasicBlock>(OpG), ValueMap,
338 SpeculationMap))
339 return false;
340 } else {
341 if (!compare(OpF, OpG))
342 return false;
345 ValueMap[OpF] = OpG;
348 ValueMap[FI] = GI;
349 ++FI, ++GI;
350 } while (FI != FE && GI != GE);
352 return FI == FE && GI == GE;
355 static bool equals(const Function *F, const Function *G) {
356 // We need to recheck everything, but check the things that weren't included
357 // in the hash first.
359 if (F->getAttributes() != G->getAttributes())
360 return false;
362 if (F->hasGC() != G->hasGC())
363 return false;
365 if (F->hasGC() && F->getGC() != G->getGC())
366 return false;
368 if (F->hasSection() != G->hasSection())
369 return false;
371 if (F->hasSection() && F->getSection() != G->getSection())
372 return false;
374 if (F->isVarArg() != G->isVarArg())
375 return false;
377 // TODO: if it's internal and only used in direct calls, we could handle this
378 // case too.
379 if (F->getCallingConv() != G->getCallingConv())
380 return false;
382 if (!isEquivalentType(F->getFunctionType(), G->getFunctionType()))
383 return false;
385 DenseMap<const Value *, const Value *> ValueMap;
386 DenseMap<const Value *, const Value *> SpeculationMap;
387 ValueMap[F] = G;
389 assert(F->arg_size() == G->arg_size() &&
390 "Identical functions have a different number of args.");
392 for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(),
393 fe = F->arg_end(); fi != fe; ++fi, ++gi)
394 ValueMap[fi] = gi;
396 if (!equals(&F->getEntryBlock(), &G->getEntryBlock(), ValueMap,
397 SpeculationMap))
398 return false;
400 for (DenseMap<const Value *, const Value *>::iterator
401 I = SpeculationMap.begin(), E = SpeculationMap.end(); I != E; ++I) {
402 if (ValueMap[I->first] != I->second)
403 return false;
406 return true;
409 // ===----------------------------------------------------------------------===
410 // Folding of functions
411 // ===----------------------------------------------------------------------===
413 // Cases:
414 // * F is external strong, G is external strong:
415 // turn G into a thunk to F (1)
416 // * F is external strong, G is external weak:
417 // turn G into a thunk to F (1)
418 // * F is external weak, G is external weak:
419 // unfoldable
420 // * F is external strong, G is internal:
421 // address of G taken:
422 // turn G into a thunk to F (1)
423 // address of G not taken:
424 // make G an alias to F (2)
425 // * F is internal, G is external weak
426 // address of F is taken:
427 // turn G into a thunk to F (1)
428 // address of F is not taken:
429 // make G an alias of F (2)
430 // * F is internal, G is internal:
431 // address of F and G are taken:
432 // turn G into a thunk to F (1)
433 // address of G is not taken:
434 // make G an alias to F (2)
436 // alias requires linkage == (external,local,weak) fallback to creating a thunk
437 // external means 'externally visible' linkage != (internal,private)
438 // internal means linkage == (internal,private)
439 // weak means linkage mayBeOverridable
440 // being external implies that the address is taken
442 // 1. turn G into a thunk to F
443 // 2. make G an alias to F
445 enum LinkageCategory {
446 ExternalStrong,
447 ExternalWeak,
448 Internal
451 static LinkageCategory categorize(const Function *F) {
452 switch (F->getLinkage()) {
453 case GlobalValue::InternalLinkage:
454 case GlobalValue::PrivateLinkage:
455 case GlobalValue::LinkerPrivateLinkage:
456 return Internal;
458 case GlobalValue::WeakAnyLinkage:
459 case GlobalValue::WeakODRLinkage:
460 case GlobalValue::ExternalWeakLinkage:
461 return ExternalWeak;
463 case GlobalValue::ExternalLinkage:
464 case GlobalValue::AvailableExternallyLinkage:
465 case GlobalValue::LinkOnceAnyLinkage:
466 case GlobalValue::LinkOnceODRLinkage:
467 case GlobalValue::AppendingLinkage:
468 case GlobalValue::DLLImportLinkage:
469 case GlobalValue::DLLExportLinkage:
470 case GlobalValue::CommonLinkage:
471 return ExternalStrong;
474 llvm_unreachable("Unknown LinkageType.");
475 return ExternalWeak;
478 static void ThunkGToF(Function *F, Function *G) {
479 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
480 G->getParent());
481 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
483 std::vector<Value *> Args;
484 unsigned i = 0;
485 const FunctionType *FFTy = F->getFunctionType();
486 for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
487 AI != AE; ++AI) {
488 if (FFTy->getParamType(i) == AI->getType())
489 Args.push_back(AI);
490 else {
491 Value *BCI = new BitCastInst(AI, FFTy->getParamType(i), "", BB);
492 Args.push_back(BCI);
494 ++i;
497 CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB);
498 CI->setTailCall();
499 CI->setCallingConv(F->getCallingConv());
500 if (NewG->getReturnType()->isVoidTy()) {
501 ReturnInst::Create(F->getContext(), BB);
502 } else if (CI->getType() != NewG->getReturnType()) {
503 Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB);
504 ReturnInst::Create(F->getContext(), BCI, BB);
505 } else {
506 ReturnInst::Create(F->getContext(), CI, BB);
509 NewG->copyAttributesFrom(G);
510 NewG->takeName(G);
511 G->replaceAllUsesWith(NewG);
512 G->eraseFromParent();
514 // TODO: look at direct callers to G and make them all direct callers to F.
517 static void AliasGToF(Function *F, Function *G) {
518 if (!G->hasExternalLinkage() && !G->hasLocalLinkage() && !G->hasWeakLinkage())
519 return ThunkGToF(F, G);
521 GlobalAlias *GA = new GlobalAlias(
522 G->getType(), G->getLinkage(), "",
523 ConstantExpr::getBitCast(F, G->getType()), G->getParent());
524 F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
525 GA->takeName(G);
526 GA->setVisibility(G->getVisibility());
527 G->replaceAllUsesWith(GA);
528 G->eraseFromParent();
531 static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
532 Function *F = FnVec[i];
533 Function *G = FnVec[j];
535 LinkageCategory catF = categorize(F);
536 LinkageCategory catG = categorize(G);
538 if (catF == ExternalWeak || (catF == Internal && catG == ExternalStrong)) {
539 std::swap(FnVec[i], FnVec[j]);
540 std::swap(F, G);
541 std::swap(catF, catG);
544 switch (catF) {
545 case ExternalStrong:
546 switch (catG) {
547 case ExternalStrong:
548 case ExternalWeak:
549 ThunkGToF(F, G);
550 break;
551 case Internal:
552 if (G->hasAddressTaken())
553 ThunkGToF(F, G);
554 else
555 AliasGToF(F, G);
556 break;
558 break;
560 case ExternalWeak: {
561 assert(catG == ExternalWeak);
563 // Make them both thunks to the same internal function.
564 F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
565 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
566 F->getParent());
567 H->copyAttributesFrom(F);
568 H->takeName(F);
569 F->replaceAllUsesWith(H);
571 ThunkGToF(F, G);
572 ThunkGToF(F, H);
574 F->setLinkage(GlobalValue::InternalLinkage);
575 } break;
577 case Internal:
578 switch (catG) {
579 case ExternalStrong:
580 llvm_unreachable(0);
581 // fall-through
582 case ExternalWeak:
583 if (F->hasAddressTaken())
584 ThunkGToF(F, G);
585 else
586 AliasGToF(F, G);
587 break;
588 case Internal: {
589 bool addrTakenF = F->hasAddressTaken();
590 bool addrTakenG = G->hasAddressTaken();
591 if (!addrTakenF && addrTakenG) {
592 std::swap(FnVec[i], FnVec[j]);
593 std::swap(F, G);
594 std::swap(addrTakenF, addrTakenG);
597 if (addrTakenF && addrTakenG) {
598 ThunkGToF(F, G);
599 } else {
600 assert(!addrTakenG);
601 AliasGToF(F, G);
603 } break;
605 break;
608 ++NumFunctionsMerged;
609 return true;
612 // ===----------------------------------------------------------------------===
613 // Pass definition
614 // ===----------------------------------------------------------------------===
616 bool MergeFunctions::runOnModule(Module &M) {
617 bool Changed = false;
619 std::map<unsigned long, std::vector<Function *> > FnMap;
621 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
622 if (F->isDeclaration() || F->isIntrinsic())
623 continue;
625 FnMap[hash(F)].push_back(F);
628 // TODO: instead of running in a loop, we could also fold functions in
629 // callgraph order. Constructing the CFG probably isn't cheaper than just
630 // running in a loop, unless it happened to already be available.
632 bool LocalChanged;
633 do {
634 LocalChanged = false;
635 DEBUG(dbgs() << "size: " << FnMap.size() << "\n");
636 for (std::map<unsigned long, std::vector<Function *> >::iterator
637 I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
638 std::vector<Function *> &FnVec = I->second;
639 DEBUG(dbgs() << "hash (" << I->first << "): " << FnVec.size() << "\n");
641 for (int i = 0, e = FnVec.size(); i != e; ++i) {
642 for (int j = i + 1; j != e; ++j) {
643 bool isEqual = equals(FnVec[i], FnVec[j]);
645 DEBUG(dbgs() << " " << FnVec[i]->getName()
646 << (isEqual ? " == " : " != ")
647 << FnVec[j]->getName() << "\n");
649 if (isEqual) {
650 if (fold(FnVec, i, j)) {
651 LocalChanged = true;
652 FnVec.erase(FnVec.begin() + j);
653 --j, --e;
660 Changed |= LocalChanged;
661 } while (LocalChanged);
663 return Changed;