1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/RecyclingAllocator.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetSubtargetInfo.h"
32 #define DEBUG_TYPE "machine-cse"
34 STATISTIC(NumCoalesces
, "Number of copies coalesced");
35 STATISTIC(NumCSEs
, "Number of common subexpression eliminated");
36 STATISTIC(NumPhysCSEs
,
37 "Number of physreg referencing common subexpr eliminated");
38 STATISTIC(NumCrossBBCSEs
,
39 "Number of cross-MBB physreg referencing CS eliminated");
40 STATISTIC(NumCommutes
, "Number of copies coalesced after commuting");
43 class MachineCSE
: public MachineFunctionPass
{
44 const TargetInstrInfo
*TII
;
45 const TargetRegisterInfo
*TRI
;
47 MachineDominatorTree
*DT
;
48 MachineRegisterInfo
*MRI
;
50 static char ID
; // Pass identification
51 MachineCSE() : MachineFunctionPass(ID
), LookAheadLimit(0), CurrVN(0) {
52 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
55 bool runOnMachineFunction(MachineFunction
&MF
) override
;
57 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
59 MachineFunctionPass::getAnalysisUsage(AU
);
60 AU
.addRequired
<AAResultsWrapperPass
>();
61 AU
.addPreservedID(MachineLoopInfoID
);
62 AU
.addRequired
<MachineDominatorTree
>();
63 AU
.addPreserved
<MachineDominatorTree
>();
66 void releaseMemory() override
{
72 unsigned LookAheadLimit
;
73 typedef RecyclingAllocator
<BumpPtrAllocator
,
74 ScopedHashTableVal
<MachineInstr
*, unsigned> > AllocatorTy
;
75 typedef ScopedHashTable
<MachineInstr
*, unsigned,
76 MachineInstrExpressionTrait
, AllocatorTy
> ScopedHTType
;
77 typedef ScopedHTType::ScopeTy ScopeType
;
78 DenseMap
<MachineBasicBlock
*, ScopeType
*> ScopeMap
;
80 SmallVector
<MachineInstr
*, 64> Exps
;
83 bool PerformTrivialCopyPropagation(MachineInstr
*MI
,
84 MachineBasicBlock
*MBB
);
85 bool isPhysDefTriviallyDead(unsigned Reg
,
86 MachineBasicBlock::const_iterator I
,
87 MachineBasicBlock::const_iterator E
) const;
88 bool hasLivePhysRegDefUses(const MachineInstr
*MI
,
89 const MachineBasicBlock
*MBB
,
90 SmallSet
<unsigned,8> &PhysRefs
,
91 SmallVectorImpl
<unsigned> &PhysDefs
,
92 bool &PhysUseDef
) const;
93 bool PhysRegDefsReach(MachineInstr
*CSMI
, MachineInstr
*MI
,
94 SmallSet
<unsigned,8> &PhysRefs
,
95 SmallVectorImpl
<unsigned> &PhysDefs
,
96 bool &NonLocal
) const;
97 bool isCSECandidate(MachineInstr
*MI
);
98 bool isProfitableToCSE(unsigned CSReg
, unsigned Reg
,
99 MachineInstr
*CSMI
, MachineInstr
*MI
);
100 void EnterScope(MachineBasicBlock
*MBB
);
101 void ExitScope(MachineBasicBlock
*MBB
);
102 bool ProcessBlock(MachineBasicBlock
*MBB
);
103 void ExitScopeIfDone(MachineDomTreeNode
*Node
,
104 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
);
105 bool PerformCSE(MachineDomTreeNode
*Node
);
107 } // end anonymous namespace
109 char MachineCSE::ID
= 0;
110 char &llvm::MachineCSEID
= MachineCSE::ID
;
111 INITIALIZE_PASS_BEGIN(MachineCSE
, "machine-cse",
112 "Machine Common Subexpression Elimination", false, false)
113 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
114 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
115 INITIALIZE_PASS_END(MachineCSE
, "machine-cse",
116 "Machine Common Subexpression Elimination", false, false)
118 /// The source register of a COPY machine instruction can be propagated to all
119 /// its users, and this propagation could increase the probability of finding
120 /// common subexpressions. If the COPY has only one user, the COPY itself can
122 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr
*MI
,
123 MachineBasicBlock
*MBB
) {
124 bool Changed
= false;
125 for (MachineOperand
&MO
: MI
->operands()) {
126 if (!MO
.isReg() || !MO
.isUse())
128 unsigned Reg
= MO
.getReg();
129 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
131 bool OnlyOneUse
= MRI
->hasOneNonDBGUse(Reg
);
132 MachineInstr
*DefMI
= MRI
->getVRegDef(Reg
);
133 if (!DefMI
->isCopy())
135 unsigned SrcReg
= DefMI
->getOperand(1).getReg();
136 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
138 if (DefMI
->getOperand(0).getSubReg())
140 // FIXME: We should trivially coalesce subregister copies to expose CSE
141 // opportunities on instructions with truncated operands (see
142 // cse-add-with-overflow.ll). This can be done here as follows:
144 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
146 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
148 // The 2-addr pass has been updated to handle coalesced subregs. However,
149 // some machine-specific code still can't handle it.
150 // To handle it properly we also need a way find a constrained subregister
151 // class given a super-reg class and subreg index.
152 if (DefMI
->getOperand(1).getSubReg())
154 const TargetRegisterClass
*RC
= MRI
->getRegClass(Reg
);
155 if (!MRI
->constrainRegClass(SrcReg
, RC
))
157 DEBUG(dbgs() << "Coalescing: " << *DefMI
);
158 DEBUG(dbgs() << "*** to: " << *MI
);
159 // Propagate SrcReg of copies to MI.
161 MRI
->clearKillFlags(SrcReg
);
162 // Coalesce single use copies.
164 DefMI
->eraseFromParent();
174 MachineCSE::isPhysDefTriviallyDead(unsigned Reg
,
175 MachineBasicBlock::const_iterator I
,
176 MachineBasicBlock::const_iterator E
) const {
177 unsigned LookAheadLeft
= LookAheadLimit
;
178 while (LookAheadLeft
) {
179 // Skip over dbg_value's.
180 I
= skipDebugInstructionsForward(I
, E
);
183 // Reached end of block, register is obviously dead.
186 bool SeenDef
= false;
187 for (const MachineOperand
&MO
: I
->operands()) {
188 if (MO
.isRegMask() && MO
.clobbersPhysReg(Reg
))
190 if (!MO
.isReg() || !MO
.getReg())
192 if (!TRI
->regsOverlap(MO
.getReg(), Reg
))
200 // See a def of Reg (or an alias) before encountering any use, it's
210 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
211 /// physical registers (except for dead defs of physical registers). It also
212 /// returns the physical register def by reference if it's the only one and the
213 /// instruction does not uses a physical register.
214 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr
*MI
,
215 const MachineBasicBlock
*MBB
,
216 SmallSet
<unsigned,8> &PhysRefs
,
217 SmallVectorImpl
<unsigned> &PhysDefs
,
218 bool &PhysUseDef
) const{
219 // First, add all uses to PhysRefs.
220 for (const MachineOperand
&MO
: MI
->operands()) {
221 if (!MO
.isReg() || MO
.isDef())
223 unsigned Reg
= MO
.getReg();
226 if (TargetRegisterInfo::isVirtualRegister(Reg
))
228 // Reading constant physregs is ok.
229 if (!MRI
->isConstantPhysReg(Reg
))
230 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
231 PhysRefs
.insert(*AI
);
234 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
235 // (which currently contains only uses), set the PhysUseDef flag.
237 MachineBasicBlock::const_iterator I
= MI
; I
= std::next(I
);
238 for (const MachineOperand
&MO
: MI
->operands()) {
239 if (!MO
.isReg() || !MO
.isDef())
241 unsigned Reg
= MO
.getReg();
244 if (TargetRegisterInfo::isVirtualRegister(Reg
))
246 // Check against PhysRefs even if the def is "dead".
247 if (PhysRefs
.count(Reg
))
249 // If the def is dead, it's ok. But the def may not marked "dead". That's
250 // common since this pass is run before livevariables. We can scan
251 // forward a few instructions and check if it is obviously dead.
252 if (!MO
.isDead() && !isPhysDefTriviallyDead(Reg
, I
, MBB
->end()))
253 PhysDefs
.push_back(Reg
);
256 // Finally, add all defs to PhysRefs as well.
257 for (unsigned i
= 0, e
= PhysDefs
.size(); i
!= e
; ++i
)
258 for (MCRegAliasIterator
AI(PhysDefs
[i
], TRI
, true); AI
.isValid(); ++AI
)
259 PhysRefs
.insert(*AI
);
261 return !PhysRefs
.empty();
264 bool MachineCSE::PhysRegDefsReach(MachineInstr
*CSMI
, MachineInstr
*MI
,
265 SmallSet
<unsigned,8> &PhysRefs
,
266 SmallVectorImpl
<unsigned> &PhysDefs
,
267 bool &NonLocal
) const {
268 // For now conservatively returns false if the common subexpression is
269 // not in the same basic block as the given instruction. The only exception
270 // is if the common subexpression is in the sole predecessor block.
271 const MachineBasicBlock
*MBB
= MI
->getParent();
272 const MachineBasicBlock
*CSMBB
= CSMI
->getParent();
274 bool CrossMBB
= false;
276 if (MBB
->pred_size() != 1 || *MBB
->pred_begin() != CSMBB
)
279 for (unsigned i
= 0, e
= PhysDefs
.size(); i
!= e
; ++i
) {
280 if (MRI
->isAllocatable(PhysDefs
[i
]) || MRI
->isReserved(PhysDefs
[i
]))
281 // Avoid extending live range of physical registers if they are
282 //allocatable or reserved.
287 MachineBasicBlock::const_iterator I
= CSMI
; I
= std::next(I
);
288 MachineBasicBlock::const_iterator E
= MI
;
289 MachineBasicBlock::const_iterator EE
= CSMBB
->end();
290 unsigned LookAheadLeft
= LookAheadLimit
;
291 while (LookAheadLeft
) {
292 // Skip over dbg_value's.
293 while (I
!= E
&& I
!= EE
&& I
->isDebugValue())
297 assert(CrossMBB
&& "Reaching end-of-MBB without finding MI?");
309 for (const MachineOperand
&MO
: I
->operands()) {
310 // RegMasks go on instructions like calls that clobber lots of physregs.
311 // Don't attempt to CSE across such an instruction.
314 if (!MO
.isReg() || !MO
.isDef())
316 unsigned MOReg
= MO
.getReg();
317 if (TargetRegisterInfo::isVirtualRegister(MOReg
))
319 if (PhysRefs
.count(MOReg
))
330 bool MachineCSE::isCSECandidate(MachineInstr
*MI
) {
331 if (MI
->isPosition() || MI
->isPHI() || MI
->isImplicitDef() || MI
->isKill() ||
332 MI
->isInlineAsm() || MI
->isDebugValue())
336 if (MI
->isCopyLike())
339 // Ignore stuff that we obviously can't move.
340 if (MI
->mayStore() || MI
->isCall() || MI
->isTerminator() ||
341 MI
->hasUnmodeledSideEffects())
345 // Okay, this instruction does a load. As a refinement, we allow the target
346 // to decide whether the loaded value is actually a constant. If so, we can
347 // actually use it as a load.
348 if (!MI
->isDereferenceableInvariantLoad(AA
))
349 // FIXME: we should be able to hoist loads with no other side effects if
350 // there are no other instructions which can change memory in this loop.
351 // This is a trivial form of alias analysis.
355 // Ignore stack guard loads, otherwise the register that holds CSEed value may
356 // be spilled and get loaded back with corrupted data.
357 if (MI
->getOpcode() == TargetOpcode::LOAD_STACK_GUARD
)
363 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
364 /// common expression that defines Reg.
365 bool MachineCSE::isProfitableToCSE(unsigned CSReg
, unsigned Reg
,
366 MachineInstr
*CSMI
, MachineInstr
*MI
) {
367 // FIXME: Heuristics that works around the lack the live range splitting.
369 // If CSReg is used at all uses of Reg, CSE should not increase register
370 // pressure of CSReg.
371 bool MayIncreasePressure
= true;
372 if (TargetRegisterInfo::isVirtualRegister(CSReg
) &&
373 TargetRegisterInfo::isVirtualRegister(Reg
)) {
374 MayIncreasePressure
= false;
375 SmallPtrSet
<MachineInstr
*, 8> CSUses
;
376 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(CSReg
)) {
379 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(Reg
)) {
380 if (!CSUses
.count(&MI
)) {
381 MayIncreasePressure
= true;
386 if (!MayIncreasePressure
) return true;
388 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
389 // an immediate predecessor. We don't want to increase register pressure and
390 // end up causing other computation to be spilled.
391 if (TII
->isAsCheapAsAMove(*MI
)) {
392 MachineBasicBlock
*CSBB
= CSMI
->getParent();
393 MachineBasicBlock
*BB
= MI
->getParent();
394 if (CSBB
!= BB
&& !CSBB
->isSuccessor(BB
))
398 // Heuristics #2: If the expression doesn't not use a vr and the only use
399 // of the redundant computation are copies, do not cse.
400 bool HasVRegUse
= false;
401 for (const MachineOperand
&MO
: MI
->operands()) {
402 if (MO
.isReg() && MO
.isUse() &&
403 TargetRegisterInfo::isVirtualRegister(MO
.getReg())) {
409 bool HasNonCopyUse
= false;
410 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(Reg
)) {
412 if (!MI
.isCopyLike()) {
413 HasNonCopyUse
= true;
421 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
422 // it unless the defined value is already used in the BB of the new use.
424 SmallPtrSet
<MachineBasicBlock
*, 4> CSBBs
;
425 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(CSReg
)) {
426 HasPHI
|= MI
.isPHI();
427 CSBBs
.insert(MI
.getParent());
432 return CSBBs
.count(MI
->getParent());
435 void MachineCSE::EnterScope(MachineBasicBlock
*MBB
) {
436 DEBUG(dbgs() << "Entering: " << MBB
->getName() << '\n');
437 ScopeType
*Scope
= new ScopeType(VNT
);
438 ScopeMap
[MBB
] = Scope
;
441 void MachineCSE::ExitScope(MachineBasicBlock
*MBB
) {
442 DEBUG(dbgs() << "Exiting: " << MBB
->getName() << '\n');
443 DenseMap
<MachineBasicBlock
*, ScopeType
*>::iterator SI
= ScopeMap
.find(MBB
);
444 assert(SI
!= ScopeMap
.end());
449 bool MachineCSE::ProcessBlock(MachineBasicBlock
*MBB
) {
450 bool Changed
= false;
452 SmallVector
<std::pair
<unsigned, unsigned>, 8> CSEPairs
;
453 SmallVector
<unsigned, 2> ImplicitDefsToUpdate
;
454 SmallVector
<unsigned, 2> ImplicitDefs
;
455 for (MachineBasicBlock::iterator I
= MBB
->begin(), E
= MBB
->end(); I
!= E
; ) {
456 MachineInstr
*MI
= &*I
;
459 if (!isCSECandidate(MI
))
462 bool FoundCSE
= VNT
.count(MI
);
464 // Using trivial copy propagation to find more CSE opportunities.
465 if (PerformTrivialCopyPropagation(MI
, MBB
)) {
468 // After coalescing MI itself may become a copy.
469 if (MI
->isCopyLike())
472 // Try again to see if CSE is possible.
473 FoundCSE
= VNT
.count(MI
);
477 // Commute commutable instructions.
478 bool Commuted
= false;
479 if (!FoundCSE
&& MI
->isCommutable()) {
480 if (MachineInstr
*NewMI
= TII
->commuteInstruction(*MI
)) {
482 FoundCSE
= VNT
.count(NewMI
);
484 // New instruction. It doesn't need to be kept.
485 NewMI
->eraseFromParent();
487 } else if (!FoundCSE
)
488 // MI was changed but it didn't help, commute it back!
489 (void)TII
->commuteInstruction(*MI
);
493 // If the instruction defines physical registers and the values *may* be
494 // used, then it's not safe to replace it with a common subexpression.
495 // It's also not safe if the instruction uses physical registers.
496 bool CrossMBBPhysDef
= false;
497 SmallSet
<unsigned, 8> PhysRefs
;
498 SmallVector
<unsigned, 2> PhysDefs
;
499 bool PhysUseDef
= false;
500 if (FoundCSE
&& hasLivePhysRegDefUses(MI
, MBB
, PhysRefs
,
501 PhysDefs
, PhysUseDef
)) {
504 // ... Unless the CS is local or is in the sole predecessor block
505 // and it also defines the physical register which is not clobbered
506 // in between and the physical register uses were not clobbered.
507 // This can never be the case if the instruction both uses and
508 // defines the same physical register, which was detected above.
510 unsigned CSVN
= VNT
.lookup(MI
);
511 MachineInstr
*CSMI
= Exps
[CSVN
];
512 if (PhysRegDefsReach(CSMI
, MI
, PhysRefs
, PhysDefs
, CrossMBBPhysDef
))
518 VNT
.insert(MI
, CurrVN
++);
523 // Found a common subexpression, eliminate it.
524 unsigned CSVN
= VNT
.lookup(MI
);
525 MachineInstr
*CSMI
= Exps
[CSVN
];
526 DEBUG(dbgs() << "Examining: " << *MI
);
527 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI
);
529 // Check if it's profitable to perform this CSE.
531 unsigned NumDefs
= MI
->getDesc().getNumDefs() +
532 MI
->getDesc().getNumImplicitDefs();
534 for (unsigned i
= 0, e
= MI
->getNumOperands(); NumDefs
&& i
!= e
; ++i
) {
535 MachineOperand
&MO
= MI
->getOperand(i
);
536 if (!MO
.isReg() || !MO
.isDef())
538 unsigned OldReg
= MO
.getReg();
539 unsigned NewReg
= CSMI
->getOperand(i
).getReg();
541 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
542 // we should make sure it is not dead at CSMI.
543 if (MO
.isImplicit() && !MO
.isDead() && CSMI
->getOperand(i
).isDead())
544 ImplicitDefsToUpdate
.push_back(i
);
546 // Keep track of implicit defs of CSMI and MI, to clear possibly
547 // made-redundant kill flags.
548 if (MO
.isImplicit() && !MO
.isDead() && OldReg
== NewReg
)
549 ImplicitDefs
.push_back(OldReg
);
551 if (OldReg
== NewReg
) {
556 assert(TargetRegisterInfo::isVirtualRegister(OldReg
) &&
557 TargetRegisterInfo::isVirtualRegister(NewReg
) &&
558 "Do not CSE physical register defs!");
560 if (!isProfitableToCSE(NewReg
, OldReg
, CSMI
, MI
)) {
561 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
566 // Don't perform CSE if the result of the old instruction cannot exist
567 // within the register class of the new instruction.
568 const TargetRegisterClass
*OldRC
= MRI
->getRegClass(OldReg
);
569 if (!MRI
->constrainRegClass(NewReg
, OldRC
)) {
570 DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
575 CSEPairs
.push_back(std::make_pair(OldReg
, NewReg
));
579 // Actually perform the elimination.
581 for (std::pair
<unsigned, unsigned> &CSEPair
: CSEPairs
) {
582 unsigned OldReg
= CSEPair
.first
;
583 unsigned NewReg
= CSEPair
.second
;
584 // OldReg may have been unused but is used now, clear the Dead flag
585 MachineInstr
*Def
= MRI
->getUniqueVRegDef(NewReg
);
586 assert(Def
!= nullptr && "CSEd register has no unique definition?");
587 Def
->clearRegisterDeads(NewReg
);
588 // Replace with NewReg and clear kill flags which may be wrong now.
589 MRI
->replaceRegWith(OldReg
, NewReg
);
590 MRI
->clearKillFlags(NewReg
);
593 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
594 // we should make sure it is not dead at CSMI.
595 for (unsigned ImplicitDefToUpdate
: ImplicitDefsToUpdate
)
596 CSMI
->getOperand(ImplicitDefToUpdate
).setIsDead(false);
598 // Go through implicit defs of CSMI and MI, and clear the kill flags on
599 // their uses in all the instructions between CSMI and MI.
600 // We might have made some of the kill flags redundant, consider:
601 // subs ... %NZCV<imp-def> <- CSMI
602 // csinc ... %NZCV<imp-use,kill> <- this kill flag isn't valid anymore
603 // subs ... %NZCV<imp-def> <- MI, to be eliminated
604 // csinc ... %NZCV<imp-use,kill>
605 // Since we eliminated MI, and reused a register imp-def'd by CSMI
606 // (here %NZCV), that register, if it was killed before MI, should have
607 // that kill flag removed, because it's lifetime was extended.
608 if (CSMI
->getParent() == MI
->getParent()) {
609 for (MachineBasicBlock::iterator II
= CSMI
, IE
= MI
; II
!= IE
; ++II
)
610 for (auto ImplicitDef
: ImplicitDefs
)
611 if (MachineOperand
*MO
= II
->findRegisterUseOperand(
612 ImplicitDef
, /*isKill=*/true, TRI
))
613 MO
->setIsKill(false);
615 // If the instructions aren't in the same BB, bail out and clear the
616 // kill flag on all uses of the imp-def'd register.
617 for (auto ImplicitDef
: ImplicitDefs
)
618 MRI
->clearKillFlags(ImplicitDef
);
621 if (CrossMBBPhysDef
) {
622 // Add physical register defs now coming in from a predecessor to MBB
624 while (!PhysDefs
.empty()) {
625 unsigned LiveIn
= PhysDefs
.pop_back_val();
626 if (!MBB
->isLiveIn(LiveIn
))
627 MBB
->addLiveIn(LiveIn
);
632 MI
->eraseFromParent();
634 if (!PhysRefs
.empty())
640 VNT
.insert(MI
, CurrVN
++);
644 ImplicitDefsToUpdate
.clear();
645 ImplicitDefs
.clear();
651 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
652 /// dominator tree node if its a leaf or all of its children are done. Walk
653 /// up the dominator tree to destroy ancestors which are now done.
655 MachineCSE::ExitScopeIfDone(MachineDomTreeNode
*Node
,
656 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
) {
657 if (OpenChildren
[Node
])
661 ExitScope(Node
->getBlock());
663 // Now traverse upwards to pop ancestors whose offsprings are all done.
664 while (MachineDomTreeNode
*Parent
= Node
->getIDom()) {
665 unsigned Left
= --OpenChildren
[Parent
];
668 ExitScope(Parent
->getBlock());
673 bool MachineCSE::PerformCSE(MachineDomTreeNode
*Node
) {
674 SmallVector
<MachineDomTreeNode
*, 32> Scopes
;
675 SmallVector
<MachineDomTreeNode
*, 8> WorkList
;
676 DenseMap
<MachineDomTreeNode
*, unsigned> OpenChildren
;
680 // Perform a DFS walk to determine the order of visit.
681 WorkList
.push_back(Node
);
683 Node
= WorkList
.pop_back_val();
684 Scopes
.push_back(Node
);
685 const std::vector
<MachineDomTreeNode
*> &Children
= Node
->getChildren();
686 OpenChildren
[Node
] = Children
.size();
687 for (MachineDomTreeNode
*Child
: Children
)
688 WorkList
.push_back(Child
);
689 } while (!WorkList
.empty());
692 bool Changed
= false;
693 for (MachineDomTreeNode
*Node
: Scopes
) {
694 MachineBasicBlock
*MBB
= Node
->getBlock();
696 Changed
|= ProcessBlock(MBB
);
697 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
698 ExitScopeIfDone(Node
, OpenChildren
);
704 bool MachineCSE::runOnMachineFunction(MachineFunction
&MF
) {
705 if (skipFunction(*MF
.getFunction()))
708 TII
= MF
.getSubtarget().getInstrInfo();
709 TRI
= MF
.getSubtarget().getRegisterInfo();
710 MRI
= &MF
.getRegInfo();
711 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
712 DT
= &getAnalysis
<MachineDominatorTree
>();
713 LookAheadLimit
= TII
->getMachineCSELookAheadLimit();
714 return PerformCSE(DT
->getRootNode());