[ARM] MVE Vector Shifts
[llvm-core.git] / lib / IR / Constants.cpp
blobff551da29ae6b5200e7046d391b06268c68d7b90
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Constant* classes.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Constants.h"
14 #include "ConstantFold.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/GetElementPtrTypeIterator.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/ManagedStatic.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
32 using namespace llvm;
34 //===----------------------------------------------------------------------===//
35 // Constant Class
36 //===----------------------------------------------------------------------===//
38 bool Constant::isNegativeZeroValue() const {
39 // Floating point values have an explicit -0.0 value.
40 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
41 return CFP->isZero() && CFP->isNegative();
43 // Equivalent for a vector of -0.0's.
44 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
45 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
46 if (CV->getElementAsAPFloat(0).isNegZero())
47 return true;
49 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
50 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
51 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
52 return true;
54 // We've already handled true FP case; any other FP vectors can't represent -0.0.
55 if (getType()->isFPOrFPVectorTy())
56 return false;
58 // Otherwise, just use +0.0.
59 return isNullValue();
62 // Return true iff this constant is positive zero (floating point), negative
63 // zero (floating point), or a null value.
64 bool Constant::isZeroValue() const {
65 // Floating point values have an explicit -0.0 value.
66 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
67 return CFP->isZero();
69 // Equivalent for a vector of -0.0's.
70 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
71 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
72 if (CV->getElementAsAPFloat(0).isZero())
73 return true;
75 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
76 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
77 if (SplatCFP && SplatCFP->isZero())
78 return true;
80 // Otherwise, just use +0.0.
81 return isNullValue();
84 bool Constant::isNullValue() const {
85 // 0 is null.
86 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
87 return CI->isZero();
89 // +0.0 is null.
90 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
91 return CFP->isZero() && !CFP->isNegative();
93 // constant zero is zero for aggregates, cpnull is null for pointers, none for
94 // tokens.
95 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
96 isa<ConstantTokenNone>(this);
99 bool Constant::isAllOnesValue() const {
100 // Check for -1 integers
101 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
102 return CI->isMinusOne();
104 // Check for FP which are bitcasted from -1 integers
105 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
106 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
108 // Check for constant vectors which are splats of -1 values.
109 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
110 if (Constant *Splat = CV->getSplatValue())
111 return Splat->isAllOnesValue();
113 // Check for constant vectors which are splats of -1 values.
114 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
115 if (CV->isSplat()) {
116 if (CV->getElementType()->isFloatingPointTy())
117 return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue();
118 return CV->getElementAsAPInt(0).isAllOnesValue();
122 return false;
125 bool Constant::isOneValue() const {
126 // Check for 1 integers
127 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
128 return CI->isOne();
130 // Check for FP which are bitcasted from 1 integers
131 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
132 return CFP->getValueAPF().bitcastToAPInt().isOneValue();
134 // Check for constant vectors which are splats of 1 values.
135 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
136 if (Constant *Splat = CV->getSplatValue())
137 return Splat->isOneValue();
139 // Check for constant vectors which are splats of 1 values.
140 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
141 if (CV->isSplat()) {
142 if (CV->getElementType()->isFloatingPointTy())
143 return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue();
144 return CV->getElementAsAPInt(0).isOneValue();
148 return false;
151 bool Constant::isMinSignedValue() const {
152 // Check for INT_MIN integers
153 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
154 return CI->isMinValue(/*isSigned=*/true);
156 // Check for FP which are bitcasted from INT_MIN integers
157 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
158 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
160 // Check for constant vectors which are splats of INT_MIN values.
161 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
162 if (Constant *Splat = CV->getSplatValue())
163 return Splat->isMinSignedValue();
165 // Check for constant vectors which are splats of INT_MIN values.
166 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
167 if (CV->isSplat()) {
168 if (CV->getElementType()->isFloatingPointTy())
169 return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
170 return CV->getElementAsAPInt(0).isMinSignedValue();
174 return false;
177 bool Constant::isNotMinSignedValue() const {
178 // Check for INT_MIN integers
179 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
180 return !CI->isMinValue(/*isSigned=*/true);
182 // Check for FP which are bitcasted from INT_MIN integers
183 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
184 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
186 // Check that vectors don't contain INT_MIN
187 if (this->getType()->isVectorTy()) {
188 unsigned NumElts = this->getType()->getVectorNumElements();
189 for (unsigned i = 0; i != NumElts; ++i) {
190 Constant *Elt = this->getAggregateElement(i);
191 if (!Elt || !Elt->isNotMinSignedValue())
192 return false;
194 return true;
197 // It *may* contain INT_MIN, we can't tell.
198 return false;
201 bool Constant::isFiniteNonZeroFP() const {
202 if (auto *CFP = dyn_cast<ConstantFP>(this))
203 return CFP->getValueAPF().isFiniteNonZero();
204 if (!getType()->isVectorTy())
205 return false;
206 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
207 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
208 if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
209 return false;
211 return true;
214 bool Constant::isNormalFP() const {
215 if (auto *CFP = dyn_cast<ConstantFP>(this))
216 return CFP->getValueAPF().isNormal();
217 if (!getType()->isVectorTy())
218 return false;
219 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
220 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
221 if (!CFP || !CFP->getValueAPF().isNormal())
222 return false;
224 return true;
227 bool Constant::hasExactInverseFP() const {
228 if (auto *CFP = dyn_cast<ConstantFP>(this))
229 return CFP->getValueAPF().getExactInverse(nullptr);
230 if (!getType()->isVectorTy())
231 return false;
232 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
233 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
234 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
235 return false;
237 return true;
240 bool Constant::isNaN() const {
241 if (auto *CFP = dyn_cast<ConstantFP>(this))
242 return CFP->isNaN();
243 if (!getType()->isVectorTy())
244 return false;
245 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
246 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
247 if (!CFP || !CFP->isNaN())
248 return false;
250 return true;
253 bool Constant::containsUndefElement() const {
254 if (!getType()->isVectorTy())
255 return false;
256 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i)
257 if (isa<UndefValue>(getAggregateElement(i)))
258 return true;
260 return false;
263 bool Constant::containsConstantExpression() const {
264 if (!getType()->isVectorTy())
265 return false;
266 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i)
267 if (isa<ConstantExpr>(getAggregateElement(i)))
268 return true;
270 return false;
273 /// Constructor to create a '0' constant of arbitrary type.
274 Constant *Constant::getNullValue(Type *Ty) {
275 switch (Ty->getTypeID()) {
276 case Type::IntegerTyID:
277 return ConstantInt::get(Ty, 0);
278 case Type::HalfTyID:
279 return ConstantFP::get(Ty->getContext(),
280 APFloat::getZero(APFloat::IEEEhalf()));
281 case Type::FloatTyID:
282 return ConstantFP::get(Ty->getContext(),
283 APFloat::getZero(APFloat::IEEEsingle()));
284 case Type::DoubleTyID:
285 return ConstantFP::get(Ty->getContext(),
286 APFloat::getZero(APFloat::IEEEdouble()));
287 case Type::X86_FP80TyID:
288 return ConstantFP::get(Ty->getContext(),
289 APFloat::getZero(APFloat::x87DoubleExtended()));
290 case Type::FP128TyID:
291 return ConstantFP::get(Ty->getContext(),
292 APFloat::getZero(APFloat::IEEEquad()));
293 case Type::PPC_FP128TyID:
294 return ConstantFP::get(Ty->getContext(),
295 APFloat(APFloat::PPCDoubleDouble(),
296 APInt::getNullValue(128)));
297 case Type::PointerTyID:
298 return ConstantPointerNull::get(cast<PointerType>(Ty));
299 case Type::StructTyID:
300 case Type::ArrayTyID:
301 case Type::VectorTyID:
302 return ConstantAggregateZero::get(Ty);
303 case Type::TokenTyID:
304 return ConstantTokenNone::get(Ty->getContext());
305 default:
306 // Function, Label, or Opaque type?
307 llvm_unreachable("Cannot create a null constant of that type!");
311 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
312 Type *ScalarTy = Ty->getScalarType();
314 // Create the base integer constant.
315 Constant *C = ConstantInt::get(Ty->getContext(), V);
317 // Convert an integer to a pointer, if necessary.
318 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
319 C = ConstantExpr::getIntToPtr(C, PTy);
321 // Broadcast a scalar to a vector, if necessary.
322 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
323 C = ConstantVector::getSplat(VTy->getNumElements(), C);
325 return C;
328 Constant *Constant::getAllOnesValue(Type *Ty) {
329 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
330 return ConstantInt::get(Ty->getContext(),
331 APInt::getAllOnesValue(ITy->getBitWidth()));
333 if (Ty->isFloatingPointTy()) {
334 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
335 !Ty->isPPC_FP128Ty());
336 return ConstantFP::get(Ty->getContext(), FL);
339 VectorType *VTy = cast<VectorType>(Ty);
340 return ConstantVector::getSplat(VTy->getNumElements(),
341 getAllOnesValue(VTy->getElementType()));
344 Constant *Constant::getAggregateElement(unsigned Elt) const {
345 if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this))
346 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
348 if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
349 return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
351 if (const UndefValue *UV = dyn_cast<UndefValue>(this))
352 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
354 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
355 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
356 : nullptr;
357 return nullptr;
360 Constant *Constant::getAggregateElement(Constant *Elt) const {
361 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
362 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
363 // Check if the constant fits into an uint64_t.
364 if (CI->getValue().getActiveBits() > 64)
365 return nullptr;
366 return getAggregateElement(CI->getZExtValue());
368 return nullptr;
371 void Constant::destroyConstant() {
372 /// First call destroyConstantImpl on the subclass. This gives the subclass
373 /// a chance to remove the constant from any maps/pools it's contained in.
374 switch (getValueID()) {
375 default:
376 llvm_unreachable("Not a constant!");
377 #define HANDLE_CONSTANT(Name) \
378 case Value::Name##Val: \
379 cast<Name>(this)->destroyConstantImpl(); \
380 break;
381 #include "llvm/IR/Value.def"
384 // When a Constant is destroyed, there may be lingering
385 // references to the constant by other constants in the constant pool. These
386 // constants are implicitly dependent on the module that is being deleted,
387 // but they don't know that. Because we only find out when the CPV is
388 // deleted, we must now notify all of our users (that should only be
389 // Constants) that they are, in fact, invalid now and should be deleted.
391 while (!use_empty()) {
392 Value *V = user_back();
393 #ifndef NDEBUG // Only in -g mode...
394 if (!isa<Constant>(V)) {
395 dbgs() << "While deleting: " << *this
396 << "\n\nUse still stuck around after Def is destroyed: " << *V
397 << "\n\n";
399 #endif
400 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
401 cast<Constant>(V)->destroyConstant();
403 // The constant should remove itself from our use list...
404 assert((use_empty() || user_back() != V) && "Constant not removed!");
407 // Value has no outstanding references it is safe to delete it now...
408 delete this;
411 static bool canTrapImpl(const Constant *C,
412 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
413 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
414 // The only thing that could possibly trap are constant exprs.
415 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
416 if (!CE)
417 return false;
419 // ConstantExpr traps if any operands can trap.
420 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
421 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
422 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
423 return true;
427 // Otherwise, only specific operations can trap.
428 switch (CE->getOpcode()) {
429 default:
430 return false;
431 case Instruction::UDiv:
432 case Instruction::SDiv:
433 case Instruction::URem:
434 case Instruction::SRem:
435 // Div and rem can trap if the RHS is not known to be non-zero.
436 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
437 return true;
438 return false;
442 bool Constant::canTrap() const {
443 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
444 return canTrapImpl(this, NonTrappingOps);
447 /// Check if C contains a GlobalValue for which Predicate is true.
448 static bool
449 ConstHasGlobalValuePredicate(const Constant *C,
450 bool (*Predicate)(const GlobalValue *)) {
451 SmallPtrSet<const Constant *, 8> Visited;
452 SmallVector<const Constant *, 8> WorkList;
453 WorkList.push_back(C);
454 Visited.insert(C);
456 while (!WorkList.empty()) {
457 const Constant *WorkItem = WorkList.pop_back_val();
458 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
459 if (Predicate(GV))
460 return true;
461 for (const Value *Op : WorkItem->operands()) {
462 const Constant *ConstOp = dyn_cast<Constant>(Op);
463 if (!ConstOp)
464 continue;
465 if (Visited.insert(ConstOp).second)
466 WorkList.push_back(ConstOp);
469 return false;
472 bool Constant::isThreadDependent() const {
473 auto DLLImportPredicate = [](const GlobalValue *GV) {
474 return GV->isThreadLocal();
476 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
479 bool Constant::isDLLImportDependent() const {
480 auto DLLImportPredicate = [](const GlobalValue *GV) {
481 return GV->hasDLLImportStorageClass();
483 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
486 bool Constant::isConstantUsed() const {
487 for (const User *U : users()) {
488 const Constant *UC = dyn_cast<Constant>(U);
489 if (!UC || isa<GlobalValue>(UC))
490 return true;
492 if (UC->isConstantUsed())
493 return true;
495 return false;
498 bool Constant::needsRelocation() const {
499 if (isa<GlobalValue>(this))
500 return true; // Global reference.
502 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
503 return BA->getFunction()->needsRelocation();
505 // While raw uses of blockaddress need to be relocated, differences between
506 // two of them don't when they are for labels in the same function. This is a
507 // common idiom when creating a table for the indirect goto extension, so we
508 // handle it efficiently here.
509 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
510 if (CE->getOpcode() == Instruction::Sub) {
511 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
512 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
513 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
514 RHS->getOpcode() == Instruction::PtrToInt &&
515 isa<BlockAddress>(LHS->getOperand(0)) &&
516 isa<BlockAddress>(RHS->getOperand(0)) &&
517 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
518 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
519 return false;
522 bool Result = false;
523 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
524 Result |= cast<Constant>(getOperand(i))->needsRelocation();
526 return Result;
529 /// If the specified constantexpr is dead, remove it. This involves recursively
530 /// eliminating any dead users of the constantexpr.
531 static bool removeDeadUsersOfConstant(const Constant *C) {
532 if (isa<GlobalValue>(C)) return false; // Cannot remove this
534 while (!C->use_empty()) {
535 const Constant *User = dyn_cast<Constant>(C->user_back());
536 if (!User) return false; // Non-constant usage;
537 if (!removeDeadUsersOfConstant(User))
538 return false; // Constant wasn't dead
541 const_cast<Constant*>(C)->destroyConstant();
542 return true;
546 void Constant::removeDeadConstantUsers() const {
547 Value::const_user_iterator I = user_begin(), E = user_end();
548 Value::const_user_iterator LastNonDeadUser = E;
549 while (I != E) {
550 const Constant *User = dyn_cast<Constant>(*I);
551 if (!User) {
552 LastNonDeadUser = I;
553 ++I;
554 continue;
557 if (!removeDeadUsersOfConstant(User)) {
558 // If the constant wasn't dead, remember that this was the last live use
559 // and move on to the next constant.
560 LastNonDeadUser = I;
561 ++I;
562 continue;
565 // If the constant was dead, then the iterator is invalidated.
566 if (LastNonDeadUser == E) {
567 I = user_begin();
568 if (I == E) break;
569 } else {
570 I = LastNonDeadUser;
571 ++I;
578 //===----------------------------------------------------------------------===//
579 // ConstantInt
580 //===----------------------------------------------------------------------===//
582 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
583 : ConstantData(Ty, ConstantIntVal), Val(V) {
584 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
587 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
588 LLVMContextImpl *pImpl = Context.pImpl;
589 if (!pImpl->TheTrueVal)
590 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
591 return pImpl->TheTrueVal;
594 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
595 LLVMContextImpl *pImpl = Context.pImpl;
596 if (!pImpl->TheFalseVal)
597 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
598 return pImpl->TheFalseVal;
601 Constant *ConstantInt::getTrue(Type *Ty) {
602 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
603 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
604 if (auto *VTy = dyn_cast<VectorType>(Ty))
605 return ConstantVector::getSplat(VTy->getNumElements(), TrueC);
606 return TrueC;
609 Constant *ConstantInt::getFalse(Type *Ty) {
610 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
611 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
612 if (auto *VTy = dyn_cast<VectorType>(Ty))
613 return ConstantVector::getSplat(VTy->getNumElements(), FalseC);
614 return FalseC;
617 // Get a ConstantInt from an APInt.
618 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
619 // get an existing value or the insertion position
620 LLVMContextImpl *pImpl = Context.pImpl;
621 std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
622 if (!Slot) {
623 // Get the corresponding integer type for the bit width of the value.
624 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
625 Slot.reset(new ConstantInt(ITy, V));
627 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
628 return Slot.get();
631 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
632 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
634 // For vectors, broadcast the value.
635 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
636 return ConstantVector::getSplat(VTy->getNumElements(), C);
638 return C;
641 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
642 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
645 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
646 return get(Ty, V, true);
649 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
650 return get(Ty, V, true);
653 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
654 ConstantInt *C = get(Ty->getContext(), V);
655 assert(C->getType() == Ty->getScalarType() &&
656 "ConstantInt type doesn't match the type implied by its value!");
658 // For vectors, broadcast the value.
659 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
660 return ConstantVector::getSplat(VTy->getNumElements(), C);
662 return C;
665 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
666 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
669 /// Remove the constant from the constant table.
670 void ConstantInt::destroyConstantImpl() {
671 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
674 //===----------------------------------------------------------------------===//
675 // ConstantFP
676 //===----------------------------------------------------------------------===//
678 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
679 if (Ty->isHalfTy())
680 return &APFloat::IEEEhalf();
681 if (Ty->isFloatTy())
682 return &APFloat::IEEEsingle();
683 if (Ty->isDoubleTy())
684 return &APFloat::IEEEdouble();
685 if (Ty->isX86_FP80Ty())
686 return &APFloat::x87DoubleExtended();
687 else if (Ty->isFP128Ty())
688 return &APFloat::IEEEquad();
690 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
691 return &APFloat::PPCDoubleDouble();
694 Constant *ConstantFP::get(Type *Ty, double V) {
695 LLVMContext &Context = Ty->getContext();
697 APFloat FV(V);
698 bool ignored;
699 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
700 APFloat::rmNearestTiesToEven, &ignored);
701 Constant *C = get(Context, FV);
703 // For vectors, broadcast the value.
704 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
705 return ConstantVector::getSplat(VTy->getNumElements(), C);
707 return C;
710 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
711 ConstantFP *C = get(Ty->getContext(), V);
712 assert(C->getType() == Ty->getScalarType() &&
713 "ConstantFP type doesn't match the type implied by its value!");
715 // For vectors, broadcast the value.
716 if (auto *VTy = dyn_cast<VectorType>(Ty))
717 return ConstantVector::getSplat(VTy->getNumElements(), C);
719 return C;
722 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
723 LLVMContext &Context = Ty->getContext();
725 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
726 Constant *C = get(Context, FV);
728 // For vectors, broadcast the value.
729 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
730 return ConstantVector::getSplat(VTy->getNumElements(), C);
732 return C;
735 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
736 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
737 APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
738 Constant *C = get(Ty->getContext(), NaN);
740 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
741 return ConstantVector::getSplat(VTy->getNumElements(), C);
743 return C;
746 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
747 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
748 APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
749 Constant *C = get(Ty->getContext(), NaN);
751 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
752 return ConstantVector::getSplat(VTy->getNumElements(), C);
754 return C;
757 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
758 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
759 APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
760 Constant *C = get(Ty->getContext(), NaN);
762 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
763 return ConstantVector::getSplat(VTy->getNumElements(), C);
765 return C;
768 Constant *ConstantFP::getNegativeZero(Type *Ty) {
769 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
770 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
771 Constant *C = get(Ty->getContext(), NegZero);
773 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
774 return ConstantVector::getSplat(VTy->getNumElements(), C);
776 return C;
780 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
781 if (Ty->isFPOrFPVectorTy())
782 return getNegativeZero(Ty);
784 return Constant::getNullValue(Ty);
788 // ConstantFP accessors.
789 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
790 LLVMContextImpl* pImpl = Context.pImpl;
792 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
794 if (!Slot) {
795 Type *Ty;
796 if (&V.getSemantics() == &APFloat::IEEEhalf())
797 Ty = Type::getHalfTy(Context);
798 else if (&V.getSemantics() == &APFloat::IEEEsingle())
799 Ty = Type::getFloatTy(Context);
800 else if (&V.getSemantics() == &APFloat::IEEEdouble())
801 Ty = Type::getDoubleTy(Context);
802 else if (&V.getSemantics() == &APFloat::x87DoubleExtended())
803 Ty = Type::getX86_FP80Ty(Context);
804 else if (&V.getSemantics() == &APFloat::IEEEquad())
805 Ty = Type::getFP128Ty(Context);
806 else {
807 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble() &&
808 "Unknown FP format");
809 Ty = Type::getPPC_FP128Ty(Context);
811 Slot.reset(new ConstantFP(Ty, V));
814 return Slot.get();
817 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
818 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
819 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
821 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
822 return ConstantVector::getSplat(VTy->getNumElements(), C);
824 return C;
827 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
828 : ConstantData(Ty, ConstantFPVal), Val(V) {
829 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
830 "FP type Mismatch");
833 bool ConstantFP::isExactlyValue(const APFloat &V) const {
834 return Val.bitwiseIsEqual(V);
837 /// Remove the constant from the constant table.
838 void ConstantFP::destroyConstantImpl() {
839 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
842 //===----------------------------------------------------------------------===//
843 // ConstantAggregateZero Implementation
844 //===----------------------------------------------------------------------===//
846 Constant *ConstantAggregateZero::getSequentialElement() const {
847 return Constant::getNullValue(getType()->getSequentialElementType());
850 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
851 return Constant::getNullValue(getType()->getStructElementType(Elt));
854 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
855 if (isa<SequentialType>(getType()))
856 return getSequentialElement();
857 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
860 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
861 if (isa<SequentialType>(getType()))
862 return getSequentialElement();
863 return getStructElement(Idx);
866 unsigned ConstantAggregateZero::getNumElements() const {
867 Type *Ty = getType();
868 if (auto *AT = dyn_cast<ArrayType>(Ty))
869 return AT->getNumElements();
870 if (auto *VT = dyn_cast<VectorType>(Ty))
871 return VT->getNumElements();
872 return Ty->getStructNumElements();
875 //===----------------------------------------------------------------------===//
876 // UndefValue Implementation
877 //===----------------------------------------------------------------------===//
879 UndefValue *UndefValue::getSequentialElement() const {
880 return UndefValue::get(getType()->getSequentialElementType());
883 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
884 return UndefValue::get(getType()->getStructElementType(Elt));
887 UndefValue *UndefValue::getElementValue(Constant *C) const {
888 if (isa<SequentialType>(getType()))
889 return getSequentialElement();
890 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
893 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
894 if (isa<SequentialType>(getType()))
895 return getSequentialElement();
896 return getStructElement(Idx);
899 unsigned UndefValue::getNumElements() const {
900 Type *Ty = getType();
901 if (auto *ST = dyn_cast<SequentialType>(Ty))
902 return ST->getNumElements();
903 return Ty->getStructNumElements();
906 //===----------------------------------------------------------------------===//
907 // ConstantXXX Classes
908 //===----------------------------------------------------------------------===//
910 template <typename ItTy, typename EltTy>
911 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
912 for (; Start != End; ++Start)
913 if (*Start != Elt)
914 return false;
915 return true;
918 template <typename SequentialTy, typename ElementTy>
919 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
920 assert(!V.empty() && "Cannot get empty int sequence.");
922 SmallVector<ElementTy, 16> Elts;
923 for (Constant *C : V)
924 if (auto *CI = dyn_cast<ConstantInt>(C))
925 Elts.push_back(CI->getZExtValue());
926 else
927 return nullptr;
928 return SequentialTy::get(V[0]->getContext(), Elts);
931 template <typename SequentialTy, typename ElementTy>
932 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
933 assert(!V.empty() && "Cannot get empty FP sequence.");
935 SmallVector<ElementTy, 16> Elts;
936 for (Constant *C : V)
937 if (auto *CFP = dyn_cast<ConstantFP>(C))
938 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
939 else
940 return nullptr;
941 return SequentialTy::getFP(V[0]->getContext(), Elts);
944 template <typename SequenceTy>
945 static Constant *getSequenceIfElementsMatch(Constant *C,
946 ArrayRef<Constant *> V) {
947 // We speculatively build the elements here even if it turns out that there is
948 // a constantexpr or something else weird, since it is so uncommon for that to
949 // happen.
950 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
951 if (CI->getType()->isIntegerTy(8))
952 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
953 else if (CI->getType()->isIntegerTy(16))
954 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
955 else if (CI->getType()->isIntegerTy(32))
956 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
957 else if (CI->getType()->isIntegerTy(64))
958 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
959 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
960 if (CFP->getType()->isHalfTy())
961 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
962 else if (CFP->getType()->isFloatTy())
963 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
964 else if (CFP->getType()->isDoubleTy())
965 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
968 return nullptr;
971 ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT,
972 ArrayRef<Constant *> V)
973 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
974 V.size()) {
975 llvm::copy(V, op_begin());
977 // Check that types match, unless this is an opaque struct.
978 if (auto *ST = dyn_cast<StructType>(T))
979 if (ST->isOpaque())
980 return;
981 for (unsigned I = 0, E = V.size(); I != E; ++I)
982 assert(V[I]->getType() == T->getTypeAtIndex(I) &&
983 "Initializer for composite element doesn't match!");
986 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
987 : ConstantAggregate(T, ConstantArrayVal, V) {
988 assert(V.size() == T->getNumElements() &&
989 "Invalid initializer for constant array");
992 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
993 if (Constant *C = getImpl(Ty, V))
994 return C;
995 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
998 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
999 // Empty arrays are canonicalized to ConstantAggregateZero.
1000 if (V.empty())
1001 return ConstantAggregateZero::get(Ty);
1003 for (unsigned i = 0, e = V.size(); i != e; ++i) {
1004 assert(V[i]->getType() == Ty->getElementType() &&
1005 "Wrong type in array element initializer");
1008 // If this is an all-zero array, return a ConstantAggregateZero object. If
1009 // all undef, return an UndefValue, if "all simple", then return a
1010 // ConstantDataArray.
1011 Constant *C = V[0];
1012 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1013 return UndefValue::get(Ty);
1015 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
1016 return ConstantAggregateZero::get(Ty);
1018 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1019 // the element type is compatible with ConstantDataVector. If so, use it.
1020 if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1021 return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
1023 // Otherwise, we really do want to create a ConstantArray.
1024 return nullptr;
1027 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
1028 ArrayRef<Constant*> V,
1029 bool Packed) {
1030 unsigned VecSize = V.size();
1031 SmallVector<Type*, 16> EltTypes(VecSize);
1032 for (unsigned i = 0; i != VecSize; ++i)
1033 EltTypes[i] = V[i]->getType();
1035 return StructType::get(Context, EltTypes, Packed);
1039 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1040 bool Packed) {
1041 assert(!V.empty() &&
1042 "ConstantStruct::getTypeForElements cannot be called on empty list");
1043 return getTypeForElements(V[0]->getContext(), V, Packed);
1046 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1047 : ConstantAggregate(T, ConstantStructVal, V) {
1048 assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1049 "Invalid initializer for constant struct");
1052 // ConstantStruct accessors.
1053 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1054 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1055 "Incorrect # elements specified to ConstantStruct::get");
1057 // Create a ConstantAggregateZero value if all elements are zeros.
1058 bool isZero = true;
1059 bool isUndef = false;
1061 if (!V.empty()) {
1062 isUndef = isa<UndefValue>(V[0]);
1063 isZero = V[0]->isNullValue();
1064 if (isUndef || isZero) {
1065 for (unsigned i = 0, e = V.size(); i != e; ++i) {
1066 if (!V[i]->isNullValue())
1067 isZero = false;
1068 if (!isa<UndefValue>(V[i]))
1069 isUndef = false;
1073 if (isZero)
1074 return ConstantAggregateZero::get(ST);
1075 if (isUndef)
1076 return UndefValue::get(ST);
1078 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1081 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1082 : ConstantAggregate(T, ConstantVectorVal, V) {
1083 assert(V.size() == T->getNumElements() &&
1084 "Invalid initializer for constant vector");
1087 // ConstantVector accessors.
1088 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1089 if (Constant *C = getImpl(V))
1090 return C;
1091 VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1092 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1095 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1096 assert(!V.empty() && "Vectors can't be empty");
1097 VectorType *T = VectorType::get(V.front()->getType(), V.size());
1099 // If this is an all-undef or all-zero vector, return a
1100 // ConstantAggregateZero or UndefValue.
1101 Constant *C = V[0];
1102 bool isZero = C->isNullValue();
1103 bool isUndef = isa<UndefValue>(C);
1105 if (isZero || isUndef) {
1106 for (unsigned i = 1, e = V.size(); i != e; ++i)
1107 if (V[i] != C) {
1108 isZero = isUndef = false;
1109 break;
1113 if (isZero)
1114 return ConstantAggregateZero::get(T);
1115 if (isUndef)
1116 return UndefValue::get(T);
1118 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1119 // the element type is compatible with ConstantDataVector. If so, use it.
1120 if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1121 return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1123 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1124 // the operand list contains a ConstantExpr or something else strange.
1125 return nullptr;
1128 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1129 // If this splat is compatible with ConstantDataVector, use it instead of
1130 // ConstantVector.
1131 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1132 ConstantDataSequential::isElementTypeCompatible(V->getType()))
1133 return ConstantDataVector::getSplat(NumElts, V);
1135 SmallVector<Constant*, 32> Elts(NumElts, V);
1136 return get(Elts);
1139 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1140 LLVMContextImpl *pImpl = Context.pImpl;
1141 if (!pImpl->TheNoneToken)
1142 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1143 return pImpl->TheNoneToken.get();
1146 /// Remove the constant from the constant table.
1147 void ConstantTokenNone::destroyConstantImpl() {
1148 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1151 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1152 // can't be inline because we don't want to #include Instruction.h into
1153 // Constant.h
1154 bool ConstantExpr::isCast() const {
1155 return Instruction::isCast(getOpcode());
1158 bool ConstantExpr::isCompare() const {
1159 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1162 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1163 if (getOpcode() != Instruction::GetElementPtr) return false;
1165 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1166 User::const_op_iterator OI = std::next(this->op_begin());
1168 // The remaining indices may be compile-time known integers within the bounds
1169 // of the corresponding notional static array types.
1170 for (; GEPI != E; ++GEPI, ++OI) {
1171 if (isa<UndefValue>(*OI))
1172 continue;
1173 auto *CI = dyn_cast<ConstantInt>(*OI);
1174 if (!CI || (GEPI.isBoundedSequential() &&
1175 (CI->getValue().getActiveBits() > 64 ||
1176 CI->getZExtValue() >= GEPI.getSequentialNumElements())))
1177 return false;
1180 // All the indices checked out.
1181 return true;
1184 bool ConstantExpr::hasIndices() const {
1185 return getOpcode() == Instruction::ExtractValue ||
1186 getOpcode() == Instruction::InsertValue;
1189 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1190 if (const ExtractValueConstantExpr *EVCE =
1191 dyn_cast<ExtractValueConstantExpr>(this))
1192 return EVCE->Indices;
1194 return cast<InsertValueConstantExpr>(this)->Indices;
1197 unsigned ConstantExpr::getPredicate() const {
1198 return cast<CompareConstantExpr>(this)->predicate;
1201 Constant *
1202 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1203 assert(Op->getType() == getOperand(OpNo)->getType() &&
1204 "Replacing operand with value of different type!");
1205 if (getOperand(OpNo) == Op)
1206 return const_cast<ConstantExpr*>(this);
1208 SmallVector<Constant*, 8> NewOps;
1209 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1210 NewOps.push_back(i == OpNo ? Op : getOperand(i));
1212 return getWithOperands(NewOps);
1215 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1216 bool OnlyIfReduced, Type *SrcTy) const {
1217 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1219 // If no operands changed return self.
1220 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1221 return const_cast<ConstantExpr*>(this);
1223 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1224 switch (getOpcode()) {
1225 case Instruction::Trunc:
1226 case Instruction::ZExt:
1227 case Instruction::SExt:
1228 case Instruction::FPTrunc:
1229 case Instruction::FPExt:
1230 case Instruction::UIToFP:
1231 case Instruction::SIToFP:
1232 case Instruction::FPToUI:
1233 case Instruction::FPToSI:
1234 case Instruction::PtrToInt:
1235 case Instruction::IntToPtr:
1236 case Instruction::BitCast:
1237 case Instruction::AddrSpaceCast:
1238 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1239 case Instruction::Select:
1240 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1241 case Instruction::InsertElement:
1242 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1243 OnlyIfReducedTy);
1244 case Instruction::ExtractElement:
1245 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1246 case Instruction::InsertValue:
1247 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1248 OnlyIfReducedTy);
1249 case Instruction::ExtractValue:
1250 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1251 case Instruction::ShuffleVector:
1252 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1253 OnlyIfReducedTy);
1254 case Instruction::GetElementPtr: {
1255 auto *GEPO = cast<GEPOperator>(this);
1256 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1257 return ConstantExpr::getGetElementPtr(
1258 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1259 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1261 case Instruction::ICmp:
1262 case Instruction::FCmp:
1263 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1264 OnlyIfReducedTy);
1265 default:
1266 assert(getNumOperands() == 2 && "Must be binary operator?");
1267 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1268 OnlyIfReducedTy);
1273 //===----------------------------------------------------------------------===//
1274 // isValueValidForType implementations
1276 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1277 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1278 if (Ty->isIntegerTy(1))
1279 return Val == 0 || Val == 1;
1280 return isUIntN(NumBits, Val);
1283 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1284 unsigned NumBits = Ty->getIntegerBitWidth();
1285 if (Ty->isIntegerTy(1))
1286 return Val == 0 || Val == 1 || Val == -1;
1287 return isIntN(NumBits, Val);
1290 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1291 // convert modifies in place, so make a copy.
1292 APFloat Val2 = APFloat(Val);
1293 bool losesInfo;
1294 switch (Ty->getTypeID()) {
1295 default:
1296 return false; // These can't be represented as floating point!
1298 // FIXME rounding mode needs to be more flexible
1299 case Type::HalfTyID: {
1300 if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1301 return true;
1302 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1303 return !losesInfo;
1305 case Type::FloatTyID: {
1306 if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1307 return true;
1308 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1309 return !losesInfo;
1311 case Type::DoubleTyID: {
1312 if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1313 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1314 &Val2.getSemantics() == &APFloat::IEEEdouble())
1315 return true;
1316 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1317 return !losesInfo;
1319 case Type::X86_FP80TyID:
1320 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1321 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1322 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1323 &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1324 case Type::FP128TyID:
1325 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1326 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1327 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1328 &Val2.getSemantics() == &APFloat::IEEEquad();
1329 case Type::PPC_FP128TyID:
1330 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1331 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1332 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1333 &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1338 //===----------------------------------------------------------------------===//
1339 // Factory Function Implementation
1341 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1342 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1343 "Cannot create an aggregate zero of non-aggregate type!");
1345 std::unique_ptr<ConstantAggregateZero> &Entry =
1346 Ty->getContext().pImpl->CAZConstants[Ty];
1347 if (!Entry)
1348 Entry.reset(new ConstantAggregateZero(Ty));
1350 return Entry.get();
1353 /// Remove the constant from the constant table.
1354 void ConstantAggregateZero::destroyConstantImpl() {
1355 getContext().pImpl->CAZConstants.erase(getType());
1358 /// Remove the constant from the constant table.
1359 void ConstantArray::destroyConstantImpl() {
1360 getType()->getContext().pImpl->ArrayConstants.remove(this);
1364 //---- ConstantStruct::get() implementation...
1367 /// Remove the constant from the constant table.
1368 void ConstantStruct::destroyConstantImpl() {
1369 getType()->getContext().pImpl->StructConstants.remove(this);
1372 /// Remove the constant from the constant table.
1373 void ConstantVector::destroyConstantImpl() {
1374 getType()->getContext().pImpl->VectorConstants.remove(this);
1377 Constant *Constant::getSplatValue() const {
1378 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1379 if (isa<ConstantAggregateZero>(this))
1380 return getNullValue(this->getType()->getVectorElementType());
1381 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1382 return CV->getSplatValue();
1383 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1384 return CV->getSplatValue();
1385 return nullptr;
1388 Constant *ConstantVector::getSplatValue() const {
1389 // Check out first element.
1390 Constant *Elt = getOperand(0);
1391 // Then make sure all remaining elements point to the same value.
1392 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1393 if (getOperand(I) != Elt)
1394 return nullptr;
1395 return Elt;
1398 const APInt &Constant::getUniqueInteger() const {
1399 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1400 return CI->getValue();
1401 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1402 const Constant *C = this->getAggregateElement(0U);
1403 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1404 return cast<ConstantInt>(C)->getValue();
1407 //---- ConstantPointerNull::get() implementation.
1410 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1411 std::unique_ptr<ConstantPointerNull> &Entry =
1412 Ty->getContext().pImpl->CPNConstants[Ty];
1413 if (!Entry)
1414 Entry.reset(new ConstantPointerNull(Ty));
1416 return Entry.get();
1419 /// Remove the constant from the constant table.
1420 void ConstantPointerNull::destroyConstantImpl() {
1421 getContext().pImpl->CPNConstants.erase(getType());
1424 UndefValue *UndefValue::get(Type *Ty) {
1425 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1426 if (!Entry)
1427 Entry.reset(new UndefValue(Ty));
1429 return Entry.get();
1432 /// Remove the constant from the constant table.
1433 void UndefValue::destroyConstantImpl() {
1434 // Free the constant and any dangling references to it.
1435 getContext().pImpl->UVConstants.erase(getType());
1438 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1439 assert(BB->getParent() && "Block must have a parent");
1440 return get(BB->getParent(), BB);
1443 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1444 BlockAddress *&BA =
1445 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1446 if (!BA)
1447 BA = new BlockAddress(F, BB);
1449 assert(BA->getFunction() == F && "Basic block moved between functions");
1450 return BA;
1453 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1454 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1455 &Op<0>(), 2) {
1456 setOperand(0, F);
1457 setOperand(1, BB);
1458 BB->AdjustBlockAddressRefCount(1);
1461 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1462 if (!BB->hasAddressTaken())
1463 return nullptr;
1465 const Function *F = BB->getParent();
1466 assert(F && "Block must have a parent");
1467 BlockAddress *BA =
1468 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1469 assert(BA && "Refcount and block address map disagree!");
1470 return BA;
1473 /// Remove the constant from the constant table.
1474 void BlockAddress::destroyConstantImpl() {
1475 getFunction()->getType()->getContext().pImpl
1476 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1477 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1480 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1481 // This could be replacing either the Basic Block or the Function. In either
1482 // case, we have to remove the map entry.
1483 Function *NewF = getFunction();
1484 BasicBlock *NewBB = getBasicBlock();
1486 if (From == NewF)
1487 NewF = cast<Function>(To->stripPointerCasts());
1488 else {
1489 assert(From == NewBB && "From does not match any operand");
1490 NewBB = cast<BasicBlock>(To);
1493 // See if the 'new' entry already exists, if not, just update this in place
1494 // and return early.
1495 BlockAddress *&NewBA =
1496 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1497 if (NewBA)
1498 return NewBA;
1500 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1502 // Remove the old entry, this can't cause the map to rehash (just a
1503 // tombstone will get added).
1504 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1505 getBasicBlock()));
1506 NewBA = this;
1507 setOperand(0, NewF);
1508 setOperand(1, NewBB);
1509 getBasicBlock()->AdjustBlockAddressRefCount(1);
1511 // If we just want to keep the existing value, then return null.
1512 // Callers know that this means we shouldn't delete this value.
1513 return nullptr;
1516 //---- ConstantExpr::get() implementations.
1519 /// This is a utility function to handle folding of casts and lookup of the
1520 /// cast in the ExprConstants map. It is used by the various get* methods below.
1521 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1522 bool OnlyIfReduced = false) {
1523 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1524 // Fold a few common cases
1525 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1526 return FC;
1528 if (OnlyIfReduced)
1529 return nullptr;
1531 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1533 // Look up the constant in the table first to ensure uniqueness.
1534 ConstantExprKeyType Key(opc, C);
1536 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1539 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1540 bool OnlyIfReduced) {
1541 Instruction::CastOps opc = Instruction::CastOps(oc);
1542 assert(Instruction::isCast(opc) && "opcode out of range");
1543 assert(C && Ty && "Null arguments to getCast");
1544 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1546 switch (opc) {
1547 default:
1548 llvm_unreachable("Invalid cast opcode");
1549 case Instruction::Trunc:
1550 return getTrunc(C, Ty, OnlyIfReduced);
1551 case Instruction::ZExt:
1552 return getZExt(C, Ty, OnlyIfReduced);
1553 case Instruction::SExt:
1554 return getSExt(C, Ty, OnlyIfReduced);
1555 case Instruction::FPTrunc:
1556 return getFPTrunc(C, Ty, OnlyIfReduced);
1557 case Instruction::FPExt:
1558 return getFPExtend(C, Ty, OnlyIfReduced);
1559 case Instruction::UIToFP:
1560 return getUIToFP(C, Ty, OnlyIfReduced);
1561 case Instruction::SIToFP:
1562 return getSIToFP(C, Ty, OnlyIfReduced);
1563 case Instruction::FPToUI:
1564 return getFPToUI(C, Ty, OnlyIfReduced);
1565 case Instruction::FPToSI:
1566 return getFPToSI(C, Ty, OnlyIfReduced);
1567 case Instruction::PtrToInt:
1568 return getPtrToInt(C, Ty, OnlyIfReduced);
1569 case Instruction::IntToPtr:
1570 return getIntToPtr(C, Ty, OnlyIfReduced);
1571 case Instruction::BitCast:
1572 return getBitCast(C, Ty, OnlyIfReduced);
1573 case Instruction::AddrSpaceCast:
1574 return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1578 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1579 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1580 return getBitCast(C, Ty);
1581 return getZExt(C, Ty);
1584 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1585 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1586 return getBitCast(C, Ty);
1587 return getSExt(C, Ty);
1590 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1591 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1592 return getBitCast(C, Ty);
1593 return getTrunc(C, Ty);
1596 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1597 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1598 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1599 "Invalid cast");
1601 if (Ty->isIntOrIntVectorTy())
1602 return getPtrToInt(S, Ty);
1604 unsigned SrcAS = S->getType()->getPointerAddressSpace();
1605 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1606 return getAddrSpaceCast(S, Ty);
1608 return getBitCast(S, Ty);
1611 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1612 Type *Ty) {
1613 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1614 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1616 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1617 return getAddrSpaceCast(S, Ty);
1619 return getBitCast(S, Ty);
1622 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
1623 assert(C->getType()->isIntOrIntVectorTy() &&
1624 Ty->isIntOrIntVectorTy() && "Invalid cast");
1625 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1626 unsigned DstBits = Ty->getScalarSizeInBits();
1627 Instruction::CastOps opcode =
1628 (SrcBits == DstBits ? Instruction::BitCast :
1629 (SrcBits > DstBits ? Instruction::Trunc :
1630 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1631 return getCast(opcode, C, Ty);
1634 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1635 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1636 "Invalid cast");
1637 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1638 unsigned DstBits = Ty->getScalarSizeInBits();
1639 if (SrcBits == DstBits)
1640 return C; // Avoid a useless cast
1641 Instruction::CastOps opcode =
1642 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1643 return getCast(opcode, C, Ty);
1646 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1647 #ifndef NDEBUG
1648 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1649 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1650 #endif
1651 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1652 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1653 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1654 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1655 "SrcTy must be larger than DestTy for Trunc!");
1657 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1660 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1661 #ifndef NDEBUG
1662 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1663 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1664 #endif
1665 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1666 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1667 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1668 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1669 "SrcTy must be smaller than DestTy for SExt!");
1671 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1674 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1675 #ifndef NDEBUG
1676 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1677 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1678 #endif
1679 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1680 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1681 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1682 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1683 "SrcTy must be smaller than DestTy for ZExt!");
1685 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1688 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1689 #ifndef NDEBUG
1690 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1691 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1692 #endif
1693 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1694 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1695 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1696 "This is an illegal floating point truncation!");
1697 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1700 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1701 #ifndef NDEBUG
1702 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1703 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1704 #endif
1705 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1706 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1707 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1708 "This is an illegal floating point extension!");
1709 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1712 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1713 #ifndef NDEBUG
1714 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1715 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1716 #endif
1717 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1718 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1719 "This is an illegal uint to floating point cast!");
1720 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1723 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1724 #ifndef NDEBUG
1725 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1726 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1727 #endif
1728 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1729 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1730 "This is an illegal sint to floating point cast!");
1731 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1734 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1735 #ifndef NDEBUG
1736 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1737 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1738 #endif
1739 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1740 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1741 "This is an illegal floating point to uint cast!");
1742 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1745 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1746 #ifndef NDEBUG
1747 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1748 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1749 #endif
1750 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1751 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1752 "This is an illegal floating point to sint cast!");
1753 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1756 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1757 bool OnlyIfReduced) {
1758 assert(C->getType()->isPtrOrPtrVectorTy() &&
1759 "PtrToInt source must be pointer or pointer vector");
1760 assert(DstTy->isIntOrIntVectorTy() &&
1761 "PtrToInt destination must be integer or integer vector");
1762 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1763 if (isa<VectorType>(C->getType()))
1764 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1765 "Invalid cast between a different number of vector elements");
1766 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1769 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1770 bool OnlyIfReduced) {
1771 assert(C->getType()->isIntOrIntVectorTy() &&
1772 "IntToPtr source must be integer or integer vector");
1773 assert(DstTy->isPtrOrPtrVectorTy() &&
1774 "IntToPtr destination must be a pointer or pointer vector");
1775 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1776 if (isa<VectorType>(C->getType()))
1777 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1778 "Invalid cast between a different number of vector elements");
1779 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1782 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1783 bool OnlyIfReduced) {
1784 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1785 "Invalid constantexpr bitcast!");
1787 // It is common to ask for a bitcast of a value to its own type, handle this
1788 // speedily.
1789 if (C->getType() == DstTy) return C;
1791 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1794 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1795 bool OnlyIfReduced) {
1796 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1797 "Invalid constantexpr addrspacecast!");
1799 // Canonicalize addrspacecasts between different pointer types by first
1800 // bitcasting the pointer type and then converting the address space.
1801 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1802 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1803 Type *DstElemTy = DstScalarTy->getElementType();
1804 if (SrcScalarTy->getElementType() != DstElemTy) {
1805 Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1806 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1807 // Handle vectors of pointers.
1808 MidTy = VectorType::get(MidTy, VT->getNumElements());
1810 C = getBitCast(C, MidTy);
1812 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1815 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags,
1816 Type *OnlyIfReducedTy) {
1817 // Check the operands for consistency first.
1818 assert(Instruction::isUnaryOp(Opcode) &&
1819 "Invalid opcode in unary constant expression");
1821 #ifndef NDEBUG
1822 switch (Opcode) {
1823 case Instruction::FNeg:
1824 assert(C->getType()->isFPOrFPVectorTy() &&
1825 "Tried to create a floating-point operation on a "
1826 "non-floating-point type!");
1827 break;
1828 default:
1829 break;
1831 #endif
1833 if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C))
1834 return FC;
1836 if (OnlyIfReducedTy == C->getType())
1837 return nullptr;
1839 Constant *ArgVec[] = { C };
1840 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1842 LLVMContextImpl *pImpl = C->getContext().pImpl;
1843 return pImpl->ExprConstants.getOrCreate(C->getType(), Key);
1846 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1847 unsigned Flags, Type *OnlyIfReducedTy) {
1848 // Check the operands for consistency first.
1849 assert(Instruction::isBinaryOp(Opcode) &&
1850 "Invalid opcode in binary constant expression");
1851 assert(C1->getType() == C2->getType() &&
1852 "Operand types in binary constant expression should match");
1854 #ifndef NDEBUG
1855 switch (Opcode) {
1856 case Instruction::Add:
1857 case Instruction::Sub:
1858 case Instruction::Mul:
1859 case Instruction::UDiv:
1860 case Instruction::SDiv:
1861 case Instruction::URem:
1862 case Instruction::SRem:
1863 assert(C1->getType()->isIntOrIntVectorTy() &&
1864 "Tried to create an integer operation on a non-integer type!");
1865 break;
1866 case Instruction::FAdd:
1867 case Instruction::FSub:
1868 case Instruction::FMul:
1869 case Instruction::FDiv:
1870 case Instruction::FRem:
1871 assert(C1->getType()->isFPOrFPVectorTy() &&
1872 "Tried to create a floating-point operation on a "
1873 "non-floating-point type!");
1874 break;
1875 case Instruction::And:
1876 case Instruction::Or:
1877 case Instruction::Xor:
1878 assert(C1->getType()->isIntOrIntVectorTy() &&
1879 "Tried to create a logical operation on a non-integral type!");
1880 break;
1881 case Instruction::Shl:
1882 case Instruction::LShr:
1883 case Instruction::AShr:
1884 assert(C1->getType()->isIntOrIntVectorTy() &&
1885 "Tried to create a shift operation on a non-integer type!");
1886 break;
1887 default:
1888 break;
1890 #endif
1892 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1893 return FC;
1895 if (OnlyIfReducedTy == C1->getType())
1896 return nullptr;
1898 Constant *ArgVec[] = { C1, C2 };
1899 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1901 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1902 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1905 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1906 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1907 // Note that a non-inbounds gep is used, as null isn't within any object.
1908 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1909 Constant *GEP = getGetElementPtr(
1910 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1911 return getPtrToInt(GEP,
1912 Type::getInt64Ty(Ty->getContext()));
1915 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1916 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1917 // Note that a non-inbounds gep is used, as null isn't within any object.
1918 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
1919 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1920 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1921 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1922 Constant *Indices[2] = { Zero, One };
1923 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
1924 return getPtrToInt(GEP,
1925 Type::getInt64Ty(Ty->getContext()));
1928 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1929 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1930 FieldNo));
1933 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1934 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1935 // Note that a non-inbounds gep is used, as null isn't within any object.
1936 Constant *GEPIdx[] = {
1937 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1938 FieldNo
1940 Constant *GEP = getGetElementPtr(
1941 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1942 return getPtrToInt(GEP,
1943 Type::getInt64Ty(Ty->getContext()));
1946 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
1947 Constant *C2, bool OnlyIfReduced) {
1948 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1950 switch (Predicate) {
1951 default: llvm_unreachable("Invalid CmpInst predicate");
1952 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1953 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1954 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1955 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1956 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1957 case CmpInst::FCMP_TRUE:
1958 return getFCmp(Predicate, C1, C2, OnlyIfReduced);
1960 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1961 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1962 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1963 case CmpInst::ICMP_SLE:
1964 return getICmp(Predicate, C1, C2, OnlyIfReduced);
1968 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
1969 Type *OnlyIfReducedTy) {
1970 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1972 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1973 return SC; // Fold common cases
1975 if (OnlyIfReducedTy == V1->getType())
1976 return nullptr;
1978 Constant *ArgVec[] = { C, V1, V2 };
1979 ConstantExprKeyType Key(Instruction::Select, ArgVec);
1981 LLVMContextImpl *pImpl = C->getContext().pImpl;
1982 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1985 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
1986 ArrayRef<Value *> Idxs, bool InBounds,
1987 Optional<unsigned> InRangeIndex,
1988 Type *OnlyIfReducedTy) {
1989 if (!Ty)
1990 Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
1991 else
1992 assert(Ty ==
1993 cast<PointerType>(C->getType()->getScalarType())->getElementType());
1995 if (Constant *FC =
1996 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
1997 return FC; // Fold a few common cases.
1999 // Get the result type of the getelementptr!
2000 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2001 assert(DestTy && "GEP indices invalid!");
2002 unsigned AS = C->getType()->getPointerAddressSpace();
2003 Type *ReqTy = DestTy->getPointerTo(AS);
2005 unsigned NumVecElts = 0;
2006 if (C->getType()->isVectorTy())
2007 NumVecElts = C->getType()->getVectorNumElements();
2008 else for (auto Idx : Idxs)
2009 if (Idx->getType()->isVectorTy())
2010 NumVecElts = Idx->getType()->getVectorNumElements();
2012 if (NumVecElts)
2013 ReqTy = VectorType::get(ReqTy, NumVecElts);
2015 if (OnlyIfReducedTy == ReqTy)
2016 return nullptr;
2018 // Look up the constant in the table first to ensure uniqueness
2019 std::vector<Constant*> ArgVec;
2020 ArgVec.reserve(1 + Idxs.size());
2021 ArgVec.push_back(C);
2022 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2023 assert((!Idxs[i]->getType()->isVectorTy() ||
2024 Idxs[i]->getType()->getVectorNumElements() == NumVecElts) &&
2025 "getelementptr index type missmatch");
2027 Constant *Idx = cast<Constant>(Idxs[i]);
2028 if (NumVecElts && !Idxs[i]->getType()->isVectorTy())
2029 Idx = ConstantVector::getSplat(NumVecElts, Idx);
2030 ArgVec.push_back(Idx);
2033 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
2034 if (InRangeIndex && *InRangeIndex < 63)
2035 SubClassOptionalData |= (*InRangeIndex + 1) << 1;
2036 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2037 SubClassOptionalData, None, Ty);
2039 LLVMContextImpl *pImpl = C->getContext().pImpl;
2040 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2043 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2044 Constant *RHS, bool OnlyIfReduced) {
2045 assert(LHS->getType() == RHS->getType());
2046 assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) &&
2047 "Invalid ICmp Predicate");
2049 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2050 return FC; // Fold a few common cases...
2052 if (OnlyIfReduced)
2053 return nullptr;
2055 // Look up the constant in the table first to ensure uniqueness
2056 Constant *ArgVec[] = { LHS, RHS };
2057 // Get the key type with both the opcode and predicate
2058 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2060 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2061 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2062 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2064 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2065 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2068 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2069 Constant *RHS, bool OnlyIfReduced) {
2070 assert(LHS->getType() == RHS->getType());
2071 assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) &&
2072 "Invalid FCmp Predicate");
2074 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2075 return FC; // Fold a few common cases...
2077 if (OnlyIfReduced)
2078 return nullptr;
2080 // Look up the constant in the table first to ensure uniqueness
2081 Constant *ArgVec[] = { LHS, RHS };
2082 // Get the key type with both the opcode and predicate
2083 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2085 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2086 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2087 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2089 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2090 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2093 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2094 Type *OnlyIfReducedTy) {
2095 assert(Val->getType()->isVectorTy() &&
2096 "Tried to create extractelement operation on non-vector type!");
2097 assert(Idx->getType()->isIntegerTy() &&
2098 "Extractelement index must be an integer type!");
2100 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2101 return FC; // Fold a few common cases.
2103 Type *ReqTy = Val->getType()->getVectorElementType();
2104 if (OnlyIfReducedTy == ReqTy)
2105 return nullptr;
2107 // Look up the constant in the table first to ensure uniqueness
2108 Constant *ArgVec[] = { Val, Idx };
2109 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2111 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2112 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2115 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2116 Constant *Idx, Type *OnlyIfReducedTy) {
2117 assert(Val->getType()->isVectorTy() &&
2118 "Tried to create insertelement operation on non-vector type!");
2119 assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2120 "Insertelement types must match!");
2121 assert(Idx->getType()->isIntegerTy() &&
2122 "Insertelement index must be i32 type!");
2124 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2125 return FC; // Fold a few common cases.
2127 if (OnlyIfReducedTy == Val->getType())
2128 return nullptr;
2130 // Look up the constant in the table first to ensure uniqueness
2131 Constant *ArgVec[] = { Val, Elt, Idx };
2132 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2134 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2135 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2138 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2139 Constant *Mask, Type *OnlyIfReducedTy) {
2140 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2141 "Invalid shuffle vector constant expr operands!");
2143 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2144 return FC; // Fold a few common cases.
2146 unsigned NElts = Mask->getType()->getVectorNumElements();
2147 Type *EltTy = V1->getType()->getVectorElementType();
2148 Type *ShufTy = VectorType::get(EltTy, NElts);
2150 if (OnlyIfReducedTy == ShufTy)
2151 return nullptr;
2153 // Look up the constant in the table first to ensure uniqueness
2154 Constant *ArgVec[] = { V1, V2, Mask };
2155 const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2157 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2158 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2161 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2162 ArrayRef<unsigned> Idxs,
2163 Type *OnlyIfReducedTy) {
2164 assert(Agg->getType()->isFirstClassType() &&
2165 "Non-first-class type for constant insertvalue expression");
2167 assert(ExtractValueInst::getIndexedType(Agg->getType(),
2168 Idxs) == Val->getType() &&
2169 "insertvalue indices invalid!");
2170 Type *ReqTy = Val->getType();
2172 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2173 return FC;
2175 if (OnlyIfReducedTy == ReqTy)
2176 return nullptr;
2178 Constant *ArgVec[] = { Agg, Val };
2179 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2181 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2182 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2185 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2186 Type *OnlyIfReducedTy) {
2187 assert(Agg->getType()->isFirstClassType() &&
2188 "Tried to create extractelement operation on non-first-class type!");
2190 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2191 (void)ReqTy;
2192 assert(ReqTy && "extractvalue indices invalid!");
2194 assert(Agg->getType()->isFirstClassType() &&
2195 "Non-first-class type for constant extractvalue expression");
2196 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2197 return FC;
2199 if (OnlyIfReducedTy == ReqTy)
2200 return nullptr;
2202 Constant *ArgVec[] = { Agg };
2203 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2205 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2206 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2209 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2210 assert(C->getType()->isIntOrIntVectorTy() &&
2211 "Cannot NEG a nonintegral value!");
2212 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2213 C, HasNUW, HasNSW);
2216 Constant *ConstantExpr::getFNeg(Constant *C) {
2217 assert(C->getType()->isFPOrFPVectorTy() &&
2218 "Cannot FNEG a non-floating-point value!");
2219 return get(Instruction::FNeg, C);
2222 Constant *ConstantExpr::getNot(Constant *C) {
2223 assert(C->getType()->isIntOrIntVectorTy() &&
2224 "Cannot NOT a nonintegral value!");
2225 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2228 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2229 bool HasNUW, bool HasNSW) {
2230 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2231 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2232 return get(Instruction::Add, C1, C2, Flags);
2235 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2236 return get(Instruction::FAdd, C1, C2);
2239 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2240 bool HasNUW, bool HasNSW) {
2241 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2242 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2243 return get(Instruction::Sub, C1, C2, Flags);
2246 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2247 return get(Instruction::FSub, C1, C2);
2250 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2251 bool HasNUW, bool HasNSW) {
2252 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2253 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2254 return get(Instruction::Mul, C1, C2, Flags);
2257 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2258 return get(Instruction::FMul, C1, C2);
2261 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2262 return get(Instruction::UDiv, C1, C2,
2263 isExact ? PossiblyExactOperator::IsExact : 0);
2266 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2267 return get(Instruction::SDiv, C1, C2,
2268 isExact ? PossiblyExactOperator::IsExact : 0);
2271 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2272 return get(Instruction::FDiv, C1, C2);
2275 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2276 return get(Instruction::URem, C1, C2);
2279 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2280 return get(Instruction::SRem, C1, C2);
2283 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2284 return get(Instruction::FRem, C1, C2);
2287 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2288 return get(Instruction::And, C1, C2);
2291 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2292 return get(Instruction::Or, C1, C2);
2295 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2296 return get(Instruction::Xor, C1, C2);
2299 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2300 bool HasNUW, bool HasNSW) {
2301 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2302 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2303 return get(Instruction::Shl, C1, C2, Flags);
2306 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2307 return get(Instruction::LShr, C1, C2,
2308 isExact ? PossiblyExactOperator::IsExact : 0);
2311 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2312 return get(Instruction::AShr, C1, C2,
2313 isExact ? PossiblyExactOperator::IsExact : 0);
2316 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2317 bool AllowRHSConstant) {
2318 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2320 // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2321 if (Instruction::isCommutative(Opcode)) {
2322 switch (Opcode) {
2323 case Instruction::Add: // X + 0 = X
2324 case Instruction::Or: // X | 0 = X
2325 case Instruction::Xor: // X ^ 0 = X
2326 return Constant::getNullValue(Ty);
2327 case Instruction::Mul: // X * 1 = X
2328 return ConstantInt::get(Ty, 1);
2329 case Instruction::And: // X & -1 = X
2330 return Constant::getAllOnesValue(Ty);
2331 case Instruction::FAdd: // X + -0.0 = X
2332 // TODO: If the fadd has 'nsz', should we return +0.0?
2333 return ConstantFP::getNegativeZero(Ty);
2334 case Instruction::FMul: // X * 1.0 = X
2335 return ConstantFP::get(Ty, 1.0);
2336 default:
2337 llvm_unreachable("Every commutative binop has an identity constant");
2341 // Non-commutative opcodes: AllowRHSConstant must be set.
2342 if (!AllowRHSConstant)
2343 return nullptr;
2345 switch (Opcode) {
2346 case Instruction::Sub: // X - 0 = X
2347 case Instruction::Shl: // X << 0 = X
2348 case Instruction::LShr: // X >>u 0 = X
2349 case Instruction::AShr: // X >> 0 = X
2350 case Instruction::FSub: // X - 0.0 = X
2351 return Constant::getNullValue(Ty);
2352 case Instruction::SDiv: // X / 1 = X
2353 case Instruction::UDiv: // X /u 1 = X
2354 return ConstantInt::get(Ty, 1);
2355 case Instruction::FDiv: // X / 1.0 = X
2356 return ConstantFP::get(Ty, 1.0);
2357 default:
2358 return nullptr;
2362 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2363 switch (Opcode) {
2364 default:
2365 // Doesn't have an absorber.
2366 return nullptr;
2368 case Instruction::Or:
2369 return Constant::getAllOnesValue(Ty);
2371 case Instruction::And:
2372 case Instruction::Mul:
2373 return Constant::getNullValue(Ty);
2377 /// Remove the constant from the constant table.
2378 void ConstantExpr::destroyConstantImpl() {
2379 getType()->getContext().pImpl->ExprConstants.remove(this);
2382 const char *ConstantExpr::getOpcodeName() const {
2383 return Instruction::getOpcodeName(getOpcode());
2386 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2387 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2388 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2389 OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2390 (IdxList.size() + 1),
2391 IdxList.size() + 1),
2392 SrcElementTy(SrcElementTy),
2393 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2394 Op<0>() = C;
2395 Use *OperandList = getOperandList();
2396 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2397 OperandList[i+1] = IdxList[i];
2400 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2401 return SrcElementTy;
2404 Type *GetElementPtrConstantExpr::getResultElementType() const {
2405 return ResElementTy;
2408 //===----------------------------------------------------------------------===//
2409 // ConstantData* implementations
2411 Type *ConstantDataSequential::getElementType() const {
2412 return getType()->getElementType();
2415 StringRef ConstantDataSequential::getRawDataValues() const {
2416 return StringRef(DataElements, getNumElements()*getElementByteSize());
2419 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2420 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2421 if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2422 switch (IT->getBitWidth()) {
2423 case 8:
2424 case 16:
2425 case 32:
2426 case 64:
2427 return true;
2428 default: break;
2431 return false;
2434 unsigned ConstantDataSequential::getNumElements() const {
2435 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2436 return AT->getNumElements();
2437 return getType()->getVectorNumElements();
2441 uint64_t ConstantDataSequential::getElementByteSize() const {
2442 return getElementType()->getPrimitiveSizeInBits()/8;
2445 /// Return the start of the specified element.
2446 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2447 assert(Elt < getNumElements() && "Invalid Elt");
2448 return DataElements+Elt*getElementByteSize();
2452 /// Return true if the array is empty or all zeros.
2453 static bool isAllZeros(StringRef Arr) {
2454 for (char I : Arr)
2455 if (I != 0)
2456 return false;
2457 return true;
2460 /// This is the underlying implementation of all of the
2461 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2462 /// the correct element type. We take the bytes in as a StringRef because
2463 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2464 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2465 assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2466 // If the elements are all zero or there are no elements, return a CAZ, which
2467 // is more dense and canonical.
2468 if (isAllZeros(Elements))
2469 return ConstantAggregateZero::get(Ty);
2471 // Do a lookup to see if we have already formed one of these.
2472 auto &Slot =
2473 *Ty->getContext()
2474 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2475 .first;
2477 // The bucket can point to a linked list of different CDS's that have the same
2478 // body but different types. For example, 0,0,0,1 could be a 4 element array
2479 // of i8, or a 1-element array of i32. They'll both end up in the same
2480 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2481 ConstantDataSequential **Entry = &Slot.second;
2482 for (ConstantDataSequential *Node = *Entry; Node;
2483 Entry = &Node->Next, Node = *Entry)
2484 if (Node->getType() == Ty)
2485 return Node;
2487 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2488 // and return it.
2489 if (isa<ArrayType>(Ty))
2490 return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2492 assert(isa<VectorType>(Ty));
2493 return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2496 void ConstantDataSequential::destroyConstantImpl() {
2497 // Remove the constant from the StringMap.
2498 StringMap<ConstantDataSequential*> &CDSConstants =
2499 getType()->getContext().pImpl->CDSConstants;
2501 StringMap<ConstantDataSequential*>::iterator Slot =
2502 CDSConstants.find(getRawDataValues());
2504 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2506 ConstantDataSequential **Entry = &Slot->getValue();
2508 // Remove the entry from the hash table.
2509 if (!(*Entry)->Next) {
2510 // If there is only one value in the bucket (common case) it must be this
2511 // entry, and removing the entry should remove the bucket completely.
2512 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2513 getContext().pImpl->CDSConstants.erase(Slot);
2514 } else {
2515 // Otherwise, there are multiple entries linked off the bucket, unlink the
2516 // node we care about but keep the bucket around.
2517 for (ConstantDataSequential *Node = *Entry; ;
2518 Entry = &Node->Next, Node = *Entry) {
2519 assert(Node && "Didn't find entry in its uniquing hash table!");
2520 // If we found our entry, unlink it from the list and we're done.
2521 if (Node == this) {
2522 *Entry = Node->Next;
2523 break;
2528 // If we were part of a list, make sure that we don't delete the list that is
2529 // still owned by the uniquing map.
2530 Next = nullptr;
2533 /// getFP() constructors - Return a constant with array type with an element
2534 /// count and element type of float with precision matching the number of
2535 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2536 /// double for 64bits) Note that this can return a ConstantAggregateZero
2537 /// object.
2538 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2539 ArrayRef<uint16_t> Elts) {
2540 Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size());
2541 const char *Data = reinterpret_cast<const char *>(Elts.data());
2542 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2544 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2545 ArrayRef<uint32_t> Elts) {
2546 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2547 const char *Data = reinterpret_cast<const char *>(Elts.data());
2548 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2550 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2551 ArrayRef<uint64_t> Elts) {
2552 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2553 const char *Data = reinterpret_cast<const char *>(Elts.data());
2554 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2557 Constant *ConstantDataArray::getString(LLVMContext &Context,
2558 StringRef Str, bool AddNull) {
2559 if (!AddNull) {
2560 const uint8_t *Data = Str.bytes_begin();
2561 return get(Context, makeArrayRef(Data, Str.size()));
2564 SmallVector<uint8_t, 64> ElementVals;
2565 ElementVals.append(Str.begin(), Str.end());
2566 ElementVals.push_back(0);
2567 return get(Context, ElementVals);
2570 /// get() constructors - Return a constant with vector type with an element
2571 /// count and element type matching the ArrayRef passed in. Note that this
2572 /// can return a ConstantAggregateZero object.
2573 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2574 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2575 const char *Data = reinterpret_cast<const char *>(Elts.data());
2576 return getImpl(StringRef(Data, Elts.size() * 1), Ty);
2578 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2579 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2580 const char *Data = reinterpret_cast<const char *>(Elts.data());
2581 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2583 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2584 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2585 const char *Data = reinterpret_cast<const char *>(Elts.data());
2586 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2588 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2589 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2590 const char *Data = reinterpret_cast<const char *>(Elts.data());
2591 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2593 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2594 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2595 const char *Data = reinterpret_cast<const char *>(Elts.data());
2596 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2598 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2599 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2600 const char *Data = reinterpret_cast<const char *>(Elts.data());
2601 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2604 /// getFP() constructors - Return a constant with vector type with an element
2605 /// count and element type of float with the precision matching the number of
2606 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2607 /// double for 64bits) Note that this can return a ConstantAggregateZero
2608 /// object.
2609 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2610 ArrayRef<uint16_t> Elts) {
2611 Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2612 const char *Data = reinterpret_cast<const char *>(Elts.data());
2613 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2615 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2616 ArrayRef<uint32_t> Elts) {
2617 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2618 const char *Data = reinterpret_cast<const char *>(Elts.data());
2619 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2621 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2622 ArrayRef<uint64_t> Elts) {
2623 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2624 const char *Data = reinterpret_cast<const char *>(Elts.data());
2625 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2628 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2629 assert(isElementTypeCompatible(V->getType()) &&
2630 "Element type not compatible with ConstantData");
2631 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2632 if (CI->getType()->isIntegerTy(8)) {
2633 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2634 return get(V->getContext(), Elts);
2636 if (CI->getType()->isIntegerTy(16)) {
2637 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2638 return get(V->getContext(), Elts);
2640 if (CI->getType()->isIntegerTy(32)) {
2641 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2642 return get(V->getContext(), Elts);
2644 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2645 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2646 return get(V->getContext(), Elts);
2649 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2650 if (CFP->getType()->isHalfTy()) {
2651 SmallVector<uint16_t, 16> Elts(
2652 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2653 return getFP(V->getContext(), Elts);
2655 if (CFP->getType()->isFloatTy()) {
2656 SmallVector<uint32_t, 16> Elts(
2657 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2658 return getFP(V->getContext(), Elts);
2660 if (CFP->getType()->isDoubleTy()) {
2661 SmallVector<uint64_t, 16> Elts(
2662 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2663 return getFP(V->getContext(), Elts);
2666 return ConstantVector::getSplat(NumElts, V);
2670 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2671 assert(isa<IntegerType>(getElementType()) &&
2672 "Accessor can only be used when element is an integer");
2673 const char *EltPtr = getElementPointer(Elt);
2675 // The data is stored in host byte order, make sure to cast back to the right
2676 // type to load with the right endianness.
2677 switch (getElementType()->getIntegerBitWidth()) {
2678 default: llvm_unreachable("Invalid bitwidth for CDS");
2679 case 8:
2680 return *reinterpret_cast<const uint8_t *>(EltPtr);
2681 case 16:
2682 return *reinterpret_cast<const uint16_t *>(EltPtr);
2683 case 32:
2684 return *reinterpret_cast<const uint32_t *>(EltPtr);
2685 case 64:
2686 return *reinterpret_cast<const uint64_t *>(EltPtr);
2690 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
2691 assert(isa<IntegerType>(getElementType()) &&
2692 "Accessor can only be used when element is an integer");
2693 const char *EltPtr = getElementPointer(Elt);
2695 // The data is stored in host byte order, make sure to cast back to the right
2696 // type to load with the right endianness.
2697 switch (getElementType()->getIntegerBitWidth()) {
2698 default: llvm_unreachable("Invalid bitwidth for CDS");
2699 case 8: {
2700 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
2701 return APInt(8, EltVal);
2703 case 16: {
2704 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2705 return APInt(16, EltVal);
2707 case 32: {
2708 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2709 return APInt(32, EltVal);
2711 case 64: {
2712 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2713 return APInt(64, EltVal);
2718 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2719 const char *EltPtr = getElementPointer(Elt);
2721 switch (getElementType()->getTypeID()) {
2722 default:
2723 llvm_unreachable("Accessor can only be used when element is float/double!");
2724 case Type::HalfTyID: {
2725 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2726 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
2728 case Type::FloatTyID: {
2729 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2730 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
2732 case Type::DoubleTyID: {
2733 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2734 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
2739 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2740 assert(getElementType()->isFloatTy() &&
2741 "Accessor can only be used when element is a 'float'");
2742 return *reinterpret_cast<const float *>(getElementPointer(Elt));
2745 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2746 assert(getElementType()->isDoubleTy() &&
2747 "Accessor can only be used when element is a 'float'");
2748 return *reinterpret_cast<const double *>(getElementPointer(Elt));
2751 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2752 if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
2753 getElementType()->isDoubleTy())
2754 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2756 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2759 bool ConstantDataSequential::isString(unsigned CharSize) const {
2760 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
2763 bool ConstantDataSequential::isCString() const {
2764 if (!isString())
2765 return false;
2767 StringRef Str = getAsString();
2769 // The last value must be nul.
2770 if (Str.back() != 0) return false;
2772 // Other elements must be non-nul.
2773 return Str.drop_back().find(0) == StringRef::npos;
2776 bool ConstantDataVector::isSplat() const {
2777 const char *Base = getRawDataValues().data();
2779 // Compare elements 1+ to the 0'th element.
2780 unsigned EltSize = getElementByteSize();
2781 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2782 if (memcmp(Base, Base+i*EltSize, EltSize))
2783 return false;
2785 return true;
2788 Constant *ConstantDataVector::getSplatValue() const {
2789 // If they're all the same, return the 0th one as a representative.
2790 return isSplat() ? getElementAsConstant(0) : nullptr;
2793 //===----------------------------------------------------------------------===//
2794 // handleOperandChange implementations
2796 /// Update this constant array to change uses of
2797 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2798 /// etc.
2800 /// Note that we intentionally replace all uses of From with To here. Consider
2801 /// a large array that uses 'From' 1000 times. By handling this case all here,
2802 /// ConstantArray::handleOperandChange is only invoked once, and that
2803 /// single invocation handles all 1000 uses. Handling them one at a time would
2804 /// work, but would be really slow because it would have to unique each updated
2805 /// array instance.
2807 void Constant::handleOperandChange(Value *From, Value *To) {
2808 Value *Replacement = nullptr;
2809 switch (getValueID()) {
2810 default:
2811 llvm_unreachable("Not a constant!");
2812 #define HANDLE_CONSTANT(Name) \
2813 case Value::Name##Val: \
2814 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
2815 break;
2816 #include "llvm/IR/Value.def"
2819 // If handleOperandChangeImpl returned nullptr, then it handled
2820 // replacing itself and we don't want to delete or replace anything else here.
2821 if (!Replacement)
2822 return;
2824 // I do need to replace this with an existing value.
2825 assert(Replacement != this && "I didn't contain From!");
2827 // Everyone using this now uses the replacement.
2828 replaceAllUsesWith(Replacement);
2830 // Delete the old constant!
2831 destroyConstant();
2834 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
2835 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2836 Constant *ToC = cast<Constant>(To);
2838 SmallVector<Constant*, 8> Values;
2839 Values.reserve(getNumOperands()); // Build replacement array.
2841 // Fill values with the modified operands of the constant array. Also,
2842 // compute whether this turns into an all-zeros array.
2843 unsigned NumUpdated = 0;
2845 // Keep track of whether all the values in the array are "ToC".
2846 bool AllSame = true;
2847 Use *OperandList = getOperandList();
2848 unsigned OperandNo = 0;
2849 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2850 Constant *Val = cast<Constant>(O->get());
2851 if (Val == From) {
2852 OperandNo = (O - OperandList);
2853 Val = ToC;
2854 ++NumUpdated;
2856 Values.push_back(Val);
2857 AllSame &= Val == ToC;
2860 if (AllSame && ToC->isNullValue())
2861 return ConstantAggregateZero::get(getType());
2863 if (AllSame && isa<UndefValue>(ToC))
2864 return UndefValue::get(getType());
2866 // Check for any other type of constant-folding.
2867 if (Constant *C = getImpl(getType(), Values))
2868 return C;
2870 // Update to the new value.
2871 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2872 Values, this, From, ToC, NumUpdated, OperandNo);
2875 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
2876 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2877 Constant *ToC = cast<Constant>(To);
2879 Use *OperandList = getOperandList();
2881 SmallVector<Constant*, 8> Values;
2882 Values.reserve(getNumOperands()); // Build replacement struct.
2884 // Fill values with the modified operands of the constant struct. Also,
2885 // compute whether this turns into an all-zeros struct.
2886 unsigned NumUpdated = 0;
2887 bool AllSame = true;
2888 unsigned OperandNo = 0;
2889 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
2890 Constant *Val = cast<Constant>(O->get());
2891 if (Val == From) {
2892 OperandNo = (O - OperandList);
2893 Val = ToC;
2894 ++NumUpdated;
2896 Values.push_back(Val);
2897 AllSame &= Val == ToC;
2900 if (AllSame && ToC->isNullValue())
2901 return ConstantAggregateZero::get(getType());
2903 if (AllSame && isa<UndefValue>(ToC))
2904 return UndefValue::get(getType());
2906 // Update to the new value.
2907 return getContext().pImpl->StructConstants.replaceOperandsInPlace(
2908 Values, this, From, ToC, NumUpdated, OperandNo);
2911 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
2912 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2913 Constant *ToC = cast<Constant>(To);
2915 SmallVector<Constant*, 8> Values;
2916 Values.reserve(getNumOperands()); // Build replacement array...
2917 unsigned NumUpdated = 0;
2918 unsigned OperandNo = 0;
2919 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2920 Constant *Val = getOperand(i);
2921 if (Val == From) {
2922 OperandNo = i;
2923 ++NumUpdated;
2924 Val = ToC;
2926 Values.push_back(Val);
2929 if (Constant *C = getImpl(Values))
2930 return C;
2932 // Update to the new value.
2933 return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
2934 Values, this, From, ToC, NumUpdated, OperandNo);
2937 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
2938 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2939 Constant *To = cast<Constant>(ToV);
2941 SmallVector<Constant*, 8> NewOps;
2942 unsigned NumUpdated = 0;
2943 unsigned OperandNo = 0;
2944 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2945 Constant *Op = getOperand(i);
2946 if (Op == From) {
2947 OperandNo = i;
2948 ++NumUpdated;
2949 Op = To;
2951 NewOps.push_back(Op);
2953 assert(NumUpdated && "I didn't contain From!");
2955 if (Constant *C = getWithOperands(NewOps, getType(), true))
2956 return C;
2958 // Update to the new value.
2959 return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
2960 NewOps, this, From, To, NumUpdated, OperandNo);
2963 Instruction *ConstantExpr::getAsInstruction() {
2964 SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
2965 ArrayRef<Value*> Ops(ValueOperands);
2967 switch (getOpcode()) {
2968 case Instruction::Trunc:
2969 case Instruction::ZExt:
2970 case Instruction::SExt:
2971 case Instruction::FPTrunc:
2972 case Instruction::FPExt:
2973 case Instruction::UIToFP:
2974 case Instruction::SIToFP:
2975 case Instruction::FPToUI:
2976 case Instruction::FPToSI:
2977 case Instruction::PtrToInt:
2978 case Instruction::IntToPtr:
2979 case Instruction::BitCast:
2980 case Instruction::AddrSpaceCast:
2981 return CastInst::Create((Instruction::CastOps)getOpcode(),
2982 Ops[0], getType());
2983 case Instruction::Select:
2984 return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2985 case Instruction::InsertElement:
2986 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2987 case Instruction::ExtractElement:
2988 return ExtractElementInst::Create(Ops[0], Ops[1]);
2989 case Instruction::InsertValue:
2990 return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2991 case Instruction::ExtractValue:
2992 return ExtractValueInst::Create(Ops[0], getIndices());
2993 case Instruction::ShuffleVector:
2994 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2996 case Instruction::GetElementPtr: {
2997 const auto *GO = cast<GEPOperator>(this);
2998 if (GO->isInBounds())
2999 return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3000 Ops[0], Ops.slice(1));
3001 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3002 Ops.slice(1));
3004 case Instruction::ICmp:
3005 case Instruction::FCmp:
3006 return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3007 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
3008 case Instruction::FNeg:
3009 return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]);
3010 default:
3011 assert(getNumOperands() == 2 && "Must be binary operator?");
3012 BinaryOperator *BO =
3013 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3014 Ops[0], Ops[1]);
3015 if (isa<OverflowingBinaryOperator>(BO)) {
3016 BO->setHasNoUnsignedWrap(SubclassOptionalData &
3017 OverflowingBinaryOperator::NoUnsignedWrap);
3018 BO->setHasNoSignedWrap(SubclassOptionalData &
3019 OverflowingBinaryOperator::NoSignedWrap);
3021 if (isa<PossiblyExactOperator>(BO))
3022 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3023 return BO;