1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
14 // The current constant folding implementation is implemented in two pieces: the
15 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
16 // a dependence in IR on Target.
18 //===----------------------------------------------------------------------===//
20 #include "ConstantFold.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GetElementPtrTypeIterator.h"
27 #include "llvm/IR/GlobalAlias.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
36 using namespace llvm::PatternMatch
;
38 //===----------------------------------------------------------------------===//
39 // ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
45 static Constant
*BitCastConstantVector(Constant
*CV
, VectorType
*DstTy
) {
47 if (CV
->isAllOnesValue()) return Constant::getAllOnesValue(DstTy
);
48 if (CV
->isNullValue()) return Constant::getNullValue(DstTy
);
50 // If this cast changes element count then we can't handle it here:
51 // doing so requires endianness information. This should be handled by
52 // Analysis/ConstantFolding.cpp
53 unsigned NumElts
= DstTy
->getNumElements();
54 if (NumElts
!= CV
->getType()->getVectorNumElements())
57 Type
*DstEltTy
= DstTy
->getElementType();
59 SmallVector
<Constant
*, 16> Result
;
60 Type
*Ty
= IntegerType::get(CV
->getContext(), 32);
61 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
63 ConstantExpr::getExtractElement(CV
, ConstantInt::get(Ty
, i
));
64 C
= ConstantExpr::getBitCast(C
, DstEltTy
);
68 return ConstantVector::get(Result
);
71 /// This function determines which opcode to use to fold two constant cast
72 /// expressions together. It uses CastInst::isEliminableCastPair to determine
73 /// the opcode. Consequently its just a wrapper around that function.
74 /// @brief Determine if it is valid to fold a cast of a cast
77 unsigned opc
, ///< opcode of the second cast constant expression
78 ConstantExpr
*Op
, ///< the first cast constant expression
79 Type
*DstTy
///< destination type of the first cast
81 assert(Op
&& Op
->isCast() && "Can't fold cast of cast without a cast!");
82 assert(DstTy
&& DstTy
->isFirstClassType() && "Invalid cast destination type");
83 assert(CastInst::isCast(opc
) && "Invalid cast opcode");
85 // The types and opcodes for the two Cast constant expressions
86 Type
*SrcTy
= Op
->getOperand(0)->getType();
87 Type
*MidTy
= Op
->getType();
88 Instruction::CastOps firstOp
= Instruction::CastOps(Op
->getOpcode());
89 Instruction::CastOps secondOp
= Instruction::CastOps(opc
);
91 // Assume that pointers are never more than 64 bits wide, and only use this
92 // for the middle type. Otherwise we could end up folding away illegal
93 // bitcasts between address spaces with different sizes.
94 IntegerType
*FakeIntPtrTy
= Type::getInt64Ty(DstTy
->getContext());
96 // Let CastInst::isEliminableCastPair do the heavy lifting.
97 return CastInst::isEliminableCastPair(firstOp
, secondOp
, SrcTy
, MidTy
, DstTy
,
98 nullptr, FakeIntPtrTy
, nullptr);
101 static Constant
*FoldBitCast(Constant
*V
, Type
*DestTy
) {
102 Type
*SrcTy
= V
->getType();
104 return V
; // no-op cast
106 // Check to see if we are casting a pointer to an aggregate to a pointer to
107 // the first element. If so, return the appropriate GEP instruction.
108 if (PointerType
*PTy
= dyn_cast
<PointerType
>(V
->getType()))
109 if (PointerType
*DPTy
= dyn_cast
<PointerType
>(DestTy
))
110 if (PTy
->getAddressSpace() == DPTy
->getAddressSpace()
111 && PTy
->getElementType()->isSized()) {
112 SmallVector
<Value
*, 8> IdxList
;
114 Constant::getNullValue(Type::getInt32Ty(DPTy
->getContext()));
115 IdxList
.push_back(Zero
);
116 Type
*ElTy
= PTy
->getElementType();
117 while (ElTy
!= DPTy
->getElementType()) {
118 if (StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
119 if (STy
->getNumElements() == 0) break;
120 ElTy
= STy
->getElementType(0);
121 IdxList
.push_back(Zero
);
122 } else if (SequentialType
*STy
=
123 dyn_cast
<SequentialType
>(ElTy
)) {
124 ElTy
= STy
->getElementType();
125 IdxList
.push_back(Zero
);
131 if (ElTy
== DPTy
->getElementType())
132 // This GEP is inbounds because all indices are zero.
133 return ConstantExpr::getInBoundsGetElementPtr(PTy
->getElementType(),
137 // Handle casts from one vector constant to another. We know that the src
138 // and dest type have the same size (otherwise its an illegal cast).
139 if (VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
140 if (VectorType
*SrcTy
= dyn_cast
<VectorType
>(V
->getType())) {
141 assert(DestPTy
->getBitWidth() == SrcTy
->getBitWidth() &&
142 "Not cast between same sized vectors!");
144 // First, check for null. Undef is already handled.
145 if (isa
<ConstantAggregateZero
>(V
))
146 return Constant::getNullValue(DestTy
);
148 // Handle ConstantVector and ConstantAggregateVector.
149 return BitCastConstantVector(V
, DestPTy
);
152 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
153 // This allows for other simplifications (although some of them
154 // can only be handled by Analysis/ConstantFolding.cpp).
155 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
))
156 return ConstantExpr::getBitCast(ConstantVector::get(V
), DestPTy
);
159 // Finally, implement bitcast folding now. The code below doesn't handle
161 if (isa
<ConstantPointerNull
>(V
)) // ptr->ptr cast.
162 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
164 // Handle integral constant input.
165 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
166 if (DestTy
->isIntegerTy())
167 // Integral -> Integral. This is a no-op because the bit widths must
168 // be the same. Consequently, we just fold to V.
171 // See note below regarding the PPC_FP128 restriction.
172 if (DestTy
->isFloatingPointTy() && !DestTy
->isPPC_FP128Ty())
173 return ConstantFP::get(DestTy
->getContext(),
174 APFloat(DestTy
->getFltSemantics(),
177 // Otherwise, can't fold this (vector?)
181 // Handle ConstantFP input: FP -> Integral.
182 if (ConstantFP
*FP
= dyn_cast
<ConstantFP
>(V
)) {
183 // PPC_FP128 is really the sum of two consecutive doubles, where the first
184 // double is always stored first in memory, regardless of the target
185 // endianness. The memory layout of i128, however, depends on the target
186 // endianness, and so we can't fold this without target endianness
187 // information. This should instead be handled by
188 // Analysis/ConstantFolding.cpp
189 if (FP
->getType()->isPPC_FP128Ty())
192 // Make sure dest type is compatible with the folded integer constant.
193 if (!DestTy
->isIntegerTy())
196 return ConstantInt::get(FP
->getContext(),
197 FP
->getValueAPF().bitcastToAPInt());
204 /// V is an integer constant which only has a subset of its bytes used.
205 /// The bytes used are indicated by ByteStart (which is the first byte used,
206 /// counting from the least significant byte) and ByteSize, which is the number
209 /// This function analyzes the specified constant to see if the specified byte
210 /// range can be returned as a simplified constant. If so, the constant is
211 /// returned, otherwise null is returned.
212 static Constant
*ExtractConstantBytes(Constant
*C
, unsigned ByteStart
,
214 assert(C
->getType()->isIntegerTy() &&
215 (cast
<IntegerType
>(C
->getType())->getBitWidth() & 7) == 0 &&
216 "Non-byte sized integer input");
217 unsigned CSize
= cast
<IntegerType
>(C
->getType())->getBitWidth()/8;
218 assert(ByteSize
&& "Must be accessing some piece");
219 assert(ByteStart
+ByteSize
<= CSize
&& "Extracting invalid piece from input");
220 assert(ByteSize
!= CSize
&& "Should not extract everything");
222 // Constant Integers are simple.
223 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
)) {
224 APInt V
= CI
->getValue();
226 V
= V
.lshr(ByteStart
*8);
227 V
= V
.trunc(ByteSize
*8);
228 return ConstantInt::get(CI
->getContext(), V
);
231 // In the input is a constant expr, we might be able to recursively simplify.
232 // If not, we definitely can't do anything.
233 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
);
234 if (!CE
) return nullptr;
236 switch (CE
->getOpcode()) {
237 default: return nullptr;
238 case Instruction::Or
: {
239 Constant
*RHS
= ExtractConstantBytes(CE
->getOperand(1), ByteStart
,ByteSize
);
244 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
))
245 if (RHSC
->isAllOnesValue())
248 Constant
*LHS
= ExtractConstantBytes(CE
->getOperand(0), ByteStart
,ByteSize
);
251 return ConstantExpr::getOr(LHS
, RHS
);
253 case Instruction::And
: {
254 Constant
*RHS
= ExtractConstantBytes(CE
->getOperand(1), ByteStart
,ByteSize
);
259 if (RHS
->isNullValue())
262 Constant
*LHS
= ExtractConstantBytes(CE
->getOperand(0), ByteStart
,ByteSize
);
265 return ConstantExpr::getAnd(LHS
, RHS
);
267 case Instruction::LShr
: {
268 ConstantInt
*Amt
= dyn_cast
<ConstantInt
>(CE
->getOperand(1));
271 unsigned ShAmt
= Amt
->getZExtValue();
272 // Cannot analyze non-byte shifts.
273 if ((ShAmt
& 7) != 0)
277 // If the extract is known to be all zeros, return zero.
278 if (ByteStart
>= CSize
-ShAmt
)
279 return Constant::getNullValue(IntegerType::get(CE
->getContext(),
281 // If the extract is known to be fully in the input, extract it.
282 if (ByteStart
+ByteSize
+ShAmt
<= CSize
)
283 return ExtractConstantBytes(CE
->getOperand(0), ByteStart
+ShAmt
, ByteSize
);
285 // TODO: Handle the 'partially zero' case.
289 case Instruction::Shl
: {
290 ConstantInt
*Amt
= dyn_cast
<ConstantInt
>(CE
->getOperand(1));
293 unsigned ShAmt
= Amt
->getZExtValue();
294 // Cannot analyze non-byte shifts.
295 if ((ShAmt
& 7) != 0)
299 // If the extract is known to be all zeros, return zero.
300 if (ByteStart
+ByteSize
<= ShAmt
)
301 return Constant::getNullValue(IntegerType::get(CE
->getContext(),
303 // If the extract is known to be fully in the input, extract it.
304 if (ByteStart
>= ShAmt
)
305 return ExtractConstantBytes(CE
->getOperand(0), ByteStart
-ShAmt
, ByteSize
);
307 // TODO: Handle the 'partially zero' case.
311 case Instruction::ZExt
: {
312 unsigned SrcBitSize
=
313 cast
<IntegerType
>(CE
->getOperand(0)->getType())->getBitWidth();
315 // If extracting something that is completely zero, return 0.
316 if (ByteStart
*8 >= SrcBitSize
)
317 return Constant::getNullValue(IntegerType::get(CE
->getContext(),
320 // If exactly extracting the input, return it.
321 if (ByteStart
== 0 && ByteSize
*8 == SrcBitSize
)
322 return CE
->getOperand(0);
324 // If extracting something completely in the input, if if the input is a
325 // multiple of 8 bits, recurse.
326 if ((SrcBitSize
&7) == 0 && (ByteStart
+ByteSize
)*8 <= SrcBitSize
)
327 return ExtractConstantBytes(CE
->getOperand(0), ByteStart
, ByteSize
);
329 // Otherwise, if extracting a subset of the input, which is not multiple of
330 // 8 bits, do a shift and trunc to get the bits.
331 if ((ByteStart
+ByteSize
)*8 < SrcBitSize
) {
332 assert((SrcBitSize
&7) && "Shouldn't get byte sized case here");
333 Constant
*Res
= CE
->getOperand(0);
335 Res
= ConstantExpr::getLShr(Res
,
336 ConstantInt::get(Res
->getType(), ByteStart
*8));
337 return ConstantExpr::getTrunc(Res
, IntegerType::get(C
->getContext(),
341 // TODO: Handle the 'partially zero' case.
347 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
348 /// factors factored out. If Folded is false, return null if no factoring was
349 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
350 /// top-level folder.
351 static Constant
*getFoldedSizeOf(Type
*Ty
, Type
*DestTy
,
353 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
354 Constant
*N
= ConstantInt::get(DestTy
, ATy
->getNumElements());
355 Constant
*E
= getFoldedSizeOf(ATy
->getElementType(), DestTy
, true);
356 return ConstantExpr::getNUWMul(E
, N
);
359 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
360 if (!STy
->isPacked()) {
361 unsigned NumElems
= STy
->getNumElements();
362 // An empty struct has size zero.
364 return ConstantExpr::getNullValue(DestTy
);
365 // Check for a struct with all members having the same size.
366 Constant
*MemberSize
=
367 getFoldedSizeOf(STy
->getElementType(0), DestTy
, true);
369 for (unsigned i
= 1; i
!= NumElems
; ++i
)
371 getFoldedSizeOf(STy
->getElementType(i
), DestTy
, true)) {
376 Constant
*N
= ConstantInt::get(DestTy
, NumElems
);
377 return ConstantExpr::getNUWMul(MemberSize
, N
);
381 // Pointer size doesn't depend on the pointee type, so canonicalize them
382 // to an arbitrary pointee.
383 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
))
384 if (!PTy
->getElementType()->isIntegerTy(1))
386 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy
->getContext(), 1),
387 PTy
->getAddressSpace()),
390 // If there's no interesting folding happening, bail so that we don't create
391 // a constant that looks like it needs folding but really doesn't.
395 // Base case: Get a regular sizeof expression.
396 Constant
*C
= ConstantExpr::getSizeOf(Ty
);
397 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
403 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
404 /// factors factored out. If Folded is false, return null if no factoring was
405 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
406 /// top-level folder.
407 static Constant
*getFoldedAlignOf(Type
*Ty
, Type
*DestTy
,
409 // The alignment of an array is equal to the alignment of the
410 // array element. Note that this is not always true for vectors.
411 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
412 Constant
*C
= ConstantExpr::getAlignOf(ATy
->getElementType());
413 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
420 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
421 // Packed structs always have an alignment of 1.
423 return ConstantInt::get(DestTy
, 1);
425 // Otherwise, struct alignment is the maximum alignment of any member.
426 // Without target data, we can't compare much, but we can check to see
427 // if all the members have the same alignment.
428 unsigned NumElems
= STy
->getNumElements();
429 // An empty struct has minimal alignment.
431 return ConstantInt::get(DestTy
, 1);
432 // Check for a struct with all members having the same alignment.
433 Constant
*MemberAlign
=
434 getFoldedAlignOf(STy
->getElementType(0), DestTy
, true);
436 for (unsigned i
= 1; i
!= NumElems
; ++i
)
437 if (MemberAlign
!= getFoldedAlignOf(STy
->getElementType(i
), DestTy
, true)) {
445 // Pointer alignment doesn't depend on the pointee type, so canonicalize them
446 // to an arbitrary pointee.
447 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
))
448 if (!PTy
->getElementType()->isIntegerTy(1))
450 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy
->getContext(),
452 PTy
->getAddressSpace()),
455 // If there's no interesting folding happening, bail so that we don't create
456 // a constant that looks like it needs folding but really doesn't.
460 // Base case: Get a regular alignof expression.
461 Constant
*C
= ConstantExpr::getAlignOf(Ty
);
462 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
468 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
469 /// any known factors factored out. If Folded is false, return null if no
470 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
471 /// back into the top-level folder.
472 static Constant
*getFoldedOffsetOf(Type
*Ty
, Constant
*FieldNo
,
475 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
476 Constant
*N
= ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo
, false,
479 Constant
*E
= getFoldedSizeOf(ATy
->getElementType(), DestTy
, true);
480 return ConstantExpr::getNUWMul(E
, N
);
483 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
484 if (!STy
->isPacked()) {
485 unsigned NumElems
= STy
->getNumElements();
486 // An empty struct has no members.
489 // Check for a struct with all members having the same size.
490 Constant
*MemberSize
=
491 getFoldedSizeOf(STy
->getElementType(0), DestTy
, true);
493 for (unsigned i
= 1; i
!= NumElems
; ++i
)
495 getFoldedSizeOf(STy
->getElementType(i
), DestTy
, true)) {
500 Constant
*N
= ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo
,
505 return ConstantExpr::getNUWMul(MemberSize
, N
);
509 // If there's no interesting folding happening, bail so that we don't create
510 // a constant that looks like it needs folding but really doesn't.
514 // Base case: Get a regular offsetof expression.
515 Constant
*C
= ConstantExpr::getOffsetOf(Ty
, FieldNo
);
516 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
522 Constant
*llvm::ConstantFoldCastInstruction(unsigned opc
, Constant
*V
,
524 if (isa
<UndefValue
>(V
)) {
525 // zext(undef) = 0, because the top bits will be zero.
526 // sext(undef) = 0, because the top bits will all be the same.
527 // [us]itofp(undef) = 0, because the result value is bounded.
528 if (opc
== Instruction::ZExt
|| opc
== Instruction::SExt
||
529 opc
== Instruction::UIToFP
|| opc
== Instruction::SIToFP
)
530 return Constant::getNullValue(DestTy
);
531 return UndefValue::get(DestTy
);
534 if (V
->isNullValue() && !DestTy
->isX86_MMXTy() &&
535 opc
!= Instruction::AddrSpaceCast
)
536 return Constant::getNullValue(DestTy
);
538 // If the cast operand is a constant expression, there's a few things we can
539 // do to try to simplify it.
540 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
542 // Try hard to fold cast of cast because they are often eliminable.
543 if (unsigned newOpc
= foldConstantCastPair(opc
, CE
, DestTy
))
544 return ConstantExpr::getCast(newOpc
, CE
->getOperand(0), DestTy
);
545 } else if (CE
->getOpcode() == Instruction::GetElementPtr
&&
546 // Do not fold addrspacecast (gep 0, .., 0). It might make the
547 // addrspacecast uncanonicalized.
548 opc
!= Instruction::AddrSpaceCast
&&
549 // Do not fold bitcast (gep) with inrange index, as this loses
551 !cast
<GEPOperator
>(CE
)->getInRangeIndex().hasValue()) {
552 // If all of the indexes in the GEP are null values, there is no pointer
553 // adjustment going on. We might as well cast the source pointer.
554 bool isAllNull
= true;
555 for (unsigned i
= 1, e
= CE
->getNumOperands(); i
!= e
; ++i
)
556 if (!CE
->getOperand(i
)->isNullValue()) {
561 // This is casting one pointer type to another, always BitCast
562 return ConstantExpr::getPointerCast(CE
->getOperand(0), DestTy
);
566 // If the cast operand is a constant vector, perform the cast by
567 // operating on each element. In the cast of bitcasts, the element
568 // count may be mismatched; don't attempt to handle that here.
569 if ((isa
<ConstantVector
>(V
) || isa
<ConstantDataVector
>(V
)) &&
570 DestTy
->isVectorTy() &&
571 DestTy
->getVectorNumElements() == V
->getType()->getVectorNumElements()) {
572 SmallVector
<Constant
*, 16> res
;
573 VectorType
*DestVecTy
= cast
<VectorType
>(DestTy
);
574 Type
*DstEltTy
= DestVecTy
->getElementType();
575 Type
*Ty
= IntegerType::get(V
->getContext(), 32);
576 for (unsigned i
= 0, e
= V
->getType()->getVectorNumElements(); i
!= e
; ++i
) {
578 ConstantExpr::getExtractElement(V
, ConstantInt::get(Ty
, i
));
579 res
.push_back(ConstantExpr::getCast(opc
, C
, DstEltTy
));
581 return ConstantVector::get(res
);
584 // We actually have to do a cast now. Perform the cast according to the
588 llvm_unreachable("Failed to cast constant expression");
589 case Instruction::FPTrunc
:
590 case Instruction::FPExt
:
591 if (ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
593 APFloat Val
= FPC
->getValueAPF();
594 Val
.convert(DestTy
->isHalfTy() ? APFloat::IEEEhalf() :
595 DestTy
->isFloatTy() ? APFloat::IEEEsingle() :
596 DestTy
->isDoubleTy() ? APFloat::IEEEdouble() :
597 DestTy
->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
598 DestTy
->isFP128Ty() ? APFloat::IEEEquad() :
599 DestTy
->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
601 APFloat::rmNearestTiesToEven
, &ignored
);
602 return ConstantFP::get(V
->getContext(), Val
);
604 return nullptr; // Can't fold.
605 case Instruction::FPToUI
:
606 case Instruction::FPToSI
:
607 if (ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
608 const APFloat
&V
= FPC
->getValueAPF();
610 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
611 APSInt
IntVal(DestBitWidth
, opc
== Instruction::FPToUI
);
612 if (APFloat::opInvalidOp
==
613 V
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &ignored
)) {
614 // Undefined behavior invoked - the destination type can't represent
615 // the input constant.
616 return UndefValue::get(DestTy
);
618 return ConstantInt::get(FPC
->getContext(), IntVal
);
620 return nullptr; // Can't fold.
621 case Instruction::IntToPtr
: //always treated as unsigned
622 if (V
->isNullValue()) // Is it an integral null value?
623 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
624 return nullptr; // Other pointer types cannot be casted
625 case Instruction::PtrToInt
: // always treated as unsigned
626 // Is it a null pointer value?
627 if (V
->isNullValue())
628 return ConstantInt::get(DestTy
, 0);
629 // If this is a sizeof-like expression, pull out multiplications by
630 // known factors to expose them to subsequent folding. If it's an
631 // alignof-like expression, factor out known factors.
632 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
633 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
634 CE
->getOperand(0)->isNullValue()) {
635 GEPOperator
*GEPO
= cast
<GEPOperator
>(CE
);
636 Type
*Ty
= GEPO
->getSourceElementType();
637 if (CE
->getNumOperands() == 2) {
638 // Handle a sizeof-like expression.
639 Constant
*Idx
= CE
->getOperand(1);
640 bool isOne
= isa
<ConstantInt
>(Idx
) && cast
<ConstantInt
>(Idx
)->isOne();
641 if (Constant
*C
= getFoldedSizeOf(Ty
, DestTy
, !isOne
)) {
642 Idx
= ConstantExpr::getCast(CastInst::getCastOpcode(Idx
, true,
645 return ConstantExpr::getMul(C
, Idx
);
647 } else if (CE
->getNumOperands() == 3 &&
648 CE
->getOperand(1)->isNullValue()) {
649 // Handle an alignof-like expression.
650 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
651 if (!STy
->isPacked()) {
652 ConstantInt
*CI
= cast
<ConstantInt
>(CE
->getOperand(2));
654 STy
->getNumElements() == 2 &&
655 STy
->getElementType(0)->isIntegerTy(1)) {
656 return getFoldedAlignOf(STy
->getElementType(1), DestTy
, false);
659 // Handle an offsetof-like expression.
660 if (Ty
->isStructTy() || Ty
->isArrayTy()) {
661 if (Constant
*C
= getFoldedOffsetOf(Ty
, CE
->getOperand(2),
667 // Other pointer types cannot be casted
669 case Instruction::UIToFP
:
670 case Instruction::SIToFP
:
671 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
672 const APInt
&api
= CI
->getValue();
673 APFloat
apf(DestTy
->getFltSemantics(),
674 APInt::getNullValue(DestTy
->getPrimitiveSizeInBits()));
675 if (APFloat::opOverflow
&
676 apf
.convertFromAPInt(api
, opc
==Instruction::SIToFP
,
677 APFloat::rmNearestTiesToEven
)) {
678 // Undefined behavior invoked - the destination type can't represent
679 // the input constant.
680 return UndefValue::get(DestTy
);
682 return ConstantFP::get(V
->getContext(), apf
);
685 case Instruction::ZExt
:
686 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
687 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
688 return ConstantInt::get(V
->getContext(),
689 CI
->getValue().zext(BitWidth
));
692 case Instruction::SExt
:
693 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
694 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
695 return ConstantInt::get(V
->getContext(),
696 CI
->getValue().sext(BitWidth
));
699 case Instruction::Trunc
: {
700 if (V
->getType()->isVectorTy())
703 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
704 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
705 return ConstantInt::get(V
->getContext(),
706 CI
->getValue().trunc(DestBitWidth
));
709 // The input must be a constantexpr. See if we can simplify this based on
710 // the bytes we are demanding. Only do this if the source and dest are an
711 // even multiple of a byte.
712 if ((DestBitWidth
& 7) == 0 &&
713 (cast
<IntegerType
>(V
->getType())->getBitWidth() & 7) == 0)
714 if (Constant
*Res
= ExtractConstantBytes(V
, 0, DestBitWidth
/ 8))
719 case Instruction::BitCast
:
720 return FoldBitCast(V
, DestTy
);
721 case Instruction::AddrSpaceCast
:
726 Constant
*llvm::ConstantFoldSelectInstruction(Constant
*Cond
,
727 Constant
*V1
, Constant
*V2
) {
728 // Check for i1 and vector true/false conditions.
729 if (Cond
->isNullValue()) return V2
;
730 if (Cond
->isAllOnesValue()) return V1
;
732 // If the condition is a vector constant, fold the result elementwise.
733 if (ConstantVector
*CondV
= dyn_cast
<ConstantVector
>(Cond
)) {
734 SmallVector
<Constant
*, 16> Result
;
735 Type
*Ty
= IntegerType::get(CondV
->getContext(), 32);
736 for (unsigned i
= 0, e
= V1
->getType()->getVectorNumElements(); i
!= e
;++i
){
738 Constant
*V1Element
= ConstantExpr::getExtractElement(V1
,
739 ConstantInt::get(Ty
, i
));
740 Constant
*V2Element
= ConstantExpr::getExtractElement(V2
,
741 ConstantInt::get(Ty
, i
));
742 Constant
*Cond
= dyn_cast
<Constant
>(CondV
->getOperand(i
));
743 if (V1Element
== V2Element
) {
745 } else if (isa
<UndefValue
>(Cond
)) {
746 V
= isa
<UndefValue
>(V1Element
) ? V1Element
: V2Element
;
748 if (!isa
<ConstantInt
>(Cond
)) break;
749 V
= Cond
->isNullValue() ? V2Element
: V1Element
;
754 // If we were able to build the vector, return it.
755 if (Result
.size() == V1
->getType()->getVectorNumElements())
756 return ConstantVector::get(Result
);
759 if (isa
<UndefValue
>(Cond
)) {
760 if (isa
<UndefValue
>(V1
)) return V1
;
763 if (isa
<UndefValue
>(V1
)) return V2
;
764 if (isa
<UndefValue
>(V2
)) return V1
;
765 if (V1
== V2
) return V1
;
767 if (ConstantExpr
*TrueVal
= dyn_cast
<ConstantExpr
>(V1
)) {
768 if (TrueVal
->getOpcode() == Instruction::Select
)
769 if (TrueVal
->getOperand(0) == Cond
)
770 return ConstantExpr::getSelect(Cond
, TrueVal
->getOperand(1), V2
);
772 if (ConstantExpr
*FalseVal
= dyn_cast
<ConstantExpr
>(V2
)) {
773 if (FalseVal
->getOpcode() == Instruction::Select
)
774 if (FalseVal
->getOperand(0) == Cond
)
775 return ConstantExpr::getSelect(Cond
, V1
, FalseVal
->getOperand(2));
781 Constant
*llvm::ConstantFoldExtractElementInstruction(Constant
*Val
,
783 if (isa
<UndefValue
>(Val
)) // ee(undef, x) -> undef
784 return UndefValue::get(Val
->getType()->getVectorElementType());
785 if (Val
->isNullValue()) // ee(zero, x) -> zero
786 return Constant::getNullValue(Val
->getType()->getVectorElementType());
787 // ee({w,x,y,z}, undef) -> undef
788 if (isa
<UndefValue
>(Idx
))
789 return UndefValue::get(Val
->getType()->getVectorElementType());
791 if (ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
)) {
792 // ee({w,x,y,z}, wrong_value) -> undef
793 if (CIdx
->uge(Val
->getType()->getVectorNumElements()))
794 return UndefValue::get(Val
->getType()->getVectorElementType());
795 return Val
->getAggregateElement(CIdx
->getZExtValue());
800 Constant
*llvm::ConstantFoldInsertElementInstruction(Constant
*Val
,
803 if (isa
<UndefValue
>(Idx
))
804 return UndefValue::get(Val
->getType());
806 ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
);
807 if (!CIdx
) return nullptr;
809 unsigned NumElts
= Val
->getType()->getVectorNumElements();
810 if (CIdx
->uge(NumElts
))
811 return UndefValue::get(Val
->getType());
813 SmallVector
<Constant
*, 16> Result
;
814 Result
.reserve(NumElts
);
815 auto *Ty
= Type::getInt32Ty(Val
->getContext());
816 uint64_t IdxVal
= CIdx
->getZExtValue();
817 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
819 Result
.push_back(Elt
);
823 Constant
*C
= ConstantExpr::getExtractElement(Val
, ConstantInt::get(Ty
, i
));
827 return ConstantVector::get(Result
);
830 Constant
*llvm::ConstantFoldShuffleVectorInstruction(Constant
*V1
,
833 unsigned MaskNumElts
= Mask
->getType()->getVectorNumElements();
834 Type
*EltTy
= V1
->getType()->getVectorElementType();
836 // Undefined shuffle mask -> undefined value.
837 if (isa
<UndefValue
>(Mask
))
838 return UndefValue::get(VectorType::get(EltTy
, MaskNumElts
));
840 // Don't break the bitcode reader hack.
841 if (isa
<ConstantExpr
>(Mask
)) return nullptr;
843 unsigned SrcNumElts
= V1
->getType()->getVectorNumElements();
845 // Loop over the shuffle mask, evaluating each element.
846 SmallVector
<Constant
*, 32> Result
;
847 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
848 int Elt
= ShuffleVectorInst::getMaskValue(Mask
, i
);
850 Result
.push_back(UndefValue::get(EltTy
));
854 if (unsigned(Elt
) >= SrcNumElts
*2)
855 InElt
= UndefValue::get(EltTy
);
856 else if (unsigned(Elt
) >= SrcNumElts
) {
857 Type
*Ty
= IntegerType::get(V2
->getContext(), 32);
859 ConstantExpr::getExtractElement(V2
,
860 ConstantInt::get(Ty
, Elt
- SrcNumElts
));
862 Type
*Ty
= IntegerType::get(V1
->getContext(), 32);
863 InElt
= ConstantExpr::getExtractElement(V1
, ConstantInt::get(Ty
, Elt
));
865 Result
.push_back(InElt
);
868 return ConstantVector::get(Result
);
871 Constant
*llvm::ConstantFoldExtractValueInstruction(Constant
*Agg
,
872 ArrayRef
<unsigned> Idxs
) {
873 // Base case: no indices, so return the entire value.
877 if (Constant
*C
= Agg
->getAggregateElement(Idxs
[0]))
878 return ConstantFoldExtractValueInstruction(C
, Idxs
.slice(1));
883 Constant
*llvm::ConstantFoldInsertValueInstruction(Constant
*Agg
,
885 ArrayRef
<unsigned> Idxs
) {
886 // Base case: no indices, so replace the entire value.
891 if (StructType
*ST
= dyn_cast
<StructType
>(Agg
->getType()))
892 NumElts
= ST
->getNumElements();
894 NumElts
= cast
<SequentialType
>(Agg
->getType())->getNumElements();
896 SmallVector
<Constant
*, 32> Result
;
897 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
898 Constant
*C
= Agg
->getAggregateElement(i
);
899 if (!C
) return nullptr;
902 C
= ConstantFoldInsertValueInstruction(C
, Val
, Idxs
.slice(1));
907 if (StructType
*ST
= dyn_cast
<StructType
>(Agg
->getType()))
908 return ConstantStruct::get(ST
, Result
);
909 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(Agg
->getType()))
910 return ConstantArray::get(AT
, Result
);
911 return ConstantVector::get(Result
);
915 Constant
*llvm::ConstantFoldBinaryInstruction(unsigned Opcode
,
916 Constant
*C1
, Constant
*C2
) {
917 assert(Instruction::isBinaryOp(Opcode
) && "Non-binary instruction detected");
919 // Handle UndefValue up front.
920 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
)) {
921 switch (static_cast<Instruction::BinaryOps
>(Opcode
)) {
922 case Instruction::Xor
:
923 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
924 // Handle undef ^ undef -> 0 special case. This is a common
926 return Constant::getNullValue(C1
->getType());
928 case Instruction::Add
:
929 case Instruction::Sub
:
930 return UndefValue::get(C1
->getType());
931 case Instruction::And
:
932 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
)) // undef & undef -> undef
934 return Constant::getNullValue(C1
->getType()); // undef & X -> 0
935 case Instruction::Mul
: {
936 // undef * undef -> undef
937 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
940 // X * undef -> undef if X is odd
941 if (match(C1
, m_APInt(CV
)) || match(C2
, m_APInt(CV
)))
943 return UndefValue::get(C1
->getType());
945 // X * undef -> 0 otherwise
946 return Constant::getNullValue(C1
->getType());
948 case Instruction::SDiv
:
949 case Instruction::UDiv
:
950 // X / undef -> undef
951 if (isa
<UndefValue
>(C2
))
953 // undef / 0 -> undef
954 // undef / 1 -> undef
955 if (match(C2
, m_Zero()) || match(C2
, m_One()))
957 // undef / X -> 0 otherwise
958 return Constant::getNullValue(C1
->getType());
959 case Instruction::URem
:
960 case Instruction::SRem
:
961 // X % undef -> undef
962 if (match(C2
, m_Undef()))
964 // undef % 0 -> undef
965 if (match(C2
, m_Zero()))
967 // undef % X -> 0 otherwise
968 return Constant::getNullValue(C1
->getType());
969 case Instruction::Or
: // X | undef -> -1
970 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
)) // undef | undef -> undef
972 return Constant::getAllOnesValue(C1
->getType()); // undef | X -> ~0
973 case Instruction::LShr
:
974 // X >>l undef -> undef
975 if (isa
<UndefValue
>(C2
))
977 // undef >>l 0 -> undef
978 if (match(C2
, m_Zero()))
981 return Constant::getNullValue(C1
->getType());
982 case Instruction::AShr
:
983 // X >>a undef -> undef
984 if (isa
<UndefValue
>(C2
))
986 // undef >>a 0 -> undef
987 if (match(C2
, m_Zero()))
989 // TODO: undef >>a X -> undef if the shift is exact
991 return Constant::getNullValue(C1
->getType());
992 case Instruction::Shl
:
993 // X << undef -> undef
994 if (isa
<UndefValue
>(C2
))
996 // undef << 0 -> undef
997 if (match(C2
, m_Zero()))
1000 return Constant::getNullValue(C1
->getType());
1001 case Instruction::FAdd
:
1002 case Instruction::FSub
:
1003 case Instruction::FMul
:
1004 case Instruction::FDiv
:
1005 case Instruction::FRem
:
1006 // TODO: UNDEF handling for binary float instructions.
1008 case Instruction::BinaryOpsEnd
:
1009 llvm_unreachable("Invalid BinaryOp");
1013 // At this point neither constant should be an UndefValue.
1014 assert(!isa
<UndefValue
>(C1
) && !isa
<UndefValue
>(C2
) &&
1015 "Unexpected UndefValue");
1017 // Handle simplifications when the RHS is a constant int.
1018 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
1020 case Instruction::Add
:
1021 if (CI2
->equalsInt(0)) return C1
; // X + 0 == X
1023 case Instruction::Sub
:
1024 if (CI2
->equalsInt(0)) return C1
; // X - 0 == X
1026 case Instruction::Mul
:
1027 if (CI2
->equalsInt(0)) return C2
; // X * 0 == 0
1028 if (CI2
->equalsInt(1))
1029 return C1
; // X * 1 == X
1031 case Instruction::UDiv
:
1032 case Instruction::SDiv
:
1033 if (CI2
->equalsInt(1))
1034 return C1
; // X / 1 == X
1035 if (CI2
->equalsInt(0))
1036 return UndefValue::get(CI2
->getType()); // X / 0 == undef
1038 case Instruction::URem
:
1039 case Instruction::SRem
:
1040 if (CI2
->equalsInt(1))
1041 return Constant::getNullValue(CI2
->getType()); // X % 1 == 0
1042 if (CI2
->equalsInt(0))
1043 return UndefValue::get(CI2
->getType()); // X % 0 == undef
1045 case Instruction::And
:
1046 if (CI2
->isZero()) return C2
; // X & 0 == 0
1047 if (CI2
->isAllOnesValue())
1048 return C1
; // X & -1 == X
1050 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1051 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1052 if (CE1
->getOpcode() == Instruction::ZExt
) {
1053 unsigned DstWidth
= CI2
->getType()->getBitWidth();
1055 CE1
->getOperand(0)->getType()->getPrimitiveSizeInBits();
1056 APInt
PossiblySetBits(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
1057 if ((PossiblySetBits
& CI2
->getValue()) == PossiblySetBits
)
1061 // If and'ing the address of a global with a constant, fold it.
1062 if (CE1
->getOpcode() == Instruction::PtrToInt
&&
1063 isa
<GlobalValue
>(CE1
->getOperand(0))) {
1064 GlobalValue
*GV
= cast
<GlobalValue
>(CE1
->getOperand(0));
1066 // Functions are at least 4-byte aligned.
1067 unsigned GVAlign
= GV
->getAlignment();
1068 if (isa
<Function
>(GV
))
1069 GVAlign
= std::max(GVAlign
, 4U);
1072 unsigned DstWidth
= CI2
->getType()->getBitWidth();
1073 unsigned SrcWidth
= std::min(DstWidth
, Log2_32(GVAlign
));
1074 APInt
BitsNotSet(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
1076 // If checking bits we know are clear, return zero.
1077 if ((CI2
->getValue() & BitsNotSet
) == CI2
->getValue())
1078 return Constant::getNullValue(CI2
->getType());
1083 case Instruction::Or
:
1084 if (CI2
->equalsInt(0)) return C1
; // X | 0 == X
1085 if (CI2
->isAllOnesValue())
1086 return C2
; // X | -1 == -1
1088 case Instruction::Xor
:
1089 if (CI2
->equalsInt(0)) return C1
; // X ^ 0 == X
1091 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1092 switch (CE1
->getOpcode()) {
1094 case Instruction::ICmp
:
1095 case Instruction::FCmp
:
1096 // cmp pred ^ true -> cmp !pred
1097 assert(CI2
->equalsInt(1));
1098 CmpInst::Predicate pred
= (CmpInst::Predicate
)CE1
->getPredicate();
1099 pred
= CmpInst::getInversePredicate(pred
);
1100 return ConstantExpr::getCompare(pred
, CE1
->getOperand(0),
1101 CE1
->getOperand(1));
1105 case Instruction::AShr
:
1106 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1107 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
))
1108 if (CE1
->getOpcode() == Instruction::ZExt
) // Top bits known zero.
1109 return ConstantExpr::getLShr(C1
, C2
);
1112 } else if (isa
<ConstantInt
>(C1
)) {
1113 // If C1 is a ConstantInt and C2 is not, swap the operands.
1114 if (Instruction::isCommutative(Opcode
))
1115 return ConstantExpr::get(Opcode
, C2
, C1
);
1118 if (ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(C1
)) {
1119 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
1120 const APInt
&C1V
= CI1
->getValue();
1121 const APInt
&C2V
= CI2
->getValue();
1125 case Instruction::Add
:
1126 return ConstantInt::get(CI1
->getContext(), C1V
+ C2V
);
1127 case Instruction::Sub
:
1128 return ConstantInt::get(CI1
->getContext(), C1V
- C2V
);
1129 case Instruction::Mul
:
1130 return ConstantInt::get(CI1
->getContext(), C1V
* C2V
);
1131 case Instruction::UDiv
:
1132 assert(!CI2
->isNullValue() && "Div by zero handled above");
1133 return ConstantInt::get(CI1
->getContext(), C1V
.udiv(C2V
));
1134 case Instruction::SDiv
:
1135 assert(!CI2
->isNullValue() && "Div by zero handled above");
1136 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
1137 return UndefValue::get(CI1
->getType()); // MIN_INT / -1 -> undef
1138 return ConstantInt::get(CI1
->getContext(), C1V
.sdiv(C2V
));
1139 case Instruction::URem
:
1140 assert(!CI2
->isNullValue() && "Div by zero handled above");
1141 return ConstantInt::get(CI1
->getContext(), C1V
.urem(C2V
));
1142 case Instruction::SRem
:
1143 assert(!CI2
->isNullValue() && "Div by zero handled above");
1144 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
1145 return UndefValue::get(CI1
->getType()); // MIN_INT % -1 -> undef
1146 return ConstantInt::get(CI1
->getContext(), C1V
.srem(C2V
));
1147 case Instruction::And
:
1148 return ConstantInt::get(CI1
->getContext(), C1V
& C2V
);
1149 case Instruction::Or
:
1150 return ConstantInt::get(CI1
->getContext(), C1V
| C2V
);
1151 case Instruction::Xor
:
1152 return ConstantInt::get(CI1
->getContext(), C1V
^ C2V
);
1153 case Instruction::Shl
:
1154 if (C2V
.ult(C1V
.getBitWidth()))
1155 return ConstantInt::get(CI1
->getContext(), C1V
.shl(C2V
));
1156 return UndefValue::get(C1
->getType()); // too big shift is undef
1157 case Instruction::LShr
:
1158 if (C2V
.ult(C1V
.getBitWidth()))
1159 return ConstantInt::get(CI1
->getContext(), C1V
.lshr(C2V
));
1160 return UndefValue::get(C1
->getType()); // too big shift is undef
1161 case Instruction::AShr
:
1162 if (C2V
.ult(C1V
.getBitWidth()))
1163 return ConstantInt::get(CI1
->getContext(), C1V
.ashr(C2V
));
1164 return UndefValue::get(C1
->getType()); // too big shift is undef
1169 case Instruction::SDiv
:
1170 case Instruction::UDiv
:
1171 case Instruction::URem
:
1172 case Instruction::SRem
:
1173 case Instruction::LShr
:
1174 case Instruction::AShr
:
1175 case Instruction::Shl
:
1176 if (CI1
->equalsInt(0)) return C1
;
1181 } else if (ConstantFP
*CFP1
= dyn_cast
<ConstantFP
>(C1
)) {
1182 if (ConstantFP
*CFP2
= dyn_cast
<ConstantFP
>(C2
)) {
1183 const APFloat
&C1V
= CFP1
->getValueAPF();
1184 const APFloat
&C2V
= CFP2
->getValueAPF();
1185 APFloat C3V
= C1V
; // copy for modification
1189 case Instruction::FAdd
:
1190 (void)C3V
.add(C2V
, APFloat::rmNearestTiesToEven
);
1191 return ConstantFP::get(C1
->getContext(), C3V
);
1192 case Instruction::FSub
:
1193 (void)C3V
.subtract(C2V
, APFloat::rmNearestTiesToEven
);
1194 return ConstantFP::get(C1
->getContext(), C3V
);
1195 case Instruction::FMul
:
1196 (void)C3V
.multiply(C2V
, APFloat::rmNearestTiesToEven
);
1197 return ConstantFP::get(C1
->getContext(), C3V
);
1198 case Instruction::FDiv
:
1199 (void)C3V
.divide(C2V
, APFloat::rmNearestTiesToEven
);
1200 return ConstantFP::get(C1
->getContext(), C3V
);
1201 case Instruction::FRem
:
1203 return ConstantFP::get(C1
->getContext(), C3V
);
1206 } else if (VectorType
*VTy
= dyn_cast
<VectorType
>(C1
->getType())) {
1207 // Perform elementwise folding.
1208 SmallVector
<Constant
*, 16> Result
;
1209 Type
*Ty
= IntegerType::get(VTy
->getContext(), 32);
1210 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
1211 Constant
*ExtractIdx
= ConstantInt::get(Ty
, i
);
1212 Constant
*LHS
= ConstantExpr::getExtractElement(C1
, ExtractIdx
);
1213 Constant
*RHS
= ConstantExpr::getExtractElement(C2
, ExtractIdx
);
1215 // If any element of a divisor vector is zero, the whole op is undef.
1216 if ((Opcode
== Instruction::SDiv
|| Opcode
== Instruction::UDiv
||
1217 Opcode
== Instruction::SRem
|| Opcode
== Instruction::URem
) &&
1219 return UndefValue::get(VTy
);
1221 Result
.push_back(ConstantExpr::get(Opcode
, LHS
, RHS
));
1224 return ConstantVector::get(Result
);
1227 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1228 // There are many possible foldings we could do here. We should probably
1229 // at least fold add of a pointer with an integer into the appropriate
1230 // getelementptr. This will improve alias analysis a bit.
1232 // Given ((a + b) + c), if (b + c) folds to something interesting, return
1234 if (Instruction::isAssociative(Opcode
) && CE1
->getOpcode() == Opcode
) {
1235 Constant
*T
= ConstantExpr::get(Opcode
, CE1
->getOperand(1), C2
);
1236 if (!isa
<ConstantExpr
>(T
) || cast
<ConstantExpr
>(T
)->getOpcode() != Opcode
)
1237 return ConstantExpr::get(Opcode
, CE1
->getOperand(0), T
);
1239 } else if (isa
<ConstantExpr
>(C2
)) {
1240 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1241 // other way if possible.
1242 if (Instruction::isCommutative(Opcode
))
1243 return ConstantFoldBinaryInstruction(Opcode
, C2
, C1
);
1246 // i1 can be simplified in many cases.
1247 if (C1
->getType()->isIntegerTy(1)) {
1249 case Instruction::Add
:
1250 case Instruction::Sub
:
1251 return ConstantExpr::getXor(C1
, C2
);
1252 case Instruction::Mul
:
1253 return ConstantExpr::getAnd(C1
, C2
);
1254 case Instruction::Shl
:
1255 case Instruction::LShr
:
1256 case Instruction::AShr
:
1257 // We can assume that C2 == 0. If it were one the result would be
1258 // undefined because the shift value is as large as the bitwidth.
1260 case Instruction::SDiv
:
1261 case Instruction::UDiv
:
1262 // We can assume that C2 == 1. If it were zero the result would be
1263 // undefined through division by zero.
1265 case Instruction::URem
:
1266 case Instruction::SRem
:
1267 // We can assume that C2 == 1. If it were zero the result would be
1268 // undefined through division by zero.
1269 return ConstantInt::getFalse(C1
->getContext());
1275 // We don't know how to fold this.
1279 /// This type is zero-sized if it's an array or structure of zero-sized types.
1280 /// The only leaf zero-sized type is an empty structure.
1281 static bool isMaybeZeroSizedType(Type
*Ty
) {
1282 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1283 if (STy
->isOpaque()) return true; // Can't say.
1285 // If all of elements have zero size, this does too.
1286 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
1287 if (!isMaybeZeroSizedType(STy
->getElementType(i
))) return false;
1290 } else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
1291 return isMaybeZeroSizedType(ATy
->getElementType());
1296 /// Compare the two constants as though they were getelementptr indices.
1297 /// This allows coercion of the types to be the same thing.
1299 /// If the two constants are the "same" (after coercion), return 0. If the
1300 /// first is less than the second, return -1, if the second is less than the
1301 /// first, return 1. If the constants are not integral, return -2.
1303 static int IdxCompare(Constant
*C1
, Constant
*C2
, Type
*ElTy
) {
1304 if (C1
== C2
) return 0;
1306 // Ok, we found a different index. If they are not ConstantInt, we can't do
1307 // anything with them.
1308 if (!isa
<ConstantInt
>(C1
) || !isa
<ConstantInt
>(C2
))
1309 return -2; // don't know!
1311 // We cannot compare the indices if they don't fit in an int64_t.
1312 if (cast
<ConstantInt
>(C1
)->getValue().getActiveBits() > 64 ||
1313 cast
<ConstantInt
>(C2
)->getValue().getActiveBits() > 64)
1314 return -2; // don't know!
1316 // Ok, we have two differing integer indices. Sign extend them to be the same
1318 int64_t C1Val
= cast
<ConstantInt
>(C1
)->getSExtValue();
1319 int64_t C2Val
= cast
<ConstantInt
>(C2
)->getSExtValue();
1321 if (C1Val
== C2Val
) return 0; // They are equal
1323 // If the type being indexed over is really just a zero sized type, there is
1324 // no pointer difference being made here.
1325 if (isMaybeZeroSizedType(ElTy
))
1326 return -2; // dunno.
1328 // If they are really different, now that they are the same type, then we
1329 // found a difference!
1336 /// This function determines if there is anything we can decide about the two
1337 /// constants provided. This doesn't need to handle simple things like
1338 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1339 /// If we can determine that the two constants have a particular relation to
1340 /// each other, we should return the corresponding FCmpInst predicate,
1341 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1342 /// ConstantFoldCompareInstruction.
1344 /// To simplify this code we canonicalize the relation so that the first
1345 /// operand is always the most "complex" of the two. We consider ConstantFP
1346 /// to be the simplest, and ConstantExprs to be the most complex.
1347 static FCmpInst::Predicate
evaluateFCmpRelation(Constant
*V1
, Constant
*V2
) {
1348 assert(V1
->getType() == V2
->getType() &&
1349 "Cannot compare values of different types!");
1351 // Handle degenerate case quickly
1352 if (V1
== V2
) return FCmpInst::FCMP_OEQ
;
1354 if (!isa
<ConstantExpr
>(V1
)) {
1355 if (!isa
<ConstantExpr
>(V2
)) {
1356 // Simple case, use the standard constant folder.
1357 ConstantInt
*R
= nullptr;
1358 R
= dyn_cast
<ConstantInt
>(
1359 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ
, V1
, V2
));
1360 if (R
&& !R
->isZero())
1361 return FCmpInst::FCMP_OEQ
;
1362 R
= dyn_cast
<ConstantInt
>(
1363 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT
, V1
, V2
));
1364 if (R
&& !R
->isZero())
1365 return FCmpInst::FCMP_OLT
;
1366 R
= dyn_cast
<ConstantInt
>(
1367 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT
, V1
, V2
));
1368 if (R
&& !R
->isZero())
1369 return FCmpInst::FCMP_OGT
;
1371 // Nothing more we can do
1372 return FCmpInst::BAD_FCMP_PREDICATE
;
1375 // If the first operand is simple and second is ConstantExpr, swap operands.
1376 FCmpInst::Predicate SwappedRelation
= evaluateFCmpRelation(V2
, V1
);
1377 if (SwappedRelation
!= FCmpInst::BAD_FCMP_PREDICATE
)
1378 return FCmpInst::getSwappedPredicate(SwappedRelation
);
1380 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1381 // constantexpr or a simple constant.
1382 ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1383 switch (CE1
->getOpcode()) {
1384 case Instruction::FPTrunc
:
1385 case Instruction::FPExt
:
1386 case Instruction::UIToFP
:
1387 case Instruction::SIToFP
:
1388 // We might be able to do something with these but we don't right now.
1394 // There are MANY other foldings that we could perform here. They will
1395 // probably be added on demand, as they seem needed.
1396 return FCmpInst::BAD_FCMP_PREDICATE
;
1399 static ICmpInst::Predicate
areGlobalsPotentiallyEqual(const GlobalValue
*GV1
,
1400 const GlobalValue
*GV2
) {
1401 auto isGlobalUnsafeForEquality
= [](const GlobalValue
*GV
) {
1402 if (GV
->hasExternalWeakLinkage() || GV
->hasWeakAnyLinkage())
1404 if (const auto *GVar
= dyn_cast
<GlobalVariable
>(GV
)) {
1405 Type
*Ty
= GVar
->getValueType();
1406 // A global with opaque type might end up being zero sized.
1409 // A global with an empty type might lie at the address of any other
1411 if (Ty
->isEmptyTy())
1416 // Don't try to decide equality of aliases.
1417 if (!isa
<GlobalAlias
>(GV1
) && !isa
<GlobalAlias
>(GV2
))
1418 if (!isGlobalUnsafeForEquality(GV1
) && !isGlobalUnsafeForEquality(GV2
))
1419 return ICmpInst::ICMP_NE
;
1420 return ICmpInst::BAD_ICMP_PREDICATE
;
1423 /// This function determines if there is anything we can decide about the two
1424 /// constants provided. This doesn't need to handle simple things like integer
1425 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1426 /// If we can determine that the two constants have a particular relation to
1427 /// each other, we should return the corresponding ICmp predicate, otherwise
1428 /// return ICmpInst::BAD_ICMP_PREDICATE.
1430 /// To simplify this code we canonicalize the relation so that the first
1431 /// operand is always the most "complex" of the two. We consider simple
1432 /// constants (like ConstantInt) to be the simplest, followed by
1433 /// GlobalValues, followed by ConstantExpr's (the most complex).
1435 static ICmpInst::Predicate
evaluateICmpRelation(Constant
*V1
, Constant
*V2
,
1437 assert(V1
->getType() == V2
->getType() &&
1438 "Cannot compare different types of values!");
1439 if (V1
== V2
) return ICmpInst::ICMP_EQ
;
1441 if (!isa
<ConstantExpr
>(V1
) && !isa
<GlobalValue
>(V1
) &&
1442 !isa
<BlockAddress
>(V1
)) {
1443 if (!isa
<GlobalValue
>(V2
) && !isa
<ConstantExpr
>(V2
) &&
1444 !isa
<BlockAddress
>(V2
)) {
1445 // We distilled this down to a simple case, use the standard constant
1447 ConstantInt
*R
= nullptr;
1448 ICmpInst::Predicate pred
= ICmpInst::ICMP_EQ
;
1449 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1450 if (R
&& !R
->isZero())
1452 pred
= isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1453 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1454 if (R
&& !R
->isZero())
1456 pred
= isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1457 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1458 if (R
&& !R
->isZero())
1461 // If we couldn't figure it out, bail.
1462 return ICmpInst::BAD_ICMP_PREDICATE
;
1465 // If the first operand is simple, swap operands.
1466 ICmpInst::Predicate SwappedRelation
=
1467 evaluateICmpRelation(V2
, V1
, isSigned
);
1468 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1469 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1471 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V1
)) {
1472 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1473 ICmpInst::Predicate SwappedRelation
=
1474 evaluateICmpRelation(V2
, V1
, isSigned
);
1475 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1476 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1477 return ICmpInst::BAD_ICMP_PREDICATE
;
1480 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1481 // constant (which, since the types must match, means that it's a
1482 // ConstantPointerNull).
1483 if (const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(V2
)) {
1484 return areGlobalsPotentiallyEqual(GV
, GV2
);
1485 } else if (isa
<BlockAddress
>(V2
)) {
1486 return ICmpInst::ICMP_NE
; // Globals never equal labels.
1488 assert(isa
<ConstantPointerNull
>(V2
) && "Canonicalization guarantee!");
1489 // GlobalVals can never be null unless they have external weak linkage.
1490 // We don't try to evaluate aliases here.
1491 if (!GV
->hasExternalWeakLinkage() && !isa
<GlobalAlias
>(GV
))
1492 return ICmpInst::ICMP_NE
;
1494 } else if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(V1
)) {
1495 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1496 ICmpInst::Predicate SwappedRelation
=
1497 evaluateICmpRelation(V2
, V1
, isSigned
);
1498 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1499 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1500 return ICmpInst::BAD_ICMP_PREDICATE
;
1503 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1504 // constant (which, since the types must match, means that it is a
1505 // ConstantPointerNull).
1506 if (const BlockAddress
*BA2
= dyn_cast
<BlockAddress
>(V2
)) {
1507 // Block address in another function can't equal this one, but block
1508 // addresses in the current function might be the same if blocks are
1510 if (BA2
->getFunction() != BA
->getFunction())
1511 return ICmpInst::ICMP_NE
;
1513 // Block addresses aren't null, don't equal the address of globals.
1514 assert((isa
<ConstantPointerNull
>(V2
) || isa
<GlobalValue
>(V2
)) &&
1515 "Canonicalization guarantee!");
1516 return ICmpInst::ICMP_NE
;
1519 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1520 // constantexpr, a global, block address, or a simple constant.
1521 ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1522 Constant
*CE1Op0
= CE1
->getOperand(0);
1524 switch (CE1
->getOpcode()) {
1525 case Instruction::Trunc
:
1526 case Instruction::FPTrunc
:
1527 case Instruction::FPExt
:
1528 case Instruction::FPToUI
:
1529 case Instruction::FPToSI
:
1530 break; // We can't evaluate floating point casts or truncations.
1532 case Instruction::UIToFP
:
1533 case Instruction::SIToFP
:
1534 case Instruction::BitCast
:
1535 case Instruction::ZExt
:
1536 case Instruction::SExt
:
1537 // We can't evaluate floating point casts or truncations.
1538 if (CE1Op0
->getType()->isFloatingPointTy())
1541 // If the cast is not actually changing bits, and the second operand is a
1542 // null pointer, do the comparison with the pre-casted value.
1543 if (V2
->isNullValue() &&
1544 (CE1
->getType()->isPointerTy() || CE1
->getType()->isIntegerTy())) {
1545 if (CE1
->getOpcode() == Instruction::ZExt
) isSigned
= false;
1546 if (CE1
->getOpcode() == Instruction::SExt
) isSigned
= true;
1547 return evaluateICmpRelation(CE1Op0
,
1548 Constant::getNullValue(CE1Op0
->getType()),
1553 case Instruction::GetElementPtr
: {
1554 GEPOperator
*CE1GEP
= cast
<GEPOperator
>(CE1
);
1555 // Ok, since this is a getelementptr, we know that the constant has a
1556 // pointer type. Check the various cases.
1557 if (isa
<ConstantPointerNull
>(V2
)) {
1558 // If we are comparing a GEP to a null pointer, check to see if the base
1559 // of the GEP equals the null pointer.
1560 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1561 if (GV
->hasExternalWeakLinkage())
1562 // Weak linkage GVals could be zero or not. We're comparing that
1563 // to null pointer so its greater-or-equal
1564 return isSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
1566 // If its not weak linkage, the GVal must have a non-zero address
1567 // so the result is greater-than
1568 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1569 } else if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1570 // If we are indexing from a null pointer, check to see if we have any
1571 // non-zero indices.
1572 for (unsigned i
= 1, e
= CE1
->getNumOperands(); i
!= e
; ++i
)
1573 if (!CE1
->getOperand(i
)->isNullValue())
1574 // Offsetting from null, must not be equal.
1575 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1576 // Only zero indexes from null, must still be zero.
1577 return ICmpInst::ICMP_EQ
;
1579 // Otherwise, we can't really say if the first operand is null or not.
1580 } else if (const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(V2
)) {
1581 if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1582 if (GV2
->hasExternalWeakLinkage())
1583 // Weak linkage GVals could be zero or not. We're comparing it to
1584 // a null pointer, so its less-or-equal
1585 return isSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
1587 // If its not weak linkage, the GVal must have a non-zero address
1588 // so the result is less-than
1589 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1590 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1592 // If this is a getelementptr of the same global, then it must be
1593 // different. Because the types must match, the getelementptr could
1594 // only have at most one index, and because we fold getelementptr's
1595 // with a single zero index, it must be nonzero.
1596 assert(CE1
->getNumOperands() == 2 &&
1597 !CE1
->getOperand(1)->isNullValue() &&
1598 "Surprising getelementptr!");
1599 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1601 if (CE1GEP
->hasAllZeroIndices())
1602 return areGlobalsPotentiallyEqual(GV
, GV2
);
1603 return ICmpInst::BAD_ICMP_PREDICATE
;
1607 ConstantExpr
*CE2
= cast
<ConstantExpr
>(V2
);
1608 Constant
*CE2Op0
= CE2
->getOperand(0);
1610 // There are MANY other foldings that we could perform here. They will
1611 // probably be added on demand, as they seem needed.
1612 switch (CE2
->getOpcode()) {
1614 case Instruction::GetElementPtr
:
1615 // By far the most common case to handle is when the base pointers are
1616 // obviously to the same global.
1617 if (isa
<GlobalValue
>(CE1Op0
) && isa
<GlobalValue
>(CE2Op0
)) {
1618 // Don't know relative ordering, but check for inequality.
1619 if (CE1Op0
!= CE2Op0
) {
1620 GEPOperator
*CE2GEP
= cast
<GEPOperator
>(CE2
);
1621 if (CE1GEP
->hasAllZeroIndices() && CE2GEP
->hasAllZeroIndices())
1622 return areGlobalsPotentiallyEqual(cast
<GlobalValue
>(CE1Op0
),
1623 cast
<GlobalValue
>(CE2Op0
));
1624 return ICmpInst::BAD_ICMP_PREDICATE
;
1626 // Ok, we know that both getelementptr instructions are based on the
1627 // same global. From this, we can precisely determine the relative
1628 // ordering of the resultant pointers.
1631 // The logic below assumes that the result of the comparison
1632 // can be determined by finding the first index that differs.
1633 // This doesn't work if there is over-indexing in any
1634 // subsequent indices, so check for that case first.
1635 if (!CE1
->isGEPWithNoNotionalOverIndexing() ||
1636 !CE2
->isGEPWithNoNotionalOverIndexing())
1637 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1639 // Compare all of the operands the GEP's have in common.
1640 gep_type_iterator GTI
= gep_type_begin(CE1
);
1641 for (;i
!= CE1
->getNumOperands() && i
!= CE2
->getNumOperands();
1643 switch (IdxCompare(CE1
->getOperand(i
),
1644 CE2
->getOperand(i
), GTI
.getIndexedType())) {
1645 case -1: return isSigned
? ICmpInst::ICMP_SLT
:ICmpInst::ICMP_ULT
;
1646 case 1: return isSigned
? ICmpInst::ICMP_SGT
:ICmpInst::ICMP_UGT
;
1647 case -2: return ICmpInst::BAD_ICMP_PREDICATE
;
1650 // Ok, we ran out of things they have in common. If any leftovers
1651 // are non-zero then we have a difference, otherwise we are equal.
1652 for (; i
< CE1
->getNumOperands(); ++i
)
1653 if (!CE1
->getOperand(i
)->isNullValue()) {
1654 if (isa
<ConstantInt
>(CE1
->getOperand(i
)))
1655 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1657 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1660 for (; i
< CE2
->getNumOperands(); ++i
)
1661 if (!CE2
->getOperand(i
)->isNullValue()) {
1662 if (isa
<ConstantInt
>(CE2
->getOperand(i
)))
1663 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1665 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1667 return ICmpInst::ICMP_EQ
;
1677 return ICmpInst::BAD_ICMP_PREDICATE
;
1680 Constant
*llvm::ConstantFoldCompareInstruction(unsigned short pred
,
1681 Constant
*C1
, Constant
*C2
) {
1683 if (VectorType
*VT
= dyn_cast
<VectorType
>(C1
->getType()))
1684 ResultTy
= VectorType::get(Type::getInt1Ty(C1
->getContext()),
1685 VT
->getNumElements());
1687 ResultTy
= Type::getInt1Ty(C1
->getContext());
1689 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1690 if (pred
== FCmpInst::FCMP_FALSE
)
1691 return Constant::getNullValue(ResultTy
);
1693 if (pred
== FCmpInst::FCMP_TRUE
)
1694 return Constant::getAllOnesValue(ResultTy
);
1696 // Handle some degenerate cases first
1697 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
)) {
1698 CmpInst::Predicate Predicate
= CmpInst::Predicate(pred
);
1699 bool isIntegerPredicate
= ICmpInst::isIntPredicate(Predicate
);
1700 // For EQ and NE, we can always pick a value for the undef to make the
1701 // predicate pass or fail, so we can return undef.
1702 // Also, if both operands are undef, we can return undef for int comparison.
1703 if (ICmpInst::isEquality(Predicate
) || (isIntegerPredicate
&& C1
== C2
))
1704 return UndefValue::get(ResultTy
);
1706 // Otherwise, for integer compare, pick the same value as the non-undef
1707 // operand, and fold it to true or false.
1708 if (isIntegerPredicate
)
1709 return ConstantInt::get(ResultTy
, CmpInst::isTrueWhenEqual(Predicate
));
1711 // Choosing NaN for the undef will always make unordered comparison succeed
1712 // and ordered comparison fails.
1713 return ConstantInt::get(ResultTy
, CmpInst::isUnordered(Predicate
));
1716 // icmp eq/ne(null,GV) -> false/true
1717 if (C1
->isNullValue()) {
1718 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C2
))
1719 // Don't try to evaluate aliases. External weak GV can be null.
1720 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage()) {
1721 if (pred
== ICmpInst::ICMP_EQ
)
1722 return ConstantInt::getFalse(C1
->getContext());
1723 else if (pred
== ICmpInst::ICMP_NE
)
1724 return ConstantInt::getTrue(C1
->getContext());
1726 // icmp eq/ne(GV,null) -> false/true
1727 } else if (C2
->isNullValue()) {
1728 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C1
))
1729 // Don't try to evaluate aliases. External weak GV can be null.
1730 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage()) {
1731 if (pred
== ICmpInst::ICMP_EQ
)
1732 return ConstantInt::getFalse(C1
->getContext());
1733 else if (pred
== ICmpInst::ICMP_NE
)
1734 return ConstantInt::getTrue(C1
->getContext());
1738 // If the comparison is a comparison between two i1's, simplify it.
1739 if (C1
->getType()->isIntegerTy(1)) {
1741 case ICmpInst::ICMP_EQ
:
1742 if (isa
<ConstantInt
>(C2
))
1743 return ConstantExpr::getXor(C1
, ConstantExpr::getNot(C2
));
1744 return ConstantExpr::getXor(ConstantExpr::getNot(C1
), C2
);
1745 case ICmpInst::ICMP_NE
:
1746 return ConstantExpr::getXor(C1
, C2
);
1752 if (isa
<ConstantInt
>(C1
) && isa
<ConstantInt
>(C2
)) {
1753 const APInt
&V1
= cast
<ConstantInt
>(C1
)->getValue();
1754 const APInt
&V2
= cast
<ConstantInt
>(C2
)->getValue();
1756 default: llvm_unreachable("Invalid ICmp Predicate");
1757 case ICmpInst::ICMP_EQ
: return ConstantInt::get(ResultTy
, V1
== V2
);
1758 case ICmpInst::ICMP_NE
: return ConstantInt::get(ResultTy
, V1
!= V2
);
1759 case ICmpInst::ICMP_SLT
: return ConstantInt::get(ResultTy
, V1
.slt(V2
));
1760 case ICmpInst::ICMP_SGT
: return ConstantInt::get(ResultTy
, V1
.sgt(V2
));
1761 case ICmpInst::ICMP_SLE
: return ConstantInt::get(ResultTy
, V1
.sle(V2
));
1762 case ICmpInst::ICMP_SGE
: return ConstantInt::get(ResultTy
, V1
.sge(V2
));
1763 case ICmpInst::ICMP_ULT
: return ConstantInt::get(ResultTy
, V1
.ult(V2
));
1764 case ICmpInst::ICMP_UGT
: return ConstantInt::get(ResultTy
, V1
.ugt(V2
));
1765 case ICmpInst::ICMP_ULE
: return ConstantInt::get(ResultTy
, V1
.ule(V2
));
1766 case ICmpInst::ICMP_UGE
: return ConstantInt::get(ResultTy
, V1
.uge(V2
));
1768 } else if (isa
<ConstantFP
>(C1
) && isa
<ConstantFP
>(C2
)) {
1769 const APFloat
&C1V
= cast
<ConstantFP
>(C1
)->getValueAPF();
1770 const APFloat
&C2V
= cast
<ConstantFP
>(C2
)->getValueAPF();
1771 APFloat::cmpResult R
= C1V
.compare(C2V
);
1773 default: llvm_unreachable("Invalid FCmp Predicate");
1774 case FCmpInst::FCMP_FALSE
: return Constant::getNullValue(ResultTy
);
1775 case FCmpInst::FCMP_TRUE
: return Constant::getAllOnesValue(ResultTy
);
1776 case FCmpInst::FCMP_UNO
:
1777 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
);
1778 case FCmpInst::FCMP_ORD
:
1779 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpUnordered
);
1780 case FCmpInst::FCMP_UEQ
:
1781 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1782 R
==APFloat::cmpEqual
);
1783 case FCmpInst::FCMP_OEQ
:
1784 return ConstantInt::get(ResultTy
, R
==APFloat::cmpEqual
);
1785 case FCmpInst::FCMP_UNE
:
1786 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpEqual
);
1787 case FCmpInst::FCMP_ONE
:
1788 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
||
1789 R
==APFloat::cmpGreaterThan
);
1790 case FCmpInst::FCMP_ULT
:
1791 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1792 R
==APFloat::cmpLessThan
);
1793 case FCmpInst::FCMP_OLT
:
1794 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
);
1795 case FCmpInst::FCMP_UGT
:
1796 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1797 R
==APFloat::cmpGreaterThan
);
1798 case FCmpInst::FCMP_OGT
:
1799 return ConstantInt::get(ResultTy
, R
==APFloat::cmpGreaterThan
);
1800 case FCmpInst::FCMP_ULE
:
1801 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpGreaterThan
);
1802 case FCmpInst::FCMP_OLE
:
1803 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
||
1804 R
==APFloat::cmpEqual
);
1805 case FCmpInst::FCMP_UGE
:
1806 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpLessThan
);
1807 case FCmpInst::FCMP_OGE
:
1808 return ConstantInt::get(ResultTy
, R
==APFloat::cmpGreaterThan
||
1809 R
==APFloat::cmpEqual
);
1811 } else if (C1
->getType()->isVectorTy()) {
1812 // If we can constant fold the comparison of each element, constant fold
1813 // the whole vector comparison.
1814 SmallVector
<Constant
*, 4> ResElts
;
1815 Type
*Ty
= IntegerType::get(C1
->getContext(), 32);
1816 // Compare the elements, producing an i1 result or constant expr.
1817 for (unsigned i
= 0, e
= C1
->getType()->getVectorNumElements(); i
!= e
;++i
){
1819 ConstantExpr::getExtractElement(C1
, ConstantInt::get(Ty
, i
));
1821 ConstantExpr::getExtractElement(C2
, ConstantInt::get(Ty
, i
));
1823 ResElts
.push_back(ConstantExpr::getCompare(pred
, C1E
, C2E
));
1826 return ConstantVector::get(ResElts
);
1829 if (C1
->getType()->isFloatingPointTy() &&
1830 // Only call evaluateFCmpRelation if we have a constant expr to avoid
1831 // infinite recursive loop
1832 (isa
<ConstantExpr
>(C1
) || isa
<ConstantExpr
>(C2
))) {
1833 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1834 switch (evaluateFCmpRelation(C1
, C2
)) {
1835 default: llvm_unreachable("Unknown relation!");
1836 case FCmpInst::FCMP_UNO
:
1837 case FCmpInst::FCMP_ORD
:
1838 case FCmpInst::FCMP_UEQ
:
1839 case FCmpInst::FCMP_UNE
:
1840 case FCmpInst::FCMP_ULT
:
1841 case FCmpInst::FCMP_UGT
:
1842 case FCmpInst::FCMP_ULE
:
1843 case FCmpInst::FCMP_UGE
:
1844 case FCmpInst::FCMP_TRUE
:
1845 case FCmpInst::FCMP_FALSE
:
1846 case FCmpInst::BAD_FCMP_PREDICATE
:
1847 break; // Couldn't determine anything about these constants.
1848 case FCmpInst::FCMP_OEQ
: // We know that C1 == C2
1849 Result
= (pred
== FCmpInst::FCMP_UEQ
|| pred
== FCmpInst::FCMP_OEQ
||
1850 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
||
1851 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1853 case FCmpInst::FCMP_OLT
: // We know that C1 < C2
1854 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1855 pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
||
1856 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
);
1858 case FCmpInst::FCMP_OGT
: // We know that C1 > C2
1859 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1860 pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
||
1861 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1863 case FCmpInst::FCMP_OLE
: // We know that C1 <= C2
1864 // We can only partially decide this relation.
1865 if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1867 else if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1870 case FCmpInst::FCMP_OGE
: // We known that C1 >= C2
1871 // We can only partially decide this relation.
1872 if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1874 else if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1877 case FCmpInst::FCMP_ONE
: // We know that C1 != C2
1878 // We can only partially decide this relation.
1879 if (pred
== FCmpInst::FCMP_OEQ
|| pred
== FCmpInst::FCMP_UEQ
)
1881 else if (pred
== FCmpInst::FCMP_ONE
|| pred
== FCmpInst::FCMP_UNE
)
1886 // If we evaluated the result, return it now.
1888 return ConstantInt::get(ResultTy
, Result
);
1891 // Evaluate the relation between the two constants, per the predicate.
1892 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1893 switch (evaluateICmpRelation(C1
, C2
,
1894 CmpInst::isSigned((CmpInst::Predicate
)pred
))) {
1895 default: llvm_unreachable("Unknown relational!");
1896 case ICmpInst::BAD_ICMP_PREDICATE
:
1897 break; // Couldn't determine anything about these constants.
1898 case ICmpInst::ICMP_EQ
: // We know the constants are equal!
1899 // If we know the constants are equal, we can decide the result of this
1900 // computation precisely.
1901 Result
= ICmpInst::isTrueWhenEqual((ICmpInst::Predicate
)pred
);
1903 case ICmpInst::ICMP_ULT
:
1905 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_ULE
:
1907 case ICmpInst::ICMP_UGT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_UGE
:
1911 case ICmpInst::ICMP_SLT
:
1913 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_SLE
:
1915 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_SGE
:
1919 case ICmpInst::ICMP_UGT
:
1921 case ICmpInst::ICMP_UGT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_UGE
:
1923 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_ULE
:
1927 case ICmpInst::ICMP_SGT
:
1929 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_SGE
:
1931 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_SLE
:
1935 case ICmpInst::ICMP_ULE
:
1936 if (pred
== ICmpInst::ICMP_UGT
) Result
= 0;
1937 if (pred
== ICmpInst::ICMP_ULT
|| pred
== ICmpInst::ICMP_ULE
) Result
= 1;
1939 case ICmpInst::ICMP_SLE
:
1940 if (pred
== ICmpInst::ICMP_SGT
) Result
= 0;
1941 if (pred
== ICmpInst::ICMP_SLT
|| pred
== ICmpInst::ICMP_SLE
) Result
= 1;
1943 case ICmpInst::ICMP_UGE
:
1944 if (pred
== ICmpInst::ICMP_ULT
) Result
= 0;
1945 if (pred
== ICmpInst::ICMP_UGT
|| pred
== ICmpInst::ICMP_UGE
) Result
= 1;
1947 case ICmpInst::ICMP_SGE
:
1948 if (pred
== ICmpInst::ICMP_SLT
) Result
= 0;
1949 if (pred
== ICmpInst::ICMP_SGT
|| pred
== ICmpInst::ICMP_SGE
) Result
= 1;
1951 case ICmpInst::ICMP_NE
:
1952 if (pred
== ICmpInst::ICMP_EQ
) Result
= 0;
1953 if (pred
== ICmpInst::ICMP_NE
) Result
= 1;
1957 // If we evaluated the result, return it now.
1959 return ConstantInt::get(ResultTy
, Result
);
1961 // If the right hand side is a bitcast, try using its inverse to simplify
1962 // it by moving it to the left hand side. We can't do this if it would turn
1963 // a vector compare into a scalar compare or visa versa.
1964 if (ConstantExpr
*CE2
= dyn_cast
<ConstantExpr
>(C2
)) {
1965 Constant
*CE2Op0
= CE2
->getOperand(0);
1966 if (CE2
->getOpcode() == Instruction::BitCast
&&
1967 CE2
->getType()->isVectorTy() == CE2Op0
->getType()->isVectorTy()) {
1968 Constant
*Inverse
= ConstantExpr::getBitCast(C1
, CE2Op0
->getType());
1969 return ConstantExpr::getICmp(pred
, Inverse
, CE2Op0
);
1973 // If the left hand side is an extension, try eliminating it.
1974 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1975 if ((CE1
->getOpcode() == Instruction::SExt
&&
1976 ICmpInst::isSigned((ICmpInst::Predicate
)pred
)) ||
1977 (CE1
->getOpcode() == Instruction::ZExt
&&
1978 !ICmpInst::isSigned((ICmpInst::Predicate
)pred
))){
1979 Constant
*CE1Op0
= CE1
->getOperand(0);
1980 Constant
*CE1Inverse
= ConstantExpr::getTrunc(CE1
, CE1Op0
->getType());
1981 if (CE1Inverse
== CE1Op0
) {
1982 // Check whether we can safely truncate the right hand side.
1983 Constant
*C2Inverse
= ConstantExpr::getTrunc(C2
, CE1Op0
->getType());
1984 if (ConstantExpr::getCast(CE1
->getOpcode(), C2Inverse
,
1985 C2
->getType()) == C2
)
1986 return ConstantExpr::getICmp(pred
, CE1Inverse
, C2Inverse
);
1991 if ((!isa
<ConstantExpr
>(C1
) && isa
<ConstantExpr
>(C2
)) ||
1992 (C1
->isNullValue() && !C2
->isNullValue())) {
1993 // If C2 is a constant expr and C1 isn't, flip them around and fold the
1994 // other way if possible.
1995 // Also, if C1 is null and C2 isn't, flip them around.
1996 pred
= ICmpInst::getSwappedPredicate((ICmpInst::Predicate
)pred
);
1997 return ConstantExpr::getICmp(pred
, C2
, C1
);
2003 /// Test whether the given sequence of *normalized* indices is "inbounds".
2004 template<typename IndexTy
>
2005 static bool isInBoundsIndices(ArrayRef
<IndexTy
> Idxs
) {
2006 // No indices means nothing that could be out of bounds.
2007 if (Idxs
.empty()) return true;
2009 // If the first index is zero, it's in bounds.
2010 if (cast
<Constant
>(Idxs
[0])->isNullValue()) return true;
2012 // If the first index is one and all the rest are zero, it's in bounds,
2013 // by the one-past-the-end rule.
2014 if (!cast
<ConstantInt
>(Idxs
[0])->isOne())
2016 for (unsigned i
= 1, e
= Idxs
.size(); i
!= e
; ++i
)
2017 if (!cast
<Constant
>(Idxs
[i
])->isNullValue())
2022 /// Test whether a given ConstantInt is in-range for a SequentialType.
2023 static bool isIndexInRangeOfArrayType(uint64_t NumElements
,
2024 const ConstantInt
*CI
) {
2025 // We cannot bounds check the index if it doesn't fit in an int64_t.
2026 if (CI
->getValue().getActiveBits() > 64)
2029 // A negative index or an index past the end of our sequential type is
2030 // considered out-of-range.
2031 int64_t IndexVal
= CI
->getSExtValue();
2032 if (IndexVal
< 0 || (NumElements
> 0 && (uint64_t)IndexVal
>= NumElements
))
2035 // Otherwise, it is in-range.
2039 Constant
*llvm::ConstantFoldGetElementPtr(Type
*PointeeTy
, Constant
*C
,
2041 Optional
<unsigned> InRangeIndex
,
2042 ArrayRef
<Value
*> Idxs
) {
2043 if (Idxs
.empty()) return C
;
2044 Constant
*Idx0
= cast
<Constant
>(Idxs
[0]);
2045 if ((Idxs
.size() == 1 && Idx0
->isNullValue()))
2048 if (isa
<UndefValue
>(C
)) {
2049 Type
*GEPTy
= GetElementPtrInst::getGEPReturnType(
2050 C
, makeArrayRef((Value
* const *)Idxs
.data(), Idxs
.size()));
2051 return UndefValue::get(GEPTy
);
2054 if (C
->isNullValue()) {
2056 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
)
2057 if (!cast
<Constant
>(Idxs
[i
])->isNullValue()) {
2062 PointerType
*PtrTy
= cast
<PointerType
>(C
->getType()->getScalarType());
2063 Type
*Ty
= GetElementPtrInst::getIndexedType(PointeeTy
, Idxs
);
2065 assert(Ty
&& "Invalid indices for GEP!");
2066 Type
*GEPTy
= PointerType::get(Ty
, PtrTy
->getAddressSpace());
2067 if (VectorType
*VT
= dyn_cast
<VectorType
>(C
->getType()))
2068 GEPTy
= VectorType::get(GEPTy
, VT
->getNumElements());
2069 return Constant::getNullValue(GEPTy
);
2073 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2074 // Combine Indices - If the source pointer to this getelementptr instruction
2075 // is a getelementptr instruction, combine the indices of the two
2076 // getelementptr instructions into a single instruction.
2078 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
2079 gep_type_iterator LastI
= gep_type_end(CE
);
2080 for (gep_type_iterator I
= gep_type_begin(CE
), E
= gep_type_end(CE
);
2084 // We cannot combine indices if doing so would take us outside of an
2085 // array or vector. Doing otherwise could trick us if we evaluated such a
2086 // GEP as part of a load.
2088 // e.g. Consider if the original GEP was:
2089 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2090 // i32 0, i32 0, i64 0)
2092 // If we then tried to offset it by '8' to get to the third element,
2093 // an i8, we should *not* get:
2094 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2095 // i32 0, i32 0, i64 8)
2097 // This GEP tries to index array element '8 which runs out-of-bounds.
2098 // Subsequent evaluation would get confused and produce erroneous results.
2100 // The following prohibits such a GEP from being formed by checking to see
2101 // if the index is in-range with respect to an array or vector.
2102 bool PerformFold
= false;
2103 if (Idx0
->isNullValue())
2105 else if (LastI
.isSequential())
2106 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx0
))
2108 !LastI
.isBoundedSequential() ||
2109 isIndexInRangeOfArrayType(LastI
.getSequentialNumElements(), CI
);
2112 SmallVector
<Value
*, 16> NewIndices
;
2113 NewIndices
.reserve(Idxs
.size() + CE
->getNumOperands());
2114 NewIndices
.append(CE
->op_begin() + 1, CE
->op_end() - 1);
2116 // Add the last index of the source with the first index of the new GEP.
2117 // Make sure to handle the case when they are actually different types.
2118 Constant
*Combined
= CE
->getOperand(CE
->getNumOperands()-1);
2119 // Otherwise it must be an array.
2120 if (!Idx0
->isNullValue()) {
2121 Type
*IdxTy
= Combined
->getType();
2122 if (IdxTy
!= Idx0
->getType()) {
2123 unsigned CommonExtendedWidth
=
2124 std::max(IdxTy
->getIntegerBitWidth(),
2125 Idx0
->getType()->getIntegerBitWidth());
2126 CommonExtendedWidth
= std::max(CommonExtendedWidth
, 64U);
2129 Type::getIntNTy(IdxTy
->getContext(), CommonExtendedWidth
);
2130 Constant
*C1
= ConstantExpr::getSExtOrBitCast(Idx0
, CommonTy
);
2131 Constant
*C2
= ConstantExpr::getSExtOrBitCast(Combined
, CommonTy
);
2132 Combined
= ConstantExpr::get(Instruction::Add
, C1
, C2
);
2135 ConstantExpr::get(Instruction::Add
, Idx0
, Combined
);
2139 NewIndices
.push_back(Combined
);
2140 NewIndices
.append(Idxs
.begin() + 1, Idxs
.end());
2142 // The combined GEP normally inherits its index inrange attribute from
2143 // the inner GEP, but if the inner GEP's last index was adjusted by the
2144 // outer GEP, any inbounds attribute on that index is invalidated.
2145 Optional
<unsigned> IRIndex
= cast
<GEPOperator
>(CE
)->getInRangeIndex();
2146 if (IRIndex
&& *IRIndex
== CE
->getNumOperands() - 2 && !Idx0
->isNullValue())
2149 return ConstantExpr::getGetElementPtr(
2150 cast
<GEPOperator
>(CE
)->getSourceElementType(), CE
->getOperand(0),
2151 NewIndices
, InBounds
&& cast
<GEPOperator
>(CE
)->isInBounds(),
2156 // Attempt to fold casts to the same type away. For example, folding:
2158 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2162 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2164 // Don't fold if the cast is changing address spaces.
2165 if (CE
->isCast() && Idxs
.size() > 1 && Idx0
->isNullValue()) {
2166 PointerType
*SrcPtrTy
=
2167 dyn_cast
<PointerType
>(CE
->getOperand(0)->getType());
2168 PointerType
*DstPtrTy
= dyn_cast
<PointerType
>(CE
->getType());
2169 if (SrcPtrTy
&& DstPtrTy
) {
2170 ArrayType
*SrcArrayTy
=
2171 dyn_cast
<ArrayType
>(SrcPtrTy
->getElementType());
2172 ArrayType
*DstArrayTy
=
2173 dyn_cast
<ArrayType
>(DstPtrTy
->getElementType());
2174 if (SrcArrayTy
&& DstArrayTy
2175 && SrcArrayTy
->getElementType() == DstArrayTy
->getElementType()
2176 && SrcPtrTy
->getAddressSpace() == DstPtrTy
->getAddressSpace())
2177 return ConstantExpr::getGetElementPtr(SrcArrayTy
,
2178 (Constant
*)CE
->getOperand(0),
2179 Idxs
, InBounds
, InRangeIndex
);
2184 // Check to see if any array indices are not within the corresponding
2185 // notional array or vector bounds. If so, try to determine if they can be
2186 // factored out into preceding dimensions.
2187 SmallVector
<Constant
*, 8> NewIdxs
;
2188 Type
*Ty
= PointeeTy
;
2189 Type
*Prev
= C
->getType();
2190 bool Unknown
= !isa
<ConstantInt
>(Idxs
[0]);
2191 for (unsigned i
= 1, e
= Idxs
.size(); i
!= e
;
2192 Prev
= Ty
, Ty
= cast
<CompositeType
>(Ty
)->getTypeAtIndex(Idxs
[i
]), ++i
) {
2193 auto *CI
= dyn_cast
<ConstantInt
>(Idxs
[i
]);
2195 // We don't know if it's in range or not.
2199 if (InRangeIndex
&& i
== *InRangeIndex
+ 1) {
2200 // If an index is marked inrange, we cannot apply this canonicalization to
2201 // the following index, as that will cause the inrange index to point to
2202 // the wrong element.
2205 if (isa
<StructType
>(Ty
)) {
2206 // The verify makes sure that GEPs into a struct are in range.
2209 auto *STy
= cast
<SequentialType
>(Ty
);
2210 if (isa
<VectorType
>(STy
)) {
2211 // There can be awkward padding in after a non-power of two vector.
2215 if (isIndexInRangeOfArrayType(STy
->getNumElements(), CI
))
2216 // It's in range, skip to the next index.
2218 if (isa
<StructType
>(Prev
)) {
2219 // It's out of range, but the prior dimension is a struct
2220 // so we can't do anything about it.
2224 if (CI
->getSExtValue() < 0) {
2225 // It's out of range and negative, don't try to factor it.
2229 // It's out of range, but we can factor it into the prior
2231 NewIdxs
.resize(Idxs
.size());
2232 // Determine the number of elements in our sequential type.
2233 uint64_t NumElements
= STy
->getArrayNumElements();
2235 ConstantInt
*Factor
= ConstantInt::get(CI
->getType(), NumElements
);
2236 NewIdxs
[i
] = ConstantExpr::getSRem(CI
, Factor
);
2238 Constant
*PrevIdx
= NewIdxs
[i
-1] ? NewIdxs
[i
-1] :
2239 cast
<Constant
>(Idxs
[i
- 1]);
2240 Constant
*Div
= ConstantExpr::getSDiv(CI
, Factor
);
2242 unsigned CommonExtendedWidth
=
2243 std::max(PrevIdx
->getType()->getIntegerBitWidth(),
2244 Div
->getType()->getIntegerBitWidth());
2245 CommonExtendedWidth
= std::max(CommonExtendedWidth
, 64U);
2247 // Before adding, extend both operands to i64 to avoid
2248 // overflow trouble.
2249 if (!PrevIdx
->getType()->isIntegerTy(CommonExtendedWidth
))
2250 PrevIdx
= ConstantExpr::getSExt(
2251 PrevIdx
, Type::getIntNTy(Div
->getContext(), CommonExtendedWidth
));
2252 if (!Div
->getType()->isIntegerTy(CommonExtendedWidth
))
2253 Div
= ConstantExpr::getSExt(
2254 Div
, Type::getIntNTy(Div
->getContext(), CommonExtendedWidth
));
2256 NewIdxs
[i
- 1] = ConstantExpr::getAdd(PrevIdx
, Div
);
2259 // If we did any factoring, start over with the adjusted indices.
2260 if (!NewIdxs
.empty()) {
2261 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
)
2262 if (!NewIdxs
[i
]) NewIdxs
[i
] = cast
<Constant
>(Idxs
[i
]);
2263 return ConstantExpr::getGetElementPtr(PointeeTy
, C
, NewIdxs
, InBounds
,
2267 // If all indices are known integers and normalized, we can do a simple
2268 // check for the "inbounds" property.
2269 if (!Unknown
&& !InBounds
)
2270 if (auto *GV
= dyn_cast
<GlobalVariable
>(C
))
2271 if (!GV
->hasExternalWeakLinkage() && isInBoundsIndices(Idxs
))
2272 return ConstantExpr::getGetElementPtr(PointeeTy
, C
, Idxs
,
2273 /*InBounds=*/true, InRangeIndex
);