[GlobalOpt] Add newlines to DEBUG messages
[llvm-core.git] / lib / Transforms / IPO / GlobalOpt.cpp
blob040fd7c83249bd4daf54b23e59455e71b361b304
1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken. If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/IPO.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/IR/CallSite.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GetElementPtrTypeIterator.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/CtorUtils.h"
43 #include "llvm/Transforms/Utils/GlobalStatus.h"
44 #include "llvm/Transforms/Utils/ModuleUtils.h"
45 #include <algorithm>
46 #include <deque>
47 using namespace llvm;
49 #define DEBUG_TYPE "globalopt"
51 STATISTIC(NumMarked , "Number of globals marked constant");
52 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr");
53 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
54 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd");
55 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
56 STATISTIC(NumDeleted , "Number of globals deleted");
57 STATISTIC(NumFnDeleted , "Number of functions deleted");
58 STATISTIC(NumGlobUses , "Number of global uses devirtualized");
59 STATISTIC(NumLocalized , "Number of globals localized");
60 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans");
61 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc");
62 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
63 STATISTIC(NumNestRemoved , "Number of nest attributes removed");
64 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
65 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
66 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
68 namespace {
69 struct GlobalOpt : public ModulePass {
70 void getAnalysisUsage(AnalysisUsage &AU) const override {
71 AU.addRequired<TargetLibraryInfoWrapperPass>();
73 static char ID; // Pass identification, replacement for typeid
74 GlobalOpt() : ModulePass(ID) {
75 initializeGlobalOptPass(*PassRegistry::getPassRegistry());
78 bool runOnModule(Module &M) override;
80 private:
81 bool OptimizeFunctions(Module &M);
82 bool OptimizeGlobalVars(Module &M);
83 bool OptimizeGlobalAliases(Module &M);
84 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
85 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
86 const GlobalStatus &GS);
87 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
89 TargetLibraryInfo *TLI;
90 SmallSet<const Comdat *, 8> NotDiscardableComdats;
94 char GlobalOpt::ID = 0;
95 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
96 "Global Variable Optimizer", false, false)
97 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
98 INITIALIZE_PASS_END(GlobalOpt, "globalopt",
99 "Global Variable Optimizer", false, false)
101 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
103 /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
104 /// as a root? If so, we might not really want to eliminate the stores to it.
105 static bool isLeakCheckerRoot(GlobalVariable *GV) {
106 // A global variable is a root if it is a pointer, or could plausibly contain
107 // a pointer. There are two challenges; one is that we could have a struct
108 // the has an inner member which is a pointer. We recurse through the type to
109 // detect these (up to a point). The other is that we may actually be a union
110 // of a pointer and another type, and so our LLVM type is an integer which
111 // gets converted into a pointer, or our type is an [i8 x #] with a pointer
112 // potentially contained here.
114 if (GV->hasPrivateLinkage())
115 return false;
117 SmallVector<Type *, 4> Types;
118 Types.push_back(cast<PointerType>(GV->getType())->getElementType());
120 unsigned Limit = 20;
121 do {
122 Type *Ty = Types.pop_back_val();
123 switch (Ty->getTypeID()) {
124 default: break;
125 case Type::PointerTyID: return true;
126 case Type::ArrayTyID:
127 case Type::VectorTyID: {
128 SequentialType *STy = cast<SequentialType>(Ty);
129 Types.push_back(STy->getElementType());
130 break;
132 case Type::StructTyID: {
133 StructType *STy = cast<StructType>(Ty);
134 if (STy->isOpaque()) return true;
135 for (StructType::element_iterator I = STy->element_begin(),
136 E = STy->element_end(); I != E; ++I) {
137 Type *InnerTy = *I;
138 if (isa<PointerType>(InnerTy)) return true;
139 if (isa<CompositeType>(InnerTy))
140 Types.push_back(InnerTy);
142 break;
145 if (--Limit == 0) return true;
146 } while (!Types.empty());
147 return false;
150 /// Given a value that is stored to a global but never read, determine whether
151 /// it's safe to remove the store and the chain of computation that feeds the
152 /// store.
153 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
154 do {
155 if (isa<Constant>(V))
156 return true;
157 if (!V->hasOneUse())
158 return false;
159 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
160 isa<GlobalValue>(V))
161 return false;
162 if (isAllocationFn(V, TLI))
163 return true;
165 Instruction *I = cast<Instruction>(V);
166 if (I->mayHaveSideEffects())
167 return false;
168 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
169 if (!GEP->hasAllConstantIndices())
170 return false;
171 } else if (I->getNumOperands() != 1) {
172 return false;
175 V = I->getOperand(0);
176 } while (1);
179 /// CleanupPointerRootUsers - This GV is a pointer root. Loop over all users
180 /// of the global and clean up any that obviously don't assign the global a
181 /// value that isn't dynamically allocated.
183 static bool CleanupPointerRootUsers(GlobalVariable *GV,
184 const TargetLibraryInfo *TLI) {
185 // A brief explanation of leak checkers. The goal is to find bugs where
186 // pointers are forgotten, causing an accumulating growth in memory
187 // usage over time. The common strategy for leak checkers is to whitelist the
188 // memory pointed to by globals at exit. This is popular because it also
189 // solves another problem where the main thread of a C++ program may shut down
190 // before other threads that are still expecting to use those globals. To
191 // handle that case, we expect the program may create a singleton and never
192 // destroy it.
194 bool Changed = false;
196 // If Dead[n].first is the only use of a malloc result, we can delete its
197 // chain of computation and the store to the global in Dead[n].second.
198 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
200 // Constants can't be pointers to dynamically allocated memory.
201 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
202 UI != E;) {
203 User *U = *UI++;
204 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
205 Value *V = SI->getValueOperand();
206 if (isa<Constant>(V)) {
207 Changed = true;
208 SI->eraseFromParent();
209 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
210 if (I->hasOneUse())
211 Dead.push_back(std::make_pair(I, SI));
213 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
214 if (isa<Constant>(MSI->getValue())) {
215 Changed = true;
216 MSI->eraseFromParent();
217 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
218 if (I->hasOneUse())
219 Dead.push_back(std::make_pair(I, MSI));
221 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
222 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
223 if (MemSrc && MemSrc->isConstant()) {
224 Changed = true;
225 MTI->eraseFromParent();
226 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
227 if (I->hasOneUse())
228 Dead.push_back(std::make_pair(I, MTI));
230 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
231 if (CE->use_empty()) {
232 CE->destroyConstant();
233 Changed = true;
235 } else if (Constant *C = dyn_cast<Constant>(U)) {
236 if (isSafeToDestroyConstant(C)) {
237 C->destroyConstant();
238 // This could have invalidated UI, start over from scratch.
239 Dead.clear();
240 CleanupPointerRootUsers(GV, TLI);
241 return true;
246 for (int i = 0, e = Dead.size(); i != e; ++i) {
247 if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
248 Dead[i].second->eraseFromParent();
249 Instruction *I = Dead[i].first;
250 do {
251 if (isAllocationFn(I, TLI))
252 break;
253 Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
254 if (!J)
255 break;
256 I->eraseFromParent();
257 I = J;
258 } while (1);
259 I->eraseFromParent();
263 return Changed;
266 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all
267 /// users of the global, cleaning up the obvious ones. This is largely just a
268 /// quick scan over the use list to clean up the easy and obvious cruft. This
269 /// returns true if it made a change.
270 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
271 const DataLayout &DL,
272 TargetLibraryInfo *TLI) {
273 bool Changed = false;
274 // Note that we need to use a weak value handle for the worklist items. When
275 // we delete a constant array, we may also be holding pointer to one of its
276 // elements (or an element of one of its elements if we're dealing with an
277 // array of arrays) in the worklist.
278 SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
279 while (!WorkList.empty()) {
280 Value *UV = WorkList.pop_back_val();
281 if (!UV)
282 continue;
284 User *U = cast<User>(UV);
286 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
287 if (Init) {
288 // Replace the load with the initializer.
289 LI->replaceAllUsesWith(Init);
290 LI->eraseFromParent();
291 Changed = true;
293 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
294 // Store must be unreachable or storing Init into the global.
295 SI->eraseFromParent();
296 Changed = true;
297 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
298 if (CE->getOpcode() == Instruction::GetElementPtr) {
299 Constant *SubInit = nullptr;
300 if (Init)
301 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
302 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
303 } else if ((CE->getOpcode() == Instruction::BitCast &&
304 CE->getType()->isPointerTy()) ||
305 CE->getOpcode() == Instruction::AddrSpaceCast) {
306 // Pointer cast, delete any stores and memsets to the global.
307 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
310 if (CE->use_empty()) {
311 CE->destroyConstant();
312 Changed = true;
314 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
315 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
316 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
317 // and will invalidate our notion of what Init is.
318 Constant *SubInit = nullptr;
319 if (!isa<ConstantExpr>(GEP->getOperand(0))) {
320 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
321 ConstantFoldInstruction(GEP, DL, TLI));
322 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
323 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
325 // If the initializer is an all-null value and we have an inbounds GEP,
326 // we already know what the result of any load from that GEP is.
327 // TODO: Handle splats.
328 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
329 SubInit = Constant::getNullValue(GEP->getType()->getElementType());
331 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
333 if (GEP->use_empty()) {
334 GEP->eraseFromParent();
335 Changed = true;
337 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
338 if (MI->getRawDest() == V) {
339 MI->eraseFromParent();
340 Changed = true;
343 } else if (Constant *C = dyn_cast<Constant>(U)) {
344 // If we have a chain of dead constantexprs or other things dangling from
345 // us, and if they are all dead, nuke them without remorse.
346 if (isSafeToDestroyConstant(C)) {
347 C->destroyConstant();
348 CleanupConstantGlobalUsers(V, Init, DL, TLI);
349 return true;
353 return Changed;
356 /// isSafeSROAElementUse - Return true if the specified instruction is a safe
357 /// user of a derived expression from a global that we want to SROA.
358 static bool isSafeSROAElementUse(Value *V) {
359 // We might have a dead and dangling constant hanging off of here.
360 if (Constant *C = dyn_cast<Constant>(V))
361 return isSafeToDestroyConstant(C);
363 Instruction *I = dyn_cast<Instruction>(V);
364 if (!I) return false;
366 // Loads are ok.
367 if (isa<LoadInst>(I)) return true;
369 // Stores *to* the pointer are ok.
370 if (StoreInst *SI = dyn_cast<StoreInst>(I))
371 return SI->getOperand(0) != V;
373 // Otherwise, it must be a GEP.
374 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
375 if (!GEPI) return false;
377 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
378 !cast<Constant>(GEPI->getOperand(1))->isNullValue())
379 return false;
381 for (User *U : GEPI->users())
382 if (!isSafeSROAElementUse(U))
383 return false;
384 return true;
388 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
389 /// Look at it and its uses and decide whether it is safe to SROA this global.
391 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
392 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
393 if (!isa<GetElementPtrInst>(U) &&
394 (!isa<ConstantExpr>(U) ||
395 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
396 return false;
398 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
399 // don't like < 3 operand CE's, and we don't like non-constant integer
400 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
401 // value of C.
402 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
403 !cast<Constant>(U->getOperand(1))->isNullValue() ||
404 !isa<ConstantInt>(U->getOperand(2)))
405 return false;
407 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
408 ++GEPI; // Skip over the pointer index.
410 // If this is a use of an array allocation, do a bit more checking for sanity.
411 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
412 uint64_t NumElements = AT->getNumElements();
413 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
415 // Check to make sure that index falls within the array. If not,
416 // something funny is going on, so we won't do the optimization.
418 if (Idx->getZExtValue() >= NumElements)
419 return false;
421 // We cannot scalar repl this level of the array unless any array
422 // sub-indices are in-range constants. In particular, consider:
423 // A[0][i]. We cannot know that the user isn't doing invalid things like
424 // allowing i to index an out-of-range subscript that accesses A[1].
426 // Scalar replacing *just* the outer index of the array is probably not
427 // going to be a win anyway, so just give up.
428 for (++GEPI; // Skip array index.
429 GEPI != E;
430 ++GEPI) {
431 uint64_t NumElements;
432 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
433 NumElements = SubArrayTy->getNumElements();
434 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
435 NumElements = SubVectorTy->getNumElements();
436 else {
437 assert((*GEPI)->isStructTy() &&
438 "Indexed GEP type is not array, vector, or struct!");
439 continue;
442 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
443 if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
444 return false;
448 for (User *UU : U->users())
449 if (!isSafeSROAElementUse(UU))
450 return false;
452 return true;
455 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
456 /// is safe for us to perform this transformation.
458 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
459 for (User *U : GV->users())
460 if (!IsUserOfGlobalSafeForSRA(U, GV))
461 return false;
463 return true;
467 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
468 /// variable. This opens the door for other optimizations by exposing the
469 /// behavior of the program in a more fine-grained way. We have determined that
470 /// this transformation is safe already. We return the first global variable we
471 /// insert so that the caller can reprocess it.
472 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
473 // Make sure this global only has simple uses that we can SRA.
474 if (!GlobalUsersSafeToSRA(GV))
475 return nullptr;
477 assert(GV->hasLocalLinkage() && !GV->isConstant());
478 Constant *Init = GV->getInitializer();
479 Type *Ty = Init->getType();
481 std::vector<GlobalVariable*> NewGlobals;
482 Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
484 // Get the alignment of the global, either explicit or target-specific.
485 unsigned StartAlignment = GV->getAlignment();
486 if (StartAlignment == 0)
487 StartAlignment = DL.getABITypeAlignment(GV->getType());
489 if (StructType *STy = dyn_cast<StructType>(Ty)) {
490 NewGlobals.reserve(STy->getNumElements());
491 const StructLayout &Layout = *DL.getStructLayout(STy);
492 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
493 Constant *In = Init->getAggregateElement(i);
494 assert(In && "Couldn't get element of initializer?");
495 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
496 GlobalVariable::InternalLinkage,
497 In, GV->getName()+"."+Twine(i),
498 GV->getThreadLocalMode(),
499 GV->getType()->getAddressSpace());
500 Globals.insert(GV->getIterator(), NGV);
501 NewGlobals.push_back(NGV);
503 // Calculate the known alignment of the field. If the original aggregate
504 // had 256 byte alignment for example, something might depend on that:
505 // propagate info to each field.
506 uint64_t FieldOffset = Layout.getElementOffset(i);
507 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
508 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
509 NGV->setAlignment(NewAlign);
511 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
512 unsigned NumElements = 0;
513 if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
514 NumElements = ATy->getNumElements();
515 else
516 NumElements = cast<VectorType>(STy)->getNumElements();
518 if (NumElements > 16 && GV->hasNUsesOrMore(16))
519 return nullptr; // It's not worth it.
520 NewGlobals.reserve(NumElements);
522 uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
523 unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
524 for (unsigned i = 0, e = NumElements; i != e; ++i) {
525 Constant *In = Init->getAggregateElement(i);
526 assert(In && "Couldn't get element of initializer?");
528 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
529 GlobalVariable::InternalLinkage,
530 In, GV->getName()+"."+Twine(i),
531 GV->getThreadLocalMode(),
532 GV->getType()->getAddressSpace());
533 Globals.insert(GV->getIterator(), NGV);
534 NewGlobals.push_back(NGV);
536 // Calculate the known alignment of the field. If the original aggregate
537 // had 256 byte alignment for example, something might depend on that:
538 // propagate info to each field.
539 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
540 if (NewAlign > EltAlign)
541 NGV->setAlignment(NewAlign);
545 if (NewGlobals.empty())
546 return nullptr;
548 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
550 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
552 // Loop over all of the uses of the global, replacing the constantexpr geps,
553 // with smaller constantexpr geps or direct references.
554 while (!GV->use_empty()) {
555 User *GEP = GV->user_back();
556 assert(((isa<ConstantExpr>(GEP) &&
557 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
558 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
560 // Ignore the 1th operand, which has to be zero or else the program is quite
561 // broken (undefined). Get the 2nd operand, which is the structure or array
562 // index.
563 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
564 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
566 Value *NewPtr = NewGlobals[Val];
567 Type *NewTy = NewGlobals[Val]->getValueType();
569 // Form a shorter GEP if needed.
570 if (GEP->getNumOperands() > 3) {
571 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
572 SmallVector<Constant*, 8> Idxs;
573 Idxs.push_back(NullInt);
574 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
575 Idxs.push_back(CE->getOperand(i));
576 NewPtr =
577 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
578 } else {
579 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
580 SmallVector<Value*, 8> Idxs;
581 Idxs.push_back(NullInt);
582 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
583 Idxs.push_back(GEPI->getOperand(i));
584 NewPtr = GetElementPtrInst::Create(
585 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
588 GEP->replaceAllUsesWith(NewPtr);
590 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
591 GEPI->eraseFromParent();
592 else
593 cast<ConstantExpr>(GEP)->destroyConstant();
596 // Delete the old global, now that it is dead.
597 Globals.erase(GV);
598 ++NumSRA;
600 // Loop over the new globals array deleting any globals that are obviously
601 // dead. This can arise due to scalarization of a structure or an array that
602 // has elements that are dead.
603 unsigned FirstGlobal = 0;
604 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
605 if (NewGlobals[i]->use_empty()) {
606 Globals.erase(NewGlobals[i]);
607 if (FirstGlobal == i) ++FirstGlobal;
610 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
613 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
614 /// value will trap if the value is dynamically null. PHIs keeps track of any
615 /// phi nodes we've seen to avoid reprocessing them.
616 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
617 SmallPtrSetImpl<const PHINode*> &PHIs) {
618 for (const User *U : V->users())
619 if (isa<LoadInst>(U)) {
620 // Will trap.
621 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
622 if (SI->getOperand(0) == V) {
623 //cerr << "NONTRAPPING USE: " << *U;
624 return false; // Storing the value.
626 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
627 if (CI->getCalledValue() != V) {
628 //cerr << "NONTRAPPING USE: " << *U;
629 return false; // Not calling the ptr
631 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
632 if (II->getCalledValue() != V) {
633 //cerr << "NONTRAPPING USE: " << *U;
634 return false; // Not calling the ptr
636 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
637 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
638 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
639 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
640 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
641 // If we've already seen this phi node, ignore it, it has already been
642 // checked.
643 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
644 return false;
645 } else if (isa<ICmpInst>(U) &&
646 isa<ConstantPointerNull>(U->getOperand(1))) {
647 // Ignore icmp X, null
648 } else {
649 //cerr << "NONTRAPPING USE: " << *U;
650 return false;
653 return true;
656 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
657 /// from GV will trap if the loaded value is null. Note that this also permits
658 /// comparisons of the loaded value against null, as a special case.
659 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
660 for (const User *U : GV->users())
661 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
662 SmallPtrSet<const PHINode*, 8> PHIs;
663 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
664 return false;
665 } else if (isa<StoreInst>(U)) {
666 // Ignore stores to the global.
667 } else {
668 // We don't know or understand this user, bail out.
669 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
670 return false;
672 return true;
675 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
676 bool Changed = false;
677 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
678 Instruction *I = cast<Instruction>(*UI++);
679 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
680 LI->setOperand(0, NewV);
681 Changed = true;
682 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
683 if (SI->getOperand(1) == V) {
684 SI->setOperand(1, NewV);
685 Changed = true;
687 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
688 CallSite CS(I);
689 if (CS.getCalledValue() == V) {
690 // Calling through the pointer! Turn into a direct call, but be careful
691 // that the pointer is not also being passed as an argument.
692 CS.setCalledFunction(NewV);
693 Changed = true;
694 bool PassedAsArg = false;
695 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
696 if (CS.getArgument(i) == V) {
697 PassedAsArg = true;
698 CS.setArgument(i, NewV);
701 if (PassedAsArg) {
702 // Being passed as an argument also. Be careful to not invalidate UI!
703 UI = V->user_begin();
706 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
707 Changed |= OptimizeAwayTrappingUsesOfValue(CI,
708 ConstantExpr::getCast(CI->getOpcode(),
709 NewV, CI->getType()));
710 if (CI->use_empty()) {
711 Changed = true;
712 CI->eraseFromParent();
714 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
715 // Should handle GEP here.
716 SmallVector<Constant*, 8> Idxs;
717 Idxs.reserve(GEPI->getNumOperands()-1);
718 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
719 i != e; ++i)
720 if (Constant *C = dyn_cast<Constant>(*i))
721 Idxs.push_back(C);
722 else
723 break;
724 if (Idxs.size() == GEPI->getNumOperands()-1)
725 Changed |= OptimizeAwayTrappingUsesOfValue(
726 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
727 if (GEPI->use_empty()) {
728 Changed = true;
729 GEPI->eraseFromParent();
734 return Changed;
738 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
739 /// value stored into it. If there are uses of the loaded value that would trap
740 /// if the loaded value is dynamically null, then we know that they cannot be
741 /// reachable with a null optimize away the load.
742 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
743 const DataLayout &DL,
744 TargetLibraryInfo *TLI) {
745 bool Changed = false;
747 // Keep track of whether we are able to remove all the uses of the global
748 // other than the store that defines it.
749 bool AllNonStoreUsesGone = true;
751 // Replace all uses of loads with uses of uses of the stored value.
752 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
753 User *GlobalUser = *GUI++;
754 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
755 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
756 // If we were able to delete all uses of the loads
757 if (LI->use_empty()) {
758 LI->eraseFromParent();
759 Changed = true;
760 } else {
761 AllNonStoreUsesGone = false;
763 } else if (isa<StoreInst>(GlobalUser)) {
764 // Ignore the store that stores "LV" to the global.
765 assert(GlobalUser->getOperand(1) == GV &&
766 "Must be storing *to* the global");
767 } else {
768 AllNonStoreUsesGone = false;
770 // If we get here we could have other crazy uses that are transitively
771 // loaded.
772 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
773 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
774 isa<BitCastInst>(GlobalUser) ||
775 isa<GetElementPtrInst>(GlobalUser)) &&
776 "Only expect load and stores!");
780 if (Changed) {
781 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n");
782 ++NumGlobUses;
785 // If we nuked all of the loads, then none of the stores are needed either,
786 // nor is the global.
787 if (AllNonStoreUsesGone) {
788 if (isLeakCheckerRoot(GV)) {
789 Changed |= CleanupPointerRootUsers(GV, TLI);
790 } else {
791 Changed = true;
792 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
794 if (GV->use_empty()) {
795 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
796 Changed = true;
797 GV->eraseFromParent();
798 ++NumDeleted;
801 return Changed;
804 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
805 /// instructions that are foldable.
806 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
807 TargetLibraryInfo *TLI) {
808 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
809 if (Instruction *I = dyn_cast<Instruction>(*UI++))
810 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
811 I->replaceAllUsesWith(NewC);
813 // Advance UI to the next non-I use to avoid invalidating it!
814 // Instructions could multiply use V.
815 while (UI != E && *UI == I)
816 ++UI;
817 I->eraseFromParent();
821 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global
822 /// variable, and transforms the program as if it always contained the result of
823 /// the specified malloc. Because it is always the result of the specified
824 /// malloc, there is no reason to actually DO the malloc. Instead, turn the
825 /// malloc into a global, and any loads of GV as uses of the new global.
826 static GlobalVariable *
827 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
828 ConstantInt *NElements, const DataLayout &DL,
829 TargetLibraryInfo *TLI) {
830 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n');
832 Type *GlobalType;
833 if (NElements->getZExtValue() == 1)
834 GlobalType = AllocTy;
835 else
836 // If we have an array allocation, the global variable is of an array.
837 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
839 // Create the new global variable. The contents of the malloc'd memory is
840 // undefined, so initialize with an undef value.
841 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
842 GlobalType, false,
843 GlobalValue::InternalLinkage,
844 UndefValue::get(GlobalType),
845 GV->getName()+".body",
847 GV->getThreadLocalMode());
849 // If there are bitcast users of the malloc (which is typical, usually we have
850 // a malloc + bitcast) then replace them with uses of the new global. Update
851 // other users to use the global as well.
852 BitCastInst *TheBC = nullptr;
853 while (!CI->use_empty()) {
854 Instruction *User = cast<Instruction>(CI->user_back());
855 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
856 if (BCI->getType() == NewGV->getType()) {
857 BCI->replaceAllUsesWith(NewGV);
858 BCI->eraseFromParent();
859 } else {
860 BCI->setOperand(0, NewGV);
862 } else {
863 if (!TheBC)
864 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
865 User->replaceUsesOfWith(CI, TheBC);
869 Constant *RepValue = NewGV;
870 if (NewGV->getType() != GV->getType()->getElementType())
871 RepValue = ConstantExpr::getBitCast(RepValue,
872 GV->getType()->getElementType());
874 // If there is a comparison against null, we will insert a global bool to
875 // keep track of whether the global was initialized yet or not.
876 GlobalVariable *InitBool =
877 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
878 GlobalValue::InternalLinkage,
879 ConstantInt::getFalse(GV->getContext()),
880 GV->getName()+".init", GV->getThreadLocalMode());
881 bool InitBoolUsed = false;
883 // Loop over all uses of GV, processing them in turn.
884 while (!GV->use_empty()) {
885 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
886 // The global is initialized when the store to it occurs.
887 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
888 SI->getOrdering(), SI->getSynchScope(), SI);
889 SI->eraseFromParent();
890 continue;
893 LoadInst *LI = cast<LoadInst>(GV->user_back());
894 while (!LI->use_empty()) {
895 Use &LoadUse = *LI->use_begin();
896 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
897 if (!ICI) {
898 LoadUse = RepValue;
899 continue;
902 // Replace the cmp X, 0 with a use of the bool value.
903 // Sink the load to where the compare was, if atomic rules allow us to.
904 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
905 LI->getOrdering(), LI->getSynchScope(),
906 LI->isUnordered() ? (Instruction*)ICI : LI);
907 InitBoolUsed = true;
908 switch (ICI->getPredicate()) {
909 default: llvm_unreachable("Unknown ICmp Predicate!");
910 case ICmpInst::ICMP_ULT:
911 case ICmpInst::ICMP_SLT: // X < null -> always false
912 LV = ConstantInt::getFalse(GV->getContext());
913 break;
914 case ICmpInst::ICMP_ULE:
915 case ICmpInst::ICMP_SLE:
916 case ICmpInst::ICMP_EQ:
917 LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
918 break;
919 case ICmpInst::ICMP_NE:
920 case ICmpInst::ICMP_UGE:
921 case ICmpInst::ICMP_SGE:
922 case ICmpInst::ICMP_UGT:
923 case ICmpInst::ICMP_SGT:
924 break; // no change.
926 ICI->replaceAllUsesWith(LV);
927 ICI->eraseFromParent();
929 LI->eraseFromParent();
932 // If the initialization boolean was used, insert it, otherwise delete it.
933 if (!InitBoolUsed) {
934 while (!InitBool->use_empty()) // Delete initializations
935 cast<StoreInst>(InitBool->user_back())->eraseFromParent();
936 delete InitBool;
937 } else
938 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
940 // Now the GV is dead, nuke it and the malloc..
941 GV->eraseFromParent();
942 CI->eraseFromParent();
944 // To further other optimizations, loop over all users of NewGV and try to
945 // constant prop them. This will promote GEP instructions with constant
946 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
947 ConstantPropUsersOf(NewGV, DL, TLI);
948 if (RepValue != NewGV)
949 ConstantPropUsersOf(RepValue, DL, TLI);
951 return NewGV;
954 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
955 /// to make sure that there are no complex uses of V. We permit simple things
956 /// like dereferencing the pointer, but not storing through the address, unless
957 /// it is to the specified global.
958 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
959 const GlobalVariable *GV,
960 SmallPtrSetImpl<const PHINode*> &PHIs) {
961 for (const User *U : V->users()) {
962 const Instruction *Inst = cast<Instruction>(U);
964 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
965 continue; // Fine, ignore.
968 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
969 if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
970 return false; // Storing the pointer itself... bad.
971 continue; // Otherwise, storing through it, or storing into GV... fine.
974 // Must index into the array and into the struct.
975 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
976 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
977 return false;
978 continue;
981 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
982 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
983 // cycles.
984 if (PHIs.insert(PN).second)
985 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
986 return false;
987 continue;
990 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
991 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
992 return false;
993 continue;
996 return false;
998 return true;
1001 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1002 /// somewhere. Transform all uses of the allocation into loads from the
1003 /// global and uses of the resultant pointer. Further, delete the store into
1004 /// GV. This assumes that these value pass the
1005 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1006 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1007 GlobalVariable *GV) {
1008 while (!Alloc->use_empty()) {
1009 Instruction *U = cast<Instruction>(*Alloc->user_begin());
1010 Instruction *InsertPt = U;
1011 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1012 // If this is the store of the allocation into the global, remove it.
1013 if (SI->getOperand(1) == GV) {
1014 SI->eraseFromParent();
1015 continue;
1017 } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1018 // Insert the load in the corresponding predecessor, not right before the
1019 // PHI.
1020 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1021 } else if (isa<BitCastInst>(U)) {
1022 // Must be bitcast between the malloc and store to initialize the global.
1023 ReplaceUsesOfMallocWithGlobal(U, GV);
1024 U->eraseFromParent();
1025 continue;
1026 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1027 // If this is a "GEP bitcast" and the user is a store to the global, then
1028 // just process it as a bitcast.
1029 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1030 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1031 if (SI->getOperand(1) == GV) {
1032 // Must be bitcast GEP between the malloc and store to initialize
1033 // the global.
1034 ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1035 GEPI->eraseFromParent();
1036 continue;
1040 // Insert a load from the global, and use it instead of the malloc.
1041 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1042 U->replaceUsesOfWith(Alloc, NL);
1046 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1047 /// of a load) are simple enough to perform heap SRA on. This permits GEP's
1048 /// that index through the array and struct field, icmps of null, and PHIs.
1049 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1050 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1051 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1052 // We permit two users of the load: setcc comparing against the null
1053 // pointer, and a getelementptr of a specific form.
1054 for (const User *U : V->users()) {
1055 const Instruction *UI = cast<Instruction>(U);
1057 // Comparison against null is ok.
1058 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1059 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1060 return false;
1061 continue;
1064 // getelementptr is also ok, but only a simple form.
1065 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1066 // Must index into the array and into the struct.
1067 if (GEPI->getNumOperands() < 3)
1068 return false;
1070 // Otherwise the GEP is ok.
1071 continue;
1074 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1075 if (!LoadUsingPHIsPerLoad.insert(PN).second)
1076 // This means some phi nodes are dependent on each other.
1077 // Avoid infinite looping!
1078 return false;
1079 if (!LoadUsingPHIs.insert(PN).second)
1080 // If we have already analyzed this PHI, then it is safe.
1081 continue;
1083 // Make sure all uses of the PHI are simple enough to transform.
1084 if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1085 LoadUsingPHIs, LoadUsingPHIsPerLoad))
1086 return false;
1088 continue;
1091 // Otherwise we don't know what this is, not ok.
1092 return false;
1095 return true;
1099 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1100 /// GV are simple enough to perform HeapSRA, return true.
1101 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1102 Instruction *StoredVal) {
1103 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1104 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1105 for (const User *U : GV->users())
1106 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1107 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1108 LoadUsingPHIsPerLoad))
1109 return false;
1110 LoadUsingPHIsPerLoad.clear();
1113 // If we reach here, we know that all uses of the loads and transitive uses
1114 // (through PHI nodes) are simple enough to transform. However, we don't know
1115 // that all inputs the to the PHI nodes are in the same equivalence sets.
1116 // Check to verify that all operands of the PHIs are either PHIS that can be
1117 // transformed, loads from GV, or MI itself.
1118 for (const PHINode *PN : LoadUsingPHIs) {
1119 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1120 Value *InVal = PN->getIncomingValue(op);
1122 // PHI of the stored value itself is ok.
1123 if (InVal == StoredVal) continue;
1125 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1126 // One of the PHIs in our set is (optimistically) ok.
1127 if (LoadUsingPHIs.count(InPN))
1128 continue;
1129 return false;
1132 // Load from GV is ok.
1133 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1134 if (LI->getOperand(0) == GV)
1135 continue;
1137 // UNDEF? NULL?
1139 // Anything else is rejected.
1140 return false;
1144 return true;
1147 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1148 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1149 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1150 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1152 if (FieldNo >= FieldVals.size())
1153 FieldVals.resize(FieldNo+1);
1155 // If we already have this value, just reuse the previously scalarized
1156 // version.
1157 if (Value *FieldVal = FieldVals[FieldNo])
1158 return FieldVal;
1160 // Depending on what instruction this is, we have several cases.
1161 Value *Result;
1162 if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1163 // This is a scalarized version of the load from the global. Just create
1164 // a new Load of the scalarized global.
1165 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1166 InsertedScalarizedValues,
1167 PHIsToRewrite),
1168 LI->getName()+".f"+Twine(FieldNo), LI);
1169 } else {
1170 PHINode *PN = cast<PHINode>(V);
1171 // PN's type is pointer to struct. Make a new PHI of pointer to struct
1172 // field.
1174 PointerType *PTy = cast<PointerType>(PN->getType());
1175 StructType *ST = cast<StructType>(PTy->getElementType());
1177 unsigned AS = PTy->getAddressSpace();
1178 PHINode *NewPN =
1179 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1180 PN->getNumIncomingValues(),
1181 PN->getName()+".f"+Twine(FieldNo), PN);
1182 Result = NewPN;
1183 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1186 return FieldVals[FieldNo] = Result;
1189 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1190 /// the load, rewrite the derived value to use the HeapSRoA'd load.
1191 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1192 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1193 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1194 // If this is a comparison against null, handle it.
1195 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1196 assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1197 // If we have a setcc of the loaded pointer, we can use a setcc of any
1198 // field.
1199 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1200 InsertedScalarizedValues, PHIsToRewrite);
1202 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1203 Constant::getNullValue(NPtr->getType()),
1204 SCI->getName());
1205 SCI->replaceAllUsesWith(New);
1206 SCI->eraseFromParent();
1207 return;
1210 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1211 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1212 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1213 && "Unexpected GEPI!");
1215 // Load the pointer for this field.
1216 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1217 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1218 InsertedScalarizedValues, PHIsToRewrite);
1220 // Create the new GEP idx vector.
1221 SmallVector<Value*, 8> GEPIdx;
1222 GEPIdx.push_back(GEPI->getOperand(1));
1223 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1225 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1226 GEPI->getName(), GEPI);
1227 GEPI->replaceAllUsesWith(NGEPI);
1228 GEPI->eraseFromParent();
1229 return;
1232 // Recursively transform the users of PHI nodes. This will lazily create the
1233 // PHIs that are needed for individual elements. Keep track of what PHIs we
1234 // see in InsertedScalarizedValues so that we don't get infinite loops (very
1235 // antisocial). If the PHI is already in InsertedScalarizedValues, it has
1236 // already been seen first by another load, so its uses have already been
1237 // processed.
1238 PHINode *PN = cast<PHINode>(LoadUser);
1239 if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1240 std::vector<Value*>())).second)
1241 return;
1243 // If this is the first time we've seen this PHI, recursively process all
1244 // users.
1245 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1246 Instruction *User = cast<Instruction>(*UI++);
1247 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1251 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr
1252 /// is a value loaded from the global. Eliminate all uses of Ptr, making them
1253 /// use FieldGlobals instead. All uses of loaded values satisfy
1254 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1255 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1256 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1257 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1258 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1259 Instruction *User = cast<Instruction>(*UI++);
1260 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1263 if (Load->use_empty()) {
1264 Load->eraseFromParent();
1265 InsertedScalarizedValues.erase(Load);
1269 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break
1270 /// it up into multiple allocations of arrays of the fields.
1271 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1272 Value *NElems, const DataLayout &DL,
1273 const TargetLibraryInfo *TLI) {
1274 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n');
1275 Type *MAT = getMallocAllocatedType(CI, TLI);
1276 StructType *STy = cast<StructType>(MAT);
1278 // There is guaranteed to be at least one use of the malloc (storing
1279 // it into GV). If there are other uses, change them to be uses of
1280 // the global to simplify later code. This also deletes the store
1281 // into GV.
1282 ReplaceUsesOfMallocWithGlobal(CI, GV);
1284 // Okay, at this point, there are no users of the malloc. Insert N
1285 // new mallocs at the same place as CI, and N globals.
1286 std::vector<Value*> FieldGlobals;
1287 std::vector<Value*> FieldMallocs;
1289 unsigned AS = GV->getType()->getPointerAddressSpace();
1290 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1291 Type *FieldTy = STy->getElementType(FieldNo);
1292 PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1294 GlobalVariable *NGV =
1295 new GlobalVariable(*GV->getParent(),
1296 PFieldTy, false, GlobalValue::InternalLinkage,
1297 Constant::getNullValue(PFieldTy),
1298 GV->getName() + ".f" + Twine(FieldNo), GV,
1299 GV->getThreadLocalMode());
1300 FieldGlobals.push_back(NGV);
1302 unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1303 if (StructType *ST = dyn_cast<StructType>(FieldTy))
1304 TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1305 Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1306 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1307 ConstantInt::get(IntPtrTy, TypeSize),
1308 NElems, nullptr,
1309 CI->getName() + ".f" + Twine(FieldNo));
1310 FieldMallocs.push_back(NMI);
1311 new StoreInst(NMI, NGV, CI);
1314 // The tricky aspect of this transformation is handling the case when malloc
1315 // fails. In the original code, malloc failing would set the result pointer
1316 // of malloc to null. In this case, some mallocs could succeed and others
1317 // could fail. As such, we emit code that looks like this:
1318 // F0 = malloc(field0)
1319 // F1 = malloc(field1)
1320 // F2 = malloc(field2)
1321 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1322 // if (F0) { free(F0); F0 = 0; }
1323 // if (F1) { free(F1); F1 = 0; }
1324 // if (F2) { free(F2); F2 = 0; }
1325 // }
1326 // The malloc can also fail if its argument is too large.
1327 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1328 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1329 ConstantZero, "isneg");
1330 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1331 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1332 Constant::getNullValue(FieldMallocs[i]->getType()),
1333 "isnull");
1334 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1337 // Split the basic block at the old malloc.
1338 BasicBlock *OrigBB = CI->getParent();
1339 BasicBlock *ContBB =
1340 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1342 // Create the block to check the first condition. Put all these blocks at the
1343 // end of the function as they are unlikely to be executed.
1344 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1345 "malloc_ret_null",
1346 OrigBB->getParent());
1348 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1349 // branch on RunningOr.
1350 OrigBB->getTerminator()->eraseFromParent();
1351 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1353 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1354 // pointer, because some may be null while others are not.
1355 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1356 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1357 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1358 Constant::getNullValue(GVVal->getType()));
1359 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1360 OrigBB->getParent());
1361 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1362 OrigBB->getParent());
1363 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1364 Cmp, NullPtrBlock);
1366 // Fill in FreeBlock.
1367 CallInst::CreateFree(GVVal, BI);
1368 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1369 FreeBlock);
1370 BranchInst::Create(NextBlock, FreeBlock);
1372 NullPtrBlock = NextBlock;
1375 BranchInst::Create(ContBB, NullPtrBlock);
1377 // CI is no longer needed, remove it.
1378 CI->eraseFromParent();
1380 /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1381 /// update all uses of the load, keep track of what scalarized loads are
1382 /// inserted for a given load.
1383 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1384 InsertedScalarizedValues[GV] = FieldGlobals;
1386 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1388 // Okay, the malloc site is completely handled. All of the uses of GV are now
1389 // loads, and all uses of those loads are simple. Rewrite them to use loads
1390 // of the per-field globals instead.
1391 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1392 Instruction *User = cast<Instruction>(*UI++);
1394 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1395 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1396 continue;
1399 // Must be a store of null.
1400 StoreInst *SI = cast<StoreInst>(User);
1401 assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1402 "Unexpected heap-sra user!");
1404 // Insert a store of null into each global.
1405 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1406 PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1407 Constant *Null = Constant::getNullValue(PT->getElementType());
1408 new StoreInst(Null, FieldGlobals[i], SI);
1410 // Erase the original store.
1411 SI->eraseFromParent();
1414 // While we have PHIs that are interesting to rewrite, do it.
1415 while (!PHIsToRewrite.empty()) {
1416 PHINode *PN = PHIsToRewrite.back().first;
1417 unsigned FieldNo = PHIsToRewrite.back().second;
1418 PHIsToRewrite.pop_back();
1419 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1420 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1422 // Add all the incoming values. This can materialize more phis.
1423 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1424 Value *InVal = PN->getIncomingValue(i);
1425 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1426 PHIsToRewrite);
1427 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1431 // Drop all inter-phi links and any loads that made it this far.
1432 for (DenseMap<Value*, std::vector<Value*> >::iterator
1433 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1434 I != E; ++I) {
1435 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1436 PN->dropAllReferences();
1437 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1438 LI->dropAllReferences();
1441 // Delete all the phis and loads now that inter-references are dead.
1442 for (DenseMap<Value*, std::vector<Value*> >::iterator
1443 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1444 I != E; ++I) {
1445 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1446 PN->eraseFromParent();
1447 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1448 LI->eraseFromParent();
1451 // The old global is now dead, remove it.
1452 GV->eraseFromParent();
1454 ++NumHeapSRA;
1455 return cast<GlobalVariable>(FieldGlobals[0]);
1458 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1459 /// pointer global variable with a single value stored it that is a malloc or
1460 /// cast of malloc.
1461 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1462 Type *AllocTy,
1463 AtomicOrdering Ordering,
1464 Module::global_iterator &GVI,
1465 const DataLayout &DL,
1466 TargetLibraryInfo *TLI) {
1467 // If this is a malloc of an abstract type, don't touch it.
1468 if (!AllocTy->isSized())
1469 return false;
1471 // We can't optimize this global unless all uses of it are *known* to be
1472 // of the malloc value, not of the null initializer value (consider a use
1473 // that compares the global's value against zero to see if the malloc has
1474 // been reached). To do this, we check to see if all uses of the global
1475 // would trap if the global were null: this proves that they must all
1476 // happen after the malloc.
1477 if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1478 return false;
1480 // We can't optimize this if the malloc itself is used in a complex way,
1481 // for example, being stored into multiple globals. This allows the
1482 // malloc to be stored into the specified global, loaded icmp'd, and
1483 // GEP'd. These are all things we could transform to using the global
1484 // for.
1485 SmallPtrSet<const PHINode*, 8> PHIs;
1486 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1487 return false;
1489 // If we have a global that is only initialized with a fixed size malloc,
1490 // transform the program to use global memory instead of malloc'd memory.
1491 // This eliminates dynamic allocation, avoids an indirection accessing the
1492 // data, and exposes the resultant global to further GlobalOpt.
1493 // We cannot optimize the malloc if we cannot determine malloc array size.
1494 Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1495 if (!NElems)
1496 return false;
1498 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1499 // Restrict this transformation to only working on small allocations
1500 // (2048 bytes currently), as we don't want to introduce a 16M global or
1501 // something.
1502 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1503 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI)
1504 ->getIterator();
1505 return true;
1508 // If the allocation is an array of structures, consider transforming this
1509 // into multiple malloc'd arrays, one for each field. This is basically
1510 // SRoA for malloc'd memory.
1512 if (Ordering != NotAtomic)
1513 return false;
1515 // If this is an allocation of a fixed size array of structs, analyze as a
1516 // variable size array. malloc [100 x struct],1 -> malloc struct, 100
1517 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1518 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1519 AllocTy = AT->getElementType();
1521 StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1522 if (!AllocSTy)
1523 return false;
1525 // This the structure has an unreasonable number of fields, leave it
1526 // alone.
1527 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1528 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1530 // If this is a fixed size array, transform the Malloc to be an alloc of
1531 // structs. malloc [100 x struct],1 -> malloc struct, 100
1532 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1533 Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1534 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1535 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1536 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1537 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1538 AllocSize, NumElements,
1539 nullptr, CI->getName());
1540 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1541 CI->replaceAllUsesWith(Cast);
1542 CI->eraseFromParent();
1543 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1544 CI = cast<CallInst>(BCI->getOperand(0));
1545 else
1546 CI = cast<CallInst>(Malloc);
1549 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true),
1550 DL, TLI)
1551 ->getIterator();
1552 return true;
1555 return false;
1558 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1559 // that only one value (besides its initializer) is ever stored to the global.
1560 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1561 AtomicOrdering Ordering,
1562 Module::global_iterator &GVI,
1563 const DataLayout &DL,
1564 TargetLibraryInfo *TLI) {
1565 // Ignore no-op GEPs and bitcasts.
1566 StoredOnceVal = StoredOnceVal->stripPointerCasts();
1568 // If we are dealing with a pointer global that is initialized to null and
1569 // only has one (non-null) value stored into it, then we can optimize any
1570 // users of the loaded value (often calls and loads) that would trap if the
1571 // value was null.
1572 if (GV->getInitializer()->getType()->isPointerTy() &&
1573 GV->getInitializer()->isNullValue()) {
1574 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1575 if (GV->getInitializer()->getType() != SOVC->getType())
1576 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1578 // Optimize away any trapping uses of the loaded value.
1579 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1580 return true;
1581 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1582 Type *MallocType = getMallocAllocatedType(CI, TLI);
1583 if (MallocType &&
1584 TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
1585 DL, TLI))
1586 return true;
1590 return false;
1593 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1594 /// two values ever stored into GV are its initializer and OtherVal. See if we
1595 /// can shrink the global into a boolean and select between the two values
1596 /// whenever it is used. This exposes the values to other scalar optimizations.
1597 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1598 Type *GVElType = GV->getType()->getElementType();
1600 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1601 // an FP value, pointer or vector, don't do this optimization because a select
1602 // between them is very expensive and unlikely to lead to later
1603 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1604 // where v1 and v2 both require constant pool loads, a big loss.
1605 if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1606 GVElType->isFloatingPointTy() ||
1607 GVElType->isPointerTy() || GVElType->isVectorTy())
1608 return false;
1610 // Walk the use list of the global seeing if all the uses are load or store.
1611 // If there is anything else, bail out.
1612 for (User *U : GV->users())
1613 if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1614 return false;
1616 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n");
1618 // Create the new global, initializing it to false.
1619 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1620 false,
1621 GlobalValue::InternalLinkage,
1622 ConstantInt::getFalse(GV->getContext()),
1623 GV->getName()+".b",
1624 GV->getThreadLocalMode(),
1625 GV->getType()->getAddressSpace());
1626 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1628 Constant *InitVal = GV->getInitializer();
1629 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1630 "No reason to shrink to bool!");
1632 // If initialized to zero and storing one into the global, we can use a cast
1633 // instead of a select to synthesize the desired value.
1634 bool IsOneZero = false;
1635 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1636 IsOneZero = InitVal->isNullValue() && CI->isOne();
1638 while (!GV->use_empty()) {
1639 Instruction *UI = cast<Instruction>(GV->user_back());
1640 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1641 // Change the store into a boolean store.
1642 bool StoringOther = SI->getOperand(0) == OtherVal;
1643 // Only do this if we weren't storing a loaded value.
1644 Value *StoreVal;
1645 if (StoringOther || SI->getOperand(0) == InitVal) {
1646 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1647 StoringOther);
1648 } else {
1649 // Otherwise, we are storing a previously loaded copy. To do this,
1650 // change the copy from copying the original value to just copying the
1651 // bool.
1652 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1654 // If we've already replaced the input, StoredVal will be a cast or
1655 // select instruction. If not, it will be a load of the original
1656 // global.
1657 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1658 assert(LI->getOperand(0) == GV && "Not a copy!");
1659 // Insert a new load, to preserve the saved value.
1660 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1661 LI->getOrdering(), LI->getSynchScope(), LI);
1662 } else {
1663 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1664 "This is not a form that we understand!");
1665 StoreVal = StoredVal->getOperand(0);
1666 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1669 new StoreInst(StoreVal, NewGV, false, 0,
1670 SI->getOrdering(), SI->getSynchScope(), SI);
1671 } else {
1672 // Change the load into a load of bool then a select.
1673 LoadInst *LI = cast<LoadInst>(UI);
1674 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1675 LI->getOrdering(), LI->getSynchScope(), LI);
1676 Value *NSI;
1677 if (IsOneZero)
1678 NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1679 else
1680 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1681 NSI->takeName(LI);
1682 LI->replaceAllUsesWith(NSI);
1684 UI->eraseFromParent();
1687 // Retain the name of the old global variable. People who are debugging their
1688 // programs may expect these variables to be named the same.
1689 NewGV->takeName(GV);
1690 GV->eraseFromParent();
1691 return true;
1695 /// ProcessGlobal - Analyze the specified global variable and optimize it if
1696 /// possible. If we make a change, return true.
1697 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1698 Module::global_iterator &GVI) {
1699 // Do more involved optimizations if the global is internal.
1700 GV->removeDeadConstantUsers();
1702 if (GV->use_empty()) {
1703 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV << "\n");
1704 GV->eraseFromParent();
1705 ++NumDeleted;
1706 return true;
1709 if (!GV->hasLocalLinkage())
1710 return false;
1712 GlobalStatus GS;
1714 if (GlobalStatus::analyzeGlobal(GV, GS))
1715 return false;
1717 if (!GS.IsCompared && !GV->hasUnnamedAddr()) {
1718 GV->setUnnamedAddr(true);
1719 NumUnnamed++;
1722 if (GV->isConstant() || !GV->hasInitializer())
1723 return false;
1725 return ProcessInternalGlobal(GV, GVI, GS);
1728 /// ProcessInternalGlobal - Analyze the specified global variable and optimize
1729 /// it if possible. If we make a change, return true.
1730 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1731 Module::global_iterator &GVI,
1732 const GlobalStatus &GS) {
1733 auto &DL = GV->getParent()->getDataLayout();
1734 // If this is a first class global and has only one accessing function
1735 // and this function is main (which we know is not recursive), we replace
1736 // the global with a local alloca in this function.
1738 // NOTE: It doesn't make sense to promote non-single-value types since we
1739 // are just replacing static memory to stack memory.
1741 // If the global is in different address space, don't bring it to stack.
1742 if (!GS.HasMultipleAccessingFunctions &&
1743 GS.AccessingFunction && !GS.HasNonInstructionUser &&
1744 GV->getType()->getElementType()->isSingleValueType() &&
1745 GS.AccessingFunction->getName() == "main" &&
1746 GS.AccessingFunction->hasExternalLinkage() &&
1747 GV->getType()->getAddressSpace() == 0) {
1748 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1749 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1750 ->getEntryBlock().begin());
1751 Type *ElemTy = GV->getType()->getElementType();
1752 // FIXME: Pass Global's alignment when globals have alignment
1753 AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr,
1754 GV->getName(), &FirstI);
1755 if (!isa<UndefValue>(GV->getInitializer()))
1756 new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1758 GV->replaceAllUsesWith(Alloca);
1759 GV->eraseFromParent();
1760 ++NumLocalized;
1761 return true;
1764 // If the global is never loaded (but may be stored to), it is dead.
1765 // Delete it now.
1766 if (!GS.IsLoaded) {
1767 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1769 bool Changed;
1770 if (isLeakCheckerRoot(GV)) {
1771 // Delete any constant stores to the global.
1772 Changed = CleanupPointerRootUsers(GV, TLI);
1773 } else {
1774 // Delete any stores we can find to the global. We may not be able to
1775 // make it completely dead though.
1776 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1779 // If the global is dead now, delete it.
1780 if (GV->use_empty()) {
1781 GV->eraseFromParent();
1782 ++NumDeleted;
1783 Changed = true;
1785 return Changed;
1787 } else if (GS.StoredType <= GlobalStatus::InitializerStored) {
1788 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1789 GV->setConstant(true);
1791 // Clean up any obviously simplifiable users now.
1792 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1794 // If the global is dead now, just nuke it.
1795 if (GV->use_empty()) {
1796 DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
1797 << "all users and delete global!\n");
1798 GV->eraseFromParent();
1799 ++NumDeleted;
1802 ++NumMarked;
1803 return true;
1804 } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1805 const DataLayout &DL = GV->getParent()->getDataLayout();
1806 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, DL)) {
1807 GVI = FirstNewGV->getIterator(); // Don't skip the newly produced globals!
1808 return true;
1810 } else if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1811 // If the initial value for the global was an undef value, and if only
1812 // one other value was stored into it, we can just change the
1813 // initializer to be the stored value, then delete all stores to the
1814 // global. This allows us to mark it constant.
1815 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1816 if (isa<UndefValue>(GV->getInitializer())) {
1817 // Change the initial value here.
1818 GV->setInitializer(SOVConstant);
1820 // Clean up any obviously simplifiable users now.
1821 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1823 if (GV->use_empty()) {
1824 DEBUG(dbgs() << " *** Substituting initializer allowed us to "
1825 << "simplify all users and delete global!\n");
1826 GV->eraseFromParent();
1827 ++NumDeleted;
1828 } else {
1829 GVI = GV->getIterator();
1831 ++NumSubstitute;
1832 return true;
1835 // Try to optimize globals based on the knowledge that only one value
1836 // (besides its initializer) is ever stored to the global.
1837 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
1838 DL, TLI))
1839 return true;
1841 // Otherwise, if the global was not a boolean, we can shrink it to be a
1842 // boolean.
1843 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1844 if (GS.Ordering == NotAtomic) {
1845 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1846 ++NumShrunkToBool;
1847 return true;
1853 return false;
1856 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1857 /// function, changing them to FastCC.
1858 static void ChangeCalleesToFastCall(Function *F) {
1859 for (User *U : F->users()) {
1860 if (isa<BlockAddress>(U))
1861 continue;
1862 CallSite CS(cast<Instruction>(U));
1863 CS.setCallingConv(CallingConv::Fast);
1867 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
1868 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1869 unsigned Index = Attrs.getSlotIndex(i);
1870 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
1871 continue;
1873 // There can be only one.
1874 return Attrs.removeAttribute(C, Index, Attribute::Nest);
1877 return Attrs;
1880 static void RemoveNestAttribute(Function *F) {
1881 F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
1882 for (User *U : F->users()) {
1883 if (isa<BlockAddress>(U))
1884 continue;
1885 CallSite CS(cast<Instruction>(U));
1886 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
1890 /// Return true if this is a calling convention that we'd like to change. The
1891 /// idea here is that we don't want to mess with the convention if the user
1892 /// explicitly requested something with performance implications like coldcc,
1893 /// GHC, or anyregcc.
1894 static bool isProfitableToMakeFastCC(Function *F) {
1895 CallingConv::ID CC = F->getCallingConv();
1896 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1897 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
1900 bool GlobalOpt::OptimizeFunctions(Module &M) {
1901 bool Changed = false;
1902 // Optimize functions.
1903 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1904 Function *F = &*FI++;
1905 // Functions without names cannot be referenced outside this module.
1906 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
1907 F->setLinkage(GlobalValue::InternalLinkage);
1909 const Comdat *C = F->getComdat();
1910 bool inComdat = C && NotDiscardableComdats.count(C);
1911 F->removeDeadConstantUsers();
1912 if ((!inComdat || F->hasLocalLinkage()) && F->isDefTriviallyDead()) {
1913 F->eraseFromParent();
1914 Changed = true;
1915 ++NumFnDeleted;
1916 } else if (F->hasLocalLinkage()) {
1917 if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
1918 !F->hasAddressTaken()) {
1919 // If this function has a calling convention worth changing, is not a
1920 // varargs function, and is only called directly, promote it to use the
1921 // Fast calling convention.
1922 F->setCallingConv(CallingConv::Fast);
1923 ChangeCalleesToFastCall(F);
1924 ++NumFastCallFns;
1925 Changed = true;
1928 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1929 !F->hasAddressTaken()) {
1930 // The function is not used by a trampoline intrinsic, so it is safe
1931 // to remove the 'nest' attribute.
1932 RemoveNestAttribute(F);
1933 ++NumNestRemoved;
1934 Changed = true;
1938 return Changed;
1941 bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1942 bool Changed = false;
1944 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1945 GVI != E; ) {
1946 GlobalVariable *GV = &*GVI++;
1947 // Global variables without names cannot be referenced outside this module.
1948 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
1949 GV->setLinkage(GlobalValue::InternalLinkage);
1950 // Simplify the initializer.
1951 if (GV->hasInitializer())
1952 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1953 auto &DL = M.getDataLayout();
1954 Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
1955 if (New && New != CE)
1956 GV->setInitializer(New);
1959 if (GV->isDiscardableIfUnused()) {
1960 if (const Comdat *C = GV->getComdat())
1961 if (NotDiscardableComdats.count(C) && !GV->hasLocalLinkage())
1962 continue;
1963 Changed |= ProcessGlobal(GV, GVI);
1966 return Changed;
1969 static inline bool
1970 isSimpleEnoughValueToCommit(Constant *C,
1971 SmallPtrSetImpl<Constant *> &SimpleConstants,
1972 const DataLayout &DL);
1974 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be
1975 /// handled by the code generator. We don't want to generate something like:
1976 /// void *X = &X/42;
1977 /// because the code generator doesn't have a relocation that can handle that.
1979 /// This function should be called if C was not found (but just got inserted)
1980 /// in SimpleConstants to avoid having to rescan the same constants all the
1981 /// time.
1982 static bool
1983 isSimpleEnoughValueToCommitHelper(Constant *C,
1984 SmallPtrSetImpl<Constant *> &SimpleConstants,
1985 const DataLayout &DL) {
1986 // Simple global addresses are supported, do not allow dllimport or
1987 // thread-local globals.
1988 if (auto *GV = dyn_cast<GlobalValue>(C))
1989 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
1991 // Simple integer, undef, constant aggregate zero, etc are all supported.
1992 if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
1993 return true;
1995 // Aggregate values are safe if all their elements are.
1996 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1997 isa<ConstantVector>(C)) {
1998 for (Value *Op : C->operands())
1999 if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
2000 return false;
2001 return true;
2004 // We don't know exactly what relocations are allowed in constant expressions,
2005 // so we allow &global+constantoffset, which is safe and uniformly supported
2006 // across targets.
2007 ConstantExpr *CE = cast<ConstantExpr>(C);
2008 switch (CE->getOpcode()) {
2009 case Instruction::BitCast:
2010 // Bitcast is fine if the casted value is fine.
2011 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2013 case Instruction::IntToPtr:
2014 case Instruction::PtrToInt:
2015 // int <=> ptr is fine if the int type is the same size as the
2016 // pointer type.
2017 if (DL.getTypeSizeInBits(CE->getType()) !=
2018 DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
2019 return false;
2020 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2022 // GEP is fine if it is simple + constant offset.
2023 case Instruction::GetElementPtr:
2024 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2025 if (!isa<ConstantInt>(CE->getOperand(i)))
2026 return false;
2027 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2029 case Instruction::Add:
2030 // We allow simple+cst.
2031 if (!isa<ConstantInt>(CE->getOperand(1)))
2032 return false;
2033 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2035 return false;
2038 static inline bool
2039 isSimpleEnoughValueToCommit(Constant *C,
2040 SmallPtrSetImpl<Constant *> &SimpleConstants,
2041 const DataLayout &DL) {
2042 // If we already checked this constant, we win.
2043 if (!SimpleConstants.insert(C).second)
2044 return true;
2045 // Check the constant.
2046 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
2050 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2051 /// enough for us to understand. In particular, if it is a cast to anything
2052 /// other than from one pointer type to another pointer type, we punt.
2053 /// We basically just support direct accesses to globals and GEP's of
2054 /// globals. This should be kept up to date with CommitValueTo.
2055 static bool isSimpleEnoughPointerToCommit(Constant *C) {
2056 // Conservatively, avoid aggregate types. This is because we don't
2057 // want to worry about them partially overlapping other stores.
2058 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2059 return false;
2061 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2062 // Do not allow weak/*_odr/linkonce linkage or external globals.
2063 return GV->hasUniqueInitializer();
2065 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2066 // Handle a constantexpr gep.
2067 if (CE->getOpcode() == Instruction::GetElementPtr &&
2068 isa<GlobalVariable>(CE->getOperand(0)) &&
2069 cast<GEPOperator>(CE)->isInBounds()) {
2070 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2071 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2072 // external globals.
2073 if (!GV->hasUniqueInitializer())
2074 return false;
2076 // The first index must be zero.
2077 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
2078 if (!CI || !CI->isZero()) return false;
2080 // The remaining indices must be compile-time known integers within the
2081 // notional bounds of the corresponding static array types.
2082 if (!CE->isGEPWithNoNotionalOverIndexing())
2083 return false;
2085 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2087 // A constantexpr bitcast from a pointer to another pointer is a no-op,
2088 // and we know how to evaluate it by moving the bitcast from the pointer
2089 // operand to the value operand.
2090 } else if (CE->getOpcode() == Instruction::BitCast &&
2091 isa<GlobalVariable>(CE->getOperand(0))) {
2092 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2093 // external globals.
2094 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2098 return false;
2101 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2102 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it.
2103 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2104 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2105 ConstantExpr *Addr, unsigned OpNo) {
2106 // Base case of the recursion.
2107 if (OpNo == Addr->getNumOperands()) {
2108 assert(Val->getType() == Init->getType() && "Type mismatch!");
2109 return Val;
2112 SmallVector<Constant*, 32> Elts;
2113 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2114 // Break up the constant into its elements.
2115 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2116 Elts.push_back(Init->getAggregateElement(i));
2118 // Replace the element that we are supposed to.
2119 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2120 unsigned Idx = CU->getZExtValue();
2121 assert(Idx < STy->getNumElements() && "Struct index out of range!");
2122 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2124 // Return the modified struct.
2125 return ConstantStruct::get(STy, Elts);
2128 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2129 SequentialType *InitTy = cast<SequentialType>(Init->getType());
2131 uint64_t NumElts;
2132 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2133 NumElts = ATy->getNumElements();
2134 else
2135 NumElts = InitTy->getVectorNumElements();
2137 // Break up the array into elements.
2138 for (uint64_t i = 0, e = NumElts; i != e; ++i)
2139 Elts.push_back(Init->getAggregateElement(i));
2141 assert(CI->getZExtValue() < NumElts);
2142 Elts[CI->getZExtValue()] =
2143 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2145 if (Init->getType()->isArrayTy())
2146 return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2147 return ConstantVector::get(Elts);
2150 /// CommitValueTo - We have decided that Addr (which satisfies the predicate
2151 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
2152 static void CommitValueTo(Constant *Val, Constant *Addr) {
2153 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2154 assert(GV->hasInitializer());
2155 GV->setInitializer(Val);
2156 return;
2159 ConstantExpr *CE = cast<ConstantExpr>(Addr);
2160 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2161 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2164 namespace {
2166 /// Evaluator - This class evaluates LLVM IR, producing the Constant
2167 /// representing each SSA instruction. Changes to global variables are stored
2168 /// in a mapping that can be iterated over after the evaluation is complete.
2169 /// Once an evaluation call fails, the evaluation object should not be reused.
2170 class Evaluator {
2171 public:
2172 Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI)
2173 : DL(DL), TLI(TLI) {
2174 ValueStack.emplace_back();
2177 ~Evaluator() {
2178 for (auto &Tmp : AllocaTmps)
2179 // If there are still users of the alloca, the program is doing something
2180 // silly, e.g. storing the address of the alloca somewhere and using it
2181 // later. Since this is undefined, we'll just make it be null.
2182 if (!Tmp->use_empty())
2183 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2186 /// EvaluateFunction - Evaluate a call to function F, returning true if
2187 /// successful, false if we can't evaluate it. ActualArgs contains the formal
2188 /// arguments for the function.
2189 bool EvaluateFunction(Function *F, Constant *&RetVal,
2190 const SmallVectorImpl<Constant*> &ActualArgs);
2192 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2193 /// successful, false if we can't evaluate it. NewBB returns the next BB that
2194 /// control flows into, or null upon return.
2195 bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
2197 Constant *getVal(Value *V) {
2198 if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2199 Constant *R = ValueStack.back().lookup(V);
2200 assert(R && "Reference to an uncomputed value!");
2201 return R;
2204 void setVal(Value *V, Constant *C) {
2205 ValueStack.back()[V] = C;
2208 const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
2209 return MutatedMemory;
2212 const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
2213 return Invariants;
2216 private:
2217 Constant *ComputeLoadResult(Constant *P);
2219 /// ValueStack - As we compute SSA register values, we store their contents
2220 /// here. The back of the deque contains the current function and the stack
2221 /// contains the values in the calling frames.
2222 std::deque<DenseMap<Value*, Constant*>> ValueStack;
2224 /// CallStack - This is used to detect recursion. In pathological situations
2225 /// we could hit exponential behavior, but at least there is nothing
2226 /// unbounded.
2227 SmallVector<Function*, 4> CallStack;
2229 /// MutatedMemory - For each store we execute, we update this map. Loads
2230 /// check this to get the most up-to-date value. If evaluation is successful,
2231 /// this state is committed to the process.
2232 DenseMap<Constant*, Constant*> MutatedMemory;
2234 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2235 /// to represent its body. This vector is needed so we can delete the
2236 /// temporary globals when we are done.
2237 SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
2239 /// Invariants - These global variables have been marked invariant by the
2240 /// static constructor.
2241 SmallPtrSet<GlobalVariable*, 8> Invariants;
2243 /// SimpleConstants - These are constants we have checked and know to be
2244 /// simple enough to live in a static initializer of a global.
2245 SmallPtrSet<Constant*, 8> SimpleConstants;
2247 const DataLayout &DL;
2248 const TargetLibraryInfo *TLI;
2251 } // anonymous namespace
2253 /// ComputeLoadResult - Return the value that would be computed by a load from
2254 /// P after the stores reflected by 'memory' have been performed. If we can't
2255 /// decide, return null.
2256 Constant *Evaluator::ComputeLoadResult(Constant *P) {
2257 // If this memory location has been recently stored, use the stored value: it
2258 // is the most up-to-date.
2259 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
2260 if (I != MutatedMemory.end()) return I->second;
2262 // Access it.
2263 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2264 if (GV->hasDefinitiveInitializer())
2265 return GV->getInitializer();
2266 return nullptr;
2269 // Handle a constantexpr getelementptr.
2270 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2271 if (CE->getOpcode() == Instruction::GetElementPtr &&
2272 isa<GlobalVariable>(CE->getOperand(0))) {
2273 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2274 if (GV->hasDefinitiveInitializer())
2275 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2278 return nullptr; // don't know how to evaluate.
2281 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2282 /// successful, false if we can't evaluate it. NewBB returns the next BB that
2283 /// control flows into, or null upon return.
2284 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
2285 BasicBlock *&NextBB) {
2286 // This is the main evaluation loop.
2287 while (1) {
2288 Constant *InstResult = nullptr;
2290 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
2292 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2293 if (!SI->isSimple()) {
2294 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
2295 return false; // no volatile/atomic accesses.
2297 Constant *Ptr = getVal(SI->getOperand(1));
2298 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2299 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
2300 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2301 DEBUG(dbgs() << "; To: " << *Ptr << "\n");
2303 if (!isSimpleEnoughPointerToCommit(Ptr)) {
2304 // If this is too complex for us to commit, reject it.
2305 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
2306 return false;
2309 Constant *Val = getVal(SI->getOperand(0));
2311 // If this might be too difficult for the backend to handle (e.g. the addr
2312 // of one global variable divided by another) then we can't commit it.
2313 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
2314 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
2315 << "\n");
2316 return false;
2319 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2320 if (CE->getOpcode() == Instruction::BitCast) {
2321 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
2322 // If we're evaluating a store through a bitcast, then we need
2323 // to pull the bitcast off the pointer type and push it onto the
2324 // stored value.
2325 Ptr = CE->getOperand(0);
2327 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
2329 // In order to push the bitcast onto the stored value, a bitcast
2330 // from NewTy to Val's type must be legal. If it's not, we can try
2331 // introspecting NewTy to find a legal conversion.
2332 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2333 // If NewTy is a struct, we can convert the pointer to the struct
2334 // into a pointer to its first member.
2335 // FIXME: This could be extended to support arrays as well.
2336 if (StructType *STy = dyn_cast<StructType>(NewTy)) {
2337 NewTy = STy->getTypeAtIndex(0U);
2339 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
2340 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2341 Constant * const IdxList[] = {IdxZero, IdxZero};
2343 Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
2344 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2345 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2347 // If we can't improve the situation by introspecting NewTy,
2348 // we have to give up.
2349 } else {
2350 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
2351 "evaluate.\n");
2352 return false;
2356 // If we found compatible types, go ahead and push the bitcast
2357 // onto the stored value.
2358 Val = ConstantExpr::getBitCast(Val, NewTy);
2360 DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
2364 MutatedMemory[Ptr] = Val;
2365 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2366 InstResult = ConstantExpr::get(BO->getOpcode(),
2367 getVal(BO->getOperand(0)),
2368 getVal(BO->getOperand(1)));
2369 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
2370 << "\n");
2371 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2372 InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2373 getVal(CI->getOperand(0)),
2374 getVal(CI->getOperand(1)));
2375 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
2376 << "\n");
2377 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2378 InstResult = ConstantExpr::getCast(CI->getOpcode(),
2379 getVal(CI->getOperand(0)),
2380 CI->getType());
2381 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
2382 << "\n");
2383 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2384 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
2385 getVal(SI->getOperand(1)),
2386 getVal(SI->getOperand(2)));
2387 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
2388 << "\n");
2389 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
2390 InstResult = ConstantExpr::getExtractValue(
2391 getVal(EVI->getAggregateOperand()), EVI->getIndices());
2392 DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
2393 << "\n");
2394 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
2395 InstResult = ConstantExpr::getInsertValue(
2396 getVal(IVI->getAggregateOperand()),
2397 getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
2398 DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
2399 << "\n");
2400 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2401 Constant *P = getVal(GEP->getOperand(0));
2402 SmallVector<Constant*, 8> GEPOps;
2403 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2404 i != e; ++i)
2405 GEPOps.push_back(getVal(*i));
2406 InstResult =
2407 ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
2408 cast<GEPOperator>(GEP)->isInBounds());
2409 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
2410 << "\n");
2411 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2413 if (!LI->isSimple()) {
2414 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
2415 return false; // no volatile/atomic accesses.
2418 Constant *Ptr = getVal(LI->getOperand(0));
2419 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2420 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2421 DEBUG(dbgs() << "Found a constant pointer expression, constant "
2422 "folding: " << *Ptr << "\n");
2424 InstResult = ComputeLoadResult(Ptr);
2425 if (!InstResult) {
2426 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
2427 "\n");
2428 return false; // Could not evaluate load.
2431 DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
2432 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2433 if (AI->isArrayAllocation()) {
2434 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
2435 return false; // Cannot handle array allocs.
2437 Type *Ty = AI->getType()->getElementType();
2438 AllocaTmps.push_back(
2439 make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
2440 UndefValue::get(Ty), AI->getName()));
2441 InstResult = AllocaTmps.back().get();
2442 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
2443 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
2444 CallSite CS(&*CurInst);
2446 // Debug info can safely be ignored here.
2447 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
2448 DEBUG(dbgs() << "Ignoring debug info.\n");
2449 ++CurInst;
2450 continue;
2453 // Cannot handle inline asm.
2454 if (isa<InlineAsm>(CS.getCalledValue())) {
2455 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
2456 return false;
2459 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
2460 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
2461 if (MSI->isVolatile()) {
2462 DEBUG(dbgs() << "Can not optimize a volatile memset " <<
2463 "intrinsic.\n");
2464 return false;
2466 Constant *Ptr = getVal(MSI->getDest());
2467 Constant *Val = getVal(MSI->getValue());
2468 Constant *DestVal = ComputeLoadResult(getVal(Ptr));
2469 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2470 // This memset is a no-op.
2471 DEBUG(dbgs() << "Ignoring no-op memset.\n");
2472 ++CurInst;
2473 continue;
2477 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2478 II->getIntrinsicID() == Intrinsic::lifetime_end) {
2479 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
2480 ++CurInst;
2481 continue;
2484 if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2485 // We don't insert an entry into Values, as it doesn't have a
2486 // meaningful return value.
2487 if (!II->use_empty()) {
2488 DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
2489 return false;
2491 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
2492 Value *PtrArg = getVal(II->getArgOperand(1));
2493 Value *Ptr = PtrArg->stripPointerCasts();
2494 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
2495 Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
2496 if (!Size->isAllOnesValue() &&
2497 Size->getValue().getLimitedValue() >=
2498 DL.getTypeStoreSize(ElemTy)) {
2499 Invariants.insert(GV);
2500 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
2501 << "\n");
2502 } else {
2503 DEBUG(dbgs() << "Found a global var, but can not treat it as an "
2504 "invariant.\n");
2507 // Continue even if we do nothing.
2508 ++CurInst;
2509 continue;
2510 } else if (II->getIntrinsicID() == Intrinsic::assume) {
2511 DEBUG(dbgs() << "Skipping assume intrinsic.\n");
2512 ++CurInst;
2513 continue;
2516 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
2517 return false;
2520 // Resolve function pointers.
2521 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
2522 if (!Callee || Callee->mayBeOverridden()) {
2523 DEBUG(dbgs() << "Can not resolve function pointer.\n");
2524 return false; // Cannot resolve.
2527 SmallVector<Constant*, 8> Formals;
2528 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
2529 Formals.push_back(getVal(*i));
2531 if (Callee->isDeclaration()) {
2532 // If this is a function we can constant fold, do it.
2533 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
2534 InstResult = C;
2535 DEBUG(dbgs() << "Constant folded function call. Result: " <<
2536 *InstResult << "\n");
2537 } else {
2538 DEBUG(dbgs() << "Can not constant fold function call.\n");
2539 return false;
2541 } else {
2542 if (Callee->getFunctionType()->isVarArg()) {
2543 DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
2544 return false;
2547 Constant *RetVal = nullptr;
2548 // Execute the call, if successful, use the return value.
2549 ValueStack.emplace_back();
2550 if (!EvaluateFunction(Callee, RetVal, Formals)) {
2551 DEBUG(dbgs() << "Failed to evaluate function.\n");
2552 return false;
2554 ValueStack.pop_back();
2555 InstResult = RetVal;
2557 if (InstResult) {
2558 DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
2559 InstResult << "\n\n");
2560 } else {
2561 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
2564 } else if (isa<TerminatorInst>(CurInst)) {
2565 DEBUG(dbgs() << "Found a terminator instruction.\n");
2567 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2568 if (BI->isUnconditional()) {
2569 NextBB = BI->getSuccessor(0);
2570 } else {
2571 ConstantInt *Cond =
2572 dyn_cast<ConstantInt>(getVal(BI->getCondition()));
2573 if (!Cond) return false; // Cannot determine.
2575 NextBB = BI->getSuccessor(!Cond->getZExtValue());
2577 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2578 ConstantInt *Val =
2579 dyn_cast<ConstantInt>(getVal(SI->getCondition()));
2580 if (!Val) return false; // Cannot determine.
2581 NextBB = SI->findCaseValue(Val).getCaseSuccessor();
2582 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2583 Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
2584 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2585 NextBB = BA->getBasicBlock();
2586 else
2587 return false; // Cannot determine.
2588 } else if (isa<ReturnInst>(CurInst)) {
2589 NextBB = nullptr;
2590 } else {
2591 // invoke, unwind, resume, unreachable.
2592 DEBUG(dbgs() << "Can not handle terminator.");
2593 return false; // Cannot handle this terminator.
2596 // We succeeded at evaluating this block!
2597 DEBUG(dbgs() << "Successfully evaluated block.\n");
2598 return true;
2599 } else {
2600 // Did not know how to evaluate this!
2601 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
2602 "\n");
2603 return false;
2606 if (!CurInst->use_empty()) {
2607 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2608 InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
2610 setVal(&*CurInst, InstResult);
2613 // If we just processed an invoke, we finished evaluating the block.
2614 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
2615 NextBB = II->getNormalDest();
2616 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
2617 return true;
2620 // Advance program counter.
2621 ++CurInst;
2625 /// EvaluateFunction - Evaluate a call to function F, returning true if
2626 /// successful, false if we can't evaluate it. ActualArgs contains the formal
2627 /// arguments for the function.
2628 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
2629 const SmallVectorImpl<Constant*> &ActualArgs) {
2630 // Check to see if this function is already executing (recursion). If so,
2631 // bail out. TODO: we might want to accept limited recursion.
2632 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2633 return false;
2635 CallStack.push_back(F);
2637 // Initialize arguments to the incoming values specified.
2638 unsigned ArgNo = 0;
2639 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2640 ++AI, ++ArgNo)
2641 setVal(&*AI, ActualArgs[ArgNo]);
2643 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
2644 // we can only evaluate any one basic block at most once. This set keeps
2645 // track of what we have executed so we can detect recursive cases etc.
2646 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2648 // CurBB - The current basic block we're evaluating.
2649 BasicBlock *CurBB = &F->front();
2651 BasicBlock::iterator CurInst = CurBB->begin();
2653 while (1) {
2654 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
2655 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
2657 if (!EvaluateBlock(CurInst, NextBB))
2658 return false;
2660 if (!NextBB) {
2661 // Successfully running until there's no next block means that we found
2662 // the return. Fill it the return value and pop the call stack.
2663 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
2664 if (RI->getNumOperands())
2665 RetVal = getVal(RI->getOperand(0));
2666 CallStack.pop_back();
2667 return true;
2670 // Okay, we succeeded in evaluating this control flow. See if we have
2671 // executed the new block before. If so, we have a looping function,
2672 // which we cannot evaluate in reasonable time.
2673 if (!ExecutedBlocks.insert(NextBB).second)
2674 return false; // looped!
2676 // Okay, we have never been in this block before. Check to see if there
2677 // are any PHI nodes. If so, evaluate them with information about where
2678 // we came from.
2679 PHINode *PN = nullptr;
2680 for (CurInst = NextBB->begin();
2681 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2682 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
2684 // Advance to the next block.
2685 CurBB = NextBB;
2689 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2690 /// we can. Return true if we can, false otherwise.
2691 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2692 const TargetLibraryInfo *TLI) {
2693 // Call the function.
2694 Evaluator Eval(DL, TLI);
2695 Constant *RetValDummy;
2696 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2697 SmallVector<Constant*, 0>());
2699 if (EvalSuccess) {
2700 ++NumCtorsEvaluated;
2702 // We succeeded at evaluation: commit the result.
2703 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2704 << F->getName() << "' to " << Eval.getMutatedMemory().size()
2705 << " stores.\n");
2706 for (DenseMap<Constant*, Constant*>::const_iterator I =
2707 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
2708 I != E; ++I)
2709 CommitValueTo(I->second, I->first);
2710 for (GlobalVariable *GV : Eval.getInvariants())
2711 GV->setConstant(true);
2714 return EvalSuccess;
2717 static int compareNames(Constant *const *A, Constant *const *B) {
2718 return (*A)->stripPointerCasts()->getName().compare(
2719 (*B)->stripPointerCasts()->getName());
2722 static void setUsedInitializer(GlobalVariable &V,
2723 const SmallPtrSet<GlobalValue *, 8> &Init) {
2724 if (Init.empty()) {
2725 V.eraseFromParent();
2726 return;
2729 // Type of pointer to the array of pointers.
2730 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2732 SmallVector<llvm::Constant *, 8> UsedArray;
2733 for (GlobalValue *GV : Init) {
2734 Constant *Cast
2735 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2736 UsedArray.push_back(Cast);
2738 // Sort to get deterministic order.
2739 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2740 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2742 Module *M = V.getParent();
2743 V.removeFromParent();
2744 GlobalVariable *NV =
2745 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
2746 llvm::ConstantArray::get(ATy, UsedArray), "");
2747 NV->takeName(&V);
2748 NV->setSection("llvm.metadata");
2749 delete &V;
2752 namespace {
2753 /// \brief An easy to access representation of llvm.used and llvm.compiler.used.
2754 class LLVMUsed {
2755 SmallPtrSet<GlobalValue *, 8> Used;
2756 SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2757 GlobalVariable *UsedV;
2758 GlobalVariable *CompilerUsedV;
2760 public:
2761 LLVMUsed(Module &M) {
2762 UsedV = collectUsedGlobalVariables(M, Used, false);
2763 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2765 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
2766 typedef iterator_range<iterator> used_iterator_range;
2767 iterator usedBegin() { return Used.begin(); }
2768 iterator usedEnd() { return Used.end(); }
2769 used_iterator_range used() {
2770 return used_iterator_range(usedBegin(), usedEnd());
2772 iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2773 iterator compilerUsedEnd() { return CompilerUsed.end(); }
2774 used_iterator_range compilerUsed() {
2775 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2777 bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2778 bool compilerUsedCount(GlobalValue *GV) const {
2779 return CompilerUsed.count(GV);
2781 bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2782 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2783 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2784 bool compilerUsedInsert(GlobalValue *GV) {
2785 return CompilerUsed.insert(GV).second;
2788 void syncVariablesAndSets() {
2789 if (UsedV)
2790 setUsedInitializer(*UsedV, Used);
2791 if (CompilerUsedV)
2792 setUsedInitializer(*CompilerUsedV, CompilerUsed);
2797 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2798 if (GA.use_empty()) // No use at all.
2799 return false;
2801 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2802 "We should have removed the duplicated "
2803 "element from llvm.compiler.used");
2804 if (!GA.hasOneUse())
2805 // Strictly more than one use. So at least one is not in llvm.used and
2806 // llvm.compiler.used.
2807 return true;
2809 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2810 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2813 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2814 const LLVMUsed &U) {
2815 unsigned N = 2;
2816 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2817 "We should have removed the duplicated "
2818 "element from llvm.compiler.used");
2819 if (U.usedCount(&V) || U.compilerUsedCount(&V))
2820 ++N;
2821 return V.hasNUsesOrMore(N);
2824 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2825 if (!GA.hasLocalLinkage())
2826 return true;
2828 return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2831 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2832 bool &RenameTarget) {
2833 RenameTarget = false;
2834 bool Ret = false;
2835 if (hasUseOtherThanLLVMUsed(GA, U))
2836 Ret = true;
2838 // If the alias is externally visible, we may still be able to simplify it.
2839 if (!mayHaveOtherReferences(GA, U))
2840 return Ret;
2842 // If the aliasee has internal linkage, give it the name and linkage
2843 // of the alias, and delete the alias. This turns:
2844 // define internal ... @f(...)
2845 // @a = alias ... @f
2846 // into:
2847 // define ... @a(...)
2848 Constant *Aliasee = GA.getAliasee();
2849 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2850 if (!Target->hasLocalLinkage())
2851 return Ret;
2853 // Do not perform the transform if multiple aliases potentially target the
2854 // aliasee. This check also ensures that it is safe to replace the section
2855 // and other attributes of the aliasee with those of the alias.
2856 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2857 return Ret;
2859 RenameTarget = true;
2860 return true;
2863 bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2864 bool Changed = false;
2865 LLVMUsed Used(M);
2867 for (GlobalValue *GV : Used.used())
2868 Used.compilerUsedErase(GV);
2870 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2871 I != E;) {
2872 Module::alias_iterator J = I++;
2873 // Aliases without names cannot be referenced outside this module.
2874 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2875 J->setLinkage(GlobalValue::InternalLinkage);
2876 // If the aliasee may change at link time, nothing can be done - bail out.
2877 if (J->mayBeOverridden())
2878 continue;
2880 Constant *Aliasee = J->getAliasee();
2881 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2882 // We can't trivially replace the alias with the aliasee if the aliasee is
2883 // non-trivial in some way.
2884 // TODO: Try to handle non-zero GEPs of local aliasees.
2885 if (!Target)
2886 continue;
2887 Target->removeDeadConstantUsers();
2889 // Make all users of the alias use the aliasee instead.
2890 bool RenameTarget;
2891 if (!hasUsesToReplace(*J, Used, RenameTarget))
2892 continue;
2894 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2895 ++NumAliasesResolved;
2896 Changed = true;
2898 if (RenameTarget) {
2899 // Give the aliasee the name, linkage and other attributes of the alias.
2900 Target->takeName(&*J);
2901 Target->setLinkage(J->getLinkage());
2902 Target->setVisibility(J->getVisibility());
2903 Target->setDLLStorageClass(J->getDLLStorageClass());
2905 if (Used.usedErase(&*J))
2906 Used.usedInsert(Target);
2908 if (Used.compilerUsedErase(&*J))
2909 Used.compilerUsedInsert(Target);
2910 } else if (mayHaveOtherReferences(*J, Used))
2911 continue;
2913 // Delete the alias.
2914 M.getAliasList().erase(J);
2915 ++NumAliasesRemoved;
2916 Changed = true;
2919 Used.syncVariablesAndSets();
2921 return Changed;
2924 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2925 if (!TLI->has(LibFunc::cxa_atexit))
2926 return nullptr;
2928 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
2930 if (!Fn)
2931 return nullptr;
2933 FunctionType *FTy = Fn->getFunctionType();
2935 // Checking that the function has the right return type, the right number of
2936 // parameters and that they all have pointer types should be enough.
2937 if (!FTy->getReturnType()->isIntegerTy() ||
2938 FTy->getNumParams() != 3 ||
2939 !FTy->getParamType(0)->isPointerTy() ||
2940 !FTy->getParamType(1)->isPointerTy() ||
2941 !FTy->getParamType(2)->isPointerTy())
2942 return nullptr;
2944 return Fn;
2947 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++
2948 /// destructor and can therefore be eliminated.
2949 /// Note that we assume that other optimization passes have already simplified
2950 /// the code so we only look for a function with a single basic block, where
2951 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2952 /// other side-effect free instructions.
2953 static bool cxxDtorIsEmpty(const Function &Fn,
2954 SmallPtrSet<const Function *, 8> &CalledFunctions) {
2955 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2956 // nounwind, but that doesn't seem worth doing.
2957 if (Fn.isDeclaration())
2958 return false;
2960 if (++Fn.begin() != Fn.end())
2961 return false;
2963 const BasicBlock &EntryBlock = Fn.getEntryBlock();
2964 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2965 I != E; ++I) {
2966 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2967 // Ignore debug intrinsics.
2968 if (isa<DbgInfoIntrinsic>(CI))
2969 continue;
2971 const Function *CalledFn = CI->getCalledFunction();
2973 if (!CalledFn)
2974 return false;
2976 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2978 // Don't treat recursive functions as empty.
2979 if (!NewCalledFunctions.insert(CalledFn).second)
2980 return false;
2982 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2983 return false;
2984 } else if (isa<ReturnInst>(*I))
2985 return true; // We're done.
2986 else if (I->mayHaveSideEffects())
2987 return false; // Destructor with side effects, bail.
2990 return false;
2993 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2994 /// Itanium C++ ABI p3.3.5:
2996 /// After constructing a global (or local static) object, that will require
2997 /// destruction on exit, a termination function is registered as follows:
2999 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
3001 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
3002 /// call f(p) when DSO d is unloaded, before all such termination calls
3003 /// registered before this one. It returns zero if registration is
3004 /// successful, nonzero on failure.
3006 // This pass will look for calls to __cxa_atexit where the function is trivial
3007 // and remove them.
3008 bool Changed = false;
3010 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
3011 I != E;) {
3012 // We're only interested in calls. Theoretically, we could handle invoke
3013 // instructions as well, but neither llvm-gcc nor clang generate invokes
3014 // to __cxa_atexit.
3015 CallInst *CI = dyn_cast<CallInst>(*I++);
3016 if (!CI)
3017 continue;
3019 Function *DtorFn =
3020 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
3021 if (!DtorFn)
3022 continue;
3024 SmallPtrSet<const Function *, 8> CalledFunctions;
3025 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
3026 continue;
3028 // Just remove the call.
3029 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
3030 CI->eraseFromParent();
3032 ++NumCXXDtorsRemoved;
3034 Changed |= true;
3037 return Changed;
3040 bool GlobalOpt::runOnModule(Module &M) {
3041 bool Changed = false;
3043 auto &DL = M.getDataLayout();
3044 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3046 bool LocalChange = true;
3047 while (LocalChange) {
3048 LocalChange = false;
3050 NotDiscardableComdats.clear();
3051 for (const GlobalVariable &GV : M.globals())
3052 if (const Comdat *C = GV.getComdat())
3053 if (!GV.isDiscardableIfUnused() || !GV.use_empty())
3054 NotDiscardableComdats.insert(C);
3055 for (Function &F : M)
3056 if (const Comdat *C = F.getComdat())
3057 if (!F.isDefTriviallyDead())
3058 NotDiscardableComdats.insert(C);
3059 for (GlobalAlias &GA : M.aliases())
3060 if (const Comdat *C = GA.getComdat())
3061 if (!GA.isDiscardableIfUnused() || !GA.use_empty())
3062 NotDiscardableComdats.insert(C);
3064 // Delete functions that are trivially dead, ccc -> fastcc
3065 LocalChange |= OptimizeFunctions(M);
3067 // Optimize global_ctors list.
3068 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
3069 return EvaluateStaticConstructor(F, DL, TLI);
3072 // Optimize non-address-taken globals.
3073 LocalChange |= OptimizeGlobalVars(M);
3075 // Resolve aliases, when possible.
3076 LocalChange |= OptimizeGlobalAliases(M);
3078 // Try to remove trivial global destructors if they are not removed
3079 // already.
3080 Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
3081 if (CXAAtExitFn)
3082 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
3084 Changed |= LocalChange;
3087 // TODO: Move all global ctors functions to the end of the module for code
3088 // layout.
3090 return Changed;