[AArch64] Crypto requires FP.
[llvm-core.git] / lib / CodeGen / MachineCSE.cpp
blob0766f465456c9aab88e9ca9bbbbc904bb4e4edca
1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/RecyclingAllocator.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetSubtargetInfo.h"
30 using namespace llvm;
32 #define DEBUG_TYPE "machine-cse"
34 STATISTIC(NumCoalesces, "Number of copies coalesced");
35 STATISTIC(NumCSEs, "Number of common subexpression eliminated");
36 STATISTIC(NumPhysCSEs,
37 "Number of physreg referencing common subexpr eliminated");
38 STATISTIC(NumCrossBBCSEs,
39 "Number of cross-MBB physreg referencing CS eliminated");
40 STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
42 namespace {
43 class MachineCSE : public MachineFunctionPass {
44 const TargetInstrInfo *TII;
45 const TargetRegisterInfo *TRI;
46 AliasAnalysis *AA;
47 MachineDominatorTree *DT;
48 MachineRegisterInfo *MRI;
49 public:
50 static char ID; // Pass identification
51 MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(0), CurrVN(0) {
52 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
55 bool runOnMachineFunction(MachineFunction &MF) override;
57 void getAnalysisUsage(AnalysisUsage &AU) const override {
58 AU.setPreservesCFG();
59 MachineFunctionPass::getAnalysisUsage(AU);
60 AU.addRequired<AAResultsWrapperPass>();
61 AU.addPreservedID(MachineLoopInfoID);
62 AU.addRequired<MachineDominatorTree>();
63 AU.addPreserved<MachineDominatorTree>();
66 void releaseMemory() override {
67 ScopeMap.clear();
68 Exps.clear();
71 private:
72 unsigned LookAheadLimit;
73 typedef RecyclingAllocator<BumpPtrAllocator,
74 ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
75 typedef ScopedHashTable<MachineInstr*, unsigned,
76 MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
77 typedef ScopedHTType::ScopeTy ScopeType;
78 DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
79 ScopedHTType VNT;
80 SmallVector<MachineInstr*, 64> Exps;
81 unsigned CurrVN;
83 bool PerformTrivialCopyPropagation(MachineInstr *MI,
84 MachineBasicBlock *MBB);
85 bool isPhysDefTriviallyDead(unsigned Reg,
86 MachineBasicBlock::const_iterator I,
87 MachineBasicBlock::const_iterator E) const;
88 bool hasLivePhysRegDefUses(const MachineInstr *MI,
89 const MachineBasicBlock *MBB,
90 SmallSet<unsigned,8> &PhysRefs,
91 SmallVectorImpl<unsigned> &PhysDefs,
92 bool &PhysUseDef) const;
93 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
94 SmallSet<unsigned,8> &PhysRefs,
95 SmallVectorImpl<unsigned> &PhysDefs,
96 bool &NonLocal) const;
97 bool isCSECandidate(MachineInstr *MI);
98 bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
99 MachineInstr *CSMI, MachineInstr *MI);
100 void EnterScope(MachineBasicBlock *MBB);
101 void ExitScope(MachineBasicBlock *MBB);
102 bool ProcessBlock(MachineBasicBlock *MBB);
103 void ExitScopeIfDone(MachineDomTreeNode *Node,
104 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
105 bool PerformCSE(MachineDomTreeNode *Node);
107 } // end anonymous namespace
109 char MachineCSE::ID = 0;
110 char &llvm::MachineCSEID = MachineCSE::ID;
111 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
112 "Machine Common Subexpression Elimination", false, false)
113 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
114 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
115 INITIALIZE_PASS_END(MachineCSE, "machine-cse",
116 "Machine Common Subexpression Elimination", false, false)
118 /// The source register of a COPY machine instruction can be propagated to all
119 /// its users, and this propagation could increase the probability of finding
120 /// common subexpressions. If the COPY has only one user, the COPY itself can
121 /// be removed.
122 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
123 MachineBasicBlock *MBB) {
124 bool Changed = false;
125 for (MachineOperand &MO : MI->operands()) {
126 if (!MO.isReg() || !MO.isUse())
127 continue;
128 unsigned Reg = MO.getReg();
129 if (!TargetRegisterInfo::isVirtualRegister(Reg))
130 continue;
131 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
132 MachineInstr *DefMI = MRI->getVRegDef(Reg);
133 if (!DefMI->isCopy())
134 continue;
135 unsigned SrcReg = DefMI->getOperand(1).getReg();
136 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
137 continue;
138 if (DefMI->getOperand(0).getSubReg())
139 continue;
140 // FIXME: We should trivially coalesce subregister copies to expose CSE
141 // opportunities on instructions with truncated operands (see
142 // cse-add-with-overflow.ll). This can be done here as follows:
143 // if (SrcSubReg)
144 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
145 // SrcSubReg);
146 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
148 // The 2-addr pass has been updated to handle coalesced subregs. However,
149 // some machine-specific code still can't handle it.
150 // To handle it properly we also need a way find a constrained subregister
151 // class given a super-reg class and subreg index.
152 if (DefMI->getOperand(1).getSubReg())
153 continue;
154 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
155 if (!MRI->constrainRegClass(SrcReg, RC))
156 continue;
157 DEBUG(dbgs() << "Coalescing: " << *DefMI);
158 DEBUG(dbgs() << "*** to: " << *MI);
159 // Propagate SrcReg of copies to MI.
160 MO.setReg(SrcReg);
161 MRI->clearKillFlags(SrcReg);
162 // Coalesce single use copies.
163 if (OnlyOneUse) {
164 DefMI->eraseFromParent();
165 ++NumCoalesces;
167 Changed = true;
170 return Changed;
173 bool
174 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
175 MachineBasicBlock::const_iterator I,
176 MachineBasicBlock::const_iterator E) const {
177 unsigned LookAheadLeft = LookAheadLimit;
178 while (LookAheadLeft) {
179 // Skip over dbg_value's.
180 I = skipDebugInstructionsForward(I, E);
182 if (I == E)
183 // Reached end of block, register is obviously dead.
184 return true;
186 bool SeenDef = false;
187 for (const MachineOperand &MO : I->operands()) {
188 if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
189 SeenDef = true;
190 if (!MO.isReg() || !MO.getReg())
191 continue;
192 if (!TRI->regsOverlap(MO.getReg(), Reg))
193 continue;
194 if (MO.isUse())
195 // Found a use!
196 return false;
197 SeenDef = true;
199 if (SeenDef)
200 // See a def of Reg (or an alias) before encountering any use, it's
201 // trivially dead.
202 return true;
204 --LookAheadLeft;
205 ++I;
207 return false;
210 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
211 /// physical registers (except for dead defs of physical registers). It also
212 /// returns the physical register def by reference if it's the only one and the
213 /// instruction does not uses a physical register.
214 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
215 const MachineBasicBlock *MBB,
216 SmallSet<unsigned,8> &PhysRefs,
217 SmallVectorImpl<unsigned> &PhysDefs,
218 bool &PhysUseDef) const{
219 // First, add all uses to PhysRefs.
220 for (const MachineOperand &MO : MI->operands()) {
221 if (!MO.isReg() || MO.isDef())
222 continue;
223 unsigned Reg = MO.getReg();
224 if (!Reg)
225 continue;
226 if (TargetRegisterInfo::isVirtualRegister(Reg))
227 continue;
228 // Reading constant physregs is ok.
229 if (!MRI->isConstantPhysReg(Reg))
230 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
231 PhysRefs.insert(*AI);
234 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
235 // (which currently contains only uses), set the PhysUseDef flag.
236 PhysUseDef = false;
237 MachineBasicBlock::const_iterator I = MI; I = std::next(I);
238 for (const MachineOperand &MO : MI->operands()) {
239 if (!MO.isReg() || !MO.isDef())
240 continue;
241 unsigned Reg = MO.getReg();
242 if (!Reg)
243 continue;
244 if (TargetRegisterInfo::isVirtualRegister(Reg))
245 continue;
246 // Check against PhysRefs even if the def is "dead".
247 if (PhysRefs.count(Reg))
248 PhysUseDef = true;
249 // If the def is dead, it's ok. But the def may not marked "dead". That's
250 // common since this pass is run before livevariables. We can scan
251 // forward a few instructions and check if it is obviously dead.
252 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
253 PhysDefs.push_back(Reg);
256 // Finally, add all defs to PhysRefs as well.
257 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
258 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
259 PhysRefs.insert(*AI);
261 return !PhysRefs.empty();
264 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
265 SmallSet<unsigned,8> &PhysRefs,
266 SmallVectorImpl<unsigned> &PhysDefs,
267 bool &NonLocal) const {
268 // For now conservatively returns false if the common subexpression is
269 // not in the same basic block as the given instruction. The only exception
270 // is if the common subexpression is in the sole predecessor block.
271 const MachineBasicBlock *MBB = MI->getParent();
272 const MachineBasicBlock *CSMBB = CSMI->getParent();
274 bool CrossMBB = false;
275 if (CSMBB != MBB) {
276 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
277 return false;
279 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
280 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
281 // Avoid extending live range of physical registers if they are
282 //allocatable or reserved.
283 return false;
285 CrossMBB = true;
287 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
288 MachineBasicBlock::const_iterator E = MI;
289 MachineBasicBlock::const_iterator EE = CSMBB->end();
290 unsigned LookAheadLeft = LookAheadLimit;
291 while (LookAheadLeft) {
292 // Skip over dbg_value's.
293 while (I != E && I != EE && I->isDebugValue())
294 ++I;
296 if (I == EE) {
297 assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
298 (void)CrossMBB;
299 CrossMBB = false;
300 NonLocal = true;
301 I = MBB->begin();
302 EE = MBB->end();
303 continue;
306 if (I == E)
307 return true;
309 for (const MachineOperand &MO : I->operands()) {
310 // RegMasks go on instructions like calls that clobber lots of physregs.
311 // Don't attempt to CSE across such an instruction.
312 if (MO.isRegMask())
313 return false;
314 if (!MO.isReg() || !MO.isDef())
315 continue;
316 unsigned MOReg = MO.getReg();
317 if (TargetRegisterInfo::isVirtualRegister(MOReg))
318 continue;
319 if (PhysRefs.count(MOReg))
320 return false;
323 --LookAheadLeft;
324 ++I;
327 return false;
330 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
331 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
332 MI->isInlineAsm() || MI->isDebugValue())
333 return false;
335 // Ignore copies.
336 if (MI->isCopyLike())
337 return false;
339 // Ignore stuff that we obviously can't move.
340 if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
341 MI->hasUnmodeledSideEffects())
342 return false;
344 if (MI->mayLoad()) {
345 // Okay, this instruction does a load. As a refinement, we allow the target
346 // to decide whether the loaded value is actually a constant. If so, we can
347 // actually use it as a load.
348 if (!MI->isDereferenceableInvariantLoad(AA))
349 // FIXME: we should be able to hoist loads with no other side effects if
350 // there are no other instructions which can change memory in this loop.
351 // This is a trivial form of alias analysis.
352 return false;
355 // Ignore stack guard loads, otherwise the register that holds CSEed value may
356 // be spilled and get loaded back with corrupted data.
357 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
358 return false;
360 return true;
363 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
364 /// common expression that defines Reg.
365 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
366 MachineInstr *CSMI, MachineInstr *MI) {
367 // FIXME: Heuristics that works around the lack the live range splitting.
369 // If CSReg is used at all uses of Reg, CSE should not increase register
370 // pressure of CSReg.
371 bool MayIncreasePressure = true;
372 if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
373 TargetRegisterInfo::isVirtualRegister(Reg)) {
374 MayIncreasePressure = false;
375 SmallPtrSet<MachineInstr*, 8> CSUses;
376 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
377 CSUses.insert(&MI);
379 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
380 if (!CSUses.count(&MI)) {
381 MayIncreasePressure = true;
382 break;
386 if (!MayIncreasePressure) return true;
388 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
389 // an immediate predecessor. We don't want to increase register pressure and
390 // end up causing other computation to be spilled.
391 if (TII->isAsCheapAsAMove(*MI)) {
392 MachineBasicBlock *CSBB = CSMI->getParent();
393 MachineBasicBlock *BB = MI->getParent();
394 if (CSBB != BB && !CSBB->isSuccessor(BB))
395 return false;
398 // Heuristics #2: If the expression doesn't not use a vr and the only use
399 // of the redundant computation are copies, do not cse.
400 bool HasVRegUse = false;
401 for (const MachineOperand &MO : MI->operands()) {
402 if (MO.isReg() && MO.isUse() &&
403 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
404 HasVRegUse = true;
405 break;
408 if (!HasVRegUse) {
409 bool HasNonCopyUse = false;
410 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
411 // Ignore copies.
412 if (!MI.isCopyLike()) {
413 HasNonCopyUse = true;
414 break;
417 if (!HasNonCopyUse)
418 return false;
421 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
422 // it unless the defined value is already used in the BB of the new use.
423 bool HasPHI = false;
424 SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
425 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
426 HasPHI |= MI.isPHI();
427 CSBBs.insert(MI.getParent());
430 if (!HasPHI)
431 return true;
432 return CSBBs.count(MI->getParent());
435 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
436 DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
437 ScopeType *Scope = new ScopeType(VNT);
438 ScopeMap[MBB] = Scope;
441 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
442 DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
443 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
444 assert(SI != ScopeMap.end());
445 delete SI->second;
446 ScopeMap.erase(SI);
449 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
450 bool Changed = false;
452 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
453 SmallVector<unsigned, 2> ImplicitDefsToUpdate;
454 SmallVector<unsigned, 2> ImplicitDefs;
455 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
456 MachineInstr *MI = &*I;
457 ++I;
459 if (!isCSECandidate(MI))
460 continue;
462 bool FoundCSE = VNT.count(MI);
463 if (!FoundCSE) {
464 // Using trivial copy propagation to find more CSE opportunities.
465 if (PerformTrivialCopyPropagation(MI, MBB)) {
466 Changed = true;
468 // After coalescing MI itself may become a copy.
469 if (MI->isCopyLike())
470 continue;
472 // Try again to see if CSE is possible.
473 FoundCSE = VNT.count(MI);
477 // Commute commutable instructions.
478 bool Commuted = false;
479 if (!FoundCSE && MI->isCommutable()) {
480 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
481 Commuted = true;
482 FoundCSE = VNT.count(NewMI);
483 if (NewMI != MI) {
484 // New instruction. It doesn't need to be kept.
485 NewMI->eraseFromParent();
486 Changed = true;
487 } else if (!FoundCSE)
488 // MI was changed but it didn't help, commute it back!
489 (void)TII->commuteInstruction(*MI);
493 // If the instruction defines physical registers and the values *may* be
494 // used, then it's not safe to replace it with a common subexpression.
495 // It's also not safe if the instruction uses physical registers.
496 bool CrossMBBPhysDef = false;
497 SmallSet<unsigned, 8> PhysRefs;
498 SmallVector<unsigned, 2> PhysDefs;
499 bool PhysUseDef = false;
500 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
501 PhysDefs, PhysUseDef)) {
502 FoundCSE = false;
504 // ... Unless the CS is local or is in the sole predecessor block
505 // and it also defines the physical register which is not clobbered
506 // in between and the physical register uses were not clobbered.
507 // This can never be the case if the instruction both uses and
508 // defines the same physical register, which was detected above.
509 if (!PhysUseDef) {
510 unsigned CSVN = VNT.lookup(MI);
511 MachineInstr *CSMI = Exps[CSVN];
512 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
513 FoundCSE = true;
517 if (!FoundCSE) {
518 VNT.insert(MI, CurrVN++);
519 Exps.push_back(MI);
520 continue;
523 // Found a common subexpression, eliminate it.
524 unsigned CSVN = VNT.lookup(MI);
525 MachineInstr *CSMI = Exps[CSVN];
526 DEBUG(dbgs() << "Examining: " << *MI);
527 DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
529 // Check if it's profitable to perform this CSE.
530 bool DoCSE = true;
531 unsigned NumDefs = MI->getDesc().getNumDefs() +
532 MI->getDesc().getNumImplicitDefs();
534 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
535 MachineOperand &MO = MI->getOperand(i);
536 if (!MO.isReg() || !MO.isDef())
537 continue;
538 unsigned OldReg = MO.getReg();
539 unsigned NewReg = CSMI->getOperand(i).getReg();
541 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
542 // we should make sure it is not dead at CSMI.
543 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
544 ImplicitDefsToUpdate.push_back(i);
546 // Keep track of implicit defs of CSMI and MI, to clear possibly
547 // made-redundant kill flags.
548 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
549 ImplicitDefs.push_back(OldReg);
551 if (OldReg == NewReg) {
552 --NumDefs;
553 continue;
556 assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
557 TargetRegisterInfo::isVirtualRegister(NewReg) &&
558 "Do not CSE physical register defs!");
560 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
561 DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
562 DoCSE = false;
563 break;
566 // Don't perform CSE if the result of the old instruction cannot exist
567 // within the register class of the new instruction.
568 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
569 if (!MRI->constrainRegClass(NewReg, OldRC)) {
570 DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
571 DoCSE = false;
572 break;
575 CSEPairs.push_back(std::make_pair(OldReg, NewReg));
576 --NumDefs;
579 // Actually perform the elimination.
580 if (DoCSE) {
581 for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
582 unsigned OldReg = CSEPair.first;
583 unsigned NewReg = CSEPair.second;
584 // OldReg may have been unused but is used now, clear the Dead flag
585 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
586 assert(Def != nullptr && "CSEd register has no unique definition?");
587 Def->clearRegisterDeads(NewReg);
588 // Replace with NewReg and clear kill flags which may be wrong now.
589 MRI->replaceRegWith(OldReg, NewReg);
590 MRI->clearKillFlags(NewReg);
593 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
594 // we should make sure it is not dead at CSMI.
595 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
596 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
598 // Go through implicit defs of CSMI and MI, and clear the kill flags on
599 // their uses in all the instructions between CSMI and MI.
600 // We might have made some of the kill flags redundant, consider:
601 // subs ... %NZCV<imp-def> <- CSMI
602 // csinc ... %NZCV<imp-use,kill> <- this kill flag isn't valid anymore
603 // subs ... %NZCV<imp-def> <- MI, to be eliminated
604 // csinc ... %NZCV<imp-use,kill>
605 // Since we eliminated MI, and reused a register imp-def'd by CSMI
606 // (here %NZCV), that register, if it was killed before MI, should have
607 // that kill flag removed, because it's lifetime was extended.
608 if (CSMI->getParent() == MI->getParent()) {
609 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
610 for (auto ImplicitDef : ImplicitDefs)
611 if (MachineOperand *MO = II->findRegisterUseOperand(
612 ImplicitDef, /*isKill=*/true, TRI))
613 MO->setIsKill(false);
614 } else {
615 // If the instructions aren't in the same BB, bail out and clear the
616 // kill flag on all uses of the imp-def'd register.
617 for (auto ImplicitDef : ImplicitDefs)
618 MRI->clearKillFlags(ImplicitDef);
621 if (CrossMBBPhysDef) {
622 // Add physical register defs now coming in from a predecessor to MBB
623 // livein list.
624 while (!PhysDefs.empty()) {
625 unsigned LiveIn = PhysDefs.pop_back_val();
626 if (!MBB->isLiveIn(LiveIn))
627 MBB->addLiveIn(LiveIn);
629 ++NumCrossBBCSEs;
632 MI->eraseFromParent();
633 ++NumCSEs;
634 if (!PhysRefs.empty())
635 ++NumPhysCSEs;
636 if (Commuted)
637 ++NumCommutes;
638 Changed = true;
639 } else {
640 VNT.insert(MI, CurrVN++);
641 Exps.push_back(MI);
643 CSEPairs.clear();
644 ImplicitDefsToUpdate.clear();
645 ImplicitDefs.clear();
648 return Changed;
651 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
652 /// dominator tree node if its a leaf or all of its children are done. Walk
653 /// up the dominator tree to destroy ancestors which are now done.
654 void
655 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
656 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
657 if (OpenChildren[Node])
658 return;
660 // Pop scope.
661 ExitScope(Node->getBlock());
663 // Now traverse upwards to pop ancestors whose offsprings are all done.
664 while (MachineDomTreeNode *Parent = Node->getIDom()) {
665 unsigned Left = --OpenChildren[Parent];
666 if (Left != 0)
667 break;
668 ExitScope(Parent->getBlock());
669 Node = Parent;
673 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
674 SmallVector<MachineDomTreeNode*, 32> Scopes;
675 SmallVector<MachineDomTreeNode*, 8> WorkList;
676 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
678 CurrVN = 0;
680 // Perform a DFS walk to determine the order of visit.
681 WorkList.push_back(Node);
682 do {
683 Node = WorkList.pop_back_val();
684 Scopes.push_back(Node);
685 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
686 OpenChildren[Node] = Children.size();
687 for (MachineDomTreeNode *Child : Children)
688 WorkList.push_back(Child);
689 } while (!WorkList.empty());
691 // Now perform CSE.
692 bool Changed = false;
693 for (MachineDomTreeNode *Node : Scopes) {
694 MachineBasicBlock *MBB = Node->getBlock();
695 EnterScope(MBB);
696 Changed |= ProcessBlock(MBB);
697 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
698 ExitScopeIfDone(Node, OpenChildren);
701 return Changed;
704 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
705 if (skipFunction(*MF.getFunction()))
706 return false;
708 TII = MF.getSubtarget().getInstrInfo();
709 TRI = MF.getSubtarget().getRegisterInfo();
710 MRI = &MF.getRegInfo();
711 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
712 DT = &getAnalysis<MachineDominatorTree>();
713 LookAheadLimit = TII->getMachineCSELookAheadLimit();
714 return PerformCSE(DT->getRootNode());