[AArch64] Crypto requires FP.
[llvm-core.git] / lib / IR / LLVMContextImpl.cpp
blob343722463e5faed2bda618bb584b156a5f88c495
1 //===-- LLVMContextImpl.cpp - Implement LLVMContextImpl -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the opaque LLVMContextImpl.
12 //===----------------------------------------------------------------------===//
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/DiagnosticInfo.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/OptBisect.h"
20 #include "llvm/Support/ManagedStatic.h"
21 #include <algorithm>
22 using namespace llvm;
24 LLVMContextImpl::LLVMContextImpl(LLVMContext &C)
25 : TheTrueVal(nullptr), TheFalseVal(nullptr),
26 VoidTy(C, Type::VoidTyID),
27 LabelTy(C, Type::LabelTyID),
28 HalfTy(C, Type::HalfTyID),
29 FloatTy(C, Type::FloatTyID),
30 DoubleTy(C, Type::DoubleTyID),
31 MetadataTy(C, Type::MetadataTyID),
32 TokenTy(C, Type::TokenTyID),
33 X86_FP80Ty(C, Type::X86_FP80TyID),
34 FP128Ty(C, Type::FP128TyID),
35 PPC_FP128Ty(C, Type::PPC_FP128TyID),
36 X86_MMXTy(C, Type::X86_MMXTyID),
37 Int1Ty(C, 1),
38 Int8Ty(C, 8),
39 Int16Ty(C, 16),
40 Int32Ty(C, 32),
41 Int64Ty(C, 64),
42 Int128Ty(C, 128) {
43 InlineAsmDiagHandler = nullptr;
44 InlineAsmDiagContext = nullptr;
45 DiagnosticHandler = nullptr;
46 DiagnosticContext = nullptr;
47 RespectDiagnosticFilters = false;
48 DiagnosticHotnessRequested = false;
49 YieldCallback = nullptr;
50 YieldOpaqueHandle = nullptr;
51 NamedStructTypesUniqueID = 0;
54 LLVMContextImpl::~LLVMContextImpl() {
55 // NOTE: We need to delete the contents of OwnedModules, but Module's dtor
56 // will call LLVMContextImpl::removeModule, thus invalidating iterators into
57 // the container. Avoid iterators during this operation:
58 while (!OwnedModules.empty())
59 delete *OwnedModules.begin();
61 // Drop references for MDNodes. Do this before Values get deleted to avoid
62 // unnecessary RAUW when nodes are still unresolved.
63 for (auto *I : DistinctMDNodes)
64 I->dropAllReferences();
65 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
66 for (auto *I : CLASS##s) \
67 I->dropAllReferences();
68 #include "llvm/IR/Metadata.def"
70 // Also drop references that come from the Value bridges.
71 for (auto &Pair : ValuesAsMetadata)
72 Pair.second->dropUsers();
73 for (auto &Pair : MetadataAsValues)
74 Pair.second->dropUse();
76 // Destroy MDNodes.
77 for (MDNode *I : DistinctMDNodes)
78 I->deleteAsSubclass();
79 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
80 for (CLASS * I : CLASS##s) \
81 delete I;
82 #include "llvm/IR/Metadata.def"
84 // Free the constants.
85 for (auto *I : ExprConstants)
86 I->dropAllReferences();
87 for (auto *I : ArrayConstants)
88 I->dropAllReferences();
89 for (auto *I : StructConstants)
90 I->dropAllReferences();
91 for (auto *I : VectorConstants)
92 I->dropAllReferences();
93 ExprConstants.freeConstants();
94 ArrayConstants.freeConstants();
95 StructConstants.freeConstants();
96 VectorConstants.freeConstants();
97 InlineAsms.freeConstants();
99 CAZConstants.clear();
100 CPNConstants.clear();
101 UVConstants.clear();
102 IntConstants.clear();
103 FPConstants.clear();
105 for (auto &CDSConstant : CDSConstants)
106 delete CDSConstant.second;
107 CDSConstants.clear();
109 // Destroy attributes.
110 for (FoldingSetIterator<AttributeImpl> I = AttrsSet.begin(),
111 E = AttrsSet.end(); I != E; ) {
112 FoldingSetIterator<AttributeImpl> Elem = I++;
113 delete &*Elem;
116 // Destroy attribute lists.
117 for (FoldingSetIterator<AttributeListImpl> I = AttrsLists.begin(),
118 E = AttrsLists.end();
119 I != E;) {
120 FoldingSetIterator<AttributeListImpl> Elem = I++;
121 delete &*Elem;
124 // Destroy attribute node lists.
125 for (FoldingSetIterator<AttributeSetNode> I = AttrsSetNodes.begin(),
126 E = AttrsSetNodes.end(); I != E; ) {
127 FoldingSetIterator<AttributeSetNode> Elem = I++;
128 delete &*Elem;
131 // Destroy MetadataAsValues.
133 SmallVector<MetadataAsValue *, 8> MDVs;
134 MDVs.reserve(MetadataAsValues.size());
135 for (auto &Pair : MetadataAsValues)
136 MDVs.push_back(Pair.second);
137 MetadataAsValues.clear();
138 for (auto *V : MDVs)
139 delete V;
142 // Destroy ValuesAsMetadata.
143 for (auto &Pair : ValuesAsMetadata)
144 delete Pair.second;
147 void LLVMContextImpl::dropTriviallyDeadConstantArrays() {
148 bool Changed;
149 do {
150 Changed = false;
152 for (auto I = ArrayConstants.begin(), E = ArrayConstants.end(); I != E;) {
153 auto *C = *I++;
154 if (C->use_empty()) {
155 Changed = true;
156 C->destroyConstant();
160 } while (Changed);
163 void Module::dropTriviallyDeadConstantArrays() {
164 Context.pImpl->dropTriviallyDeadConstantArrays();
167 namespace llvm {
168 /// \brief Make MDOperand transparent for hashing.
170 /// This overload of an implementation detail of the hashing library makes
171 /// MDOperand hash to the same value as a \a Metadata pointer.
173 /// Note that overloading \a hash_value() as follows:
175 /// \code
176 /// size_t hash_value(const MDOperand &X) { return hash_value(X.get()); }
177 /// \endcode
179 /// does not cause MDOperand to be transparent. In particular, a bare pointer
180 /// doesn't get hashed before it's combined, whereas \a MDOperand would.
181 static const Metadata *get_hashable_data(const MDOperand &X) { return X.get(); }
184 unsigned MDNodeOpsKey::calculateHash(MDNode *N, unsigned Offset) {
185 unsigned Hash = hash_combine_range(N->op_begin() + Offset, N->op_end());
186 #ifndef NDEBUG
188 SmallVector<Metadata *, 8> MDs(N->op_begin() + Offset, N->op_end());
189 unsigned RawHash = calculateHash(MDs);
190 assert(Hash == RawHash &&
191 "Expected hash of MDOperand to equal hash of Metadata*");
193 #endif
194 return Hash;
197 unsigned MDNodeOpsKey::calculateHash(ArrayRef<Metadata *> Ops) {
198 return hash_combine_range(Ops.begin(), Ops.end());
201 StringMapEntry<uint32_t> *LLVMContextImpl::getOrInsertBundleTag(StringRef Tag) {
202 uint32_t NewIdx = BundleTagCache.size();
203 return &*(BundleTagCache.insert(std::make_pair(Tag, NewIdx)).first);
206 void LLVMContextImpl::getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const {
207 Tags.resize(BundleTagCache.size());
208 for (const auto &T : BundleTagCache)
209 Tags[T.second] = T.first();
212 uint32_t LLVMContextImpl::getOperandBundleTagID(StringRef Tag) const {
213 auto I = BundleTagCache.find(Tag);
214 assert(I != BundleTagCache.end() && "Unknown tag!");
215 return I->second;
218 // ConstantsContext anchors
219 void UnaryConstantExpr::anchor() { }
221 void BinaryConstantExpr::anchor() { }
223 void SelectConstantExpr::anchor() { }
225 void ExtractElementConstantExpr::anchor() { }
227 void InsertElementConstantExpr::anchor() { }
229 void ShuffleVectorConstantExpr::anchor() { }
231 void ExtractValueConstantExpr::anchor() { }
233 void InsertValueConstantExpr::anchor() { }
235 void GetElementPtrConstantExpr::anchor() { }
237 void CompareConstantExpr::anchor() { }
239 /// Singleton instance of the OptBisect class.
241 /// This singleton is accessed via the LLVMContext::getOptBisect() function. It
242 /// provides a mechanism to disable passes and individual optimizations at
243 /// compile time based on a command line option (-opt-bisect-limit) in order to
244 /// perform a bisecting search for optimization-related problems.
246 /// Even if multiple LLVMContext objects are created, they will all return the
247 /// same instance of OptBisect in order to provide a single bisect count. Any
248 /// code that uses the OptBisect object should be serialized when bisection is
249 /// enabled in order to enable a consistent bisect count.
250 static ManagedStatic<OptBisect> OptBisector;
252 OptBisect &LLVMContextImpl::getOptBisect() {
253 return *OptBisector;