1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass transforms simple global variables that never have their address
11 // taken. If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/IPO.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/IR/CallSite.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GetElementPtrTypeIterator.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/CtorUtils.h"
43 #include "llvm/Transforms/Utils/GlobalStatus.h"
44 #include "llvm/Transforms/Utils/ModuleUtils.h"
49 #define DEBUG_TYPE "globalopt"
51 STATISTIC(NumMarked
, "Number of globals marked constant");
52 STATISTIC(NumUnnamed
, "Number of globals marked unnamed_addr");
53 STATISTIC(NumSRA
, "Number of aggregate globals broken into scalars");
54 STATISTIC(NumHeapSRA
, "Number of heap objects SRA'd");
55 STATISTIC(NumSubstitute
,"Number of globals with initializers stored into them");
56 STATISTIC(NumDeleted
, "Number of globals deleted");
57 STATISTIC(NumFnDeleted
, "Number of functions deleted");
58 STATISTIC(NumGlobUses
, "Number of global uses devirtualized");
59 STATISTIC(NumLocalized
, "Number of globals localized");
60 STATISTIC(NumShrunkToBool
, "Number of global vars shrunk to booleans");
61 STATISTIC(NumFastCallFns
, "Number of functions converted to fastcc");
62 STATISTIC(NumCtorsEvaluated
, "Number of static ctors evaluated");
63 STATISTIC(NumNestRemoved
, "Number of nest attributes removed");
64 STATISTIC(NumAliasesResolved
, "Number of global aliases resolved");
65 STATISTIC(NumAliasesRemoved
, "Number of global aliases eliminated");
66 STATISTIC(NumCXXDtorsRemoved
, "Number of global C++ destructors removed");
69 struct GlobalOpt
: public ModulePass
{
70 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
71 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
73 static char ID
; // Pass identification, replacement for typeid
74 GlobalOpt() : ModulePass(ID
) {
75 initializeGlobalOptPass(*PassRegistry::getPassRegistry());
78 bool runOnModule(Module
&M
) override
;
81 bool OptimizeFunctions(Module
&M
);
82 bool OptimizeGlobalVars(Module
&M
);
83 bool OptimizeGlobalAliases(Module
&M
);
84 bool ProcessGlobal(GlobalVariable
*GV
,Module::global_iterator
&GVI
);
85 bool ProcessInternalGlobal(GlobalVariable
*GV
,Module::global_iterator
&GVI
,
86 const GlobalStatus
&GS
);
87 bool OptimizeEmptyGlobalCXXDtors(Function
*CXAAtExitFn
);
89 TargetLibraryInfo
*TLI
;
90 SmallSet
<const Comdat
*, 8> NotDiscardableComdats
;
94 char GlobalOpt::ID
= 0;
95 INITIALIZE_PASS_BEGIN(GlobalOpt
, "globalopt",
96 "Global Variable Optimizer", false, false)
97 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
98 INITIALIZE_PASS_END(GlobalOpt
, "globalopt",
99 "Global Variable Optimizer", false, false)
101 ModulePass
*llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
103 /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
104 /// as a root? If so, we might not really want to eliminate the stores to it.
105 static bool isLeakCheckerRoot(GlobalVariable
*GV
) {
106 // A global variable is a root if it is a pointer, or could plausibly contain
107 // a pointer. There are two challenges; one is that we could have a struct
108 // the has an inner member which is a pointer. We recurse through the type to
109 // detect these (up to a point). The other is that we may actually be a union
110 // of a pointer and another type, and so our LLVM type is an integer which
111 // gets converted into a pointer, or our type is an [i8 x #] with a pointer
112 // potentially contained here.
114 if (GV
->hasPrivateLinkage())
117 SmallVector
<Type
*, 4> Types
;
118 Types
.push_back(cast
<PointerType
>(GV
->getType())->getElementType());
122 Type
*Ty
= Types
.pop_back_val();
123 switch (Ty
->getTypeID()) {
125 case Type::PointerTyID
: return true;
126 case Type::ArrayTyID
:
127 case Type::VectorTyID
: {
128 SequentialType
*STy
= cast
<SequentialType
>(Ty
);
129 Types
.push_back(STy
->getElementType());
132 case Type::StructTyID
: {
133 StructType
*STy
= cast
<StructType
>(Ty
);
134 if (STy
->isOpaque()) return true;
135 for (StructType::element_iterator I
= STy
->element_begin(),
136 E
= STy
->element_end(); I
!= E
; ++I
) {
138 if (isa
<PointerType
>(InnerTy
)) return true;
139 if (isa
<CompositeType
>(InnerTy
))
140 Types
.push_back(InnerTy
);
145 if (--Limit
== 0) return true;
146 } while (!Types
.empty());
150 /// Given a value that is stored to a global but never read, determine whether
151 /// it's safe to remove the store and the chain of computation that feeds the
153 static bool IsSafeComputationToRemove(Value
*V
, const TargetLibraryInfo
*TLI
) {
155 if (isa
<Constant
>(V
))
159 if (isa
<LoadInst
>(V
) || isa
<InvokeInst
>(V
) || isa
<Argument
>(V
) ||
162 if (isAllocationFn(V
, TLI
))
165 Instruction
*I
= cast
<Instruction
>(V
);
166 if (I
->mayHaveSideEffects())
168 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
169 if (!GEP
->hasAllConstantIndices())
171 } else if (I
->getNumOperands() != 1) {
175 V
= I
->getOperand(0);
179 /// CleanupPointerRootUsers - This GV is a pointer root. Loop over all users
180 /// of the global and clean up any that obviously don't assign the global a
181 /// value that isn't dynamically allocated.
183 static bool CleanupPointerRootUsers(GlobalVariable
*GV
,
184 const TargetLibraryInfo
*TLI
) {
185 // A brief explanation of leak checkers. The goal is to find bugs where
186 // pointers are forgotten, causing an accumulating growth in memory
187 // usage over time. The common strategy for leak checkers is to whitelist the
188 // memory pointed to by globals at exit. This is popular because it also
189 // solves another problem where the main thread of a C++ program may shut down
190 // before other threads that are still expecting to use those globals. To
191 // handle that case, we expect the program may create a singleton and never
194 bool Changed
= false;
196 // If Dead[n].first is the only use of a malloc result, we can delete its
197 // chain of computation and the store to the global in Dead[n].second.
198 SmallVector
<std::pair
<Instruction
*, Instruction
*>, 32> Dead
;
200 // Constants can't be pointers to dynamically allocated memory.
201 for (Value::user_iterator UI
= GV
->user_begin(), E
= GV
->user_end();
204 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
205 Value
*V
= SI
->getValueOperand();
206 if (isa
<Constant
>(V
)) {
208 SI
->eraseFromParent();
209 } else if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
211 Dead
.push_back(std::make_pair(I
, SI
));
213 } else if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(U
)) {
214 if (isa
<Constant
>(MSI
->getValue())) {
216 MSI
->eraseFromParent();
217 } else if (Instruction
*I
= dyn_cast
<Instruction
>(MSI
->getValue())) {
219 Dead
.push_back(std::make_pair(I
, MSI
));
221 } else if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(U
)) {
222 GlobalVariable
*MemSrc
= dyn_cast
<GlobalVariable
>(MTI
->getSource());
223 if (MemSrc
&& MemSrc
->isConstant()) {
225 MTI
->eraseFromParent();
226 } else if (Instruction
*I
= dyn_cast
<Instruction
>(MemSrc
)) {
228 Dead
.push_back(std::make_pair(I
, MTI
));
230 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(U
)) {
231 if (CE
->use_empty()) {
232 CE
->destroyConstant();
235 } else if (Constant
*C
= dyn_cast
<Constant
>(U
)) {
236 if (isSafeToDestroyConstant(C
)) {
237 C
->destroyConstant();
238 // This could have invalidated UI, start over from scratch.
240 CleanupPointerRootUsers(GV
, TLI
);
246 for (int i
= 0, e
= Dead
.size(); i
!= e
; ++i
) {
247 if (IsSafeComputationToRemove(Dead
[i
].first
, TLI
)) {
248 Dead
[i
].second
->eraseFromParent();
249 Instruction
*I
= Dead
[i
].first
;
251 if (isAllocationFn(I
, TLI
))
253 Instruction
*J
= dyn_cast
<Instruction
>(I
->getOperand(0));
256 I
->eraseFromParent();
259 I
->eraseFromParent();
266 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all
267 /// users of the global, cleaning up the obvious ones. This is largely just a
268 /// quick scan over the use list to clean up the easy and obvious cruft. This
269 /// returns true if it made a change.
270 static bool CleanupConstantGlobalUsers(Value
*V
, Constant
*Init
,
271 const DataLayout
&DL
,
272 TargetLibraryInfo
*TLI
) {
273 bool Changed
= false;
274 // Note that we need to use a weak value handle for the worklist items. When
275 // we delete a constant array, we may also be holding pointer to one of its
276 // elements (or an element of one of its elements if we're dealing with an
277 // array of arrays) in the worklist.
278 SmallVector
<WeakVH
, 8> WorkList(V
->user_begin(), V
->user_end());
279 while (!WorkList
.empty()) {
280 Value
*UV
= WorkList
.pop_back_val();
284 User
*U
= cast
<User
>(UV
);
286 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
288 // Replace the load with the initializer.
289 LI
->replaceAllUsesWith(Init
);
290 LI
->eraseFromParent();
293 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
294 // Store must be unreachable or storing Init into the global.
295 SI
->eraseFromParent();
297 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(U
)) {
298 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
299 Constant
*SubInit
= nullptr;
301 SubInit
= ConstantFoldLoadThroughGEPConstantExpr(Init
, CE
);
302 Changed
|= CleanupConstantGlobalUsers(CE
, SubInit
, DL
, TLI
);
303 } else if ((CE
->getOpcode() == Instruction::BitCast
&&
304 CE
->getType()->isPointerTy()) ||
305 CE
->getOpcode() == Instruction::AddrSpaceCast
) {
306 // Pointer cast, delete any stores and memsets to the global.
307 Changed
|= CleanupConstantGlobalUsers(CE
, nullptr, DL
, TLI
);
310 if (CE
->use_empty()) {
311 CE
->destroyConstant();
314 } else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(U
)) {
315 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
316 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
317 // and will invalidate our notion of what Init is.
318 Constant
*SubInit
= nullptr;
319 if (!isa
<ConstantExpr
>(GEP
->getOperand(0))) {
320 ConstantExpr
*CE
= dyn_cast_or_null
<ConstantExpr
>(
321 ConstantFoldInstruction(GEP
, DL
, TLI
));
322 if (Init
&& CE
&& CE
->getOpcode() == Instruction::GetElementPtr
)
323 SubInit
= ConstantFoldLoadThroughGEPConstantExpr(Init
, CE
);
325 // If the initializer is an all-null value and we have an inbounds GEP,
326 // we already know what the result of any load from that GEP is.
327 // TODO: Handle splats.
328 if (Init
&& isa
<ConstantAggregateZero
>(Init
) && GEP
->isInBounds())
329 SubInit
= Constant::getNullValue(GEP
->getType()->getElementType());
331 Changed
|= CleanupConstantGlobalUsers(GEP
, SubInit
, DL
, TLI
);
333 if (GEP
->use_empty()) {
334 GEP
->eraseFromParent();
337 } else if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(U
)) { // memset/cpy/mv
338 if (MI
->getRawDest() == V
) {
339 MI
->eraseFromParent();
343 } else if (Constant
*C
= dyn_cast
<Constant
>(U
)) {
344 // If we have a chain of dead constantexprs or other things dangling from
345 // us, and if they are all dead, nuke them without remorse.
346 if (isSafeToDestroyConstant(C
)) {
347 C
->destroyConstant();
348 CleanupConstantGlobalUsers(V
, Init
, DL
, TLI
);
356 /// isSafeSROAElementUse - Return true if the specified instruction is a safe
357 /// user of a derived expression from a global that we want to SROA.
358 static bool isSafeSROAElementUse(Value
*V
) {
359 // We might have a dead and dangling constant hanging off of here.
360 if (Constant
*C
= dyn_cast
<Constant
>(V
))
361 return isSafeToDestroyConstant(C
);
363 Instruction
*I
= dyn_cast
<Instruction
>(V
);
364 if (!I
) return false;
367 if (isa
<LoadInst
>(I
)) return true;
369 // Stores *to* the pointer are ok.
370 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
371 return SI
->getOperand(0) != V
;
373 // Otherwise, it must be a GEP.
374 GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
);
375 if (!GEPI
) return false;
377 if (GEPI
->getNumOperands() < 3 || !isa
<Constant
>(GEPI
->getOperand(1)) ||
378 !cast
<Constant
>(GEPI
->getOperand(1))->isNullValue())
381 for (User
*U
: GEPI
->users())
382 if (!isSafeSROAElementUse(U
))
388 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
389 /// Look at it and its uses and decide whether it is safe to SROA this global.
391 static bool IsUserOfGlobalSafeForSRA(User
*U
, GlobalValue
*GV
) {
392 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
393 if (!isa
<GetElementPtrInst
>(U
) &&
394 (!isa
<ConstantExpr
>(U
) ||
395 cast
<ConstantExpr
>(U
)->getOpcode() != Instruction::GetElementPtr
))
398 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
399 // don't like < 3 operand CE's, and we don't like non-constant integer
400 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
402 if (U
->getNumOperands() < 3 || !isa
<Constant
>(U
->getOperand(1)) ||
403 !cast
<Constant
>(U
->getOperand(1))->isNullValue() ||
404 !isa
<ConstantInt
>(U
->getOperand(2)))
407 gep_type_iterator GEPI
= gep_type_begin(U
), E
= gep_type_end(U
);
408 ++GEPI
; // Skip over the pointer index.
410 // If this is a use of an array allocation, do a bit more checking for sanity.
411 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(*GEPI
)) {
412 uint64_t NumElements
= AT
->getNumElements();
413 ConstantInt
*Idx
= cast
<ConstantInt
>(U
->getOperand(2));
415 // Check to make sure that index falls within the array. If not,
416 // something funny is going on, so we won't do the optimization.
418 if (Idx
->getZExtValue() >= NumElements
)
421 // We cannot scalar repl this level of the array unless any array
422 // sub-indices are in-range constants. In particular, consider:
423 // A[0][i]. We cannot know that the user isn't doing invalid things like
424 // allowing i to index an out-of-range subscript that accesses A[1].
426 // Scalar replacing *just* the outer index of the array is probably not
427 // going to be a win anyway, so just give up.
428 for (++GEPI
; // Skip array index.
431 uint64_t NumElements
;
432 if (ArrayType
*SubArrayTy
= dyn_cast
<ArrayType
>(*GEPI
))
433 NumElements
= SubArrayTy
->getNumElements();
434 else if (VectorType
*SubVectorTy
= dyn_cast
<VectorType
>(*GEPI
))
435 NumElements
= SubVectorTy
->getNumElements();
437 assert((*GEPI
)->isStructTy() &&
438 "Indexed GEP type is not array, vector, or struct!");
442 ConstantInt
*IdxVal
= dyn_cast
<ConstantInt
>(GEPI
.getOperand());
443 if (!IdxVal
|| IdxVal
->getZExtValue() >= NumElements
)
448 for (User
*UU
: U
->users())
449 if (!isSafeSROAElementUse(UU
))
455 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
456 /// is safe for us to perform this transformation.
458 static bool GlobalUsersSafeToSRA(GlobalValue
*GV
) {
459 for (User
*U
: GV
->users())
460 if (!IsUserOfGlobalSafeForSRA(U
, GV
))
467 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
468 /// variable. This opens the door for other optimizations by exposing the
469 /// behavior of the program in a more fine-grained way. We have determined that
470 /// this transformation is safe already. We return the first global variable we
471 /// insert so that the caller can reprocess it.
472 static GlobalVariable
*SRAGlobal(GlobalVariable
*GV
, const DataLayout
&DL
) {
473 // Make sure this global only has simple uses that we can SRA.
474 if (!GlobalUsersSafeToSRA(GV
))
477 assert(GV
->hasLocalLinkage() && !GV
->isConstant());
478 Constant
*Init
= GV
->getInitializer();
479 Type
*Ty
= Init
->getType();
481 std::vector
<GlobalVariable
*> NewGlobals
;
482 Module::GlobalListType
&Globals
= GV
->getParent()->getGlobalList();
484 // Get the alignment of the global, either explicit or target-specific.
485 unsigned StartAlignment
= GV
->getAlignment();
486 if (StartAlignment
== 0)
487 StartAlignment
= DL
.getABITypeAlignment(GV
->getType());
489 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
490 NewGlobals
.reserve(STy
->getNumElements());
491 const StructLayout
&Layout
= *DL
.getStructLayout(STy
);
492 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
493 Constant
*In
= Init
->getAggregateElement(i
);
494 assert(In
&& "Couldn't get element of initializer?");
495 GlobalVariable
*NGV
= new GlobalVariable(STy
->getElementType(i
), false,
496 GlobalVariable::InternalLinkage
,
497 In
, GV
->getName()+"."+Twine(i
),
498 GV
->getThreadLocalMode(),
499 GV
->getType()->getAddressSpace());
500 Globals
.insert(GV
->getIterator(), NGV
);
501 NewGlobals
.push_back(NGV
);
503 // Calculate the known alignment of the field. If the original aggregate
504 // had 256 byte alignment for example, something might depend on that:
505 // propagate info to each field.
506 uint64_t FieldOffset
= Layout
.getElementOffset(i
);
507 unsigned NewAlign
= (unsigned)MinAlign(StartAlignment
, FieldOffset
);
508 if (NewAlign
> DL
.getABITypeAlignment(STy
->getElementType(i
)))
509 NGV
->setAlignment(NewAlign
);
511 } else if (SequentialType
*STy
= dyn_cast
<SequentialType
>(Ty
)) {
512 unsigned NumElements
= 0;
513 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(STy
))
514 NumElements
= ATy
->getNumElements();
516 NumElements
= cast
<VectorType
>(STy
)->getNumElements();
518 if (NumElements
> 16 && GV
->hasNUsesOrMore(16))
519 return nullptr; // It's not worth it.
520 NewGlobals
.reserve(NumElements
);
522 uint64_t EltSize
= DL
.getTypeAllocSize(STy
->getElementType());
523 unsigned EltAlign
= DL
.getABITypeAlignment(STy
->getElementType());
524 for (unsigned i
= 0, e
= NumElements
; i
!= e
; ++i
) {
525 Constant
*In
= Init
->getAggregateElement(i
);
526 assert(In
&& "Couldn't get element of initializer?");
528 GlobalVariable
*NGV
= new GlobalVariable(STy
->getElementType(), false,
529 GlobalVariable::InternalLinkage
,
530 In
, GV
->getName()+"."+Twine(i
),
531 GV
->getThreadLocalMode(),
532 GV
->getType()->getAddressSpace());
533 Globals
.insert(GV
->getIterator(), NGV
);
534 NewGlobals
.push_back(NGV
);
536 // Calculate the known alignment of the field. If the original aggregate
537 // had 256 byte alignment for example, something might depend on that:
538 // propagate info to each field.
539 unsigned NewAlign
= (unsigned)MinAlign(StartAlignment
, EltSize
*i
);
540 if (NewAlign
> EltAlign
)
541 NGV
->setAlignment(NewAlign
);
545 if (NewGlobals
.empty())
548 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV
<< "\n");
550 Constant
*NullInt
=Constant::getNullValue(Type::getInt32Ty(GV
->getContext()));
552 // Loop over all of the uses of the global, replacing the constantexpr geps,
553 // with smaller constantexpr geps or direct references.
554 while (!GV
->use_empty()) {
555 User
*GEP
= GV
->user_back();
556 assert(((isa
<ConstantExpr
>(GEP
) &&
557 cast
<ConstantExpr
>(GEP
)->getOpcode()==Instruction::GetElementPtr
)||
558 isa
<GetElementPtrInst
>(GEP
)) && "NonGEP CE's are not SRAable!");
560 // Ignore the 1th operand, which has to be zero or else the program is quite
561 // broken (undefined). Get the 2nd operand, which is the structure or array
563 unsigned Val
= cast
<ConstantInt
>(GEP
->getOperand(2))->getZExtValue();
564 if (Val
>= NewGlobals
.size()) Val
= 0; // Out of bound array access.
566 Value
*NewPtr
= NewGlobals
[Val
];
567 Type
*NewTy
= NewGlobals
[Val
]->getValueType();
569 // Form a shorter GEP if needed.
570 if (GEP
->getNumOperands() > 3) {
571 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(GEP
)) {
572 SmallVector
<Constant
*, 8> Idxs
;
573 Idxs
.push_back(NullInt
);
574 for (unsigned i
= 3, e
= CE
->getNumOperands(); i
!= e
; ++i
)
575 Idxs
.push_back(CE
->getOperand(i
));
577 ConstantExpr::getGetElementPtr(NewTy
, cast
<Constant
>(NewPtr
), Idxs
);
579 GetElementPtrInst
*GEPI
= cast
<GetElementPtrInst
>(GEP
);
580 SmallVector
<Value
*, 8> Idxs
;
581 Idxs
.push_back(NullInt
);
582 for (unsigned i
= 3, e
= GEPI
->getNumOperands(); i
!= e
; ++i
)
583 Idxs
.push_back(GEPI
->getOperand(i
));
584 NewPtr
= GetElementPtrInst::Create(
585 NewTy
, NewPtr
, Idxs
, GEPI
->getName() + "." + Twine(Val
), GEPI
);
588 GEP
->replaceAllUsesWith(NewPtr
);
590 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(GEP
))
591 GEPI
->eraseFromParent();
593 cast
<ConstantExpr
>(GEP
)->destroyConstant();
596 // Delete the old global, now that it is dead.
600 // Loop over the new globals array deleting any globals that are obviously
601 // dead. This can arise due to scalarization of a structure or an array that
602 // has elements that are dead.
603 unsigned FirstGlobal
= 0;
604 for (unsigned i
= 0, e
= NewGlobals
.size(); i
!= e
; ++i
)
605 if (NewGlobals
[i
]->use_empty()) {
606 Globals
.erase(NewGlobals
[i
]);
607 if (FirstGlobal
== i
) ++FirstGlobal
;
610 return FirstGlobal
!= NewGlobals
.size() ? NewGlobals
[FirstGlobal
] : nullptr;
613 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
614 /// value will trap if the value is dynamically null. PHIs keeps track of any
615 /// phi nodes we've seen to avoid reprocessing them.
616 static bool AllUsesOfValueWillTrapIfNull(const Value
*V
,
617 SmallPtrSetImpl
<const PHINode
*> &PHIs
) {
618 for (const User
*U
: V
->users())
619 if (isa
<LoadInst
>(U
)) {
621 } else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
622 if (SI
->getOperand(0) == V
) {
623 //cerr << "NONTRAPPING USE: " << *U;
624 return false; // Storing the value.
626 } else if (const CallInst
*CI
= dyn_cast
<CallInst
>(U
)) {
627 if (CI
->getCalledValue() != V
) {
628 //cerr << "NONTRAPPING USE: " << *U;
629 return false; // Not calling the ptr
631 } else if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(U
)) {
632 if (II
->getCalledValue() != V
) {
633 //cerr << "NONTRAPPING USE: " << *U;
634 return false; // Not calling the ptr
636 } else if (const BitCastInst
*CI
= dyn_cast
<BitCastInst
>(U
)) {
637 if (!AllUsesOfValueWillTrapIfNull(CI
, PHIs
)) return false;
638 } else if (const GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(U
)) {
639 if (!AllUsesOfValueWillTrapIfNull(GEPI
, PHIs
)) return false;
640 } else if (const PHINode
*PN
= dyn_cast
<PHINode
>(U
)) {
641 // If we've already seen this phi node, ignore it, it has already been
643 if (PHIs
.insert(PN
).second
&& !AllUsesOfValueWillTrapIfNull(PN
, PHIs
))
645 } else if (isa
<ICmpInst
>(U
) &&
646 isa
<ConstantPointerNull
>(U
->getOperand(1))) {
647 // Ignore icmp X, null
649 //cerr << "NONTRAPPING USE: " << *U;
656 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
657 /// from GV will trap if the loaded value is null. Note that this also permits
658 /// comparisons of the loaded value against null, as a special case.
659 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable
*GV
) {
660 for (const User
*U
: GV
->users())
661 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
662 SmallPtrSet
<const PHINode
*, 8> PHIs
;
663 if (!AllUsesOfValueWillTrapIfNull(LI
, PHIs
))
665 } else if (isa
<StoreInst
>(U
)) {
666 // Ignore stores to the global.
668 // We don't know or understand this user, bail out.
669 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
675 static bool OptimizeAwayTrappingUsesOfValue(Value
*V
, Constant
*NewV
) {
676 bool Changed
= false;
677 for (auto UI
= V
->user_begin(), E
= V
->user_end(); UI
!= E
; ) {
678 Instruction
*I
= cast
<Instruction
>(*UI
++);
679 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
680 LI
->setOperand(0, NewV
);
682 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
683 if (SI
->getOperand(1) == V
) {
684 SI
->setOperand(1, NewV
);
687 } else if (isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
)) {
689 if (CS
.getCalledValue() == V
) {
690 // Calling through the pointer! Turn into a direct call, but be careful
691 // that the pointer is not also being passed as an argument.
692 CS
.setCalledFunction(NewV
);
694 bool PassedAsArg
= false;
695 for (unsigned i
= 0, e
= CS
.arg_size(); i
!= e
; ++i
)
696 if (CS
.getArgument(i
) == V
) {
698 CS
.setArgument(i
, NewV
);
702 // Being passed as an argument also. Be careful to not invalidate UI!
703 UI
= V
->user_begin();
706 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
707 Changed
|= OptimizeAwayTrappingUsesOfValue(CI
,
708 ConstantExpr::getCast(CI
->getOpcode(),
709 NewV
, CI
->getType()));
710 if (CI
->use_empty()) {
712 CI
->eraseFromParent();
714 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
715 // Should handle GEP here.
716 SmallVector
<Constant
*, 8> Idxs
;
717 Idxs
.reserve(GEPI
->getNumOperands()-1);
718 for (User::op_iterator i
= GEPI
->op_begin() + 1, e
= GEPI
->op_end();
720 if (Constant
*C
= dyn_cast
<Constant
>(*i
))
724 if (Idxs
.size() == GEPI
->getNumOperands()-1)
725 Changed
|= OptimizeAwayTrappingUsesOfValue(
726 GEPI
, ConstantExpr::getGetElementPtr(nullptr, NewV
, Idxs
));
727 if (GEPI
->use_empty()) {
729 GEPI
->eraseFromParent();
738 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
739 /// value stored into it. If there are uses of the loaded value that would trap
740 /// if the loaded value is dynamically null, then we know that they cannot be
741 /// reachable with a null optimize away the load.
742 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable
*GV
, Constant
*LV
,
743 const DataLayout
&DL
,
744 TargetLibraryInfo
*TLI
) {
745 bool Changed
= false;
747 // Keep track of whether we are able to remove all the uses of the global
748 // other than the store that defines it.
749 bool AllNonStoreUsesGone
= true;
751 // Replace all uses of loads with uses of uses of the stored value.
752 for (Value::user_iterator GUI
= GV
->user_begin(), E
= GV
->user_end(); GUI
!= E
;){
753 User
*GlobalUser
= *GUI
++;
754 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(GlobalUser
)) {
755 Changed
|= OptimizeAwayTrappingUsesOfValue(LI
, LV
);
756 // If we were able to delete all uses of the loads
757 if (LI
->use_empty()) {
758 LI
->eraseFromParent();
761 AllNonStoreUsesGone
= false;
763 } else if (isa
<StoreInst
>(GlobalUser
)) {
764 // Ignore the store that stores "LV" to the global.
765 assert(GlobalUser
->getOperand(1) == GV
&&
766 "Must be storing *to* the global");
768 AllNonStoreUsesGone
= false;
770 // If we get here we could have other crazy uses that are transitively
772 assert((isa
<PHINode
>(GlobalUser
) || isa
<SelectInst
>(GlobalUser
) ||
773 isa
<ConstantExpr
>(GlobalUser
) || isa
<CmpInst
>(GlobalUser
) ||
774 isa
<BitCastInst
>(GlobalUser
) ||
775 isa
<GetElementPtrInst
>(GlobalUser
)) &&
776 "Only expect load and stores!");
781 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
<< "\n");
785 // If we nuked all of the loads, then none of the stores are needed either,
786 // nor is the global.
787 if (AllNonStoreUsesGone
) {
788 if (isLeakCheckerRoot(GV
)) {
789 Changed
|= CleanupPointerRootUsers(GV
, TLI
);
792 CleanupConstantGlobalUsers(GV
, nullptr, DL
, TLI
);
794 if (GV
->use_empty()) {
795 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
797 GV
->eraseFromParent();
804 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
805 /// instructions that are foldable.
806 static void ConstantPropUsersOf(Value
*V
, const DataLayout
&DL
,
807 TargetLibraryInfo
*TLI
) {
808 for (Value::user_iterator UI
= V
->user_begin(), E
= V
->user_end(); UI
!= E
; )
809 if (Instruction
*I
= dyn_cast
<Instruction
>(*UI
++))
810 if (Constant
*NewC
= ConstantFoldInstruction(I
, DL
, TLI
)) {
811 I
->replaceAllUsesWith(NewC
);
813 // Advance UI to the next non-I use to avoid invalidating it!
814 // Instructions could multiply use V.
815 while (UI
!= E
&& *UI
== I
)
817 I
->eraseFromParent();
821 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global
822 /// variable, and transforms the program as if it always contained the result of
823 /// the specified malloc. Because it is always the result of the specified
824 /// malloc, there is no reason to actually DO the malloc. Instead, turn the
825 /// malloc into a global, and any loads of GV as uses of the new global.
826 static GlobalVariable
*
827 OptimizeGlobalAddressOfMalloc(GlobalVariable
*GV
, CallInst
*CI
, Type
*AllocTy
,
828 ConstantInt
*NElements
, const DataLayout
&DL
,
829 TargetLibraryInfo
*TLI
) {
830 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV
<< " CALL = " << *CI
<< '\n');
833 if (NElements
->getZExtValue() == 1)
834 GlobalType
= AllocTy
;
836 // If we have an array allocation, the global variable is of an array.
837 GlobalType
= ArrayType::get(AllocTy
, NElements
->getZExtValue());
839 // Create the new global variable. The contents of the malloc'd memory is
840 // undefined, so initialize with an undef value.
841 GlobalVariable
*NewGV
= new GlobalVariable(*GV
->getParent(),
843 GlobalValue::InternalLinkage
,
844 UndefValue::get(GlobalType
),
845 GV
->getName()+".body",
847 GV
->getThreadLocalMode());
849 // If there are bitcast users of the malloc (which is typical, usually we have
850 // a malloc + bitcast) then replace them with uses of the new global. Update
851 // other users to use the global as well.
852 BitCastInst
*TheBC
= nullptr;
853 while (!CI
->use_empty()) {
854 Instruction
*User
= cast
<Instruction
>(CI
->user_back());
855 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(User
)) {
856 if (BCI
->getType() == NewGV
->getType()) {
857 BCI
->replaceAllUsesWith(NewGV
);
858 BCI
->eraseFromParent();
860 BCI
->setOperand(0, NewGV
);
864 TheBC
= new BitCastInst(NewGV
, CI
->getType(), "newgv", CI
);
865 User
->replaceUsesOfWith(CI
, TheBC
);
869 Constant
*RepValue
= NewGV
;
870 if (NewGV
->getType() != GV
->getType()->getElementType())
871 RepValue
= ConstantExpr::getBitCast(RepValue
,
872 GV
->getType()->getElementType());
874 // If there is a comparison against null, we will insert a global bool to
875 // keep track of whether the global was initialized yet or not.
876 GlobalVariable
*InitBool
=
877 new GlobalVariable(Type::getInt1Ty(GV
->getContext()), false,
878 GlobalValue::InternalLinkage
,
879 ConstantInt::getFalse(GV
->getContext()),
880 GV
->getName()+".init", GV
->getThreadLocalMode());
881 bool InitBoolUsed
= false;
883 // Loop over all uses of GV, processing them in turn.
884 while (!GV
->use_empty()) {
885 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(GV
->user_back())) {
886 // The global is initialized when the store to it occurs.
887 new StoreInst(ConstantInt::getTrue(GV
->getContext()), InitBool
, false, 0,
888 SI
->getOrdering(), SI
->getSynchScope(), SI
);
889 SI
->eraseFromParent();
893 LoadInst
*LI
= cast
<LoadInst
>(GV
->user_back());
894 while (!LI
->use_empty()) {
895 Use
&LoadUse
= *LI
->use_begin();
896 ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(LoadUse
.getUser());
902 // Replace the cmp X, 0 with a use of the bool value.
903 // Sink the load to where the compare was, if atomic rules allow us to.
904 Value
*LV
= new LoadInst(InitBool
, InitBool
->getName()+".val", false, 0,
905 LI
->getOrdering(), LI
->getSynchScope(),
906 LI
->isUnordered() ? (Instruction
*)ICI
: LI
);
908 switch (ICI
->getPredicate()) {
909 default: llvm_unreachable("Unknown ICmp Predicate!");
910 case ICmpInst::ICMP_ULT
:
911 case ICmpInst::ICMP_SLT
: // X < null -> always false
912 LV
= ConstantInt::getFalse(GV
->getContext());
914 case ICmpInst::ICMP_ULE
:
915 case ICmpInst::ICMP_SLE
:
916 case ICmpInst::ICMP_EQ
:
917 LV
= BinaryOperator::CreateNot(LV
, "notinit", ICI
);
919 case ICmpInst::ICMP_NE
:
920 case ICmpInst::ICMP_UGE
:
921 case ICmpInst::ICMP_SGE
:
922 case ICmpInst::ICMP_UGT
:
923 case ICmpInst::ICMP_SGT
:
926 ICI
->replaceAllUsesWith(LV
);
927 ICI
->eraseFromParent();
929 LI
->eraseFromParent();
932 // If the initialization boolean was used, insert it, otherwise delete it.
934 while (!InitBool
->use_empty()) // Delete initializations
935 cast
<StoreInst
>(InitBool
->user_back())->eraseFromParent();
938 GV
->getParent()->getGlobalList().insert(GV
->getIterator(), InitBool
);
940 // Now the GV is dead, nuke it and the malloc..
941 GV
->eraseFromParent();
942 CI
->eraseFromParent();
944 // To further other optimizations, loop over all users of NewGV and try to
945 // constant prop them. This will promote GEP instructions with constant
946 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
947 ConstantPropUsersOf(NewGV
, DL
, TLI
);
948 if (RepValue
!= NewGV
)
949 ConstantPropUsersOf(RepValue
, DL
, TLI
);
954 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
955 /// to make sure that there are no complex uses of V. We permit simple things
956 /// like dereferencing the pointer, but not storing through the address, unless
957 /// it is to the specified global.
958 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction
*V
,
959 const GlobalVariable
*GV
,
960 SmallPtrSetImpl
<const PHINode
*> &PHIs
) {
961 for (const User
*U
: V
->users()) {
962 const Instruction
*Inst
= cast
<Instruction
>(U
);
964 if (isa
<LoadInst
>(Inst
) || isa
<CmpInst
>(Inst
)) {
965 continue; // Fine, ignore.
968 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
969 if (SI
->getOperand(0) == V
&& SI
->getOperand(1) != GV
)
970 return false; // Storing the pointer itself... bad.
971 continue; // Otherwise, storing through it, or storing into GV... fine.
974 // Must index into the array and into the struct.
975 if (isa
<GetElementPtrInst
>(Inst
) && Inst
->getNumOperands() >= 3) {
976 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst
, GV
, PHIs
))
981 if (const PHINode
*PN
= dyn_cast
<PHINode
>(Inst
)) {
982 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
984 if (PHIs
.insert(PN
).second
)
985 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN
, GV
, PHIs
))
990 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Inst
)) {
991 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI
, GV
, PHIs
))
1001 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1002 /// somewhere. Transform all uses of the allocation into loads from the
1003 /// global and uses of the resultant pointer. Further, delete the store into
1004 /// GV. This assumes that these value pass the
1005 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1006 static void ReplaceUsesOfMallocWithGlobal(Instruction
*Alloc
,
1007 GlobalVariable
*GV
) {
1008 while (!Alloc
->use_empty()) {
1009 Instruction
*U
= cast
<Instruction
>(*Alloc
->user_begin());
1010 Instruction
*InsertPt
= U
;
1011 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
1012 // If this is the store of the allocation into the global, remove it.
1013 if (SI
->getOperand(1) == GV
) {
1014 SI
->eraseFromParent();
1017 } else if (PHINode
*PN
= dyn_cast
<PHINode
>(U
)) {
1018 // Insert the load in the corresponding predecessor, not right before the
1020 InsertPt
= PN
->getIncomingBlock(*Alloc
->use_begin())->getTerminator();
1021 } else if (isa
<BitCastInst
>(U
)) {
1022 // Must be bitcast between the malloc and store to initialize the global.
1023 ReplaceUsesOfMallocWithGlobal(U
, GV
);
1024 U
->eraseFromParent();
1026 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(U
)) {
1027 // If this is a "GEP bitcast" and the user is a store to the global, then
1028 // just process it as a bitcast.
1029 if (GEPI
->hasAllZeroIndices() && GEPI
->hasOneUse())
1030 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(GEPI
->user_back()))
1031 if (SI
->getOperand(1) == GV
) {
1032 // Must be bitcast GEP between the malloc and store to initialize
1034 ReplaceUsesOfMallocWithGlobal(GEPI
, GV
);
1035 GEPI
->eraseFromParent();
1040 // Insert a load from the global, and use it instead of the malloc.
1041 Value
*NL
= new LoadInst(GV
, GV
->getName()+".val", InsertPt
);
1042 U
->replaceUsesOfWith(Alloc
, NL
);
1046 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1047 /// of a load) are simple enough to perform heap SRA on. This permits GEP's
1048 /// that index through the array and struct field, icmps of null, and PHIs.
1049 static bool LoadUsesSimpleEnoughForHeapSRA(const Value
*V
,
1050 SmallPtrSetImpl
<const PHINode
*> &LoadUsingPHIs
,
1051 SmallPtrSetImpl
<const PHINode
*> &LoadUsingPHIsPerLoad
) {
1052 // We permit two users of the load: setcc comparing against the null
1053 // pointer, and a getelementptr of a specific form.
1054 for (const User
*U
: V
->users()) {
1055 const Instruction
*UI
= cast
<Instruction
>(U
);
1057 // Comparison against null is ok.
1058 if (const ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(UI
)) {
1059 if (!isa
<ConstantPointerNull
>(ICI
->getOperand(1)))
1064 // getelementptr is also ok, but only a simple form.
1065 if (const GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(UI
)) {
1066 // Must index into the array and into the struct.
1067 if (GEPI
->getNumOperands() < 3)
1070 // Otherwise the GEP is ok.
1074 if (const PHINode
*PN
= dyn_cast
<PHINode
>(UI
)) {
1075 if (!LoadUsingPHIsPerLoad
.insert(PN
).second
)
1076 // This means some phi nodes are dependent on each other.
1077 // Avoid infinite looping!
1079 if (!LoadUsingPHIs
.insert(PN
).second
)
1080 // If we have already analyzed this PHI, then it is safe.
1083 // Make sure all uses of the PHI are simple enough to transform.
1084 if (!LoadUsesSimpleEnoughForHeapSRA(PN
,
1085 LoadUsingPHIs
, LoadUsingPHIsPerLoad
))
1091 // Otherwise we don't know what this is, not ok.
1099 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1100 /// GV are simple enough to perform HeapSRA, return true.
1101 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable
*GV
,
1102 Instruction
*StoredVal
) {
1103 SmallPtrSet
<const PHINode
*, 32> LoadUsingPHIs
;
1104 SmallPtrSet
<const PHINode
*, 32> LoadUsingPHIsPerLoad
;
1105 for (const User
*U
: GV
->users())
1106 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
1107 if (!LoadUsesSimpleEnoughForHeapSRA(LI
, LoadUsingPHIs
,
1108 LoadUsingPHIsPerLoad
))
1110 LoadUsingPHIsPerLoad
.clear();
1113 // If we reach here, we know that all uses of the loads and transitive uses
1114 // (through PHI nodes) are simple enough to transform. However, we don't know
1115 // that all inputs the to the PHI nodes are in the same equivalence sets.
1116 // Check to verify that all operands of the PHIs are either PHIS that can be
1117 // transformed, loads from GV, or MI itself.
1118 for (const PHINode
*PN
: LoadUsingPHIs
) {
1119 for (unsigned op
= 0, e
= PN
->getNumIncomingValues(); op
!= e
; ++op
) {
1120 Value
*InVal
= PN
->getIncomingValue(op
);
1122 // PHI of the stored value itself is ok.
1123 if (InVal
== StoredVal
) continue;
1125 if (const PHINode
*InPN
= dyn_cast
<PHINode
>(InVal
)) {
1126 // One of the PHIs in our set is (optimistically) ok.
1127 if (LoadUsingPHIs
.count(InPN
))
1132 // Load from GV is ok.
1133 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(InVal
))
1134 if (LI
->getOperand(0) == GV
)
1139 // Anything else is rejected.
1147 static Value
*GetHeapSROAValue(Value
*V
, unsigned FieldNo
,
1148 DenseMap
<Value
*, std::vector
<Value
*> > &InsertedScalarizedValues
,
1149 std::vector
<std::pair
<PHINode
*, unsigned> > &PHIsToRewrite
) {
1150 std::vector
<Value
*> &FieldVals
= InsertedScalarizedValues
[V
];
1152 if (FieldNo
>= FieldVals
.size())
1153 FieldVals
.resize(FieldNo
+1);
1155 // If we already have this value, just reuse the previously scalarized
1157 if (Value
*FieldVal
= FieldVals
[FieldNo
])
1160 // Depending on what instruction this is, we have several cases.
1162 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(V
)) {
1163 // This is a scalarized version of the load from the global. Just create
1164 // a new Load of the scalarized global.
1165 Result
= new LoadInst(GetHeapSROAValue(LI
->getOperand(0), FieldNo
,
1166 InsertedScalarizedValues
,
1168 LI
->getName()+".f"+Twine(FieldNo
), LI
);
1170 PHINode
*PN
= cast
<PHINode
>(V
);
1171 // PN's type is pointer to struct. Make a new PHI of pointer to struct
1174 PointerType
*PTy
= cast
<PointerType
>(PN
->getType());
1175 StructType
*ST
= cast
<StructType
>(PTy
->getElementType());
1177 unsigned AS
= PTy
->getAddressSpace();
1179 PHINode::Create(PointerType::get(ST
->getElementType(FieldNo
), AS
),
1180 PN
->getNumIncomingValues(),
1181 PN
->getName()+".f"+Twine(FieldNo
), PN
);
1183 PHIsToRewrite
.push_back(std::make_pair(PN
, FieldNo
));
1186 return FieldVals
[FieldNo
] = Result
;
1189 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1190 /// the load, rewrite the derived value to use the HeapSRoA'd load.
1191 static void RewriteHeapSROALoadUser(Instruction
*LoadUser
,
1192 DenseMap
<Value
*, std::vector
<Value
*> > &InsertedScalarizedValues
,
1193 std::vector
<std::pair
<PHINode
*, unsigned> > &PHIsToRewrite
) {
1194 // If this is a comparison against null, handle it.
1195 if (ICmpInst
*SCI
= dyn_cast
<ICmpInst
>(LoadUser
)) {
1196 assert(isa
<ConstantPointerNull
>(SCI
->getOperand(1)));
1197 // If we have a setcc of the loaded pointer, we can use a setcc of any
1199 Value
*NPtr
= GetHeapSROAValue(SCI
->getOperand(0), 0,
1200 InsertedScalarizedValues
, PHIsToRewrite
);
1202 Value
*New
= new ICmpInst(SCI
, SCI
->getPredicate(), NPtr
,
1203 Constant::getNullValue(NPtr
->getType()),
1205 SCI
->replaceAllUsesWith(New
);
1206 SCI
->eraseFromParent();
1210 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1211 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(LoadUser
)) {
1212 assert(GEPI
->getNumOperands() >= 3 && isa
<ConstantInt
>(GEPI
->getOperand(2))
1213 && "Unexpected GEPI!");
1215 // Load the pointer for this field.
1216 unsigned FieldNo
= cast
<ConstantInt
>(GEPI
->getOperand(2))->getZExtValue();
1217 Value
*NewPtr
= GetHeapSROAValue(GEPI
->getOperand(0), FieldNo
,
1218 InsertedScalarizedValues
, PHIsToRewrite
);
1220 // Create the new GEP idx vector.
1221 SmallVector
<Value
*, 8> GEPIdx
;
1222 GEPIdx
.push_back(GEPI
->getOperand(1));
1223 GEPIdx
.append(GEPI
->op_begin()+3, GEPI
->op_end());
1225 Value
*NGEPI
= GetElementPtrInst::Create(GEPI
->getResultElementType(), NewPtr
, GEPIdx
,
1226 GEPI
->getName(), GEPI
);
1227 GEPI
->replaceAllUsesWith(NGEPI
);
1228 GEPI
->eraseFromParent();
1232 // Recursively transform the users of PHI nodes. This will lazily create the
1233 // PHIs that are needed for individual elements. Keep track of what PHIs we
1234 // see in InsertedScalarizedValues so that we don't get infinite loops (very
1235 // antisocial). If the PHI is already in InsertedScalarizedValues, it has
1236 // already been seen first by another load, so its uses have already been
1238 PHINode
*PN
= cast
<PHINode
>(LoadUser
);
1239 if (!InsertedScalarizedValues
.insert(std::make_pair(PN
,
1240 std::vector
<Value
*>())).second
)
1243 // If this is the first time we've seen this PHI, recursively process all
1245 for (auto UI
= PN
->user_begin(), E
= PN
->user_end(); UI
!= E
;) {
1246 Instruction
*User
= cast
<Instruction
>(*UI
++);
1247 RewriteHeapSROALoadUser(User
, InsertedScalarizedValues
, PHIsToRewrite
);
1251 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr
1252 /// is a value loaded from the global. Eliminate all uses of Ptr, making them
1253 /// use FieldGlobals instead. All uses of loaded values satisfy
1254 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1255 static void RewriteUsesOfLoadForHeapSRoA(LoadInst
*Load
,
1256 DenseMap
<Value
*, std::vector
<Value
*> > &InsertedScalarizedValues
,
1257 std::vector
<std::pair
<PHINode
*, unsigned> > &PHIsToRewrite
) {
1258 for (auto UI
= Load
->user_begin(), E
= Load
->user_end(); UI
!= E
;) {
1259 Instruction
*User
= cast
<Instruction
>(*UI
++);
1260 RewriteHeapSROALoadUser(User
, InsertedScalarizedValues
, PHIsToRewrite
);
1263 if (Load
->use_empty()) {
1264 Load
->eraseFromParent();
1265 InsertedScalarizedValues
.erase(Load
);
1269 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break
1270 /// it up into multiple allocations of arrays of the fields.
1271 static GlobalVariable
*PerformHeapAllocSRoA(GlobalVariable
*GV
, CallInst
*CI
,
1272 Value
*NElems
, const DataLayout
&DL
,
1273 const TargetLibraryInfo
*TLI
) {
1274 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV
<< " MALLOC = " << *CI
<< '\n');
1275 Type
*MAT
= getMallocAllocatedType(CI
, TLI
);
1276 StructType
*STy
= cast
<StructType
>(MAT
);
1278 // There is guaranteed to be at least one use of the malloc (storing
1279 // it into GV). If there are other uses, change them to be uses of
1280 // the global to simplify later code. This also deletes the store
1282 ReplaceUsesOfMallocWithGlobal(CI
, GV
);
1284 // Okay, at this point, there are no users of the malloc. Insert N
1285 // new mallocs at the same place as CI, and N globals.
1286 std::vector
<Value
*> FieldGlobals
;
1287 std::vector
<Value
*> FieldMallocs
;
1289 unsigned AS
= GV
->getType()->getPointerAddressSpace();
1290 for (unsigned FieldNo
= 0, e
= STy
->getNumElements(); FieldNo
!= e
;++FieldNo
){
1291 Type
*FieldTy
= STy
->getElementType(FieldNo
);
1292 PointerType
*PFieldTy
= PointerType::get(FieldTy
, AS
);
1294 GlobalVariable
*NGV
=
1295 new GlobalVariable(*GV
->getParent(),
1296 PFieldTy
, false, GlobalValue::InternalLinkage
,
1297 Constant::getNullValue(PFieldTy
),
1298 GV
->getName() + ".f" + Twine(FieldNo
), GV
,
1299 GV
->getThreadLocalMode());
1300 FieldGlobals
.push_back(NGV
);
1302 unsigned TypeSize
= DL
.getTypeAllocSize(FieldTy
);
1303 if (StructType
*ST
= dyn_cast
<StructType
>(FieldTy
))
1304 TypeSize
= DL
.getStructLayout(ST
)->getSizeInBytes();
1305 Type
*IntPtrTy
= DL
.getIntPtrType(CI
->getType());
1306 Value
*NMI
= CallInst::CreateMalloc(CI
, IntPtrTy
, FieldTy
,
1307 ConstantInt::get(IntPtrTy
, TypeSize
),
1309 CI
->getName() + ".f" + Twine(FieldNo
));
1310 FieldMallocs
.push_back(NMI
);
1311 new StoreInst(NMI
, NGV
, CI
);
1314 // The tricky aspect of this transformation is handling the case when malloc
1315 // fails. In the original code, malloc failing would set the result pointer
1316 // of malloc to null. In this case, some mallocs could succeed and others
1317 // could fail. As such, we emit code that looks like this:
1318 // F0 = malloc(field0)
1319 // F1 = malloc(field1)
1320 // F2 = malloc(field2)
1321 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1322 // if (F0) { free(F0); F0 = 0; }
1323 // if (F1) { free(F1); F1 = 0; }
1324 // if (F2) { free(F2); F2 = 0; }
1326 // The malloc can also fail if its argument is too large.
1327 Constant
*ConstantZero
= ConstantInt::get(CI
->getArgOperand(0)->getType(), 0);
1328 Value
*RunningOr
= new ICmpInst(CI
, ICmpInst::ICMP_SLT
, CI
->getArgOperand(0),
1329 ConstantZero
, "isneg");
1330 for (unsigned i
= 0, e
= FieldMallocs
.size(); i
!= e
; ++i
) {
1331 Value
*Cond
= new ICmpInst(CI
, ICmpInst::ICMP_EQ
, FieldMallocs
[i
],
1332 Constant::getNullValue(FieldMallocs
[i
]->getType()),
1334 RunningOr
= BinaryOperator::CreateOr(RunningOr
, Cond
, "tmp", CI
);
1337 // Split the basic block at the old malloc.
1338 BasicBlock
*OrigBB
= CI
->getParent();
1339 BasicBlock
*ContBB
=
1340 OrigBB
->splitBasicBlock(CI
->getIterator(), "malloc_cont");
1342 // Create the block to check the first condition. Put all these blocks at the
1343 // end of the function as they are unlikely to be executed.
1344 BasicBlock
*NullPtrBlock
= BasicBlock::Create(OrigBB
->getContext(),
1346 OrigBB
->getParent());
1348 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1349 // branch on RunningOr.
1350 OrigBB
->getTerminator()->eraseFromParent();
1351 BranchInst::Create(NullPtrBlock
, ContBB
, RunningOr
, OrigBB
);
1353 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1354 // pointer, because some may be null while others are not.
1355 for (unsigned i
= 0, e
= FieldGlobals
.size(); i
!= e
; ++i
) {
1356 Value
*GVVal
= new LoadInst(FieldGlobals
[i
], "tmp", NullPtrBlock
);
1357 Value
*Cmp
= new ICmpInst(*NullPtrBlock
, ICmpInst::ICMP_NE
, GVVal
,
1358 Constant::getNullValue(GVVal
->getType()));
1359 BasicBlock
*FreeBlock
= BasicBlock::Create(Cmp
->getContext(), "free_it",
1360 OrigBB
->getParent());
1361 BasicBlock
*NextBlock
= BasicBlock::Create(Cmp
->getContext(), "next",
1362 OrigBB
->getParent());
1363 Instruction
*BI
= BranchInst::Create(FreeBlock
, NextBlock
,
1366 // Fill in FreeBlock.
1367 CallInst::CreateFree(GVVal
, BI
);
1368 new StoreInst(Constant::getNullValue(GVVal
->getType()), FieldGlobals
[i
],
1370 BranchInst::Create(NextBlock
, FreeBlock
);
1372 NullPtrBlock
= NextBlock
;
1375 BranchInst::Create(ContBB
, NullPtrBlock
);
1377 // CI is no longer needed, remove it.
1378 CI
->eraseFromParent();
1380 /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1381 /// update all uses of the load, keep track of what scalarized loads are
1382 /// inserted for a given load.
1383 DenseMap
<Value
*, std::vector
<Value
*> > InsertedScalarizedValues
;
1384 InsertedScalarizedValues
[GV
] = FieldGlobals
;
1386 std::vector
<std::pair
<PHINode
*, unsigned> > PHIsToRewrite
;
1388 // Okay, the malloc site is completely handled. All of the uses of GV are now
1389 // loads, and all uses of those loads are simple. Rewrite them to use loads
1390 // of the per-field globals instead.
1391 for (auto UI
= GV
->user_begin(), E
= GV
->user_end(); UI
!= E
;) {
1392 Instruction
*User
= cast
<Instruction
>(*UI
++);
1394 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
1395 RewriteUsesOfLoadForHeapSRoA(LI
, InsertedScalarizedValues
, PHIsToRewrite
);
1399 // Must be a store of null.
1400 StoreInst
*SI
= cast
<StoreInst
>(User
);
1401 assert(isa
<ConstantPointerNull
>(SI
->getOperand(0)) &&
1402 "Unexpected heap-sra user!");
1404 // Insert a store of null into each global.
1405 for (unsigned i
= 0, e
= FieldGlobals
.size(); i
!= e
; ++i
) {
1406 PointerType
*PT
= cast
<PointerType
>(FieldGlobals
[i
]->getType());
1407 Constant
*Null
= Constant::getNullValue(PT
->getElementType());
1408 new StoreInst(Null
, FieldGlobals
[i
], SI
);
1410 // Erase the original store.
1411 SI
->eraseFromParent();
1414 // While we have PHIs that are interesting to rewrite, do it.
1415 while (!PHIsToRewrite
.empty()) {
1416 PHINode
*PN
= PHIsToRewrite
.back().first
;
1417 unsigned FieldNo
= PHIsToRewrite
.back().second
;
1418 PHIsToRewrite
.pop_back();
1419 PHINode
*FieldPN
= cast
<PHINode
>(InsertedScalarizedValues
[PN
][FieldNo
]);
1420 assert(FieldPN
->getNumIncomingValues() == 0 &&"Already processed this phi");
1422 // Add all the incoming values. This can materialize more phis.
1423 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1424 Value
*InVal
= PN
->getIncomingValue(i
);
1425 InVal
= GetHeapSROAValue(InVal
, FieldNo
, InsertedScalarizedValues
,
1427 FieldPN
->addIncoming(InVal
, PN
->getIncomingBlock(i
));
1431 // Drop all inter-phi links and any loads that made it this far.
1432 for (DenseMap
<Value
*, std::vector
<Value
*> >::iterator
1433 I
= InsertedScalarizedValues
.begin(), E
= InsertedScalarizedValues
.end();
1435 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
->first
))
1436 PN
->dropAllReferences();
1437 else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
->first
))
1438 LI
->dropAllReferences();
1441 // Delete all the phis and loads now that inter-references are dead.
1442 for (DenseMap
<Value
*, std::vector
<Value
*> >::iterator
1443 I
= InsertedScalarizedValues
.begin(), E
= InsertedScalarizedValues
.end();
1445 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
->first
))
1446 PN
->eraseFromParent();
1447 else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
->first
))
1448 LI
->eraseFromParent();
1451 // The old global is now dead, remove it.
1452 GV
->eraseFromParent();
1455 return cast
<GlobalVariable
>(FieldGlobals
[0]);
1458 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1459 /// pointer global variable with a single value stored it that is a malloc or
1461 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable
*GV
, CallInst
*CI
,
1463 AtomicOrdering Ordering
,
1464 Module::global_iterator
&GVI
,
1465 const DataLayout
&DL
,
1466 TargetLibraryInfo
*TLI
) {
1467 // If this is a malloc of an abstract type, don't touch it.
1468 if (!AllocTy
->isSized())
1471 // We can't optimize this global unless all uses of it are *known* to be
1472 // of the malloc value, not of the null initializer value (consider a use
1473 // that compares the global's value against zero to see if the malloc has
1474 // been reached). To do this, we check to see if all uses of the global
1475 // would trap if the global were null: this proves that they must all
1476 // happen after the malloc.
1477 if (!AllUsesOfLoadedValueWillTrapIfNull(GV
))
1480 // We can't optimize this if the malloc itself is used in a complex way,
1481 // for example, being stored into multiple globals. This allows the
1482 // malloc to be stored into the specified global, loaded icmp'd, and
1483 // GEP'd. These are all things we could transform to using the global
1485 SmallPtrSet
<const PHINode
*, 8> PHIs
;
1486 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI
, GV
, PHIs
))
1489 // If we have a global that is only initialized with a fixed size malloc,
1490 // transform the program to use global memory instead of malloc'd memory.
1491 // This eliminates dynamic allocation, avoids an indirection accessing the
1492 // data, and exposes the resultant global to further GlobalOpt.
1493 // We cannot optimize the malloc if we cannot determine malloc array size.
1494 Value
*NElems
= getMallocArraySize(CI
, DL
, TLI
, true);
1498 if (ConstantInt
*NElements
= dyn_cast
<ConstantInt
>(NElems
))
1499 // Restrict this transformation to only working on small allocations
1500 // (2048 bytes currently), as we don't want to introduce a 16M global or
1502 if (NElements
->getZExtValue() * DL
.getTypeAllocSize(AllocTy
) < 2048) {
1503 GVI
= OptimizeGlobalAddressOfMalloc(GV
, CI
, AllocTy
, NElements
, DL
, TLI
)
1508 // If the allocation is an array of structures, consider transforming this
1509 // into multiple malloc'd arrays, one for each field. This is basically
1510 // SRoA for malloc'd memory.
1512 if (Ordering
!= NotAtomic
)
1515 // If this is an allocation of a fixed size array of structs, analyze as a
1516 // variable size array. malloc [100 x struct],1 -> malloc struct, 100
1517 if (NElems
== ConstantInt::get(CI
->getArgOperand(0)->getType(), 1))
1518 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(AllocTy
))
1519 AllocTy
= AT
->getElementType();
1521 StructType
*AllocSTy
= dyn_cast
<StructType
>(AllocTy
);
1525 // This the structure has an unreasonable number of fields, leave it
1527 if (AllocSTy
->getNumElements() <= 16 && AllocSTy
->getNumElements() != 0 &&
1528 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV
, CI
)) {
1530 // If this is a fixed size array, transform the Malloc to be an alloc of
1531 // structs. malloc [100 x struct],1 -> malloc struct, 100
1532 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(getMallocAllocatedType(CI
, TLI
))) {
1533 Type
*IntPtrTy
= DL
.getIntPtrType(CI
->getType());
1534 unsigned TypeSize
= DL
.getStructLayout(AllocSTy
)->getSizeInBytes();
1535 Value
*AllocSize
= ConstantInt::get(IntPtrTy
, TypeSize
);
1536 Value
*NumElements
= ConstantInt::get(IntPtrTy
, AT
->getNumElements());
1537 Instruction
*Malloc
= CallInst::CreateMalloc(CI
, IntPtrTy
, AllocSTy
,
1538 AllocSize
, NumElements
,
1539 nullptr, CI
->getName());
1540 Instruction
*Cast
= new BitCastInst(Malloc
, CI
->getType(), "tmp", CI
);
1541 CI
->replaceAllUsesWith(Cast
);
1542 CI
->eraseFromParent();
1543 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Malloc
))
1544 CI
= cast
<CallInst
>(BCI
->getOperand(0));
1546 CI
= cast
<CallInst
>(Malloc
);
1549 GVI
= PerformHeapAllocSRoA(GV
, CI
, getMallocArraySize(CI
, DL
, TLI
, true),
1558 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1559 // that only one value (besides its initializer) is ever stored to the global.
1560 static bool OptimizeOnceStoredGlobal(GlobalVariable
*GV
, Value
*StoredOnceVal
,
1561 AtomicOrdering Ordering
,
1562 Module::global_iterator
&GVI
,
1563 const DataLayout
&DL
,
1564 TargetLibraryInfo
*TLI
) {
1565 // Ignore no-op GEPs and bitcasts.
1566 StoredOnceVal
= StoredOnceVal
->stripPointerCasts();
1568 // If we are dealing with a pointer global that is initialized to null and
1569 // only has one (non-null) value stored into it, then we can optimize any
1570 // users of the loaded value (often calls and loads) that would trap if the
1572 if (GV
->getInitializer()->getType()->isPointerTy() &&
1573 GV
->getInitializer()->isNullValue()) {
1574 if (Constant
*SOVC
= dyn_cast
<Constant
>(StoredOnceVal
)) {
1575 if (GV
->getInitializer()->getType() != SOVC
->getType())
1576 SOVC
= ConstantExpr::getBitCast(SOVC
, GV
->getInitializer()->getType());
1578 // Optimize away any trapping uses of the loaded value.
1579 if (OptimizeAwayTrappingUsesOfLoads(GV
, SOVC
, DL
, TLI
))
1581 } else if (CallInst
*CI
= extractMallocCall(StoredOnceVal
, TLI
)) {
1582 Type
*MallocType
= getMallocAllocatedType(CI
, TLI
);
1584 TryToOptimizeStoreOfMallocToGlobal(GV
, CI
, MallocType
, Ordering
, GVI
,
1593 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1594 /// two values ever stored into GV are its initializer and OtherVal. See if we
1595 /// can shrink the global into a boolean and select between the two values
1596 /// whenever it is used. This exposes the values to other scalar optimizations.
1597 static bool TryToShrinkGlobalToBoolean(GlobalVariable
*GV
, Constant
*OtherVal
) {
1598 Type
*GVElType
= GV
->getType()->getElementType();
1600 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1601 // an FP value, pointer or vector, don't do this optimization because a select
1602 // between them is very expensive and unlikely to lead to later
1603 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1604 // where v1 and v2 both require constant pool loads, a big loss.
1605 if (GVElType
== Type::getInt1Ty(GV
->getContext()) ||
1606 GVElType
->isFloatingPointTy() ||
1607 GVElType
->isPointerTy() || GVElType
->isVectorTy())
1610 // Walk the use list of the global seeing if all the uses are load or store.
1611 // If there is anything else, bail out.
1612 for (User
*U
: GV
->users())
1613 if (!isa
<LoadInst
>(U
) && !isa
<StoreInst
>(U
))
1616 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV
<< "\n");
1618 // Create the new global, initializing it to false.
1619 GlobalVariable
*NewGV
= new GlobalVariable(Type::getInt1Ty(GV
->getContext()),
1621 GlobalValue::InternalLinkage
,
1622 ConstantInt::getFalse(GV
->getContext()),
1624 GV
->getThreadLocalMode(),
1625 GV
->getType()->getAddressSpace());
1626 GV
->getParent()->getGlobalList().insert(GV
->getIterator(), NewGV
);
1628 Constant
*InitVal
= GV
->getInitializer();
1629 assert(InitVal
->getType() != Type::getInt1Ty(GV
->getContext()) &&
1630 "No reason to shrink to bool!");
1632 // If initialized to zero and storing one into the global, we can use a cast
1633 // instead of a select to synthesize the desired value.
1634 bool IsOneZero
= false;
1635 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
))
1636 IsOneZero
= InitVal
->isNullValue() && CI
->isOne();
1638 while (!GV
->use_empty()) {
1639 Instruction
*UI
= cast
<Instruction
>(GV
->user_back());
1640 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UI
)) {
1641 // Change the store into a boolean store.
1642 bool StoringOther
= SI
->getOperand(0) == OtherVal
;
1643 // Only do this if we weren't storing a loaded value.
1645 if (StoringOther
|| SI
->getOperand(0) == InitVal
) {
1646 StoreVal
= ConstantInt::get(Type::getInt1Ty(GV
->getContext()),
1649 // Otherwise, we are storing a previously loaded copy. To do this,
1650 // change the copy from copying the original value to just copying the
1652 Instruction
*StoredVal
= cast
<Instruction
>(SI
->getOperand(0));
1654 // If we've already replaced the input, StoredVal will be a cast or
1655 // select instruction. If not, it will be a load of the original
1657 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(StoredVal
)) {
1658 assert(LI
->getOperand(0) == GV
&& "Not a copy!");
1659 // Insert a new load, to preserve the saved value.
1660 StoreVal
= new LoadInst(NewGV
, LI
->getName()+".b", false, 0,
1661 LI
->getOrdering(), LI
->getSynchScope(), LI
);
1663 assert((isa
<CastInst
>(StoredVal
) || isa
<SelectInst
>(StoredVal
)) &&
1664 "This is not a form that we understand!");
1665 StoreVal
= StoredVal
->getOperand(0);
1666 assert(isa
<LoadInst
>(StoreVal
) && "Not a load of NewGV!");
1669 new StoreInst(StoreVal
, NewGV
, false, 0,
1670 SI
->getOrdering(), SI
->getSynchScope(), SI
);
1672 // Change the load into a load of bool then a select.
1673 LoadInst
*LI
= cast
<LoadInst
>(UI
);
1674 LoadInst
*NLI
= new LoadInst(NewGV
, LI
->getName()+".b", false, 0,
1675 LI
->getOrdering(), LI
->getSynchScope(), LI
);
1678 NSI
= new ZExtInst(NLI
, LI
->getType(), "", LI
);
1680 NSI
= SelectInst::Create(NLI
, OtherVal
, InitVal
, "", LI
);
1682 LI
->replaceAllUsesWith(NSI
);
1684 UI
->eraseFromParent();
1687 // Retain the name of the old global variable. People who are debugging their
1688 // programs may expect these variables to be named the same.
1689 NewGV
->takeName(GV
);
1690 GV
->eraseFromParent();
1695 /// ProcessGlobal - Analyze the specified global variable and optimize it if
1696 /// possible. If we make a change, return true.
1697 bool GlobalOpt::ProcessGlobal(GlobalVariable
*GV
,
1698 Module::global_iterator
&GVI
) {
1699 // Do more involved optimizations if the global is internal.
1700 GV
->removeDeadConstantUsers();
1702 if (GV
->use_empty()) {
1703 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV
<< "\n");
1704 GV
->eraseFromParent();
1709 if (!GV
->hasLocalLinkage())
1714 if (GlobalStatus::analyzeGlobal(GV
, GS
))
1717 if (!GS
.IsCompared
&& !GV
->hasUnnamedAddr()) {
1718 GV
->setUnnamedAddr(true);
1722 if (GV
->isConstant() || !GV
->hasInitializer())
1725 return ProcessInternalGlobal(GV
, GVI
, GS
);
1728 /// ProcessInternalGlobal - Analyze the specified global variable and optimize
1729 /// it if possible. If we make a change, return true.
1730 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable
*GV
,
1731 Module::global_iterator
&GVI
,
1732 const GlobalStatus
&GS
) {
1733 auto &DL
= GV
->getParent()->getDataLayout();
1734 // If this is a first class global and has only one accessing function
1735 // and this function is main (which we know is not recursive), we replace
1736 // the global with a local alloca in this function.
1738 // NOTE: It doesn't make sense to promote non-single-value types since we
1739 // are just replacing static memory to stack memory.
1741 // If the global is in different address space, don't bring it to stack.
1742 if (!GS
.HasMultipleAccessingFunctions
&&
1743 GS
.AccessingFunction
&& !GS
.HasNonInstructionUser
&&
1744 GV
->getType()->getElementType()->isSingleValueType() &&
1745 GS
.AccessingFunction
->getName() == "main" &&
1746 GS
.AccessingFunction
->hasExternalLinkage() &&
1747 GV
->getType()->getAddressSpace() == 0) {
1748 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV
);
1749 Instruction
&FirstI
= const_cast<Instruction
&>(*GS
.AccessingFunction
1750 ->getEntryBlock().begin());
1751 Type
*ElemTy
= GV
->getType()->getElementType();
1752 // FIXME: Pass Global's alignment when globals have alignment
1753 AllocaInst
*Alloca
= new AllocaInst(ElemTy
, nullptr,
1754 GV
->getName(), &FirstI
);
1755 if (!isa
<UndefValue
>(GV
->getInitializer()))
1756 new StoreInst(GV
->getInitializer(), Alloca
, &FirstI
);
1758 GV
->replaceAllUsesWith(Alloca
);
1759 GV
->eraseFromParent();
1764 // If the global is never loaded (but may be stored to), it is dead.
1767 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV
);
1770 if (isLeakCheckerRoot(GV
)) {
1771 // Delete any constant stores to the global.
1772 Changed
= CleanupPointerRootUsers(GV
, TLI
);
1774 // Delete any stores we can find to the global. We may not be able to
1775 // make it completely dead though.
1776 Changed
= CleanupConstantGlobalUsers(GV
, GV
->getInitializer(), DL
, TLI
);
1779 // If the global is dead now, delete it.
1780 if (GV
->use_empty()) {
1781 GV
->eraseFromParent();
1787 } else if (GS
.StoredType
<= GlobalStatus::InitializerStored
) {
1788 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV
<< "\n");
1789 GV
->setConstant(true);
1791 // Clean up any obviously simplifiable users now.
1792 CleanupConstantGlobalUsers(GV
, GV
->getInitializer(), DL
, TLI
);
1794 // If the global is dead now, just nuke it.
1795 if (GV
->use_empty()) {
1796 DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
1797 << "all users and delete global!\n");
1798 GV
->eraseFromParent();
1804 } else if (!GV
->getInitializer()->getType()->isSingleValueType()) {
1805 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
1806 if (GlobalVariable
*FirstNewGV
= SRAGlobal(GV
, DL
)) {
1807 GVI
= FirstNewGV
->getIterator(); // Don't skip the newly produced globals!
1810 } else if (GS
.StoredType
== GlobalStatus::StoredOnce
&& GS
.StoredOnceValue
) {
1811 // If the initial value for the global was an undef value, and if only
1812 // one other value was stored into it, we can just change the
1813 // initializer to be the stored value, then delete all stores to the
1814 // global. This allows us to mark it constant.
1815 if (Constant
*SOVConstant
= dyn_cast
<Constant
>(GS
.StoredOnceValue
))
1816 if (isa
<UndefValue
>(GV
->getInitializer())) {
1817 // Change the initial value here.
1818 GV
->setInitializer(SOVConstant
);
1820 // Clean up any obviously simplifiable users now.
1821 CleanupConstantGlobalUsers(GV
, GV
->getInitializer(), DL
, TLI
);
1823 if (GV
->use_empty()) {
1824 DEBUG(dbgs() << " *** Substituting initializer allowed us to "
1825 << "simplify all users and delete global!\n");
1826 GV
->eraseFromParent();
1829 GVI
= GV
->getIterator();
1835 // Try to optimize globals based on the knowledge that only one value
1836 // (besides its initializer) is ever stored to the global.
1837 if (OptimizeOnceStoredGlobal(GV
, GS
.StoredOnceValue
, GS
.Ordering
, GVI
,
1841 // Otherwise, if the global was not a boolean, we can shrink it to be a
1843 if (Constant
*SOVConstant
= dyn_cast
<Constant
>(GS
.StoredOnceValue
)) {
1844 if (GS
.Ordering
== NotAtomic
) {
1845 if (TryToShrinkGlobalToBoolean(GV
, SOVConstant
)) {
1856 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1857 /// function, changing them to FastCC.
1858 static void ChangeCalleesToFastCall(Function
*F
) {
1859 for (User
*U
: F
->users()) {
1860 if (isa
<BlockAddress
>(U
))
1862 CallSite
CS(cast
<Instruction
>(U
));
1863 CS
.setCallingConv(CallingConv::Fast
);
1867 static AttributeSet
StripNest(LLVMContext
&C
, const AttributeSet
&Attrs
) {
1868 for (unsigned i
= 0, e
= Attrs
.getNumSlots(); i
!= e
; ++i
) {
1869 unsigned Index
= Attrs
.getSlotIndex(i
);
1870 if (!Attrs
.getSlotAttributes(i
).hasAttribute(Index
, Attribute::Nest
))
1873 // There can be only one.
1874 return Attrs
.removeAttribute(C
, Index
, Attribute::Nest
);
1880 static void RemoveNestAttribute(Function
*F
) {
1881 F
->setAttributes(StripNest(F
->getContext(), F
->getAttributes()));
1882 for (User
*U
: F
->users()) {
1883 if (isa
<BlockAddress
>(U
))
1885 CallSite
CS(cast
<Instruction
>(U
));
1886 CS
.setAttributes(StripNest(F
->getContext(), CS
.getAttributes()));
1890 /// Return true if this is a calling convention that we'd like to change. The
1891 /// idea here is that we don't want to mess with the convention if the user
1892 /// explicitly requested something with performance implications like coldcc,
1893 /// GHC, or anyregcc.
1894 static bool isProfitableToMakeFastCC(Function
*F
) {
1895 CallingConv::ID CC
= F
->getCallingConv();
1896 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1897 return CC
== CallingConv::C
|| CC
== CallingConv::X86_ThisCall
;
1900 bool GlobalOpt::OptimizeFunctions(Module
&M
) {
1901 bool Changed
= false;
1902 // Optimize functions.
1903 for (Module::iterator FI
= M
.begin(), E
= M
.end(); FI
!= E
; ) {
1904 Function
*F
= &*FI
++;
1905 // Functions without names cannot be referenced outside this module.
1906 if (!F
->hasName() && !F
->isDeclaration() && !F
->hasLocalLinkage())
1907 F
->setLinkage(GlobalValue::InternalLinkage
);
1909 const Comdat
*C
= F
->getComdat();
1910 bool inComdat
= C
&& NotDiscardableComdats
.count(C
);
1911 F
->removeDeadConstantUsers();
1912 if ((!inComdat
|| F
->hasLocalLinkage()) && F
->isDefTriviallyDead()) {
1913 F
->eraseFromParent();
1916 } else if (F
->hasLocalLinkage()) {
1917 if (isProfitableToMakeFastCC(F
) && !F
->isVarArg() &&
1918 !F
->hasAddressTaken()) {
1919 // If this function has a calling convention worth changing, is not a
1920 // varargs function, and is only called directly, promote it to use the
1921 // Fast calling convention.
1922 F
->setCallingConv(CallingConv::Fast
);
1923 ChangeCalleesToFastCall(F
);
1928 if (F
->getAttributes().hasAttrSomewhere(Attribute::Nest
) &&
1929 !F
->hasAddressTaken()) {
1930 // The function is not used by a trampoline intrinsic, so it is safe
1931 // to remove the 'nest' attribute.
1932 RemoveNestAttribute(F
);
1941 bool GlobalOpt::OptimizeGlobalVars(Module
&M
) {
1942 bool Changed
= false;
1944 for (Module::global_iterator GVI
= M
.global_begin(), E
= M
.global_end();
1946 GlobalVariable
*GV
= &*GVI
++;
1947 // Global variables without names cannot be referenced outside this module.
1948 if (!GV
->hasName() && !GV
->isDeclaration() && !GV
->hasLocalLinkage())
1949 GV
->setLinkage(GlobalValue::InternalLinkage
);
1950 // Simplify the initializer.
1951 if (GV
->hasInitializer())
1952 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(GV
->getInitializer())) {
1953 auto &DL
= M
.getDataLayout();
1954 Constant
*New
= ConstantFoldConstantExpression(CE
, DL
, TLI
);
1955 if (New
&& New
!= CE
)
1956 GV
->setInitializer(New
);
1959 if (GV
->isDiscardableIfUnused()) {
1960 if (const Comdat
*C
= GV
->getComdat())
1961 if (NotDiscardableComdats
.count(C
) && !GV
->hasLocalLinkage())
1963 Changed
|= ProcessGlobal(GV
, GVI
);
1970 isSimpleEnoughValueToCommit(Constant
*C
,
1971 SmallPtrSetImpl
<Constant
*> &SimpleConstants
,
1972 const DataLayout
&DL
);
1974 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be
1975 /// handled by the code generator. We don't want to generate something like:
1976 /// void *X = &X/42;
1977 /// because the code generator doesn't have a relocation that can handle that.
1979 /// This function should be called if C was not found (but just got inserted)
1980 /// in SimpleConstants to avoid having to rescan the same constants all the
1983 isSimpleEnoughValueToCommitHelper(Constant
*C
,
1984 SmallPtrSetImpl
<Constant
*> &SimpleConstants
,
1985 const DataLayout
&DL
) {
1986 // Simple global addresses are supported, do not allow dllimport or
1987 // thread-local globals.
1988 if (auto *GV
= dyn_cast
<GlobalValue
>(C
))
1989 return !GV
->hasDLLImportStorageClass() && !GV
->isThreadLocal();
1991 // Simple integer, undef, constant aggregate zero, etc are all supported.
1992 if (C
->getNumOperands() == 0 || isa
<BlockAddress
>(C
))
1995 // Aggregate values are safe if all their elements are.
1996 if (isa
<ConstantArray
>(C
) || isa
<ConstantStruct
>(C
) ||
1997 isa
<ConstantVector
>(C
)) {
1998 for (Value
*Op
: C
->operands())
1999 if (!isSimpleEnoughValueToCommit(cast
<Constant
>(Op
), SimpleConstants
, DL
))
2004 // We don't know exactly what relocations are allowed in constant expressions,
2005 // so we allow &global+constantoffset, which is safe and uniformly supported
2007 ConstantExpr
*CE
= cast
<ConstantExpr
>(C
);
2008 switch (CE
->getOpcode()) {
2009 case Instruction::BitCast
:
2010 // Bitcast is fine if the casted value is fine.
2011 return isSimpleEnoughValueToCommit(CE
->getOperand(0), SimpleConstants
, DL
);
2013 case Instruction::IntToPtr
:
2014 case Instruction::PtrToInt
:
2015 // int <=> ptr is fine if the int type is the same size as the
2017 if (DL
.getTypeSizeInBits(CE
->getType()) !=
2018 DL
.getTypeSizeInBits(CE
->getOperand(0)->getType()))
2020 return isSimpleEnoughValueToCommit(CE
->getOperand(0), SimpleConstants
, DL
);
2022 // GEP is fine if it is simple + constant offset.
2023 case Instruction::GetElementPtr
:
2024 for (unsigned i
= 1, e
= CE
->getNumOperands(); i
!= e
; ++i
)
2025 if (!isa
<ConstantInt
>(CE
->getOperand(i
)))
2027 return isSimpleEnoughValueToCommit(CE
->getOperand(0), SimpleConstants
, DL
);
2029 case Instruction::Add
:
2030 // We allow simple+cst.
2031 if (!isa
<ConstantInt
>(CE
->getOperand(1)))
2033 return isSimpleEnoughValueToCommit(CE
->getOperand(0), SimpleConstants
, DL
);
2039 isSimpleEnoughValueToCommit(Constant
*C
,
2040 SmallPtrSetImpl
<Constant
*> &SimpleConstants
,
2041 const DataLayout
&DL
) {
2042 // If we already checked this constant, we win.
2043 if (!SimpleConstants
.insert(C
).second
)
2045 // Check the constant.
2046 return isSimpleEnoughValueToCommitHelper(C
, SimpleConstants
, DL
);
2050 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2051 /// enough for us to understand. In particular, if it is a cast to anything
2052 /// other than from one pointer type to another pointer type, we punt.
2053 /// We basically just support direct accesses to globals and GEP's of
2054 /// globals. This should be kept up to date with CommitValueTo.
2055 static bool isSimpleEnoughPointerToCommit(Constant
*C
) {
2056 // Conservatively, avoid aggregate types. This is because we don't
2057 // want to worry about them partially overlapping other stores.
2058 if (!cast
<PointerType
>(C
->getType())->getElementType()->isSingleValueType())
2061 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(C
))
2062 // Do not allow weak/*_odr/linkonce linkage or external globals.
2063 return GV
->hasUniqueInitializer();
2065 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2066 // Handle a constantexpr gep.
2067 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
2068 isa
<GlobalVariable
>(CE
->getOperand(0)) &&
2069 cast
<GEPOperator
>(CE
)->isInBounds()) {
2070 GlobalVariable
*GV
= cast
<GlobalVariable
>(CE
->getOperand(0));
2071 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2072 // external globals.
2073 if (!GV
->hasUniqueInitializer())
2076 // The first index must be zero.
2077 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(*std::next(CE
->op_begin()));
2078 if (!CI
|| !CI
->isZero()) return false;
2080 // The remaining indices must be compile-time known integers within the
2081 // notional bounds of the corresponding static array types.
2082 if (!CE
->isGEPWithNoNotionalOverIndexing())
2085 return ConstantFoldLoadThroughGEPConstantExpr(GV
->getInitializer(), CE
);
2087 // A constantexpr bitcast from a pointer to another pointer is a no-op,
2088 // and we know how to evaluate it by moving the bitcast from the pointer
2089 // operand to the value operand.
2090 } else if (CE
->getOpcode() == Instruction::BitCast
&&
2091 isa
<GlobalVariable
>(CE
->getOperand(0))) {
2092 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2093 // external globals.
2094 return cast
<GlobalVariable
>(CE
->getOperand(0))->hasUniqueInitializer();
2101 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2102 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it.
2103 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2104 static Constant
*EvaluateStoreInto(Constant
*Init
, Constant
*Val
,
2105 ConstantExpr
*Addr
, unsigned OpNo
) {
2106 // Base case of the recursion.
2107 if (OpNo
== Addr
->getNumOperands()) {
2108 assert(Val
->getType() == Init
->getType() && "Type mismatch!");
2112 SmallVector
<Constant
*, 32> Elts
;
2113 if (StructType
*STy
= dyn_cast
<StructType
>(Init
->getType())) {
2114 // Break up the constant into its elements.
2115 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
2116 Elts
.push_back(Init
->getAggregateElement(i
));
2118 // Replace the element that we are supposed to.
2119 ConstantInt
*CU
= cast
<ConstantInt
>(Addr
->getOperand(OpNo
));
2120 unsigned Idx
= CU
->getZExtValue();
2121 assert(Idx
< STy
->getNumElements() && "Struct index out of range!");
2122 Elts
[Idx
] = EvaluateStoreInto(Elts
[Idx
], Val
, Addr
, OpNo
+1);
2124 // Return the modified struct.
2125 return ConstantStruct::get(STy
, Elts
);
2128 ConstantInt
*CI
= cast
<ConstantInt
>(Addr
->getOperand(OpNo
));
2129 SequentialType
*InitTy
= cast
<SequentialType
>(Init
->getType());
2132 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(InitTy
))
2133 NumElts
= ATy
->getNumElements();
2135 NumElts
= InitTy
->getVectorNumElements();
2137 // Break up the array into elements.
2138 for (uint64_t i
= 0, e
= NumElts
; i
!= e
; ++i
)
2139 Elts
.push_back(Init
->getAggregateElement(i
));
2141 assert(CI
->getZExtValue() < NumElts
);
2142 Elts
[CI
->getZExtValue()] =
2143 EvaluateStoreInto(Elts
[CI
->getZExtValue()], Val
, Addr
, OpNo
+1);
2145 if (Init
->getType()->isArrayTy())
2146 return ConstantArray::get(cast
<ArrayType
>(InitTy
), Elts
);
2147 return ConstantVector::get(Elts
);
2150 /// CommitValueTo - We have decided that Addr (which satisfies the predicate
2151 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
2152 static void CommitValueTo(Constant
*Val
, Constant
*Addr
) {
2153 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Addr
)) {
2154 assert(GV
->hasInitializer());
2155 GV
->setInitializer(Val
);
2159 ConstantExpr
*CE
= cast
<ConstantExpr
>(Addr
);
2160 GlobalVariable
*GV
= cast
<GlobalVariable
>(CE
->getOperand(0));
2161 GV
->setInitializer(EvaluateStoreInto(GV
->getInitializer(), Val
, CE
, 2));
2166 /// Evaluator - This class evaluates LLVM IR, producing the Constant
2167 /// representing each SSA instruction. Changes to global variables are stored
2168 /// in a mapping that can be iterated over after the evaluation is complete.
2169 /// Once an evaluation call fails, the evaluation object should not be reused.
2172 Evaluator(const DataLayout
&DL
, const TargetLibraryInfo
*TLI
)
2173 : DL(DL
), TLI(TLI
) {
2174 ValueStack
.emplace_back();
2178 for (auto &Tmp
: AllocaTmps
)
2179 // If there are still users of the alloca, the program is doing something
2180 // silly, e.g. storing the address of the alloca somewhere and using it
2181 // later. Since this is undefined, we'll just make it be null.
2182 if (!Tmp
->use_empty())
2183 Tmp
->replaceAllUsesWith(Constant::getNullValue(Tmp
->getType()));
2186 /// EvaluateFunction - Evaluate a call to function F, returning true if
2187 /// successful, false if we can't evaluate it. ActualArgs contains the formal
2188 /// arguments for the function.
2189 bool EvaluateFunction(Function
*F
, Constant
*&RetVal
,
2190 const SmallVectorImpl
<Constant
*> &ActualArgs
);
2192 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2193 /// successful, false if we can't evaluate it. NewBB returns the next BB that
2194 /// control flows into, or null upon return.
2195 bool EvaluateBlock(BasicBlock::iterator CurInst
, BasicBlock
*&NextBB
);
2197 Constant
*getVal(Value
*V
) {
2198 if (Constant
*CV
= dyn_cast
<Constant
>(V
)) return CV
;
2199 Constant
*R
= ValueStack
.back().lookup(V
);
2200 assert(R
&& "Reference to an uncomputed value!");
2204 void setVal(Value
*V
, Constant
*C
) {
2205 ValueStack
.back()[V
] = C
;
2208 const DenseMap
<Constant
*, Constant
*> &getMutatedMemory() const {
2209 return MutatedMemory
;
2212 const SmallPtrSetImpl
<GlobalVariable
*> &getInvariants() const {
2217 Constant
*ComputeLoadResult(Constant
*P
);
2219 /// ValueStack - As we compute SSA register values, we store their contents
2220 /// here. The back of the deque contains the current function and the stack
2221 /// contains the values in the calling frames.
2222 std::deque
<DenseMap
<Value
*, Constant
*>> ValueStack
;
2224 /// CallStack - This is used to detect recursion. In pathological situations
2225 /// we could hit exponential behavior, but at least there is nothing
2227 SmallVector
<Function
*, 4> CallStack
;
2229 /// MutatedMemory - For each store we execute, we update this map. Loads
2230 /// check this to get the most up-to-date value. If evaluation is successful,
2231 /// this state is committed to the process.
2232 DenseMap
<Constant
*, Constant
*> MutatedMemory
;
2234 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2235 /// to represent its body. This vector is needed so we can delete the
2236 /// temporary globals when we are done.
2237 SmallVector
<std::unique_ptr
<GlobalVariable
>, 32> AllocaTmps
;
2239 /// Invariants - These global variables have been marked invariant by the
2240 /// static constructor.
2241 SmallPtrSet
<GlobalVariable
*, 8> Invariants
;
2243 /// SimpleConstants - These are constants we have checked and know to be
2244 /// simple enough to live in a static initializer of a global.
2245 SmallPtrSet
<Constant
*, 8> SimpleConstants
;
2247 const DataLayout
&DL
;
2248 const TargetLibraryInfo
*TLI
;
2251 } // anonymous namespace
2253 /// ComputeLoadResult - Return the value that would be computed by a load from
2254 /// P after the stores reflected by 'memory' have been performed. If we can't
2255 /// decide, return null.
2256 Constant
*Evaluator::ComputeLoadResult(Constant
*P
) {
2257 // If this memory location has been recently stored, use the stored value: it
2258 // is the most up-to-date.
2259 DenseMap
<Constant
*, Constant
*>::const_iterator I
= MutatedMemory
.find(P
);
2260 if (I
!= MutatedMemory
.end()) return I
->second
;
2263 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(P
)) {
2264 if (GV
->hasDefinitiveInitializer())
2265 return GV
->getInitializer();
2269 // Handle a constantexpr getelementptr.
2270 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(P
))
2271 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
2272 isa
<GlobalVariable
>(CE
->getOperand(0))) {
2273 GlobalVariable
*GV
= cast
<GlobalVariable
>(CE
->getOperand(0));
2274 if (GV
->hasDefinitiveInitializer())
2275 return ConstantFoldLoadThroughGEPConstantExpr(GV
->getInitializer(), CE
);
2278 return nullptr; // don't know how to evaluate.
2281 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2282 /// successful, false if we can't evaluate it. NewBB returns the next BB that
2283 /// control flows into, or null upon return.
2284 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst
,
2285 BasicBlock
*&NextBB
) {
2286 // This is the main evaluation loop.
2288 Constant
*InstResult
= nullptr;
2290 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst
<< "\n");
2292 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(CurInst
)) {
2293 if (!SI
->isSimple()) {
2294 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
2295 return false; // no volatile/atomic accesses.
2297 Constant
*Ptr
= getVal(SI
->getOperand(1));
2298 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ptr
)) {
2299 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr
);
2300 Ptr
= ConstantFoldConstantExpression(CE
, DL
, TLI
);
2301 DEBUG(dbgs() << "; To: " << *Ptr
<< "\n");
2303 if (!isSimpleEnoughPointerToCommit(Ptr
)) {
2304 // If this is too complex for us to commit, reject it.
2305 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
2309 Constant
*Val
= getVal(SI
->getOperand(0));
2311 // If this might be too difficult for the backend to handle (e.g. the addr
2312 // of one global variable divided by another) then we can't commit it.
2313 if (!isSimpleEnoughValueToCommit(Val
, SimpleConstants
, DL
)) {
2314 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
2319 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ptr
)) {
2320 if (CE
->getOpcode() == Instruction::BitCast
) {
2321 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
2322 // If we're evaluating a store through a bitcast, then we need
2323 // to pull the bitcast off the pointer type and push it onto the
2325 Ptr
= CE
->getOperand(0);
2327 Type
*NewTy
= cast
<PointerType
>(Ptr
->getType())->getElementType();
2329 // In order to push the bitcast onto the stored value, a bitcast
2330 // from NewTy to Val's type must be legal. If it's not, we can try
2331 // introspecting NewTy to find a legal conversion.
2332 while (!Val
->getType()->canLosslesslyBitCastTo(NewTy
)) {
2333 // If NewTy is a struct, we can convert the pointer to the struct
2334 // into a pointer to its first member.
2335 // FIXME: This could be extended to support arrays as well.
2336 if (StructType
*STy
= dyn_cast
<StructType
>(NewTy
)) {
2337 NewTy
= STy
->getTypeAtIndex(0U);
2339 IntegerType
*IdxTy
= IntegerType::get(NewTy
->getContext(), 32);
2340 Constant
*IdxZero
= ConstantInt::get(IdxTy
, 0, false);
2341 Constant
* const IdxList
[] = {IdxZero
, IdxZero
};
2343 Ptr
= ConstantExpr::getGetElementPtr(nullptr, Ptr
, IdxList
);
2344 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ptr
))
2345 Ptr
= ConstantFoldConstantExpression(CE
, DL
, TLI
);
2347 // If we can't improve the situation by introspecting NewTy,
2348 // we have to give up.
2350 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
2356 // If we found compatible types, go ahead and push the bitcast
2357 // onto the stored value.
2358 Val
= ConstantExpr::getBitCast(Val
, NewTy
);
2360 DEBUG(dbgs() << "Evaluated bitcast: " << *Val
<< "\n");
2364 MutatedMemory
[Ptr
] = Val
;
2365 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(CurInst
)) {
2366 InstResult
= ConstantExpr::get(BO
->getOpcode(),
2367 getVal(BO
->getOperand(0)),
2368 getVal(BO
->getOperand(1)));
2369 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
2371 } else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(CurInst
)) {
2372 InstResult
= ConstantExpr::getCompare(CI
->getPredicate(),
2373 getVal(CI
->getOperand(0)),
2374 getVal(CI
->getOperand(1)));
2375 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
2377 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(CurInst
)) {
2378 InstResult
= ConstantExpr::getCast(CI
->getOpcode(),
2379 getVal(CI
->getOperand(0)),
2381 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
2383 } else if (SelectInst
*SI
= dyn_cast
<SelectInst
>(CurInst
)) {
2384 InstResult
= ConstantExpr::getSelect(getVal(SI
->getOperand(0)),
2385 getVal(SI
->getOperand(1)),
2386 getVal(SI
->getOperand(2)));
2387 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
2389 } else if (auto *EVI
= dyn_cast
<ExtractValueInst
>(CurInst
)) {
2390 InstResult
= ConstantExpr::getExtractValue(
2391 getVal(EVI
->getAggregateOperand()), EVI
->getIndices());
2392 DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
2394 } else if (auto *IVI
= dyn_cast
<InsertValueInst
>(CurInst
)) {
2395 InstResult
= ConstantExpr::getInsertValue(
2396 getVal(IVI
->getAggregateOperand()),
2397 getVal(IVI
->getInsertedValueOperand()), IVI
->getIndices());
2398 DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
2400 } else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(CurInst
)) {
2401 Constant
*P
= getVal(GEP
->getOperand(0));
2402 SmallVector
<Constant
*, 8> GEPOps
;
2403 for (User::op_iterator i
= GEP
->op_begin() + 1, e
= GEP
->op_end();
2405 GEPOps
.push_back(getVal(*i
));
2407 ConstantExpr::getGetElementPtr(GEP
->getSourceElementType(), P
, GEPOps
,
2408 cast
<GEPOperator
>(GEP
)->isInBounds());
2409 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
2411 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(CurInst
)) {
2413 if (!LI
->isSimple()) {
2414 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
2415 return false; // no volatile/atomic accesses.
2418 Constant
*Ptr
= getVal(LI
->getOperand(0));
2419 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ptr
)) {
2420 Ptr
= ConstantFoldConstantExpression(CE
, DL
, TLI
);
2421 DEBUG(dbgs() << "Found a constant pointer expression, constant "
2422 "folding: " << *Ptr
<< "\n");
2424 InstResult
= ComputeLoadResult(Ptr
);
2426 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
2428 return false; // Could not evaluate load.
2431 DEBUG(dbgs() << "Evaluated load: " << *InstResult
<< "\n");
2432 } else if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(CurInst
)) {
2433 if (AI
->isArrayAllocation()) {
2434 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
2435 return false; // Cannot handle array allocs.
2437 Type
*Ty
= AI
->getType()->getElementType();
2438 AllocaTmps
.push_back(
2439 make_unique
<GlobalVariable
>(Ty
, false, GlobalValue::InternalLinkage
,
2440 UndefValue::get(Ty
), AI
->getName()));
2441 InstResult
= AllocaTmps
.back().get();
2442 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult
<< "\n");
2443 } else if (isa
<CallInst
>(CurInst
) || isa
<InvokeInst
>(CurInst
)) {
2444 CallSite
CS(&*CurInst
);
2446 // Debug info can safely be ignored here.
2447 if (isa
<DbgInfoIntrinsic
>(CS
.getInstruction())) {
2448 DEBUG(dbgs() << "Ignoring debug info.\n");
2453 // Cannot handle inline asm.
2454 if (isa
<InlineAsm
>(CS
.getCalledValue())) {
2455 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
2459 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CS
.getInstruction())) {
2460 if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(II
)) {
2461 if (MSI
->isVolatile()) {
2462 DEBUG(dbgs() << "Can not optimize a volatile memset " <<
2466 Constant
*Ptr
= getVal(MSI
->getDest());
2467 Constant
*Val
= getVal(MSI
->getValue());
2468 Constant
*DestVal
= ComputeLoadResult(getVal(Ptr
));
2469 if (Val
->isNullValue() && DestVal
&& DestVal
->isNullValue()) {
2470 // This memset is a no-op.
2471 DEBUG(dbgs() << "Ignoring no-op memset.\n");
2477 if (II
->getIntrinsicID() == Intrinsic::lifetime_start
||
2478 II
->getIntrinsicID() == Intrinsic::lifetime_end
) {
2479 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
2484 if (II
->getIntrinsicID() == Intrinsic::invariant_start
) {
2485 // We don't insert an entry into Values, as it doesn't have a
2486 // meaningful return value.
2487 if (!II
->use_empty()) {
2488 DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
2491 ConstantInt
*Size
= cast
<ConstantInt
>(II
->getArgOperand(0));
2492 Value
*PtrArg
= getVal(II
->getArgOperand(1));
2493 Value
*Ptr
= PtrArg
->stripPointerCasts();
2494 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Ptr
)) {
2495 Type
*ElemTy
= cast
<PointerType
>(GV
->getType())->getElementType();
2496 if (!Size
->isAllOnesValue() &&
2497 Size
->getValue().getLimitedValue() >=
2498 DL
.getTypeStoreSize(ElemTy
)) {
2499 Invariants
.insert(GV
);
2500 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
2503 DEBUG(dbgs() << "Found a global var, but can not treat it as an "
2507 // Continue even if we do nothing.
2510 } else if (II
->getIntrinsicID() == Intrinsic::assume
) {
2511 DEBUG(dbgs() << "Skipping assume intrinsic.\n");
2516 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
2520 // Resolve function pointers.
2521 Function
*Callee
= dyn_cast
<Function
>(getVal(CS
.getCalledValue()));
2522 if (!Callee
|| Callee
->mayBeOverridden()) {
2523 DEBUG(dbgs() << "Can not resolve function pointer.\n");
2524 return false; // Cannot resolve.
2527 SmallVector
<Constant
*, 8> Formals
;
2528 for (User::op_iterator i
= CS
.arg_begin(), e
= CS
.arg_end(); i
!= e
; ++i
)
2529 Formals
.push_back(getVal(*i
));
2531 if (Callee
->isDeclaration()) {
2532 // If this is a function we can constant fold, do it.
2533 if (Constant
*C
= ConstantFoldCall(Callee
, Formals
, TLI
)) {
2535 DEBUG(dbgs() << "Constant folded function call. Result: " <<
2536 *InstResult
<< "\n");
2538 DEBUG(dbgs() << "Can not constant fold function call.\n");
2542 if (Callee
->getFunctionType()->isVarArg()) {
2543 DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
2547 Constant
*RetVal
= nullptr;
2548 // Execute the call, if successful, use the return value.
2549 ValueStack
.emplace_back();
2550 if (!EvaluateFunction(Callee
, RetVal
, Formals
)) {
2551 DEBUG(dbgs() << "Failed to evaluate function.\n");
2554 ValueStack
.pop_back();
2555 InstResult
= RetVal
;
2558 DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
2559 InstResult
<< "\n\n");
2561 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
2564 } else if (isa
<TerminatorInst
>(CurInst
)) {
2565 DEBUG(dbgs() << "Found a terminator instruction.\n");
2567 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(CurInst
)) {
2568 if (BI
->isUnconditional()) {
2569 NextBB
= BI
->getSuccessor(0);
2572 dyn_cast
<ConstantInt
>(getVal(BI
->getCondition()));
2573 if (!Cond
) return false; // Cannot determine.
2575 NextBB
= BI
->getSuccessor(!Cond
->getZExtValue());
2577 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(CurInst
)) {
2579 dyn_cast
<ConstantInt
>(getVal(SI
->getCondition()));
2580 if (!Val
) return false; // Cannot determine.
2581 NextBB
= SI
->findCaseValue(Val
).getCaseSuccessor();
2582 } else if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(CurInst
)) {
2583 Value
*Val
= getVal(IBI
->getAddress())->stripPointerCasts();
2584 if (BlockAddress
*BA
= dyn_cast
<BlockAddress
>(Val
))
2585 NextBB
= BA
->getBasicBlock();
2587 return false; // Cannot determine.
2588 } else if (isa
<ReturnInst
>(CurInst
)) {
2591 // invoke, unwind, resume, unreachable.
2592 DEBUG(dbgs() << "Can not handle terminator.");
2593 return false; // Cannot handle this terminator.
2596 // We succeeded at evaluating this block!
2597 DEBUG(dbgs() << "Successfully evaluated block.\n");
2600 // Did not know how to evaluate this!
2601 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
2606 if (!CurInst
->use_empty()) {
2607 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(InstResult
))
2608 InstResult
= ConstantFoldConstantExpression(CE
, DL
, TLI
);
2610 setVal(&*CurInst
, InstResult
);
2613 // If we just processed an invoke, we finished evaluating the block.
2614 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(CurInst
)) {
2615 NextBB
= II
->getNormalDest();
2616 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
2620 // Advance program counter.
2625 /// EvaluateFunction - Evaluate a call to function F, returning true if
2626 /// successful, false if we can't evaluate it. ActualArgs contains the formal
2627 /// arguments for the function.
2628 bool Evaluator::EvaluateFunction(Function
*F
, Constant
*&RetVal
,
2629 const SmallVectorImpl
<Constant
*> &ActualArgs
) {
2630 // Check to see if this function is already executing (recursion). If so,
2631 // bail out. TODO: we might want to accept limited recursion.
2632 if (std::find(CallStack
.begin(), CallStack
.end(), F
) != CallStack
.end())
2635 CallStack
.push_back(F
);
2637 // Initialize arguments to the incoming values specified.
2639 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end(); AI
!= E
;
2641 setVal(&*AI
, ActualArgs
[ArgNo
]);
2643 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
2644 // we can only evaluate any one basic block at most once. This set keeps
2645 // track of what we have executed so we can detect recursive cases etc.
2646 SmallPtrSet
<BasicBlock
*, 32> ExecutedBlocks
;
2648 // CurBB - The current basic block we're evaluating.
2649 BasicBlock
*CurBB
= &F
->front();
2651 BasicBlock::iterator CurInst
= CurBB
->begin();
2654 BasicBlock
*NextBB
= nullptr; // Initialized to avoid compiler warnings.
2655 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB
<< "\n");
2657 if (!EvaluateBlock(CurInst
, NextBB
))
2661 // Successfully running until there's no next block means that we found
2662 // the return. Fill it the return value and pop the call stack.
2663 ReturnInst
*RI
= cast
<ReturnInst
>(CurBB
->getTerminator());
2664 if (RI
->getNumOperands())
2665 RetVal
= getVal(RI
->getOperand(0));
2666 CallStack
.pop_back();
2670 // Okay, we succeeded in evaluating this control flow. See if we have
2671 // executed the new block before. If so, we have a looping function,
2672 // which we cannot evaluate in reasonable time.
2673 if (!ExecutedBlocks
.insert(NextBB
).second
)
2674 return false; // looped!
2676 // Okay, we have never been in this block before. Check to see if there
2677 // are any PHI nodes. If so, evaluate them with information about where
2679 PHINode
*PN
= nullptr;
2680 for (CurInst
= NextBB
->begin();
2681 (PN
= dyn_cast
<PHINode
>(CurInst
)); ++CurInst
)
2682 setVal(PN
, getVal(PN
->getIncomingValueForBlock(CurBB
)));
2684 // Advance to the next block.
2689 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2690 /// we can. Return true if we can, false otherwise.
2691 static bool EvaluateStaticConstructor(Function
*F
, const DataLayout
&DL
,
2692 const TargetLibraryInfo
*TLI
) {
2693 // Call the function.
2694 Evaluator
Eval(DL
, TLI
);
2695 Constant
*RetValDummy
;
2696 bool EvalSuccess
= Eval
.EvaluateFunction(F
, RetValDummy
,
2697 SmallVector
<Constant
*, 0>());
2700 ++NumCtorsEvaluated
;
2702 // We succeeded at evaluation: commit the result.
2703 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2704 << F
->getName() << "' to " << Eval
.getMutatedMemory().size()
2706 for (DenseMap
<Constant
*, Constant
*>::const_iterator I
=
2707 Eval
.getMutatedMemory().begin(), E
= Eval
.getMutatedMemory().end();
2709 CommitValueTo(I
->second
, I
->first
);
2710 for (GlobalVariable
*GV
: Eval
.getInvariants())
2711 GV
->setConstant(true);
2717 static int compareNames(Constant
*const *A
, Constant
*const *B
) {
2718 return (*A
)->stripPointerCasts()->getName().compare(
2719 (*B
)->stripPointerCasts()->getName());
2722 static void setUsedInitializer(GlobalVariable
&V
,
2723 const SmallPtrSet
<GlobalValue
*, 8> &Init
) {
2725 V
.eraseFromParent();
2729 // Type of pointer to the array of pointers.
2730 PointerType
*Int8PtrTy
= Type::getInt8PtrTy(V
.getContext(), 0);
2732 SmallVector
<llvm::Constant
*, 8> UsedArray
;
2733 for (GlobalValue
*GV
: Init
) {
2735 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV
, Int8PtrTy
);
2736 UsedArray
.push_back(Cast
);
2738 // Sort to get deterministic order.
2739 array_pod_sort(UsedArray
.begin(), UsedArray
.end(), compareNames
);
2740 ArrayType
*ATy
= ArrayType::get(Int8PtrTy
, UsedArray
.size());
2742 Module
*M
= V
.getParent();
2743 V
.removeFromParent();
2744 GlobalVariable
*NV
=
2745 new GlobalVariable(*M
, ATy
, false, llvm::GlobalValue::AppendingLinkage
,
2746 llvm::ConstantArray::get(ATy
, UsedArray
), "");
2748 NV
->setSection("llvm.metadata");
2753 /// \brief An easy to access representation of llvm.used and llvm.compiler.used.
2755 SmallPtrSet
<GlobalValue
*, 8> Used
;
2756 SmallPtrSet
<GlobalValue
*, 8> CompilerUsed
;
2757 GlobalVariable
*UsedV
;
2758 GlobalVariable
*CompilerUsedV
;
2761 LLVMUsed(Module
&M
) {
2762 UsedV
= collectUsedGlobalVariables(M
, Used
, false);
2763 CompilerUsedV
= collectUsedGlobalVariables(M
, CompilerUsed
, true);
2765 typedef SmallPtrSet
<GlobalValue
*, 8>::iterator iterator
;
2766 typedef iterator_range
<iterator
> used_iterator_range
;
2767 iterator
usedBegin() { return Used
.begin(); }
2768 iterator
usedEnd() { return Used
.end(); }
2769 used_iterator_range
used() {
2770 return used_iterator_range(usedBegin(), usedEnd());
2772 iterator
compilerUsedBegin() { return CompilerUsed
.begin(); }
2773 iterator
compilerUsedEnd() { return CompilerUsed
.end(); }
2774 used_iterator_range
compilerUsed() {
2775 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2777 bool usedCount(GlobalValue
*GV
) const { return Used
.count(GV
); }
2778 bool compilerUsedCount(GlobalValue
*GV
) const {
2779 return CompilerUsed
.count(GV
);
2781 bool usedErase(GlobalValue
*GV
) { return Used
.erase(GV
); }
2782 bool compilerUsedErase(GlobalValue
*GV
) { return CompilerUsed
.erase(GV
); }
2783 bool usedInsert(GlobalValue
*GV
) { return Used
.insert(GV
).second
; }
2784 bool compilerUsedInsert(GlobalValue
*GV
) {
2785 return CompilerUsed
.insert(GV
).second
;
2788 void syncVariablesAndSets() {
2790 setUsedInitializer(*UsedV
, Used
);
2792 setUsedInitializer(*CompilerUsedV
, CompilerUsed
);
2797 static bool hasUseOtherThanLLVMUsed(GlobalAlias
&GA
, const LLVMUsed
&U
) {
2798 if (GA
.use_empty()) // No use at all.
2801 assert((!U
.usedCount(&GA
) || !U
.compilerUsedCount(&GA
)) &&
2802 "We should have removed the duplicated "
2803 "element from llvm.compiler.used");
2804 if (!GA
.hasOneUse())
2805 // Strictly more than one use. So at least one is not in llvm.used and
2806 // llvm.compiler.used.
2809 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2810 return !U
.usedCount(&GA
) && !U
.compilerUsedCount(&GA
);
2813 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue
&V
,
2814 const LLVMUsed
&U
) {
2816 assert((!U
.usedCount(&V
) || !U
.compilerUsedCount(&V
)) &&
2817 "We should have removed the duplicated "
2818 "element from llvm.compiler.used");
2819 if (U
.usedCount(&V
) || U
.compilerUsedCount(&V
))
2821 return V
.hasNUsesOrMore(N
);
2824 static bool mayHaveOtherReferences(GlobalAlias
&GA
, const LLVMUsed
&U
) {
2825 if (!GA
.hasLocalLinkage())
2828 return U
.usedCount(&GA
) || U
.compilerUsedCount(&GA
);
2831 static bool hasUsesToReplace(GlobalAlias
&GA
, const LLVMUsed
&U
,
2832 bool &RenameTarget
) {
2833 RenameTarget
= false;
2835 if (hasUseOtherThanLLVMUsed(GA
, U
))
2838 // If the alias is externally visible, we may still be able to simplify it.
2839 if (!mayHaveOtherReferences(GA
, U
))
2842 // If the aliasee has internal linkage, give it the name and linkage
2843 // of the alias, and delete the alias. This turns:
2844 // define internal ... @f(...)
2845 // @a = alias ... @f
2847 // define ... @a(...)
2848 Constant
*Aliasee
= GA
.getAliasee();
2849 GlobalValue
*Target
= cast
<GlobalValue
>(Aliasee
->stripPointerCasts());
2850 if (!Target
->hasLocalLinkage())
2853 // Do not perform the transform if multiple aliases potentially target the
2854 // aliasee. This check also ensures that it is safe to replace the section
2855 // and other attributes of the aliasee with those of the alias.
2856 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target
, U
))
2859 RenameTarget
= true;
2863 bool GlobalOpt::OptimizeGlobalAliases(Module
&M
) {
2864 bool Changed
= false;
2867 for (GlobalValue
*GV
: Used
.used())
2868 Used
.compilerUsedErase(GV
);
2870 for (Module::alias_iterator I
= M
.alias_begin(), E
= M
.alias_end();
2872 Module::alias_iterator J
= I
++;
2873 // Aliases without names cannot be referenced outside this module.
2874 if (!J
->hasName() && !J
->isDeclaration() && !J
->hasLocalLinkage())
2875 J
->setLinkage(GlobalValue::InternalLinkage
);
2876 // If the aliasee may change at link time, nothing can be done - bail out.
2877 if (J
->mayBeOverridden())
2880 Constant
*Aliasee
= J
->getAliasee();
2881 GlobalValue
*Target
= dyn_cast
<GlobalValue
>(Aliasee
->stripPointerCasts());
2882 // We can't trivially replace the alias with the aliasee if the aliasee is
2883 // non-trivial in some way.
2884 // TODO: Try to handle non-zero GEPs of local aliasees.
2887 Target
->removeDeadConstantUsers();
2889 // Make all users of the alias use the aliasee instead.
2891 if (!hasUsesToReplace(*J
, Used
, RenameTarget
))
2894 J
->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee
, J
->getType()));
2895 ++NumAliasesResolved
;
2899 // Give the aliasee the name, linkage and other attributes of the alias.
2900 Target
->takeName(&*J
);
2901 Target
->setLinkage(J
->getLinkage());
2902 Target
->setVisibility(J
->getVisibility());
2903 Target
->setDLLStorageClass(J
->getDLLStorageClass());
2905 if (Used
.usedErase(&*J
))
2906 Used
.usedInsert(Target
);
2908 if (Used
.compilerUsedErase(&*J
))
2909 Used
.compilerUsedInsert(Target
);
2910 } else if (mayHaveOtherReferences(*J
, Used
))
2913 // Delete the alias.
2914 M
.getAliasList().erase(J
);
2915 ++NumAliasesRemoved
;
2919 Used
.syncVariablesAndSets();
2924 static Function
*FindCXAAtExit(Module
&M
, TargetLibraryInfo
*TLI
) {
2925 if (!TLI
->has(LibFunc::cxa_atexit
))
2928 Function
*Fn
= M
.getFunction(TLI
->getName(LibFunc::cxa_atexit
));
2933 FunctionType
*FTy
= Fn
->getFunctionType();
2935 // Checking that the function has the right return type, the right number of
2936 // parameters and that they all have pointer types should be enough.
2937 if (!FTy
->getReturnType()->isIntegerTy() ||
2938 FTy
->getNumParams() != 3 ||
2939 !FTy
->getParamType(0)->isPointerTy() ||
2940 !FTy
->getParamType(1)->isPointerTy() ||
2941 !FTy
->getParamType(2)->isPointerTy())
2947 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++
2948 /// destructor and can therefore be eliminated.
2949 /// Note that we assume that other optimization passes have already simplified
2950 /// the code so we only look for a function with a single basic block, where
2951 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2952 /// other side-effect free instructions.
2953 static bool cxxDtorIsEmpty(const Function
&Fn
,
2954 SmallPtrSet
<const Function
*, 8> &CalledFunctions
) {
2955 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2956 // nounwind, but that doesn't seem worth doing.
2957 if (Fn
.isDeclaration())
2960 if (++Fn
.begin() != Fn
.end())
2963 const BasicBlock
&EntryBlock
= Fn
.getEntryBlock();
2964 for (BasicBlock::const_iterator I
= EntryBlock
.begin(), E
= EntryBlock
.end();
2966 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
2967 // Ignore debug intrinsics.
2968 if (isa
<DbgInfoIntrinsic
>(CI
))
2971 const Function
*CalledFn
= CI
->getCalledFunction();
2976 SmallPtrSet
<const Function
*, 8> NewCalledFunctions(CalledFunctions
);
2978 // Don't treat recursive functions as empty.
2979 if (!NewCalledFunctions
.insert(CalledFn
).second
)
2982 if (!cxxDtorIsEmpty(*CalledFn
, NewCalledFunctions
))
2984 } else if (isa
<ReturnInst
>(*I
))
2985 return true; // We're done.
2986 else if (I
->mayHaveSideEffects())
2987 return false; // Destructor with side effects, bail.
2993 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function
*CXAAtExitFn
) {
2994 /// Itanium C++ ABI p3.3.5:
2996 /// After constructing a global (or local static) object, that will require
2997 /// destruction on exit, a termination function is registered as follows:
2999 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
3001 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
3002 /// call f(p) when DSO d is unloaded, before all such termination calls
3003 /// registered before this one. It returns zero if registration is
3004 /// successful, nonzero on failure.
3006 // This pass will look for calls to __cxa_atexit where the function is trivial
3008 bool Changed
= false;
3010 for (auto I
= CXAAtExitFn
->user_begin(), E
= CXAAtExitFn
->user_end();
3012 // We're only interested in calls. Theoretically, we could handle invoke
3013 // instructions as well, but neither llvm-gcc nor clang generate invokes
3015 CallInst
*CI
= dyn_cast
<CallInst
>(*I
++);
3020 dyn_cast
<Function
>(CI
->getArgOperand(0)->stripPointerCasts());
3024 SmallPtrSet
<const Function
*, 8> CalledFunctions
;
3025 if (!cxxDtorIsEmpty(*DtorFn
, CalledFunctions
))
3028 // Just remove the call.
3029 CI
->replaceAllUsesWith(Constant::getNullValue(CI
->getType()));
3030 CI
->eraseFromParent();
3032 ++NumCXXDtorsRemoved
;
3040 bool GlobalOpt::runOnModule(Module
&M
) {
3041 bool Changed
= false;
3043 auto &DL
= M
.getDataLayout();
3044 TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
3046 bool LocalChange
= true;
3047 while (LocalChange
) {
3048 LocalChange
= false;
3050 NotDiscardableComdats
.clear();
3051 for (const GlobalVariable
&GV
: M
.globals())
3052 if (const Comdat
*C
= GV
.getComdat())
3053 if (!GV
.isDiscardableIfUnused() || !GV
.use_empty())
3054 NotDiscardableComdats
.insert(C
);
3055 for (Function
&F
: M
)
3056 if (const Comdat
*C
= F
.getComdat())
3057 if (!F
.isDefTriviallyDead())
3058 NotDiscardableComdats
.insert(C
);
3059 for (GlobalAlias
&GA
: M
.aliases())
3060 if (const Comdat
*C
= GA
.getComdat())
3061 if (!GA
.isDiscardableIfUnused() || !GA
.use_empty())
3062 NotDiscardableComdats
.insert(C
);
3064 // Delete functions that are trivially dead, ccc -> fastcc
3065 LocalChange
|= OptimizeFunctions(M
);
3067 // Optimize global_ctors list.
3068 LocalChange
|= optimizeGlobalCtorsList(M
, [&](Function
*F
) {
3069 return EvaluateStaticConstructor(F
, DL
, TLI
);
3072 // Optimize non-address-taken globals.
3073 LocalChange
|= OptimizeGlobalVars(M
);
3075 // Resolve aliases, when possible.
3076 LocalChange
|= OptimizeGlobalAliases(M
);
3078 // Try to remove trivial global destructors if they are not removed
3080 Function
*CXAAtExitFn
= FindCXAAtExit(M
, TLI
);
3082 LocalChange
|= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn
);
3084 Changed
|= LocalChange
;
3087 // TODO: Move all global ctors functions to the end of the module for code