1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeOrdering.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/Function.h"
19 #include "llvm/GlobalAlias.h"
20 #include "llvm/GlobalVariable.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/Assembly/Writer.h"
24 #include "llvm/CallingConv.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/Target/TargetRegisterInfo.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/Target/TargetFrameInfo.h"
33 #include "llvm/Target/TargetLowering.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetIntrinsicInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/ManagedStatic.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/System/Mutex.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallSet.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/StringExtras.h"
54 /// makeVTList - Return an instance of the SDVTList struct initialized with the
55 /// specified members.
56 static SDVTList
makeVTList(const EVT
*VTs
, unsigned NumVTs
) {
57 SDVTList Res
= {VTs
, NumVTs
};
61 static const fltSemantics
*EVTToAPFloatSemantics(EVT VT
) {
62 switch (VT
.getSimpleVT().SimpleTy
) {
63 default: llvm_unreachable("Unknown FP format");
64 case MVT::f32
: return &APFloat::IEEEsingle
;
65 case MVT::f64
: return &APFloat::IEEEdouble
;
66 case MVT::f80
: return &APFloat::x87DoubleExtended
;
67 case MVT::f128
: return &APFloat::IEEEquad
;
68 case MVT::ppcf128
: return &APFloat::PPCDoubleDouble
;
72 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74 //===----------------------------------------------------------------------===//
75 // ConstantFPSDNode Class
76 //===----------------------------------------------------------------------===//
78 /// isExactlyValue - We don't rely on operator== working on double values, as
79 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
80 /// As such, this method can be used to do an exact bit-for-bit comparison of
81 /// two floating point values.
82 bool ConstantFPSDNode::isExactlyValue(const APFloat
& V
) const {
83 return getValueAPF().bitwiseIsEqual(V
);
86 bool ConstantFPSDNode::isValueValidForType(EVT VT
,
88 assert(VT
.isFloatingPoint() && "Can only convert between FP types");
90 // PPC long double cannot be converted to any other type.
91 if (VT
== MVT::ppcf128
||
92 &Val
.getSemantics() == &APFloat::PPCDoubleDouble
)
95 // convert modifies in place, so make a copy.
96 APFloat Val2
= APFloat(Val
);
98 (void) Val2
.convert(*EVTToAPFloatSemantics(VT
), APFloat::rmNearestTiesToEven
,
103 //===----------------------------------------------------------------------===//
105 //===----------------------------------------------------------------------===//
107 /// isBuildVectorAllOnes - Return true if the specified node is a
108 /// BUILD_VECTOR where all of the elements are ~0 or undef.
109 bool ISD::isBuildVectorAllOnes(const SDNode
*N
) {
110 // Look through a bit convert.
111 if (N
->getOpcode() == ISD::BIT_CONVERT
)
112 N
= N
->getOperand(0).getNode();
114 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
116 unsigned i
= 0, e
= N
->getNumOperands();
118 // Skip over all of the undef values.
119 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
122 // Do not accept an all-undef vector.
123 if (i
== e
) return false;
125 // Do not accept build_vectors that aren't all constants or which have non-~0
127 SDValue NotZero
= N
->getOperand(i
);
128 if (isa
<ConstantSDNode
>(NotZero
)) {
129 if (!cast
<ConstantSDNode
>(NotZero
)->isAllOnesValue())
131 } else if (isa
<ConstantFPSDNode
>(NotZero
)) {
132 if (!cast
<ConstantFPSDNode
>(NotZero
)->getValueAPF().
133 bitcastToAPInt().isAllOnesValue())
138 // Okay, we have at least one ~0 value, check to see if the rest match or are
140 for (++i
; i
!= e
; ++i
)
141 if (N
->getOperand(i
) != NotZero
&&
142 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
148 /// isBuildVectorAllZeros - Return true if the specified node is a
149 /// BUILD_VECTOR where all of the elements are 0 or undef.
150 bool ISD::isBuildVectorAllZeros(const SDNode
*N
) {
151 // Look through a bit convert.
152 if (N
->getOpcode() == ISD::BIT_CONVERT
)
153 N
= N
->getOperand(0).getNode();
155 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
157 unsigned i
= 0, e
= N
->getNumOperands();
159 // Skip over all of the undef values.
160 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
163 // Do not accept an all-undef vector.
164 if (i
== e
) return false;
166 // Do not accept build_vectors that aren't all constants or which have non-0
168 SDValue Zero
= N
->getOperand(i
);
169 if (isa
<ConstantSDNode
>(Zero
)) {
170 if (!cast
<ConstantSDNode
>(Zero
)->isNullValue())
172 } else if (isa
<ConstantFPSDNode
>(Zero
)) {
173 if (!cast
<ConstantFPSDNode
>(Zero
)->getValueAPF().isPosZero())
178 // Okay, we have at least one 0 value, check to see if the rest match or are
180 for (++i
; i
!= e
; ++i
)
181 if (N
->getOperand(i
) != Zero
&&
182 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
187 /// isScalarToVector - Return true if the specified node is a
188 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
189 /// element is not an undef.
190 bool ISD::isScalarToVector(const SDNode
*N
) {
191 if (N
->getOpcode() == ISD::SCALAR_TO_VECTOR
)
194 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
196 if (N
->getOperand(0).getOpcode() == ISD::UNDEF
)
198 unsigned NumElems
= N
->getNumOperands();
199 for (unsigned i
= 1; i
< NumElems
; ++i
) {
200 SDValue V
= N
->getOperand(i
);
201 if (V
.getOpcode() != ISD::UNDEF
)
207 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208 /// when given the operation for (X op Y).
209 ISD::CondCode
ISD::getSetCCSwappedOperands(ISD::CondCode Operation
) {
210 // To perform this operation, we just need to swap the L and G bits of the
212 unsigned OldL
= (Operation
>> 2) & 1;
213 unsigned OldG
= (Operation
>> 1) & 1;
214 return ISD::CondCode((Operation
& ~6) | // Keep the N, U, E bits
215 (OldL
<< 1) | // New G bit
216 (OldG
<< 2)); // New L bit.
219 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220 /// 'op' is a valid SetCC operation.
221 ISD::CondCode
ISD::getSetCCInverse(ISD::CondCode Op
, bool isInteger
) {
222 unsigned Operation
= Op
;
224 Operation
^= 7; // Flip L, G, E bits, but not U.
226 Operation
^= 15; // Flip all of the condition bits.
228 if (Operation
> ISD::SETTRUE2
)
229 Operation
&= ~8; // Don't let N and U bits get set.
231 return ISD::CondCode(Operation
);
235 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
236 /// signed operation and 2 if the result is an unsigned comparison. Return zero
237 /// if the operation does not depend on the sign of the input (setne and seteq).
238 static int isSignedOp(ISD::CondCode Opcode
) {
240 default: llvm_unreachable("Illegal integer setcc operation!");
242 case ISD::SETNE
: return 0;
246 case ISD::SETGE
: return 1;
250 case ISD::SETUGE
: return 2;
254 /// getSetCCOrOperation - Return the result of a logical OR between different
255 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
256 /// returns SETCC_INVALID if it is not possible to represent the resultant
258 ISD::CondCode
ISD::getSetCCOrOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
260 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
261 // Cannot fold a signed integer setcc with an unsigned integer setcc.
262 return ISD::SETCC_INVALID
;
264 unsigned Op
= Op1
| Op2
; // Combine all of the condition bits.
266 // If the N and U bits get set then the resultant comparison DOES suddenly
267 // care about orderedness, and is true when ordered.
268 if (Op
> ISD::SETTRUE2
)
269 Op
&= ~16; // Clear the U bit if the N bit is set.
271 // Canonicalize illegal integer setcc's.
272 if (isInteger
&& Op
== ISD::SETUNE
) // e.g. SETUGT | SETULT
275 return ISD::CondCode(Op
);
278 /// getSetCCAndOperation - Return the result of a logical AND between different
279 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
280 /// function returns zero if it is not possible to represent the resultant
282 ISD::CondCode
ISD::getSetCCAndOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
284 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
285 // Cannot fold a signed setcc with an unsigned setcc.
286 return ISD::SETCC_INVALID
;
288 // Combine all of the condition bits.
289 ISD::CondCode Result
= ISD::CondCode(Op1
& Op2
);
291 // Canonicalize illegal integer setcc's.
295 case ISD::SETUO
: Result
= ISD::SETFALSE
; break; // SETUGT & SETULT
296 case ISD::SETOEQ
: // SETEQ & SETU[LG]E
297 case ISD::SETUEQ
: Result
= ISD::SETEQ
; break; // SETUGE & SETULE
298 case ISD::SETOLT
: Result
= ISD::SETULT
; break; // SETULT & SETNE
299 case ISD::SETOGT
: Result
= ISD::SETUGT
; break; // SETUGT & SETNE
306 const TargetMachine
&SelectionDAG::getTarget() const {
307 return MF
->getTarget();
310 //===----------------------------------------------------------------------===//
311 // SDNode Profile Support
312 //===----------------------------------------------------------------------===//
314 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316 static void AddNodeIDOpcode(FoldingSetNodeID
&ID
, unsigned OpC
) {
320 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321 /// solely with their pointer.
322 static void AddNodeIDValueTypes(FoldingSetNodeID
&ID
, SDVTList VTList
) {
323 ID
.AddPointer(VTList
.VTs
);
326 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
329 const SDValue
*Ops
, unsigned NumOps
) {
330 for (; NumOps
; --NumOps
, ++Ops
) {
331 ID
.AddPointer(Ops
->getNode());
332 ID
.AddInteger(Ops
->getResNo());
336 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
339 const SDUse
*Ops
, unsigned NumOps
) {
340 for (; NumOps
; --NumOps
, ++Ops
) {
341 ID
.AddPointer(Ops
->getNode());
342 ID
.AddInteger(Ops
->getResNo());
346 static void AddNodeIDNode(FoldingSetNodeID
&ID
,
347 unsigned short OpC
, SDVTList VTList
,
348 const SDValue
*OpList
, unsigned N
) {
349 AddNodeIDOpcode(ID
, OpC
);
350 AddNodeIDValueTypes(ID
, VTList
);
351 AddNodeIDOperands(ID
, OpList
, N
);
354 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356 static void AddNodeIDCustom(FoldingSetNodeID
&ID
, const SDNode
*N
) {
357 switch (N
->getOpcode()) {
358 case ISD::TargetExternalSymbol
:
359 case ISD::ExternalSymbol
:
360 llvm_unreachable("Should only be used on nodes with operands");
361 default: break; // Normal nodes don't need extra info.
362 case ISD::TargetConstant
:
364 ID
.AddPointer(cast
<ConstantSDNode
>(N
)->getConstantIntValue());
366 case ISD::TargetConstantFP
:
367 case ISD::ConstantFP
: {
368 ID
.AddPointer(cast
<ConstantFPSDNode
>(N
)->getConstantFPValue());
371 case ISD::TargetGlobalAddress
:
372 case ISD::GlobalAddress
:
373 case ISD::TargetGlobalTLSAddress
:
374 case ISD::GlobalTLSAddress
: {
375 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(N
);
376 ID
.AddPointer(GA
->getGlobal());
377 ID
.AddInteger(GA
->getOffset());
378 ID
.AddInteger(GA
->getTargetFlags());
381 case ISD::BasicBlock
:
382 ID
.AddPointer(cast
<BasicBlockSDNode
>(N
)->getBasicBlock());
385 ID
.AddInteger(cast
<RegisterSDNode
>(N
)->getReg());
389 ID
.AddPointer(cast
<SrcValueSDNode
>(N
)->getValue());
391 case ISD::FrameIndex
:
392 case ISD::TargetFrameIndex
:
393 ID
.AddInteger(cast
<FrameIndexSDNode
>(N
)->getIndex());
396 case ISD::TargetJumpTable
:
397 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getIndex());
398 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getTargetFlags());
400 case ISD::ConstantPool
:
401 case ISD::TargetConstantPool
: {
402 const ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(N
);
403 ID
.AddInteger(CP
->getAlignment());
404 ID
.AddInteger(CP
->getOffset());
405 if (CP
->isMachineConstantPoolEntry())
406 CP
->getMachineCPVal()->AddSelectionDAGCSEId(ID
);
408 ID
.AddPointer(CP
->getConstVal());
409 ID
.AddInteger(CP
->getTargetFlags());
413 const LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
414 ID
.AddInteger(LD
->getMemoryVT().getRawBits());
415 ID
.AddInteger(LD
->getRawSubclassData());
419 const StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
420 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
421 ID
.AddInteger(ST
->getRawSubclassData());
424 case ISD::ATOMIC_CMP_SWAP
:
425 case ISD::ATOMIC_SWAP
:
426 case ISD::ATOMIC_LOAD_ADD
:
427 case ISD::ATOMIC_LOAD_SUB
:
428 case ISD::ATOMIC_LOAD_AND
:
429 case ISD::ATOMIC_LOAD_OR
:
430 case ISD::ATOMIC_LOAD_XOR
:
431 case ISD::ATOMIC_LOAD_NAND
:
432 case ISD::ATOMIC_LOAD_MIN
:
433 case ISD::ATOMIC_LOAD_MAX
:
434 case ISD::ATOMIC_LOAD_UMIN
:
435 case ISD::ATOMIC_LOAD_UMAX
: {
436 const AtomicSDNode
*AT
= cast
<AtomicSDNode
>(N
);
437 ID
.AddInteger(AT
->getMemoryVT().getRawBits());
438 ID
.AddInteger(AT
->getRawSubclassData());
441 case ISD::VECTOR_SHUFFLE
: {
442 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
443 for (unsigned i
= 0, e
= N
->getValueType(0).getVectorNumElements();
445 ID
.AddInteger(SVN
->getMaskElt(i
));
448 case ISD::TargetBlockAddress
:
449 case ISD::BlockAddress
: {
450 ID
.AddPointer(cast
<BlockAddressSDNode
>(N
)->getBlockAddress());
451 ID
.AddInteger(cast
<BlockAddressSDNode
>(N
)->getTargetFlags());
454 } // end switch (N->getOpcode())
457 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459 static void AddNodeIDNode(FoldingSetNodeID
&ID
, const SDNode
*N
) {
460 AddNodeIDOpcode(ID
, N
->getOpcode());
461 // Add the return value info.
462 AddNodeIDValueTypes(ID
, N
->getVTList());
463 // Add the operand info.
464 AddNodeIDOperands(ID
, N
->op_begin(), N
->getNumOperands());
466 // Handle SDNode leafs with special info.
467 AddNodeIDCustom(ID
, N
);
470 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471 /// the CSE map that carries volatility, indexing mode, and
472 /// extension/truncation information.
474 static inline unsigned
475 encodeMemSDNodeFlags(int ConvType
, ISD::MemIndexedMode AM
, bool isVolatile
) {
476 assert((ConvType
& 3) == ConvType
&&
477 "ConvType may not require more than 2 bits!");
478 assert((AM
& 7) == AM
&&
479 "AM may not require more than 3 bits!");
485 //===----------------------------------------------------------------------===//
486 // SelectionDAG Class
487 //===----------------------------------------------------------------------===//
489 /// doNotCSE - Return true if CSE should not be performed for this node.
490 static bool doNotCSE(SDNode
*N
) {
491 if (N
->getValueType(0) == MVT::Flag
)
492 return true; // Never CSE anything that produces a flag.
494 switch (N
->getOpcode()) {
496 case ISD::HANDLENODE
:
498 return true; // Never CSE these nodes.
501 // Check that remaining values produced are not flags.
502 for (unsigned i
= 1, e
= N
->getNumValues(); i
!= e
; ++i
)
503 if (N
->getValueType(i
) == MVT::Flag
)
504 return true; // Never CSE anything that produces a flag.
509 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
511 void SelectionDAG::RemoveDeadNodes() {
512 // Create a dummy node (which is not added to allnodes), that adds a reference
513 // to the root node, preventing it from being deleted.
514 HandleSDNode
Dummy(getRoot());
516 SmallVector
<SDNode
*, 128> DeadNodes
;
518 // Add all obviously-dead nodes to the DeadNodes worklist.
519 for (allnodes_iterator I
= allnodes_begin(), E
= allnodes_end(); I
!= E
; ++I
)
521 DeadNodes
.push_back(I
);
523 RemoveDeadNodes(DeadNodes
);
525 // If the root changed (e.g. it was a dead load, update the root).
526 setRoot(Dummy
.getValue());
529 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
530 /// given list, and any nodes that become unreachable as a result.
531 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
,
532 DAGUpdateListener
*UpdateListener
) {
534 // Process the worklist, deleting the nodes and adding their uses to the
536 while (!DeadNodes
.empty()) {
537 SDNode
*N
= DeadNodes
.pop_back_val();
540 UpdateListener
->NodeDeleted(N
, 0);
542 // Take the node out of the appropriate CSE map.
543 RemoveNodeFromCSEMaps(N
);
545 // Next, brutally remove the operand list. This is safe to do, as there are
546 // no cycles in the graph.
547 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
549 SDNode
*Operand
= Use
.getNode();
552 // Now that we removed this operand, see if there are no uses of it left.
553 if (Operand
->use_empty())
554 DeadNodes
.push_back(Operand
);
561 void SelectionDAG::RemoveDeadNode(SDNode
*N
, DAGUpdateListener
*UpdateListener
){
562 SmallVector
<SDNode
*, 16> DeadNodes(1, N
);
563 RemoveDeadNodes(DeadNodes
, UpdateListener
);
566 void SelectionDAG::DeleteNode(SDNode
*N
) {
567 // First take this out of the appropriate CSE map.
568 RemoveNodeFromCSEMaps(N
);
570 // Finally, remove uses due to operands of this node, remove from the
571 // AllNodes list, and delete the node.
572 DeleteNodeNotInCSEMaps(N
);
575 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode
*N
) {
576 assert(N
!= AllNodes
.begin() && "Cannot delete the entry node!");
577 assert(N
->use_empty() && "Cannot delete a node that is not dead!");
579 // Drop all of the operands and decrement used node's use counts.
585 void SelectionDAG::DeallocateNode(SDNode
*N
) {
586 if (N
->OperandsNeedDelete
)
587 delete[] N
->OperandList
;
589 // Set the opcode to DELETED_NODE to help catch bugs when node
590 // memory is reallocated.
591 N
->NodeType
= ISD::DELETED_NODE
;
593 NodeAllocator
.Deallocate(AllNodes
.remove(N
));
595 // Remove the ordering of this node.
596 if (Ordering
) Ordering
->remove(N
);
599 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
600 /// correspond to it. This is useful when we're about to delete or repurpose
601 /// the node. We don't want future request for structurally identical nodes
602 /// to return N anymore.
603 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode
*N
) {
605 switch (N
->getOpcode()) {
606 case ISD::EntryToken
:
607 llvm_unreachable("EntryToken should not be in CSEMaps!");
609 case ISD::HANDLENODE
: return false; // noop.
611 assert(CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] &&
612 "Cond code doesn't exist!");
613 Erased
= CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] != 0;
614 CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] = 0;
616 case ISD::ExternalSymbol
:
617 Erased
= ExternalSymbols
.erase(cast
<ExternalSymbolSDNode
>(N
)->getSymbol());
619 case ISD::TargetExternalSymbol
: {
620 ExternalSymbolSDNode
*ESN
= cast
<ExternalSymbolSDNode
>(N
);
621 Erased
= TargetExternalSymbols
.erase(
622 std::pair
<std::string
,unsigned char>(ESN
->getSymbol(),
623 ESN
->getTargetFlags()));
626 case ISD::VALUETYPE
: {
627 EVT VT
= cast
<VTSDNode
>(N
)->getVT();
628 if (VT
.isExtended()) {
629 Erased
= ExtendedValueTypeNodes
.erase(VT
);
631 Erased
= ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] != 0;
632 ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] = 0;
637 // Remove it from the CSE Map.
638 Erased
= CSEMap
.RemoveNode(N
);
642 // Verify that the node was actually in one of the CSE maps, unless it has a
643 // flag result (which cannot be CSE'd) or is one of the special cases that are
644 // not subject to CSE.
645 if (!Erased
&& N
->getValueType(N
->getNumValues()-1) != MVT::Flag
&&
646 !N
->isMachineOpcode() && !doNotCSE(N
)) {
649 llvm_unreachable("Node is not in map!");
655 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
656 /// maps and modified in place. Add it back to the CSE maps, unless an identical
657 /// node already exists, in which case transfer all its users to the existing
658 /// node. This transfer can potentially trigger recursive merging.
661 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode
*N
,
662 DAGUpdateListener
*UpdateListener
) {
663 // For node types that aren't CSE'd, just act as if no identical node
666 SDNode
*Existing
= CSEMap
.GetOrInsertNode(N
);
668 // If there was already an existing matching node, use ReplaceAllUsesWith
669 // to replace the dead one with the existing one. This can cause
670 // recursive merging of other unrelated nodes down the line.
671 ReplaceAllUsesWith(N
, Existing
, UpdateListener
);
673 // N is now dead. Inform the listener if it exists and delete it.
675 UpdateListener
->NodeDeleted(N
, Existing
);
676 DeleteNodeNotInCSEMaps(N
);
681 // If the node doesn't already exist, we updated it. Inform a listener if
684 UpdateListener
->NodeUpdated(N
);
687 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
688 /// were replaced with those specified. If this node is never memoized,
689 /// return null, otherwise return a pointer to the slot it would take. If a
690 /// node already exists with these operands, the slot will be non-null.
691 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
, SDValue Op
,
696 SDValue Ops
[] = { Op
};
698 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 1);
699 AddNodeIDCustom(ID
, N
);
700 SDNode
*Node
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
704 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
705 /// were replaced with those specified. If this node is never memoized,
706 /// return null, otherwise return a pointer to the slot it would take. If a
707 /// node already exists with these operands, the slot will be non-null.
708 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
709 SDValue Op1
, SDValue Op2
,
714 SDValue Ops
[] = { Op1
, Op2
};
716 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 2);
717 AddNodeIDCustom(ID
, N
);
718 SDNode
*Node
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
723 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
724 /// were replaced with those specified. If this node is never memoized,
725 /// return null, otherwise return a pointer to the slot it would take. If a
726 /// node already exists with these operands, the slot will be non-null.
727 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
728 const SDValue
*Ops
,unsigned NumOps
,
734 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, NumOps
);
735 AddNodeIDCustom(ID
, N
);
736 SDNode
*Node
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
740 /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
741 void SelectionDAG::VerifyNode(SDNode
*N
) {
742 switch (N
->getOpcode()) {
745 case ISD::BUILD_PAIR
: {
746 EVT VT
= N
->getValueType(0);
747 assert(N
->getNumValues() == 1 && "Too many results!");
748 assert(!VT
.isVector() && (VT
.isInteger() || VT
.isFloatingPoint()) &&
749 "Wrong return type!");
750 assert(N
->getNumOperands() == 2 && "Wrong number of operands!");
751 assert(N
->getOperand(0).getValueType() == N
->getOperand(1).getValueType() &&
752 "Mismatched operand types!");
753 assert(N
->getOperand(0).getValueType().isInteger() == VT
.isInteger() &&
754 "Wrong operand type!");
755 assert(VT
.getSizeInBits() == 2 * N
->getOperand(0).getValueSizeInBits() &&
756 "Wrong return type size");
759 case ISD::BUILD_VECTOR
: {
760 assert(N
->getNumValues() == 1 && "Too many results!");
761 assert(N
->getValueType(0).isVector() && "Wrong return type!");
762 assert(N
->getNumOperands() == N
->getValueType(0).getVectorNumElements() &&
763 "Wrong number of operands!");
764 EVT EltVT
= N
->getValueType(0).getVectorElementType();
765 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ++I
)
766 assert((I
->getValueType() == EltVT
||
767 (EltVT
.isInteger() && I
->getValueType().isInteger() &&
768 EltVT
.bitsLE(I
->getValueType()))) &&
769 "Wrong operand type!");
775 /// getEVTAlignment - Compute the default alignment value for the
778 unsigned SelectionDAG::getEVTAlignment(EVT VT
) const {
779 const Type
*Ty
= VT
== MVT::iPTR
?
780 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
781 VT
.getTypeForEVT(*getContext());
783 return TLI
.getTargetData()->getABITypeAlignment(Ty
);
786 // EntryNode could meaningfully have debug info if we can find it...
787 SelectionDAG::SelectionDAG(TargetLowering
&tli
, FunctionLoweringInfo
&fli
)
788 : TLI(tli
), FLI(fli
), DW(0),
789 EntryNode(ISD::EntryToken
, DebugLoc::getUnknownLoc(),
790 getVTList(MVT::Other
)),
791 Root(getEntryNode()), Ordering(0) {
792 AllNodes
.push_back(&EntryNode
);
793 if (DisableScheduling
)
794 Ordering
= new SDNodeOrdering();
797 void SelectionDAG::init(MachineFunction
&mf
, MachineModuleInfo
*mmi
,
802 Context
= &mf
.getFunction()->getContext();
805 SelectionDAG::~SelectionDAG() {
810 void SelectionDAG::allnodes_clear() {
811 assert(&*AllNodes
.begin() == &EntryNode
);
812 AllNodes
.remove(AllNodes
.begin());
813 while (!AllNodes
.empty())
814 DeallocateNode(AllNodes
.begin());
817 void SelectionDAG::clear() {
819 OperandAllocator
.Reset();
822 ExtendedValueTypeNodes
.clear();
823 ExternalSymbols
.clear();
824 TargetExternalSymbols
.clear();
825 std::fill(CondCodeNodes
.begin(), CondCodeNodes
.end(),
826 static_cast<CondCodeSDNode
*>(0));
827 std::fill(ValueTypeNodes
.begin(), ValueTypeNodes
.end(),
828 static_cast<SDNode
*>(0));
830 EntryNode
.UseList
= 0;
831 AllNodes
.push_back(&EntryNode
);
832 Root
= getEntryNode();
833 if (DisableScheduling
)
834 Ordering
= new SDNodeOrdering();
837 SDValue
SelectionDAG::getSExtOrTrunc(SDValue Op
, DebugLoc DL
, EVT VT
) {
838 return VT
.bitsGT(Op
.getValueType()) ?
839 getNode(ISD::SIGN_EXTEND
, DL
, VT
, Op
) :
840 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
843 SDValue
SelectionDAG::getZExtOrTrunc(SDValue Op
, DebugLoc DL
, EVT VT
) {
844 return VT
.bitsGT(Op
.getValueType()) ?
845 getNode(ISD::ZERO_EXTEND
, DL
, VT
, Op
) :
846 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
849 SDValue
SelectionDAG::getZeroExtendInReg(SDValue Op
, DebugLoc DL
, EVT VT
) {
850 assert(!VT
.isVector() &&
851 "getZeroExtendInReg should use the vector element type instead of "
853 if (Op
.getValueType() == VT
) return Op
;
854 unsigned BitWidth
= Op
.getValueType().getScalarType().getSizeInBits();
855 APInt Imm
= APInt::getLowBitsSet(BitWidth
,
857 return getNode(ISD::AND
, DL
, Op
.getValueType(), Op
,
858 getConstant(Imm
, Op
.getValueType()));
861 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
863 SDValue
SelectionDAG::getNOT(DebugLoc DL
, SDValue Val
, EVT VT
) {
864 EVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
866 getConstant(APInt::getAllOnesValue(EltVT
.getSizeInBits()), VT
);
867 return getNode(ISD::XOR
, DL
, VT
, Val
, NegOne
);
870 SDValue
SelectionDAG::getConstant(uint64_t Val
, EVT VT
, bool isT
) {
871 EVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
872 assert((EltVT
.getSizeInBits() >= 64 ||
873 (uint64_t)((int64_t)Val
>> EltVT
.getSizeInBits()) + 1 < 2) &&
874 "getConstant with a uint64_t value that doesn't fit in the type!");
875 return getConstant(APInt(EltVT
.getSizeInBits(), Val
), VT
, isT
);
878 SDValue
SelectionDAG::getConstant(const APInt
&Val
, EVT VT
, bool isT
) {
879 return getConstant(*ConstantInt::get(*Context
, Val
), VT
, isT
);
882 SDValue
SelectionDAG::getConstant(const ConstantInt
&Val
, EVT VT
, bool isT
) {
883 assert(VT
.isInteger() && "Cannot create FP integer constant!");
885 EVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
886 assert(Val
.getBitWidth() == EltVT
.getSizeInBits() &&
887 "APInt size does not match type size!");
889 unsigned Opc
= isT
? ISD::TargetConstant
: ISD::Constant
;
891 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
895 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
897 return SDValue(N
, 0);
900 N
= NodeAllocator
.Allocate
<ConstantSDNode
>();
901 new (N
) ConstantSDNode(isT
, &Val
, EltVT
);
902 CSEMap
.InsertNode(N
, IP
);
903 AllNodes
.push_back(N
);
906 SDValue
Result(N
, 0);
908 SmallVector
<SDValue
, 8> Ops
;
909 Ops
.assign(VT
.getVectorNumElements(), Result
);
910 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc::getUnknownLoc(),
911 VT
, &Ops
[0], Ops
.size());
916 SDValue
SelectionDAG::getIntPtrConstant(uint64_t Val
, bool isTarget
) {
917 return getConstant(Val
, TLI
.getPointerTy(), isTarget
);
921 SDValue
SelectionDAG::getConstantFP(const APFloat
& V
, EVT VT
, bool isTarget
) {
922 return getConstantFP(*ConstantFP::get(*getContext(), V
), VT
, isTarget
);
925 SDValue
SelectionDAG::getConstantFP(const ConstantFP
& V
, EVT VT
, bool isTarget
){
926 assert(VT
.isFloatingPoint() && "Cannot create integer FP constant!");
929 VT
.isVector() ? VT
.getVectorElementType() : VT
;
931 // Do the map lookup using the actual bit pattern for the floating point
932 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
933 // we don't have issues with SNANs.
934 unsigned Opc
= isTarget
? ISD::TargetConstantFP
: ISD::ConstantFP
;
936 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
940 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
942 return SDValue(N
, 0);
945 N
= NodeAllocator
.Allocate
<ConstantFPSDNode
>();
946 new (N
) ConstantFPSDNode(isTarget
, &V
, EltVT
);
947 CSEMap
.InsertNode(N
, IP
);
948 AllNodes
.push_back(N
);
951 SDValue
Result(N
, 0);
953 SmallVector
<SDValue
, 8> Ops
;
954 Ops
.assign(VT
.getVectorNumElements(), Result
);
955 // FIXME DebugLoc info might be appropriate here
956 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc::getUnknownLoc(),
957 VT
, &Ops
[0], Ops
.size());
962 SDValue
SelectionDAG::getConstantFP(double Val
, EVT VT
, bool isTarget
) {
964 VT
.isVector() ? VT
.getVectorElementType() : VT
;
966 return getConstantFP(APFloat((float)Val
), VT
, isTarget
);
968 return getConstantFP(APFloat(Val
), VT
, isTarget
);
971 SDValue
SelectionDAG::getGlobalAddress(const GlobalValue
*GV
,
972 EVT VT
, int64_t Offset
,
974 unsigned char TargetFlags
) {
975 assert((TargetFlags
== 0 || isTargetGA
) &&
976 "Cannot set target flags on target-independent globals");
978 // Truncate (with sign-extension) the offset value to the pointer size.
979 EVT PTy
= TLI
.getPointerTy();
980 unsigned BitWidth
= PTy
.getSizeInBits();
982 Offset
= (Offset
<< (64 - BitWidth
) >> (64 - BitWidth
));
984 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
986 // If GV is an alias then use the aliasee for determining thread-localness.
987 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
988 GVar
= dyn_cast_or_null
<GlobalVariable
>(GA
->resolveAliasedGlobal(false));
992 if (GVar
&& GVar
->isThreadLocal())
993 Opc
= isTargetGA
? ISD::TargetGlobalTLSAddress
: ISD::GlobalTLSAddress
;
995 Opc
= isTargetGA
? ISD::TargetGlobalAddress
: ISD::GlobalAddress
;
998 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1000 ID
.AddInteger(Offset
);
1001 ID
.AddInteger(TargetFlags
);
1003 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1004 return SDValue(E
, 0);
1006 SDNode
*N
= NodeAllocator
.Allocate
<GlobalAddressSDNode
>();
1007 new (N
) GlobalAddressSDNode(Opc
, GV
, VT
, Offset
, TargetFlags
);
1008 CSEMap
.InsertNode(N
, IP
);
1009 AllNodes
.push_back(N
);
1010 return SDValue(N
, 0);
1013 SDValue
SelectionDAG::getFrameIndex(int FI
, EVT VT
, bool isTarget
) {
1014 unsigned Opc
= isTarget
? ISD::TargetFrameIndex
: ISD::FrameIndex
;
1015 FoldingSetNodeID ID
;
1016 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1019 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1020 return SDValue(E
, 0);
1022 SDNode
*N
= NodeAllocator
.Allocate
<FrameIndexSDNode
>();
1023 new (N
) FrameIndexSDNode(FI
, VT
, isTarget
);
1024 CSEMap
.InsertNode(N
, IP
);
1025 AllNodes
.push_back(N
);
1026 return SDValue(N
, 0);
1029 SDValue
SelectionDAG::getJumpTable(int JTI
, EVT VT
, bool isTarget
,
1030 unsigned char TargetFlags
) {
1031 assert((TargetFlags
== 0 || isTarget
) &&
1032 "Cannot set target flags on target-independent jump tables");
1033 unsigned Opc
= isTarget
? ISD::TargetJumpTable
: ISD::JumpTable
;
1034 FoldingSetNodeID ID
;
1035 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1037 ID
.AddInteger(TargetFlags
);
1039 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1040 return SDValue(E
, 0);
1042 SDNode
*N
= NodeAllocator
.Allocate
<JumpTableSDNode
>();
1043 new (N
) JumpTableSDNode(JTI
, VT
, isTarget
, TargetFlags
);
1044 CSEMap
.InsertNode(N
, IP
);
1045 AllNodes
.push_back(N
);
1046 return SDValue(N
, 0);
1049 SDValue
SelectionDAG::getConstantPool(Constant
*C
, EVT VT
,
1050 unsigned Alignment
, int Offset
,
1052 unsigned char TargetFlags
) {
1053 assert((TargetFlags
== 0 || isTarget
) &&
1054 "Cannot set target flags on target-independent globals");
1056 Alignment
= TLI
.getTargetData()->getPrefTypeAlignment(C
->getType());
1057 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1058 FoldingSetNodeID ID
;
1059 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1060 ID
.AddInteger(Alignment
);
1061 ID
.AddInteger(Offset
);
1063 ID
.AddInteger(TargetFlags
);
1065 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1066 return SDValue(E
, 0);
1068 SDNode
*N
= NodeAllocator
.Allocate
<ConstantPoolSDNode
>();
1069 new (N
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
, Alignment
, TargetFlags
);
1070 CSEMap
.InsertNode(N
, IP
);
1071 AllNodes
.push_back(N
);
1072 return SDValue(N
, 0);
1076 SDValue
SelectionDAG::getConstantPool(MachineConstantPoolValue
*C
, EVT VT
,
1077 unsigned Alignment
, int Offset
,
1079 unsigned char TargetFlags
) {
1080 assert((TargetFlags
== 0 || isTarget
) &&
1081 "Cannot set target flags on target-independent globals");
1083 Alignment
= TLI
.getTargetData()->getPrefTypeAlignment(C
->getType());
1084 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1085 FoldingSetNodeID ID
;
1086 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1087 ID
.AddInteger(Alignment
);
1088 ID
.AddInteger(Offset
);
1089 C
->AddSelectionDAGCSEId(ID
);
1090 ID
.AddInteger(TargetFlags
);
1092 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1093 return SDValue(E
, 0);
1095 SDNode
*N
= NodeAllocator
.Allocate
<ConstantPoolSDNode
>();
1096 new (N
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
, Alignment
, TargetFlags
);
1097 CSEMap
.InsertNode(N
, IP
);
1098 AllNodes
.push_back(N
);
1099 return SDValue(N
, 0);
1102 SDValue
SelectionDAG::getBasicBlock(MachineBasicBlock
*MBB
) {
1103 FoldingSetNodeID ID
;
1104 AddNodeIDNode(ID
, ISD::BasicBlock
, getVTList(MVT::Other
), 0, 0);
1107 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1108 return SDValue(E
, 0);
1110 SDNode
*N
= NodeAllocator
.Allocate
<BasicBlockSDNode
>();
1111 new (N
) BasicBlockSDNode(MBB
);
1112 CSEMap
.InsertNode(N
, IP
);
1113 AllNodes
.push_back(N
);
1114 return SDValue(N
, 0);
1117 SDValue
SelectionDAG::getValueType(EVT VT
) {
1118 if (VT
.isSimple() && (unsigned)VT
.getSimpleVT().SimpleTy
>=
1119 ValueTypeNodes
.size())
1120 ValueTypeNodes
.resize(VT
.getSimpleVT().SimpleTy
+1);
1122 SDNode
*&N
= VT
.isExtended() ?
1123 ExtendedValueTypeNodes
[VT
] : ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
];
1125 if (N
) return SDValue(N
, 0);
1126 N
= NodeAllocator
.Allocate
<VTSDNode
>();
1127 new (N
) VTSDNode(VT
);
1128 AllNodes
.push_back(N
);
1129 return SDValue(N
, 0);
1132 SDValue
SelectionDAG::getExternalSymbol(const char *Sym
, EVT VT
) {
1133 SDNode
*&N
= ExternalSymbols
[Sym
];
1134 if (N
) return SDValue(N
, 0);
1135 N
= NodeAllocator
.Allocate
<ExternalSymbolSDNode
>();
1136 new (N
) ExternalSymbolSDNode(false, Sym
, 0, VT
);
1137 AllNodes
.push_back(N
);
1138 return SDValue(N
, 0);
1141 SDValue
SelectionDAG::getTargetExternalSymbol(const char *Sym
, EVT VT
,
1142 unsigned char TargetFlags
) {
1144 TargetExternalSymbols
[std::pair
<std::string
,unsigned char>(Sym
,
1146 if (N
) return SDValue(N
, 0);
1147 N
= NodeAllocator
.Allocate
<ExternalSymbolSDNode
>();
1148 new (N
) ExternalSymbolSDNode(true, Sym
, TargetFlags
, VT
);
1149 AllNodes
.push_back(N
);
1150 return SDValue(N
, 0);
1153 SDValue
SelectionDAG::getCondCode(ISD::CondCode Cond
) {
1154 if ((unsigned)Cond
>= CondCodeNodes
.size())
1155 CondCodeNodes
.resize(Cond
+1);
1157 if (CondCodeNodes
[Cond
] == 0) {
1158 CondCodeSDNode
*N
= NodeAllocator
.Allocate
<CondCodeSDNode
>();
1159 new (N
) CondCodeSDNode(Cond
);
1160 CondCodeNodes
[Cond
] = N
;
1161 AllNodes
.push_back(N
);
1164 return SDValue(CondCodeNodes
[Cond
], 0);
1167 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1168 // the shuffle mask M that point at N1 to point at N2, and indices that point
1169 // N2 to point at N1.
1170 static void commuteShuffle(SDValue
&N1
, SDValue
&N2
, SmallVectorImpl
<int> &M
) {
1172 int NElts
= M
.size();
1173 for (int i
= 0; i
!= NElts
; ++i
) {
1181 SDValue
SelectionDAG::getVectorShuffle(EVT VT
, DebugLoc dl
, SDValue N1
,
1182 SDValue N2
, const int *Mask
) {
1183 assert(N1
.getValueType() == N2
.getValueType() && "Invalid VECTOR_SHUFFLE");
1184 assert(VT
.isVector() && N1
.getValueType().isVector() &&
1185 "Vector Shuffle VTs must be a vectors");
1186 assert(VT
.getVectorElementType() == N1
.getValueType().getVectorElementType()
1187 && "Vector Shuffle VTs must have same element type");
1189 // Canonicalize shuffle undef, undef -> undef
1190 if (N1
.getOpcode() == ISD::UNDEF
&& N2
.getOpcode() == ISD::UNDEF
)
1191 return getUNDEF(VT
);
1193 // Validate that all indices in Mask are within the range of the elements
1194 // input to the shuffle.
1195 unsigned NElts
= VT
.getVectorNumElements();
1196 SmallVector
<int, 8> MaskVec
;
1197 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1198 assert(Mask
[i
] < (int)(NElts
* 2) && "Index out of range");
1199 MaskVec
.push_back(Mask
[i
]);
1202 // Canonicalize shuffle v, v -> v, undef
1205 for (unsigned i
= 0; i
!= NElts
; ++i
)
1206 if (MaskVec
[i
] >= (int)NElts
) MaskVec
[i
] -= NElts
;
1209 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1210 if (N1
.getOpcode() == ISD::UNDEF
)
1211 commuteShuffle(N1
, N2
, MaskVec
);
1213 // Canonicalize all index into lhs, -> shuffle lhs, undef
1214 // Canonicalize all index into rhs, -> shuffle rhs, undef
1215 bool AllLHS
= true, AllRHS
= true;
1216 bool N2Undef
= N2
.getOpcode() == ISD::UNDEF
;
1217 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1218 if (MaskVec
[i
] >= (int)NElts
) {
1223 } else if (MaskVec
[i
] >= 0) {
1227 if (AllLHS
&& AllRHS
)
1228 return getUNDEF(VT
);
1229 if (AllLHS
&& !N2Undef
)
1233 commuteShuffle(N1
, N2
, MaskVec
);
1236 // If Identity shuffle, or all shuffle in to undef, return that node.
1237 bool AllUndef
= true;
1238 bool Identity
= true;
1239 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1240 if (MaskVec
[i
] >= 0 && MaskVec
[i
] != (int)i
) Identity
= false;
1241 if (MaskVec
[i
] >= 0) AllUndef
= false;
1243 if (Identity
&& NElts
== N1
.getValueType().getVectorNumElements())
1246 return getUNDEF(VT
);
1248 FoldingSetNodeID ID
;
1249 SDValue Ops
[2] = { N1
, N2
};
1250 AddNodeIDNode(ID
, ISD::VECTOR_SHUFFLE
, getVTList(VT
), Ops
, 2);
1251 for (unsigned i
= 0; i
!= NElts
; ++i
)
1252 ID
.AddInteger(MaskVec
[i
]);
1255 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1256 return SDValue(E
, 0);
1258 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1259 // SDNode doesn't have access to it. This memory will be "leaked" when
1260 // the node is deallocated, but recovered when the NodeAllocator is released.
1261 int *MaskAlloc
= OperandAllocator
.Allocate
<int>(NElts
);
1262 memcpy(MaskAlloc
, &MaskVec
[0], NElts
* sizeof(int));
1264 ShuffleVectorSDNode
*N
= NodeAllocator
.Allocate
<ShuffleVectorSDNode
>();
1265 new (N
) ShuffleVectorSDNode(VT
, dl
, N1
, N2
, MaskAlloc
);
1266 CSEMap
.InsertNode(N
, IP
);
1267 AllNodes
.push_back(N
);
1268 return SDValue(N
, 0);
1271 SDValue
SelectionDAG::getConvertRndSat(EVT VT
, DebugLoc dl
,
1272 SDValue Val
, SDValue DTy
,
1273 SDValue STy
, SDValue Rnd
, SDValue Sat
,
1274 ISD::CvtCode Code
) {
1275 // If the src and dest types are the same and the conversion is between
1276 // integer types of the same sign or two floats, no conversion is necessary.
1278 (Code
== ISD::CVT_UU
|| Code
== ISD::CVT_SS
|| Code
== ISD::CVT_FF
))
1281 FoldingSetNodeID ID
;
1282 SDValue Ops
[] = { Val
, DTy
, STy
, Rnd
, Sat
};
1283 AddNodeIDNode(ID
, ISD::CONVERT_RNDSAT
, getVTList(VT
), &Ops
[0], 5);
1285 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1286 return SDValue(E
, 0);
1288 CvtRndSatSDNode
*N
= NodeAllocator
.Allocate
<CvtRndSatSDNode
>();
1289 new (N
) CvtRndSatSDNode(VT
, dl
, Ops
, 5, Code
);
1290 CSEMap
.InsertNode(N
, IP
);
1291 AllNodes
.push_back(N
);
1292 return SDValue(N
, 0);
1295 SDValue
SelectionDAG::getRegister(unsigned RegNo
, EVT VT
) {
1296 FoldingSetNodeID ID
;
1297 AddNodeIDNode(ID
, ISD::Register
, getVTList(VT
), 0, 0);
1298 ID
.AddInteger(RegNo
);
1300 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1301 return SDValue(E
, 0);
1303 SDNode
*N
= NodeAllocator
.Allocate
<RegisterSDNode
>();
1304 new (N
) RegisterSDNode(RegNo
, VT
);
1305 CSEMap
.InsertNode(N
, IP
);
1306 AllNodes
.push_back(N
);
1307 return SDValue(N
, 0);
1310 SDValue
SelectionDAG::getLabel(unsigned Opcode
, DebugLoc dl
,
1313 FoldingSetNodeID ID
;
1314 SDValue Ops
[] = { Root
};
1315 AddNodeIDNode(ID
, Opcode
, getVTList(MVT::Other
), &Ops
[0], 1);
1316 ID
.AddInteger(LabelID
);
1318 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1319 return SDValue(E
, 0);
1321 SDNode
*N
= NodeAllocator
.Allocate
<LabelSDNode
>();
1322 new (N
) LabelSDNode(Opcode
, dl
, Root
, LabelID
);
1323 CSEMap
.InsertNode(N
, IP
);
1324 AllNodes
.push_back(N
);
1325 return SDValue(N
, 0);
1328 SDValue
SelectionDAG::getBlockAddress(BlockAddress
*BA
, EVT VT
,
1330 unsigned char TargetFlags
) {
1331 unsigned Opc
= isTarget
? ISD::TargetBlockAddress
: ISD::BlockAddress
;
1333 FoldingSetNodeID ID
;
1334 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1336 ID
.AddInteger(TargetFlags
);
1338 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1339 return SDValue(E
, 0);
1341 SDNode
*N
= NodeAllocator
.Allocate
<BlockAddressSDNode
>();
1342 new (N
) BlockAddressSDNode(Opc
, VT
, BA
, TargetFlags
);
1343 CSEMap
.InsertNode(N
, IP
);
1344 AllNodes
.push_back(N
);
1345 return SDValue(N
, 0);
1348 SDValue
SelectionDAG::getSrcValue(const Value
*V
) {
1349 assert((!V
|| isa
<PointerType
>(V
->getType())) &&
1350 "SrcValue is not a pointer?");
1352 FoldingSetNodeID ID
;
1353 AddNodeIDNode(ID
, ISD::SRCVALUE
, getVTList(MVT::Other
), 0, 0);
1357 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1358 return SDValue(E
, 0);
1360 SDNode
*N
= NodeAllocator
.Allocate
<SrcValueSDNode
>();
1361 new (N
) SrcValueSDNode(V
);
1362 CSEMap
.InsertNode(N
, IP
);
1363 AllNodes
.push_back(N
);
1364 return SDValue(N
, 0);
1367 /// getShiftAmountOperand - Return the specified value casted to
1368 /// the target's desired shift amount type.
1369 SDValue
SelectionDAG::getShiftAmountOperand(SDValue Op
) {
1370 EVT OpTy
= Op
.getValueType();
1371 MVT ShTy
= TLI
.getShiftAmountTy();
1372 if (OpTy
== ShTy
|| OpTy
.isVector()) return Op
;
1374 ISD::NodeType Opcode
= OpTy
.bitsGT(ShTy
) ? ISD::TRUNCATE
: ISD::ZERO_EXTEND
;
1375 return getNode(Opcode
, Op
.getDebugLoc(), ShTy
, Op
);
1378 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1379 /// specified value type.
1380 SDValue
SelectionDAG::CreateStackTemporary(EVT VT
, unsigned minAlign
) {
1381 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1382 unsigned ByteSize
= VT
.getStoreSize();
1383 const Type
*Ty
= VT
.getTypeForEVT(*getContext());
1384 unsigned StackAlign
=
1385 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
), minAlign
);
1387 int FrameIdx
= FrameInfo
->CreateStackObject(ByteSize
, StackAlign
, false);
1388 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1391 /// CreateStackTemporary - Create a stack temporary suitable for holding
1392 /// either of the specified value types.
1393 SDValue
SelectionDAG::CreateStackTemporary(EVT VT1
, EVT VT2
) {
1394 unsigned Bytes
= std::max(VT1
.getStoreSizeInBits(),
1395 VT2
.getStoreSizeInBits())/8;
1396 const Type
*Ty1
= VT1
.getTypeForEVT(*getContext());
1397 const Type
*Ty2
= VT2
.getTypeForEVT(*getContext());
1398 const TargetData
*TD
= TLI
.getTargetData();
1399 unsigned Align
= std::max(TD
->getPrefTypeAlignment(Ty1
),
1400 TD
->getPrefTypeAlignment(Ty2
));
1402 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1403 int FrameIdx
= FrameInfo
->CreateStackObject(Bytes
, Align
, false);
1404 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1407 SDValue
SelectionDAG::FoldSetCC(EVT VT
, SDValue N1
,
1408 SDValue N2
, ISD::CondCode Cond
, DebugLoc dl
) {
1409 // These setcc operations always fold.
1413 case ISD::SETFALSE2
: return getConstant(0, VT
);
1415 case ISD::SETTRUE2
: return getConstant(1, VT
);
1427 assert(!N1
.getValueType().isInteger() && "Illegal setcc for integer!");
1431 if (ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode())) {
1432 const APInt
&C2
= N2C
->getAPIntValue();
1433 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
1434 const APInt
&C1
= N1C
->getAPIntValue();
1437 default: llvm_unreachable("Unknown integer setcc!");
1438 case ISD::SETEQ
: return getConstant(C1
== C2
, VT
);
1439 case ISD::SETNE
: return getConstant(C1
!= C2
, VT
);
1440 case ISD::SETULT
: return getConstant(C1
.ult(C2
), VT
);
1441 case ISD::SETUGT
: return getConstant(C1
.ugt(C2
), VT
);
1442 case ISD::SETULE
: return getConstant(C1
.ule(C2
), VT
);
1443 case ISD::SETUGE
: return getConstant(C1
.uge(C2
), VT
);
1444 case ISD::SETLT
: return getConstant(C1
.slt(C2
), VT
);
1445 case ISD::SETGT
: return getConstant(C1
.sgt(C2
), VT
);
1446 case ISD::SETLE
: return getConstant(C1
.sle(C2
), VT
);
1447 case ISD::SETGE
: return getConstant(C1
.sge(C2
), VT
);
1451 if (ConstantFPSDNode
*N1C
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode())) {
1452 if (ConstantFPSDNode
*N2C
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode())) {
1453 // No compile time operations on this type yet.
1454 if (N1C
->getValueType(0) == MVT::ppcf128
)
1457 APFloat::cmpResult R
= N1C
->getValueAPF().compare(N2C
->getValueAPF());
1460 case ISD::SETEQ
: if (R
==APFloat::cmpUnordered
)
1461 return getUNDEF(VT
);
1463 case ISD::SETOEQ
: return getConstant(R
==APFloat::cmpEqual
, VT
);
1464 case ISD::SETNE
: if (R
==APFloat::cmpUnordered
)
1465 return getUNDEF(VT
);
1467 case ISD::SETONE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1468 R
==APFloat::cmpLessThan
, VT
);
1469 case ISD::SETLT
: if (R
==APFloat::cmpUnordered
)
1470 return getUNDEF(VT
);
1472 case ISD::SETOLT
: return getConstant(R
==APFloat::cmpLessThan
, VT
);
1473 case ISD::SETGT
: if (R
==APFloat::cmpUnordered
)
1474 return getUNDEF(VT
);
1476 case ISD::SETOGT
: return getConstant(R
==APFloat::cmpGreaterThan
, VT
);
1477 case ISD::SETLE
: if (R
==APFloat::cmpUnordered
)
1478 return getUNDEF(VT
);
1480 case ISD::SETOLE
: return getConstant(R
==APFloat::cmpLessThan
||
1481 R
==APFloat::cmpEqual
, VT
);
1482 case ISD::SETGE
: if (R
==APFloat::cmpUnordered
)
1483 return getUNDEF(VT
);
1485 case ISD::SETOGE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1486 R
==APFloat::cmpEqual
, VT
);
1487 case ISD::SETO
: return getConstant(R
!=APFloat::cmpUnordered
, VT
);
1488 case ISD::SETUO
: return getConstant(R
==APFloat::cmpUnordered
, VT
);
1489 case ISD::SETUEQ
: return getConstant(R
==APFloat::cmpUnordered
||
1490 R
==APFloat::cmpEqual
, VT
);
1491 case ISD::SETUNE
: return getConstant(R
!=APFloat::cmpEqual
, VT
);
1492 case ISD::SETULT
: return getConstant(R
==APFloat::cmpUnordered
||
1493 R
==APFloat::cmpLessThan
, VT
);
1494 case ISD::SETUGT
: return getConstant(R
==APFloat::cmpGreaterThan
||
1495 R
==APFloat::cmpUnordered
, VT
);
1496 case ISD::SETULE
: return getConstant(R
!=APFloat::cmpGreaterThan
, VT
);
1497 case ISD::SETUGE
: return getConstant(R
!=APFloat::cmpLessThan
, VT
);
1500 // Ensure that the constant occurs on the RHS.
1501 return getSetCC(dl
, VT
, N2
, N1
, ISD::getSetCCSwappedOperands(Cond
));
1505 // Could not fold it.
1509 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1510 /// use this predicate to simplify operations downstream.
1511 bool SelectionDAG::SignBitIsZero(SDValue Op
, unsigned Depth
) const {
1512 // This predicate is not safe for vector operations.
1513 if (Op
.getValueType().isVector())
1516 unsigned BitWidth
= Op
.getValueType().getScalarType().getSizeInBits();
1517 return MaskedValueIsZero(Op
, APInt::getSignBit(BitWidth
), Depth
);
1520 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1521 /// this predicate to simplify operations downstream. Mask is known to be zero
1522 /// for bits that V cannot have.
1523 bool SelectionDAG::MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
1524 unsigned Depth
) const {
1525 APInt KnownZero
, KnownOne
;
1526 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
1527 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1528 return (KnownZero
& Mask
) == Mask
;
1531 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1532 /// known to be either zero or one and return them in the KnownZero/KnownOne
1533 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1535 void SelectionDAG::ComputeMaskedBits(SDValue Op
, const APInt
&Mask
,
1536 APInt
&KnownZero
, APInt
&KnownOne
,
1537 unsigned Depth
) const {
1538 unsigned BitWidth
= Mask
.getBitWidth();
1539 assert(BitWidth
== Op
.getValueType().getScalarType().getSizeInBits() &&
1540 "Mask size mismatches value type size!");
1542 KnownZero
= KnownOne
= APInt(BitWidth
, 0); // Don't know anything.
1543 if (Depth
== 6 || Mask
== 0)
1544 return; // Limit search depth.
1546 APInt KnownZero2
, KnownOne2
;
1548 switch (Op
.getOpcode()) {
1550 // We know all of the bits for a constant!
1551 KnownOne
= cast
<ConstantSDNode
>(Op
)->getAPIntValue() & Mask
;
1552 KnownZero
= ~KnownOne
& Mask
;
1555 // If either the LHS or the RHS are Zero, the result is zero.
1556 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1557 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownZero
,
1558 KnownZero2
, KnownOne2
, Depth
+1);
1559 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1560 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1562 // Output known-1 bits are only known if set in both the LHS & RHS.
1563 KnownOne
&= KnownOne2
;
1564 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1565 KnownZero
|= KnownZero2
;
1568 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1569 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownOne
,
1570 KnownZero2
, KnownOne2
, Depth
+1);
1571 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1572 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1574 // Output known-0 bits are only known if clear in both the LHS & RHS.
1575 KnownZero
&= KnownZero2
;
1576 // Output known-1 are known to be set if set in either the LHS | RHS.
1577 KnownOne
|= KnownOne2
;
1580 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1581 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1582 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1583 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1585 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1586 APInt KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
1587 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1588 KnownOne
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
1589 KnownZero
= KnownZeroOut
;
1593 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
1594 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero
, KnownOne
, Depth
+1);
1595 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1596 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1597 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1599 // If low bits are zero in either operand, output low known-0 bits.
1600 // Also compute a conserative estimate for high known-0 bits.
1601 // More trickiness is possible, but this is sufficient for the
1602 // interesting case of alignment computation.
1604 unsigned TrailZ
= KnownZero
.countTrailingOnes() +
1605 KnownZero2
.countTrailingOnes();
1606 unsigned LeadZ
= std::max(KnownZero
.countLeadingOnes() +
1607 KnownZero2
.countLeadingOnes(),
1608 BitWidth
) - BitWidth
;
1610 TrailZ
= std::min(TrailZ
, BitWidth
);
1611 LeadZ
= std::min(LeadZ
, BitWidth
);
1612 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) |
1613 APInt::getHighBitsSet(BitWidth
, LeadZ
);
1618 // For the purposes of computing leading zeros we can conservatively
1619 // treat a udiv as a logical right shift by the power of 2 known to
1620 // be less than the denominator.
1621 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1622 ComputeMaskedBits(Op
.getOperand(0),
1623 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1624 unsigned LeadZ
= KnownZero2
.countLeadingOnes();
1628 ComputeMaskedBits(Op
.getOperand(1),
1629 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1630 unsigned RHSUnknownLeadingOnes
= KnownOne2
.countLeadingZeros();
1631 if (RHSUnknownLeadingOnes
!= BitWidth
)
1632 LeadZ
= std::min(BitWidth
,
1633 LeadZ
+ BitWidth
- RHSUnknownLeadingOnes
- 1);
1635 KnownZero
= APInt::getHighBitsSet(BitWidth
, LeadZ
) & Mask
;
1639 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero
, KnownOne
, Depth
+1);
1640 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1641 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1642 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1644 // Only known if known in both the LHS and RHS.
1645 KnownOne
&= KnownOne2
;
1646 KnownZero
&= KnownZero2
;
1648 case ISD::SELECT_CC
:
1649 ComputeMaskedBits(Op
.getOperand(3), Mask
, KnownZero
, KnownOne
, Depth
+1);
1650 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1651 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1652 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1654 // Only known if known in both the LHS and RHS.
1655 KnownOne
&= KnownOne2
;
1656 KnownZero
&= KnownZero2
;
1664 if (Op
.getResNo() != 1)
1666 // The boolean result conforms to getBooleanContents. Fall through.
1668 // If we know the result of a setcc has the top bits zero, use this info.
1669 if (TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
&&
1671 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1674 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1675 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1676 unsigned ShAmt
= SA
->getZExtValue();
1678 // If the shift count is an invalid immediate, don't do anything.
1679 if (ShAmt
>= BitWidth
)
1682 ComputeMaskedBits(Op
.getOperand(0), Mask
.lshr(ShAmt
),
1683 KnownZero
, KnownOne
, Depth
+1);
1684 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1685 KnownZero
<<= ShAmt
;
1687 // low bits known zero.
1688 KnownZero
|= APInt::getLowBitsSet(BitWidth
, ShAmt
);
1692 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1693 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1694 unsigned ShAmt
= SA
->getZExtValue();
1696 // If the shift count is an invalid immediate, don't do anything.
1697 if (ShAmt
>= BitWidth
)
1700 ComputeMaskedBits(Op
.getOperand(0), (Mask
<< ShAmt
),
1701 KnownZero
, KnownOne
, Depth
+1);
1702 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1703 KnownZero
= KnownZero
.lshr(ShAmt
);
1704 KnownOne
= KnownOne
.lshr(ShAmt
);
1706 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1707 KnownZero
|= HighBits
; // High bits known zero.
1711 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1712 unsigned ShAmt
= SA
->getZExtValue();
1714 // If the shift count is an invalid immediate, don't do anything.
1715 if (ShAmt
>= BitWidth
)
1718 APInt InDemandedMask
= (Mask
<< ShAmt
);
1719 // If any of the demanded bits are produced by the sign extension, we also
1720 // demand the input sign bit.
1721 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1722 if (HighBits
.getBoolValue())
1723 InDemandedMask
|= APInt::getSignBit(BitWidth
);
1725 ComputeMaskedBits(Op
.getOperand(0), InDemandedMask
, KnownZero
, KnownOne
,
1727 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1728 KnownZero
= KnownZero
.lshr(ShAmt
);
1729 KnownOne
= KnownOne
.lshr(ShAmt
);
1731 // Handle the sign bits.
1732 APInt SignBit
= APInt::getSignBit(BitWidth
);
1733 SignBit
= SignBit
.lshr(ShAmt
); // Adjust to where it is now in the mask.
1735 if (KnownZero
.intersects(SignBit
)) {
1736 KnownZero
|= HighBits
; // New bits are known zero.
1737 } else if (KnownOne
.intersects(SignBit
)) {
1738 KnownOne
|= HighBits
; // New bits are known one.
1742 case ISD::SIGN_EXTEND_INREG
: {
1743 EVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1744 unsigned EBits
= EVT
.getScalarType().getSizeInBits();
1746 // Sign extension. Compute the demanded bits in the result that are not
1747 // present in the input.
1748 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- EBits
) & Mask
;
1750 APInt InSignBit
= APInt::getSignBit(EBits
);
1751 APInt InputDemandedBits
= Mask
& APInt::getLowBitsSet(BitWidth
, EBits
);
1753 // If the sign extended bits are demanded, we know that the sign
1755 InSignBit
.zext(BitWidth
);
1756 if (NewBits
.getBoolValue())
1757 InputDemandedBits
|= InSignBit
;
1759 ComputeMaskedBits(Op
.getOperand(0), InputDemandedBits
,
1760 KnownZero
, KnownOne
, Depth
+1);
1761 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1763 // If the sign bit of the input is known set or clear, then we know the
1764 // top bits of the result.
1765 if (KnownZero
.intersects(InSignBit
)) { // Input sign bit known clear
1766 KnownZero
|= NewBits
;
1767 KnownOne
&= ~NewBits
;
1768 } else if (KnownOne
.intersects(InSignBit
)) { // Input sign bit known set
1769 KnownOne
|= NewBits
;
1770 KnownZero
&= ~NewBits
;
1771 } else { // Input sign bit unknown
1772 KnownZero
&= ~NewBits
;
1773 KnownOne
&= ~NewBits
;
1780 unsigned LowBits
= Log2_32(BitWidth
)+1;
1781 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- LowBits
);
1786 if (ISD::isZEXTLoad(Op
.getNode())) {
1787 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1788 EVT VT
= LD
->getMemoryVT();
1789 unsigned MemBits
= VT
.getScalarType().getSizeInBits();
1790 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
) & Mask
;
1794 case ISD::ZERO_EXTEND
: {
1795 EVT InVT
= Op
.getOperand(0).getValueType();
1796 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1797 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1798 APInt InMask
= Mask
;
1799 InMask
.trunc(InBits
);
1800 KnownZero
.trunc(InBits
);
1801 KnownOne
.trunc(InBits
);
1802 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1803 KnownZero
.zext(BitWidth
);
1804 KnownOne
.zext(BitWidth
);
1805 KnownZero
|= NewBits
;
1808 case ISD::SIGN_EXTEND
: {
1809 EVT InVT
= Op
.getOperand(0).getValueType();
1810 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1811 APInt InSignBit
= APInt::getSignBit(InBits
);
1812 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1813 APInt InMask
= Mask
;
1814 InMask
.trunc(InBits
);
1816 // If any of the sign extended bits are demanded, we know that the sign
1817 // bit is demanded. Temporarily set this bit in the mask for our callee.
1818 if (NewBits
.getBoolValue())
1819 InMask
|= InSignBit
;
1821 KnownZero
.trunc(InBits
);
1822 KnownOne
.trunc(InBits
);
1823 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1825 // Note if the sign bit is known to be zero or one.
1826 bool SignBitKnownZero
= KnownZero
.isNegative();
1827 bool SignBitKnownOne
= KnownOne
.isNegative();
1828 assert(!(SignBitKnownZero
&& SignBitKnownOne
) &&
1829 "Sign bit can't be known to be both zero and one!");
1831 // If the sign bit wasn't actually demanded by our caller, we don't
1832 // want it set in the KnownZero and KnownOne result values. Reset the
1833 // mask and reapply it to the result values.
1835 InMask
.trunc(InBits
);
1836 KnownZero
&= InMask
;
1839 KnownZero
.zext(BitWidth
);
1840 KnownOne
.zext(BitWidth
);
1842 // If the sign bit is known zero or one, the top bits match.
1843 if (SignBitKnownZero
)
1844 KnownZero
|= NewBits
;
1845 else if (SignBitKnownOne
)
1846 KnownOne
|= NewBits
;
1849 case ISD::ANY_EXTEND
: {
1850 EVT InVT
= Op
.getOperand(0).getValueType();
1851 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1852 APInt InMask
= Mask
;
1853 InMask
.trunc(InBits
);
1854 KnownZero
.trunc(InBits
);
1855 KnownOne
.trunc(InBits
);
1856 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1857 KnownZero
.zext(BitWidth
);
1858 KnownOne
.zext(BitWidth
);
1861 case ISD::TRUNCATE
: {
1862 EVT InVT
= Op
.getOperand(0).getValueType();
1863 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1864 APInt InMask
= Mask
;
1865 InMask
.zext(InBits
);
1866 KnownZero
.zext(InBits
);
1867 KnownOne
.zext(InBits
);
1868 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1869 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1870 KnownZero
.trunc(BitWidth
);
1871 KnownOne
.trunc(BitWidth
);
1874 case ISD::AssertZext
: {
1875 EVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1876 APInt InMask
= APInt::getLowBitsSet(BitWidth
, VT
.getSizeInBits());
1877 ComputeMaskedBits(Op
.getOperand(0), Mask
& InMask
, KnownZero
,
1879 KnownZero
|= (~InMask
) & Mask
;
1883 // All bits are zero except the low bit.
1884 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1888 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0))) {
1889 // We know that the top bits of C-X are clear if X contains less bits
1890 // than C (i.e. no wrap-around can happen). For example, 20-X is
1891 // positive if we can prove that X is >= 0 and < 16.
1892 if (CLHS
->getAPIntValue().isNonNegative()) {
1893 unsigned NLZ
= (CLHS
->getAPIntValue()+1).countLeadingZeros();
1894 // NLZ can't be BitWidth with no sign bit
1895 APInt MaskV
= APInt::getHighBitsSet(BitWidth
, NLZ
+1);
1896 ComputeMaskedBits(Op
.getOperand(1), MaskV
, KnownZero2
, KnownOne2
,
1899 // If all of the MaskV bits are known to be zero, then we know the
1900 // output top bits are zero, because we now know that the output is
1902 if ((KnownZero2
& MaskV
) == MaskV
) {
1903 unsigned NLZ2
= CLHS
->getAPIntValue().countLeadingZeros();
1904 // Top bits known zero.
1905 KnownZero
= APInt::getHighBitsSet(BitWidth
, NLZ2
) & Mask
;
1912 // Output known-0 bits are known if clear or set in both the low clear bits
1913 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1914 // low 3 bits clear.
1915 APInt Mask2
= APInt::getLowBitsSet(BitWidth
, Mask
.countTrailingOnes());
1916 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1917 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1918 unsigned KnownZeroOut
= KnownZero2
.countTrailingOnes();
1920 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1921 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1922 KnownZeroOut
= std::min(KnownZeroOut
,
1923 KnownZero2
.countTrailingOnes());
1925 KnownZero
|= APInt::getLowBitsSet(BitWidth
, KnownZeroOut
);
1929 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1930 const APInt
&RA
= Rem
->getAPIntValue();
1931 if (RA
.isPowerOf2() || (-RA
).isPowerOf2()) {
1932 APInt LowBits
= RA
.isStrictlyPositive() ? (RA
- 1) : ~RA
;
1933 APInt Mask2
= LowBits
| APInt::getSignBit(BitWidth
);
1934 ComputeMaskedBits(Op
.getOperand(0), Mask2
,KnownZero2
,KnownOne2
,Depth
+1);
1936 // If the sign bit of the first operand is zero, the sign bit of
1937 // the result is zero. If the first operand has no one bits below
1938 // the second operand's single 1 bit, its sign will be zero.
1939 if (KnownZero2
[BitWidth
-1] || ((KnownZero2
& LowBits
) == LowBits
))
1940 KnownZero2
|= ~LowBits
;
1942 KnownZero
|= KnownZero2
& Mask
;
1944 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
1949 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1950 const APInt
&RA
= Rem
->getAPIntValue();
1951 if (RA
.isPowerOf2()) {
1952 APInt LowBits
= (RA
- 1);
1953 APInt Mask2
= LowBits
& Mask
;
1954 KnownZero
|= ~LowBits
& Mask
;
1955 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero
, KnownOne
,Depth
+1);
1956 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
1961 // Since the result is less than or equal to either operand, any leading
1962 // zero bits in either operand must also exist in the result.
1963 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1964 ComputeMaskedBits(Op
.getOperand(0), AllOnes
, KnownZero
, KnownOne
,
1966 ComputeMaskedBits(Op
.getOperand(1), AllOnes
, KnownZero2
, KnownOne2
,
1969 uint32_t Leaders
= std::max(KnownZero
.countLeadingOnes(),
1970 KnownZero2
.countLeadingOnes());
1972 KnownZero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & Mask
;
1976 // Allow the target to implement this method for its nodes.
1977 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
1978 case ISD::INTRINSIC_WO_CHAIN
:
1979 case ISD::INTRINSIC_W_CHAIN
:
1980 case ISD::INTRINSIC_VOID
:
1981 TLI
.computeMaskedBitsForTargetNode(Op
, Mask
, KnownZero
, KnownOne
, *this,
1988 /// ComputeNumSignBits - Return the number of times the sign bit of the
1989 /// register is replicated into the other bits. We know that at least 1 bit
1990 /// is always equal to the sign bit (itself), but other cases can give us
1991 /// information. For example, immediately after an "SRA X, 2", we know that
1992 /// the top 3 bits are all equal to each other, so we return 3.
1993 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op
, unsigned Depth
) const{
1994 EVT VT
= Op
.getValueType();
1995 assert(VT
.isInteger() && "Invalid VT!");
1996 unsigned VTBits
= VT
.getScalarType().getSizeInBits();
1998 unsigned FirstAnswer
= 1;
2001 return 1; // Limit search depth.
2003 switch (Op
.getOpcode()) {
2005 case ISD::AssertSext
:
2006 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
2007 return VTBits
-Tmp
+1;
2008 case ISD::AssertZext
:
2009 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
2012 case ISD::Constant
: {
2013 const APInt
&Val
= cast
<ConstantSDNode
>(Op
)->getAPIntValue();
2014 // If negative, return # leading ones.
2015 if (Val
.isNegative())
2016 return Val
.countLeadingOnes();
2018 // Return # leading zeros.
2019 return Val
.countLeadingZeros();
2022 case ISD::SIGN_EXTEND
:
2023 Tmp
= VTBits
-Op
.getOperand(0).getValueType().getScalarType().getSizeInBits();
2024 return ComputeNumSignBits(Op
.getOperand(0), Depth
+1) + Tmp
;
2026 case ISD::SIGN_EXTEND_INREG
:
2027 // Max of the input and what this extends.
2029 cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getScalarType().getSizeInBits();
2032 Tmp2
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2033 return std::max(Tmp
, Tmp2
);
2036 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2037 // SRA X, C -> adds C sign bits.
2038 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2039 Tmp
+= C
->getZExtValue();
2040 if (Tmp
> VTBits
) Tmp
= VTBits
;
2044 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2045 // shl destroys sign bits.
2046 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2047 if (C
->getZExtValue() >= VTBits
|| // Bad shift.
2048 C
->getZExtValue() >= Tmp
) break; // Shifted all sign bits out.
2049 return Tmp
- C
->getZExtValue();
2054 case ISD::XOR
: // NOT is handled here.
2055 // Logical binary ops preserve the number of sign bits at the worst.
2056 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2058 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2059 FirstAnswer
= std::min(Tmp
, Tmp2
);
2060 // We computed what we know about the sign bits as our first
2061 // answer. Now proceed to the generic code that uses
2062 // ComputeMaskedBits, and pick whichever answer is better.
2067 Tmp
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2068 if (Tmp
== 1) return 1; // Early out.
2069 Tmp2
= ComputeNumSignBits(Op
.getOperand(2), Depth
+1);
2070 return std::min(Tmp
, Tmp2
);
2078 if (Op
.getResNo() != 1)
2080 // The boolean result conforms to getBooleanContents. Fall through.
2082 // If setcc returns 0/-1, all bits are sign bits.
2083 if (TLI
.getBooleanContents() ==
2084 TargetLowering::ZeroOrNegativeOneBooleanContent
)
2089 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2090 unsigned RotAmt
= C
->getZExtValue() & (VTBits
-1);
2092 // Handle rotate right by N like a rotate left by 32-N.
2093 if (Op
.getOpcode() == ISD::ROTR
)
2094 RotAmt
= (VTBits
-RotAmt
) & (VTBits
-1);
2096 // If we aren't rotating out all of the known-in sign bits, return the
2097 // number that are left. This handles rotl(sext(x), 1) for example.
2098 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2099 if (Tmp
> RotAmt
+1) return Tmp
-RotAmt
;
2103 // Add can have at most one carry bit. Thus we know that the output
2104 // is, at worst, one more bit than the inputs.
2105 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2106 if (Tmp
== 1) return 1; // Early out.
2108 // Special case decrementing a value (ADD X, -1):
2109 if (ConstantSDNode
*CRHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
2110 if (CRHS
->isAllOnesValue()) {
2111 APInt KnownZero
, KnownOne
;
2112 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2113 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero
, KnownOne
, Depth
+1);
2115 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2117 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
2120 // If we are subtracting one from a positive number, there is no carry
2121 // out of the result.
2122 if (KnownZero
.isNegative())
2126 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2127 if (Tmp2
== 1) return 1;
2128 return std::min(Tmp
, Tmp2
)-1;
2132 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2133 if (Tmp2
== 1) return 1;
2136 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0)))
2137 if (CLHS
->isNullValue()) {
2138 APInt KnownZero
, KnownOne
;
2139 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2140 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
2141 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2143 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
2146 // If the input is known to be positive (the sign bit is known clear),
2147 // the output of the NEG has the same number of sign bits as the input.
2148 if (KnownZero
.isNegative())
2151 // Otherwise, we treat this like a SUB.
2154 // Sub can have at most one carry bit. Thus we know that the output
2155 // is, at worst, one more bit than the inputs.
2156 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2157 if (Tmp
== 1) return 1; // Early out.
2158 return std::min(Tmp
, Tmp2
)-1;
2161 // FIXME: it's tricky to do anything useful for this, but it is an important
2162 // case for targets like X86.
2166 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2167 if (Op
.getOpcode() == ISD::LOAD
) {
2168 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2169 unsigned ExtType
= LD
->getExtensionType();
2172 case ISD::SEXTLOAD
: // '17' bits known
2173 Tmp
= LD
->getMemoryVT().getScalarType().getSizeInBits();
2174 return VTBits
-Tmp
+1;
2175 case ISD::ZEXTLOAD
: // '16' bits known
2176 Tmp
= LD
->getMemoryVT().getScalarType().getSizeInBits();
2181 // Allow the target to implement this method for its nodes.
2182 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2183 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2184 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2185 Op
.getOpcode() == ISD::INTRINSIC_VOID
) {
2186 unsigned NumBits
= TLI
.ComputeNumSignBitsForTargetNode(Op
, Depth
);
2187 if (NumBits
> 1) FirstAnswer
= std::max(FirstAnswer
, NumBits
);
2190 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2191 // use this information.
2192 APInt KnownZero
, KnownOne
;
2193 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2194 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
2196 if (KnownZero
.isNegative()) { // sign bit is 0
2198 } else if (KnownOne
.isNegative()) { // sign bit is 1;
2205 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2206 // the number of identical bits in the top of the input value.
2208 Mask
<<= Mask
.getBitWidth()-VTBits
;
2209 // Return # leading zeros. We use 'min' here in case Val was zero before
2210 // shifting. We don't want to return '64' as for an i32 "0".
2211 return std::max(FirstAnswer
, std::min(VTBits
, Mask
.countLeadingZeros()));
2214 bool SelectionDAG::isKnownNeverNaN(SDValue Op
) const {
2215 // If we're told that NaNs won't happen, assume they won't.
2216 if (FiniteOnlyFPMath())
2219 // If the value is a constant, we can obviously see if it is a NaN or not.
2220 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Op
))
2221 return !C
->getValueAPF().isNaN();
2223 // TODO: Recognize more cases here.
2228 bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op
) const {
2229 GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
);
2230 if (!GA
) return false;
2231 if (GA
->getOffset() != 0) return false;
2232 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GA
->getGlobal());
2233 if (!GV
) return false;
2234 MachineModuleInfo
*MMI
= getMachineModuleInfo();
2235 return MMI
&& MMI
->hasDebugInfo();
2239 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
2240 /// element of the result of the vector shuffle.
2241 SDValue
SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode
*N
,
2243 EVT VT
= N
->getValueType(0);
2244 DebugLoc dl
= N
->getDebugLoc();
2245 if (N
->getMaskElt(i
) < 0)
2246 return getUNDEF(VT
.getVectorElementType());
2247 unsigned Index
= N
->getMaskElt(i
);
2248 unsigned NumElems
= VT
.getVectorNumElements();
2249 SDValue V
= (Index
< NumElems
) ? N
->getOperand(0) : N
->getOperand(1);
2252 if (V
.getOpcode() == ISD::BIT_CONVERT
) {
2253 V
= V
.getOperand(0);
2254 EVT VVT
= V
.getValueType();
2255 if (!VVT
.isVector() || VVT
.getVectorNumElements() != (unsigned)NumElems
)
2258 if (V
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
2259 return (Index
== 0) ? V
.getOperand(0)
2260 : getUNDEF(VT
.getVectorElementType());
2261 if (V
.getOpcode() == ISD::BUILD_VECTOR
)
2262 return V
.getOperand(Index
);
2263 if (const ShuffleVectorSDNode
*SVN
= dyn_cast
<ShuffleVectorSDNode
>(V
))
2264 return getShuffleScalarElt(SVN
, Index
);
2269 /// getNode - Gets or creates the specified node.
2271 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
) {
2272 FoldingSetNodeID ID
;
2273 AddNodeIDNode(ID
, Opcode
, getVTList(VT
), 0, 0);
2275 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2276 return SDValue(E
, 0);
2278 SDNode
*N
= NodeAllocator
.Allocate
<SDNode
>();
2279 new (N
) SDNode(Opcode
, DL
, getVTList(VT
));
2280 CSEMap
.InsertNode(N
, IP
);
2282 AllNodes
.push_back(N
);
2286 return SDValue(N
, 0);
2289 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
2290 EVT VT
, SDValue Operand
) {
2291 // Constant fold unary operations with an integer constant operand.
2292 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Operand
.getNode())) {
2293 const APInt
&Val
= C
->getAPIntValue();
2294 unsigned BitWidth
= VT
.getSizeInBits();
2297 case ISD::SIGN_EXTEND
:
2298 return getConstant(APInt(Val
).sextOrTrunc(BitWidth
), VT
);
2299 case ISD::ANY_EXTEND
:
2300 case ISD::ZERO_EXTEND
:
2302 return getConstant(APInt(Val
).zextOrTrunc(BitWidth
), VT
);
2303 case ISD::UINT_TO_FP
:
2304 case ISD::SINT_TO_FP
: {
2305 const uint64_t zero
[] = {0, 0};
2306 // No compile time operations on this type.
2307 if (VT
==MVT::ppcf128
)
2309 APFloat apf
= APFloat(APInt(BitWidth
, 2, zero
));
2310 (void)apf
.convertFromAPInt(Val
,
2311 Opcode
==ISD::SINT_TO_FP
,
2312 APFloat::rmNearestTiesToEven
);
2313 return getConstantFP(apf
, VT
);
2315 case ISD::BIT_CONVERT
:
2316 if (VT
== MVT::f32
&& C
->getValueType(0) == MVT::i32
)
2317 return getConstantFP(Val
.bitsToFloat(), VT
);
2318 else if (VT
== MVT::f64
&& C
->getValueType(0) == MVT::i64
)
2319 return getConstantFP(Val
.bitsToDouble(), VT
);
2322 return getConstant(Val
.byteSwap(), VT
);
2324 return getConstant(Val
.countPopulation(), VT
);
2326 return getConstant(Val
.countLeadingZeros(), VT
);
2328 return getConstant(Val
.countTrailingZeros(), VT
);
2332 // Constant fold unary operations with a floating point constant operand.
2333 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Operand
.getNode())) {
2334 APFloat V
= C
->getValueAPF(); // make copy
2335 if (VT
!= MVT::ppcf128
&& Operand
.getValueType() != MVT::ppcf128
) {
2339 return getConstantFP(V
, VT
);
2342 return getConstantFP(V
, VT
);
2344 case ISD::FP_EXTEND
: {
2346 // This can return overflow, underflow, or inexact; we don't care.
2347 // FIXME need to be more flexible about rounding mode.
2348 (void)V
.convert(*EVTToAPFloatSemantics(VT
),
2349 APFloat::rmNearestTiesToEven
, &ignored
);
2350 return getConstantFP(V
, VT
);
2352 case ISD::FP_TO_SINT
:
2353 case ISD::FP_TO_UINT
: {
2356 assert(integerPartWidth
>= 64);
2357 // FIXME need to be more flexible about rounding mode.
2358 APFloat::opStatus s
= V
.convertToInteger(x
, VT
.getSizeInBits(),
2359 Opcode
==ISD::FP_TO_SINT
,
2360 APFloat::rmTowardZero
, &ignored
);
2361 if (s
==APFloat::opInvalidOp
) // inexact is OK, in fact usual
2363 APInt
api(VT
.getSizeInBits(), 2, x
);
2364 return getConstant(api
, VT
);
2366 case ISD::BIT_CONVERT
:
2367 if (VT
== MVT::i32
&& C
->getValueType(0) == MVT::f32
)
2368 return getConstant((uint32_t)V
.bitcastToAPInt().getZExtValue(), VT
);
2369 else if (VT
== MVT::i64
&& C
->getValueType(0) == MVT::f64
)
2370 return getConstant(V
.bitcastToAPInt().getZExtValue(), VT
);
2376 unsigned OpOpcode
= Operand
.getNode()->getOpcode();
2378 case ISD::TokenFactor
:
2379 case ISD::MERGE_VALUES
:
2380 case ISD::CONCAT_VECTORS
:
2381 return Operand
; // Factor, merge or concat of one node? No need.
2382 case ISD::FP_ROUND
: llvm_unreachable("Invalid method to make FP_ROUND node");
2383 case ISD::FP_EXTEND
:
2384 assert(VT
.isFloatingPoint() &&
2385 Operand
.getValueType().isFloatingPoint() && "Invalid FP cast!");
2386 if (Operand
.getValueType() == VT
) return Operand
; // noop conversion.
2387 assert((!VT
.isVector() ||
2388 VT
.getVectorNumElements() ==
2389 Operand
.getValueType().getVectorNumElements()) &&
2390 "Vector element count mismatch!");
2391 if (Operand
.getOpcode() == ISD::UNDEF
)
2392 return getUNDEF(VT
);
2394 case ISD::SIGN_EXTEND
:
2395 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2396 "Invalid SIGN_EXTEND!");
2397 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2398 assert(Operand
.getValueType().getScalarType().bitsLT(VT
.getScalarType()) &&
2399 "Invalid sext node, dst < src!");
2400 assert((!VT
.isVector() ||
2401 VT
.getVectorNumElements() ==
2402 Operand
.getValueType().getVectorNumElements()) &&
2403 "Vector element count mismatch!");
2404 if (OpOpcode
== ISD::SIGN_EXTEND
|| OpOpcode
== ISD::ZERO_EXTEND
)
2405 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2407 case ISD::ZERO_EXTEND
:
2408 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2409 "Invalid ZERO_EXTEND!");
2410 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2411 assert(Operand
.getValueType().getScalarType().bitsLT(VT
.getScalarType()) &&
2412 "Invalid zext node, dst < src!");
2413 assert((!VT
.isVector() ||
2414 VT
.getVectorNumElements() ==
2415 Operand
.getValueType().getVectorNumElements()) &&
2416 "Vector element count mismatch!");
2417 if (OpOpcode
== ISD::ZERO_EXTEND
) // (zext (zext x)) -> (zext x)
2418 return getNode(ISD::ZERO_EXTEND
, DL
, VT
,
2419 Operand
.getNode()->getOperand(0));
2421 case ISD::ANY_EXTEND
:
2422 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2423 "Invalid ANY_EXTEND!");
2424 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2425 assert(Operand
.getValueType().getScalarType().bitsLT(VT
.getScalarType()) &&
2426 "Invalid anyext node, dst < src!");
2427 assert((!VT
.isVector() ||
2428 VT
.getVectorNumElements() ==
2429 Operand
.getValueType().getVectorNumElements()) &&
2430 "Vector element count mismatch!");
2431 if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
)
2432 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2433 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2436 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2437 "Invalid TRUNCATE!");
2438 if (Operand
.getValueType() == VT
) return Operand
; // noop truncate
2439 assert(Operand
.getValueType().getScalarType().bitsGT(VT
.getScalarType()) &&
2440 "Invalid truncate node, src < dst!");
2441 assert((!VT
.isVector() ||
2442 VT
.getVectorNumElements() ==
2443 Operand
.getValueType().getVectorNumElements()) &&
2444 "Vector element count mismatch!");
2445 if (OpOpcode
== ISD::TRUNCATE
)
2446 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2447 else if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
2448 OpOpcode
== ISD::ANY_EXTEND
) {
2449 // If the source is smaller than the dest, we still need an extend.
2450 if (Operand
.getNode()->getOperand(0).getValueType().getScalarType()
2451 .bitsLT(VT
.getScalarType()))
2452 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2453 else if (Operand
.getNode()->getOperand(0).getValueType().bitsGT(VT
))
2454 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2456 return Operand
.getNode()->getOperand(0);
2459 case ISD::BIT_CONVERT
:
2460 // Basic sanity checking.
2461 assert(VT
.getSizeInBits() == Operand
.getValueType().getSizeInBits()
2462 && "Cannot BIT_CONVERT between types of different sizes!");
2463 if (VT
== Operand
.getValueType()) return Operand
; // noop conversion.
2464 if (OpOpcode
== ISD::BIT_CONVERT
) // bitconv(bitconv(x)) -> bitconv(x)
2465 return getNode(ISD::BIT_CONVERT
, DL
, VT
, Operand
.getOperand(0));
2466 if (OpOpcode
== ISD::UNDEF
)
2467 return getUNDEF(VT
);
2469 case ISD::SCALAR_TO_VECTOR
:
2470 assert(VT
.isVector() && !Operand
.getValueType().isVector() &&
2471 (VT
.getVectorElementType() == Operand
.getValueType() ||
2472 (VT
.getVectorElementType().isInteger() &&
2473 Operand
.getValueType().isInteger() &&
2474 VT
.getVectorElementType().bitsLE(Operand
.getValueType()))) &&
2475 "Illegal SCALAR_TO_VECTOR node!");
2476 if (OpOpcode
== ISD::UNDEF
)
2477 return getUNDEF(VT
);
2478 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2479 if (OpOpcode
== ISD::EXTRACT_VECTOR_ELT
&&
2480 isa
<ConstantSDNode
>(Operand
.getOperand(1)) &&
2481 Operand
.getConstantOperandVal(1) == 0 &&
2482 Operand
.getOperand(0).getValueType() == VT
)
2483 return Operand
.getOperand(0);
2486 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2487 if (UnsafeFPMath
&& OpOpcode
== ISD::FSUB
)
2488 return getNode(ISD::FSUB
, DL
, VT
, Operand
.getNode()->getOperand(1),
2489 Operand
.getNode()->getOperand(0));
2490 if (OpOpcode
== ISD::FNEG
) // --X -> X
2491 return Operand
.getNode()->getOperand(0);
2494 if (OpOpcode
== ISD::FNEG
) // abs(-X) -> abs(X)
2495 return getNode(ISD::FABS
, DL
, VT
, Operand
.getNode()->getOperand(0));
2500 SDVTList VTs
= getVTList(VT
);
2501 if (VT
!= MVT::Flag
) { // Don't CSE flag producing nodes
2502 FoldingSetNodeID ID
;
2503 SDValue Ops
[1] = { Operand
};
2504 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 1);
2506 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2507 return SDValue(E
, 0);
2509 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
2510 new (N
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2511 CSEMap
.InsertNode(N
, IP
);
2513 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
2514 new (N
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2517 AllNodes
.push_back(N
);
2521 return SDValue(N
, 0);
2524 SDValue
SelectionDAG::FoldConstantArithmetic(unsigned Opcode
,
2526 ConstantSDNode
*Cst1
,
2527 ConstantSDNode
*Cst2
) {
2528 const APInt
&C1
= Cst1
->getAPIntValue(), &C2
= Cst2
->getAPIntValue();
2531 case ISD::ADD
: return getConstant(C1
+ C2
, VT
);
2532 case ISD::SUB
: return getConstant(C1
- C2
, VT
);
2533 case ISD::MUL
: return getConstant(C1
* C2
, VT
);
2535 if (C2
.getBoolValue()) return getConstant(C1
.udiv(C2
), VT
);
2538 if (C2
.getBoolValue()) return getConstant(C1
.urem(C2
), VT
);
2541 if (C2
.getBoolValue()) return getConstant(C1
.sdiv(C2
), VT
);
2544 if (C2
.getBoolValue()) return getConstant(C1
.srem(C2
), VT
);
2546 case ISD::AND
: return getConstant(C1
& C2
, VT
);
2547 case ISD::OR
: return getConstant(C1
| C2
, VT
);
2548 case ISD::XOR
: return getConstant(C1
^ C2
, VT
);
2549 case ISD::SHL
: return getConstant(C1
<< C2
, VT
);
2550 case ISD::SRL
: return getConstant(C1
.lshr(C2
), VT
);
2551 case ISD::SRA
: return getConstant(C1
.ashr(C2
), VT
);
2552 case ISD::ROTL
: return getConstant(C1
.rotl(C2
), VT
);
2553 case ISD::ROTR
: return getConstant(C1
.rotr(C2
), VT
);
2560 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
2561 SDValue N1
, SDValue N2
) {
2562 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2563 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
2566 case ISD::TokenFactor
:
2567 assert(VT
== MVT::Other
&& N1
.getValueType() == MVT::Other
&&
2568 N2
.getValueType() == MVT::Other
&& "Invalid token factor!");
2569 // Fold trivial token factors.
2570 if (N1
.getOpcode() == ISD::EntryToken
) return N2
;
2571 if (N2
.getOpcode() == ISD::EntryToken
) return N1
;
2572 if (N1
== N2
) return N1
;
2574 case ISD::CONCAT_VECTORS
:
2575 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2576 // one big BUILD_VECTOR.
2577 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2578 N2
.getOpcode() == ISD::BUILD_VECTOR
) {
2579 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(), N1
.getNode()->op_end());
2580 Elts
.insert(Elts
.end(), N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2581 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
2585 assert(VT
.isInteger() && N1
.getValueType() == N2
.getValueType() &&
2586 N1
.getValueType() == VT
&& "Binary operator types must match!");
2587 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2588 // worth handling here.
2589 if (N2C
&& N2C
->isNullValue())
2591 if (N2C
&& N2C
->isAllOnesValue()) // X & -1 -> X
2598 assert(VT
.isInteger() && N1
.getValueType() == N2
.getValueType() &&
2599 N1
.getValueType() == VT
&& "Binary operator types must match!");
2600 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2601 // it's worth handling here.
2602 if (N2C
&& N2C
->isNullValue())
2612 assert(VT
.isInteger() && "This operator does not apply to FP types!");
2620 if (Opcode
== ISD::FADD
) {
2622 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
))
2623 if (CFP
->getValueAPF().isZero())
2626 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2627 if (CFP
->getValueAPF().isZero())
2629 } else if (Opcode
== ISD::FSUB
) {
2631 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2632 if (CFP
->getValueAPF().isZero())
2636 assert(N1
.getValueType() == N2
.getValueType() &&
2637 N1
.getValueType() == VT
&& "Binary operator types must match!");
2639 case ISD::FCOPYSIGN
: // N1 and result must match. N1/N2 need not match.
2640 assert(N1
.getValueType() == VT
&&
2641 N1
.getValueType().isFloatingPoint() &&
2642 N2
.getValueType().isFloatingPoint() &&
2643 "Invalid FCOPYSIGN!");
2650 assert(VT
== N1
.getValueType() &&
2651 "Shift operators return type must be the same as their first arg");
2652 assert(VT
.isInteger() && N2
.getValueType().isInteger() &&
2653 "Shifts only work on integers");
2655 // Always fold shifts of i1 values so the code generator doesn't need to
2656 // handle them. Since we know the size of the shift has to be less than the
2657 // size of the value, the shift/rotate count is guaranteed to be zero.
2660 if (N2C
&& N2C
->isNullValue())
2663 case ISD::FP_ROUND_INREG
: {
2664 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2665 assert(VT
== N1
.getValueType() && "Not an inreg round!");
2666 assert(VT
.isFloatingPoint() && EVT
.isFloatingPoint() &&
2667 "Cannot FP_ROUND_INREG integer types");
2668 assert(EVT
.isVector() == VT
.isVector() &&
2669 "FP_ROUND_INREG type should be vector iff the operand "
2671 assert((!EVT
.isVector() ||
2672 EVT
.getVectorNumElements() == VT
.getVectorNumElements()) &&
2673 "Vector element counts must match in FP_ROUND_INREG");
2674 assert(EVT
.bitsLE(VT
) && "Not rounding down!");
2675 if (cast
<VTSDNode
>(N2
)->getVT() == VT
) return N1
; // Not actually rounding.
2679 assert(VT
.isFloatingPoint() &&
2680 N1
.getValueType().isFloatingPoint() &&
2681 VT
.bitsLE(N1
.getValueType()) &&
2682 isa
<ConstantSDNode
>(N2
) && "Invalid FP_ROUND!");
2683 if (N1
.getValueType() == VT
) return N1
; // noop conversion.
2685 case ISD::AssertSext
:
2686 case ISD::AssertZext
: {
2687 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2688 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2689 assert(VT
.isInteger() && EVT
.isInteger() &&
2690 "Cannot *_EXTEND_INREG FP types");
2691 assert(!EVT
.isVector() &&
2692 "AssertSExt/AssertZExt type should be the vector element type "
2693 "rather than the vector type!");
2694 assert(EVT
.bitsLE(VT
) && "Not extending!");
2695 if (VT
== EVT
) return N1
; // noop assertion.
2698 case ISD::SIGN_EXTEND_INREG
: {
2699 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2700 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2701 assert(VT
.isInteger() && EVT
.isInteger() &&
2702 "Cannot *_EXTEND_INREG FP types");
2703 assert(EVT
.isVector() == VT
.isVector() &&
2704 "SIGN_EXTEND_INREG type should be vector iff the operand "
2706 assert((!EVT
.isVector() ||
2707 EVT
.getVectorNumElements() == VT
.getVectorNumElements()) &&
2708 "Vector element counts must match in SIGN_EXTEND_INREG");
2709 assert(EVT
.bitsLE(VT
) && "Not extending!");
2710 if (EVT
== VT
) return N1
; // Not actually extending
2713 APInt Val
= N1C
->getAPIntValue();
2714 unsigned FromBits
= EVT
.getScalarType().getSizeInBits();
2715 Val
<<= Val
.getBitWidth()-FromBits
;
2716 Val
= Val
.ashr(Val
.getBitWidth()-FromBits
);
2717 return getConstant(Val
, VT
);
2721 case ISD::EXTRACT_VECTOR_ELT
:
2722 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2723 if (N1
.getOpcode() == ISD::UNDEF
)
2724 return getUNDEF(VT
);
2726 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2727 // expanding copies of large vectors from registers.
2729 N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
2730 N1
.getNumOperands() > 0) {
2732 N1
.getOperand(0).getValueType().getVectorNumElements();
2733 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
,
2734 N1
.getOperand(N2C
->getZExtValue() / Factor
),
2735 getConstant(N2C
->getZExtValue() % Factor
,
2736 N2
.getValueType()));
2739 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2740 // expanding large vector constants.
2741 if (N2C
&& N1
.getOpcode() == ISD::BUILD_VECTOR
) {
2742 SDValue Elt
= N1
.getOperand(N2C
->getZExtValue());
2743 EVT VEltTy
= N1
.getValueType().getVectorElementType();
2744 if (Elt
.getValueType() != VEltTy
) {
2745 // If the vector element type is not legal, the BUILD_VECTOR operands
2746 // are promoted and implicitly truncated. Make that explicit here.
2747 Elt
= getNode(ISD::TRUNCATE
, DL
, VEltTy
, Elt
);
2750 // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2751 // result is implicitly extended.
2752 Elt
= getNode(ISD::ANY_EXTEND
, DL
, VT
, Elt
);
2757 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2758 // operations are lowered to scalars.
2759 if (N1
.getOpcode() == ISD::INSERT_VECTOR_ELT
) {
2760 // If the indices are the same, return the inserted element.
2761 if (N1
.getOperand(2) == N2
)
2762 return N1
.getOperand(1);
2763 // If the indices are known different, extract the element from
2764 // the original vector.
2765 else if (isa
<ConstantSDNode
>(N1
.getOperand(2)) &&
2766 isa
<ConstantSDNode
>(N2
))
2767 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, N1
.getOperand(0), N2
);
2770 case ISD::EXTRACT_ELEMENT
:
2771 assert(N2C
&& (unsigned)N2C
->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2772 assert(!N1
.getValueType().isVector() && !VT
.isVector() &&
2773 (N1
.getValueType().isInteger() == VT
.isInteger()) &&
2774 "Wrong types for EXTRACT_ELEMENT!");
2776 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2777 // 64-bit integers into 32-bit parts. Instead of building the extract of
2778 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2779 if (N1
.getOpcode() == ISD::BUILD_PAIR
)
2780 return N1
.getOperand(N2C
->getZExtValue());
2782 // EXTRACT_ELEMENT of a constant int is also very common.
2783 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
2784 unsigned ElementSize
= VT
.getSizeInBits();
2785 unsigned Shift
= ElementSize
* N2C
->getZExtValue();
2786 APInt ShiftedVal
= C
->getAPIntValue().lshr(Shift
);
2787 return getConstant(ShiftedVal
.trunc(ElementSize
), VT
);
2790 case ISD::EXTRACT_SUBVECTOR
:
2791 if (N1
.getValueType() == VT
) // Trivial extraction.
2798 SDValue SV
= FoldConstantArithmetic(Opcode
, VT
, N1C
, N2C
);
2799 if (SV
.getNode()) return SV
;
2800 } else { // Cannonicalize constant to RHS if commutative
2801 if (isCommutativeBinOp(Opcode
)) {
2802 std::swap(N1C
, N2C
);
2808 // Constant fold FP operations.
2809 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode());
2810 ConstantFPSDNode
*N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode());
2812 if (!N2CFP
&& isCommutativeBinOp(Opcode
)) {
2813 // Cannonicalize constant to RHS if commutative
2814 std::swap(N1CFP
, N2CFP
);
2816 } else if (N2CFP
&& VT
!= MVT::ppcf128
) {
2817 APFloat V1
= N1CFP
->getValueAPF(), V2
= N2CFP
->getValueAPF();
2818 APFloat::opStatus s
;
2821 s
= V1
.add(V2
, APFloat::rmNearestTiesToEven
);
2822 if (s
!= APFloat::opInvalidOp
)
2823 return getConstantFP(V1
, VT
);
2826 s
= V1
.subtract(V2
, APFloat::rmNearestTiesToEven
);
2827 if (s
!=APFloat::opInvalidOp
)
2828 return getConstantFP(V1
, VT
);
2831 s
= V1
.multiply(V2
, APFloat::rmNearestTiesToEven
);
2832 if (s
!=APFloat::opInvalidOp
)
2833 return getConstantFP(V1
, VT
);
2836 s
= V1
.divide(V2
, APFloat::rmNearestTiesToEven
);
2837 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2838 return getConstantFP(V1
, VT
);
2841 s
= V1
.mod(V2
, APFloat::rmNearestTiesToEven
);
2842 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2843 return getConstantFP(V1
, VT
);
2845 case ISD::FCOPYSIGN
:
2847 return getConstantFP(V1
, VT
);
2853 // Canonicalize an UNDEF to the RHS, even over a constant.
2854 if (N1
.getOpcode() == ISD::UNDEF
) {
2855 if (isCommutativeBinOp(Opcode
)) {
2859 case ISD::FP_ROUND_INREG
:
2860 case ISD::SIGN_EXTEND_INREG
:
2866 return N1
; // fold op(undef, arg2) -> undef
2874 return getConstant(0, VT
); // fold op(undef, arg2) -> 0
2875 // For vectors, we can't easily build an all zero vector, just return
2882 // Fold a bunch of operators when the RHS is undef.
2883 if (N2
.getOpcode() == ISD::UNDEF
) {
2886 if (N1
.getOpcode() == ISD::UNDEF
)
2887 // Handle undef ^ undef -> 0 special case. This is a common
2889 return getConstant(0, VT
);
2899 return N2
; // fold op(arg1, undef) -> undef
2913 return getConstant(0, VT
); // fold op(arg1, undef) -> 0
2914 // For vectors, we can't easily build an all zero vector, just return
2919 return getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
2920 // For vectors, we can't easily build an all one vector, just return
2928 // Memoize this node if possible.
2930 SDVTList VTs
= getVTList(VT
);
2931 if (VT
!= MVT::Flag
) {
2932 SDValue Ops
[] = { N1
, N2
};
2933 FoldingSetNodeID ID
;
2934 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 2);
2936 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2937 return SDValue(E
, 0);
2939 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
2940 new (N
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
2941 CSEMap
.InsertNode(N
, IP
);
2943 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
2944 new (N
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
2947 AllNodes
.push_back(N
);
2951 return SDValue(N
, 0);
2954 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
2955 SDValue N1
, SDValue N2
, SDValue N3
) {
2956 // Perform various simplifications.
2957 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2958 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
2960 case ISD::CONCAT_VECTORS
:
2961 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2962 // one big BUILD_VECTOR.
2963 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2964 N2
.getOpcode() == ISD::BUILD_VECTOR
&&
2965 N3
.getOpcode() == ISD::BUILD_VECTOR
) {
2966 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(), N1
.getNode()->op_end());
2967 Elts
.insert(Elts
.end(), N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2968 Elts
.insert(Elts
.end(), N3
.getNode()->op_begin(), N3
.getNode()->op_end());
2969 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
2973 // Use FoldSetCC to simplify SETCC's.
2974 SDValue Simp
= FoldSetCC(VT
, N1
, N2
, cast
<CondCodeSDNode
>(N3
)->get(), DL
);
2975 if (Simp
.getNode()) return Simp
;
2980 if (N1C
->getZExtValue())
2981 return N2
; // select true, X, Y -> X
2983 return N3
; // select false, X, Y -> Y
2986 if (N2
== N3
) return N2
; // select C, X, X -> X
2990 if (N2C
->getZExtValue()) // Unconditional branch
2991 return getNode(ISD::BR
, DL
, MVT::Other
, N1
, N3
);
2993 return N1
; // Never-taken branch
2996 case ISD::VECTOR_SHUFFLE
:
2997 llvm_unreachable("should use getVectorShuffle constructor!");
2999 case ISD::BIT_CONVERT
:
3000 // Fold bit_convert nodes from a type to themselves.
3001 if (N1
.getValueType() == VT
)
3006 // Memoize node if it doesn't produce a flag.
3008 SDVTList VTs
= getVTList(VT
);
3009 if (VT
!= MVT::Flag
) {
3010 SDValue Ops
[] = { N1
, N2
, N3
};
3011 FoldingSetNodeID ID
;
3012 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
3014 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3015 return SDValue(E
, 0);
3017 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
3018 new (N
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
3019 CSEMap
.InsertNode(N
, IP
);
3021 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
3022 new (N
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
3025 AllNodes
.push_back(N
);
3029 return SDValue(N
, 0);
3032 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
3033 SDValue N1
, SDValue N2
, SDValue N3
,
3035 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
3036 return getNode(Opcode
, DL
, VT
, Ops
, 4);
3039 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
3040 SDValue N1
, SDValue N2
, SDValue N3
,
3041 SDValue N4
, SDValue N5
) {
3042 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
3043 return getNode(Opcode
, DL
, VT
, Ops
, 5);
3046 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3047 /// the incoming stack arguments to be loaded from the stack.
3048 SDValue
SelectionDAG::getStackArgumentTokenFactor(SDValue Chain
) {
3049 SmallVector
<SDValue
, 8> ArgChains
;
3051 // Include the original chain at the beginning of the list. When this is
3052 // used by target LowerCall hooks, this helps legalize find the
3053 // CALLSEQ_BEGIN node.
3054 ArgChains
.push_back(Chain
);
3056 // Add a chain value for each stack argument.
3057 for (SDNode::use_iterator U
= getEntryNode().getNode()->use_begin(),
3058 UE
= getEntryNode().getNode()->use_end(); U
!= UE
; ++U
)
3059 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
))
3060 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr()))
3061 if (FI
->getIndex() < 0)
3062 ArgChains
.push_back(SDValue(L
, 1));
3064 // Build a tokenfactor for all the chains.
3065 return getNode(ISD::TokenFactor
, Chain
.getDebugLoc(), MVT::Other
,
3066 &ArgChains
[0], ArgChains
.size());
3069 /// getMemsetValue - Vectorized representation of the memset value
3071 static SDValue
getMemsetValue(SDValue Value
, EVT VT
, SelectionDAG
&DAG
,
3073 unsigned NumBits
= VT
.isVector() ?
3074 VT
.getVectorElementType().getSizeInBits() : VT
.getSizeInBits();
3075 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Value
)) {
3076 APInt Val
= APInt(NumBits
, C
->getZExtValue() & 255);
3078 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
3079 Val
= (Val
<< Shift
) | Val
;
3083 return DAG
.getConstant(Val
, VT
);
3084 return DAG
.getConstantFP(APFloat(Val
), VT
);
3087 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3088 Value
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Value
);
3090 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
3091 Value
= DAG
.getNode(ISD::OR
, dl
, VT
,
3092 DAG
.getNode(ISD::SHL
, dl
, VT
, Value
,
3093 DAG
.getConstant(Shift
,
3094 TLI
.getShiftAmountTy())),
3102 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3103 /// used when a memcpy is turned into a memset when the source is a constant
3105 static SDValue
getMemsetStringVal(EVT VT
, DebugLoc dl
, SelectionDAG
&DAG
,
3106 const TargetLowering
&TLI
,
3107 std::string
&Str
, unsigned Offset
) {
3108 // Handle vector with all elements zero.
3111 return DAG
.getConstant(0, VT
);
3112 unsigned NumElts
= VT
.getVectorNumElements();
3113 MVT EltVT
= (VT
.getVectorElementType() == MVT::f32
) ? MVT::i32
: MVT::i64
;
3114 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3116 EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
)));
3119 assert(!VT
.isVector() && "Can't handle vector type here!");
3120 unsigned NumBits
= VT
.getSizeInBits();
3121 unsigned MSB
= NumBits
/ 8;
3123 if (TLI
.isLittleEndian())
3124 Offset
= Offset
+ MSB
- 1;
3125 for (unsigned i
= 0; i
!= MSB
; ++i
) {
3126 Val
= (Val
<< 8) | (unsigned char)Str
[Offset
];
3127 Offset
+= TLI
.isLittleEndian() ? -1 : 1;
3129 return DAG
.getConstant(Val
, VT
);
3132 /// getMemBasePlusOffset - Returns base and offset node for the
3134 static SDValue
getMemBasePlusOffset(SDValue Base
, unsigned Offset
,
3135 SelectionDAG
&DAG
) {
3136 EVT VT
= Base
.getValueType();
3137 return DAG
.getNode(ISD::ADD
, Base
.getDebugLoc(),
3138 VT
, Base
, DAG
.getConstant(Offset
, VT
));
3141 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
3143 static bool isMemSrcFromString(SDValue Src
, std::string
&Str
) {
3144 unsigned SrcDelta
= 0;
3145 GlobalAddressSDNode
*G
= NULL
;
3146 if (Src
.getOpcode() == ISD::GlobalAddress
)
3147 G
= cast
<GlobalAddressSDNode
>(Src
);
3148 else if (Src
.getOpcode() == ISD::ADD
&&
3149 Src
.getOperand(0).getOpcode() == ISD::GlobalAddress
&&
3150 Src
.getOperand(1).getOpcode() == ISD::Constant
) {
3151 G
= cast
<GlobalAddressSDNode
>(Src
.getOperand(0));
3152 SrcDelta
= cast
<ConstantSDNode
>(Src
.getOperand(1))->getZExtValue();
3157 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(G
->getGlobal());
3158 if (GV
&& GetConstantStringInfo(GV
, Str
, SrcDelta
, false))
3164 /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3165 /// to replace the memset / memcpy is below the threshold. It also returns the
3166 /// types of the sequence of memory ops to perform memset / memcpy.
3168 bool MeetsMaxMemopRequirement(std::vector
<EVT
> &MemOps
,
3169 SDValue Dst
, SDValue Src
,
3170 unsigned Limit
, uint64_t Size
, unsigned &Align
,
3171 std::string
&Str
, bool &isSrcStr
,
3173 const TargetLowering
&TLI
) {
3174 isSrcStr
= isMemSrcFromString(Src
, Str
);
3175 bool isSrcConst
= isa
<ConstantSDNode
>(Src
);
3176 EVT VT
= TLI
.getOptimalMemOpType(Size
, Align
, isSrcConst
, isSrcStr
, DAG
);
3177 bool AllowUnalign
= TLI
.allowsUnalignedMemoryAccesses(VT
);
3178 if (VT
!= MVT::iAny
) {
3179 const Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
3180 unsigned NewAlign
= (unsigned) TLI
.getTargetData()->getABITypeAlignment(Ty
);
3181 // If source is a string constant, this will require an unaligned load.
3182 if (NewAlign
> Align
&& (isSrcConst
|| AllowUnalign
)) {
3183 if (Dst
.getOpcode() != ISD::FrameIndex
) {
3184 // Can't change destination alignment. It requires a unaligned store.
3188 int FI
= cast
<FrameIndexSDNode
>(Dst
)->getIndex();
3189 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
3190 if (MFI
->isFixedObjectIndex(FI
)) {
3191 // Can't change destination alignment. It requires a unaligned store.
3195 // Give the stack frame object a larger alignment if needed.
3196 if (MFI
->getObjectAlignment(FI
) < NewAlign
)
3197 MFI
->setObjectAlignment(FI
, NewAlign
);
3204 if (VT
== MVT::iAny
) {
3205 if (TLI
.allowsUnalignedMemoryAccesses(MVT::i64
)) {
3208 switch (Align
& 7) {
3209 case 0: VT
= MVT::i64
; break;
3210 case 4: VT
= MVT::i32
; break;
3211 case 2: VT
= MVT::i16
; break;
3212 default: VT
= MVT::i8
; break;
3217 while (!TLI
.isTypeLegal(LVT
))
3218 LVT
= (MVT::SimpleValueType
)(LVT
.SimpleTy
- 1);
3219 assert(LVT
.isInteger());
3225 unsigned NumMemOps
= 0;
3227 unsigned VTSize
= VT
.getSizeInBits() / 8;
3228 while (VTSize
> Size
) {
3229 // For now, only use non-vector load / store's for the left-over pieces.
3230 if (VT
.isVector()) {
3232 while (!TLI
.isTypeLegal(VT
))
3233 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
3234 VTSize
= VT
.getSizeInBits() / 8;
3236 // This can result in a type that is not legal on the target, e.g.
3237 // 1 or 2 bytes on PPC.
3238 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
3243 if (++NumMemOps
> Limit
)
3245 MemOps
.push_back(VT
);
3252 static SDValue
getMemcpyLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3253 SDValue Chain
, SDValue Dst
,
3254 SDValue Src
, uint64_t Size
,
3255 unsigned Align
, bool AlwaysInline
,
3256 const Value
*DstSV
, uint64_t DstSVOff
,
3257 const Value
*SrcSV
, uint64_t SrcSVOff
){
3258 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3260 // Expand memcpy to a series of load and store ops if the size operand falls
3261 // below a certain threshold.
3262 std::vector
<EVT
> MemOps
;
3263 uint64_t Limit
= -1ULL;
3265 Limit
= TLI
.getMaxStoresPerMemcpy();
3266 unsigned DstAlign
= Align
; // Destination alignment can change.
3269 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, Limit
, Size
, DstAlign
,
3270 Str
, CopyFromStr
, DAG
, TLI
))
3274 bool isZeroStr
= CopyFromStr
&& Str
.empty();
3275 SmallVector
<SDValue
, 8> OutChains
;
3276 unsigned NumMemOps
= MemOps
.size();
3277 uint64_t SrcOff
= 0, DstOff
= 0;
3278 for (unsigned i
= 0; i
!= NumMemOps
; ++i
) {
3280 unsigned VTSize
= VT
.getSizeInBits() / 8;
3281 SDValue Value
, Store
;
3283 if (CopyFromStr
&& (isZeroStr
|| !VT
.isVector())) {
3284 // It's unlikely a store of a vector immediate can be done in a single
3285 // instruction. It would require a load from a constantpool first.
3286 // We also handle store a vector with all zero's.
3287 // FIXME: Handle other cases where store of vector immediate is done in
3288 // a single instruction.
3289 Value
= getMemsetStringVal(VT
, dl
, DAG
, TLI
, Str
, SrcOff
);
3290 Store
= DAG
.getStore(Chain
, dl
, Value
,
3291 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3292 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3294 // The type might not be legal for the target. This should only happen
3295 // if the type is smaller than a legal type, as on PPC, so the right
3296 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
3297 // to Load/Store if NVT==VT.
3298 // FIXME does the case above also need this?
3299 EVT NVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), VT
);
3300 assert(NVT
.bitsGE(VT
));
3301 Value
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, NVT
, Chain
,
3302 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3303 SrcSV
, SrcSVOff
+ SrcOff
, VT
, false, Align
);
3304 Store
= DAG
.getTruncStore(Chain
, dl
, Value
,
3305 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3306 DstSV
, DstSVOff
+ DstOff
, VT
, false, DstAlign
);
3308 OutChains
.push_back(Store
);
3313 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3314 &OutChains
[0], OutChains
.size());
3317 static SDValue
getMemmoveLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3318 SDValue Chain
, SDValue Dst
,
3319 SDValue Src
, uint64_t Size
,
3320 unsigned Align
, bool AlwaysInline
,
3321 const Value
*DstSV
, uint64_t DstSVOff
,
3322 const Value
*SrcSV
, uint64_t SrcSVOff
){
3323 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3325 // Expand memmove to a series of load and store ops if the size operand falls
3326 // below a certain threshold.
3327 std::vector
<EVT
> MemOps
;
3328 uint64_t Limit
= -1ULL;
3330 Limit
= TLI
.getMaxStoresPerMemmove();
3331 unsigned DstAlign
= Align
; // Destination alignment can change.
3334 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, Limit
, Size
, DstAlign
,
3335 Str
, CopyFromStr
, DAG
, TLI
))
3338 uint64_t SrcOff
= 0, DstOff
= 0;
3340 SmallVector
<SDValue
, 8> LoadValues
;
3341 SmallVector
<SDValue
, 8> LoadChains
;
3342 SmallVector
<SDValue
, 8> OutChains
;
3343 unsigned NumMemOps
= MemOps
.size();
3344 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3346 unsigned VTSize
= VT
.getSizeInBits() / 8;
3347 SDValue Value
, Store
;
3349 Value
= DAG
.getLoad(VT
, dl
, Chain
,
3350 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3351 SrcSV
, SrcSVOff
+ SrcOff
, false, Align
);
3352 LoadValues
.push_back(Value
);
3353 LoadChains
.push_back(Value
.getValue(1));
3356 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3357 &LoadChains
[0], LoadChains
.size());
3359 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3361 unsigned VTSize
= VT
.getSizeInBits() / 8;
3362 SDValue Value
, Store
;
3364 Store
= DAG
.getStore(Chain
, dl
, LoadValues
[i
],
3365 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3366 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3367 OutChains
.push_back(Store
);
3371 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3372 &OutChains
[0], OutChains
.size());
3375 static SDValue
getMemsetStores(SelectionDAG
&DAG
, DebugLoc dl
,
3376 SDValue Chain
, SDValue Dst
,
3377 SDValue Src
, uint64_t Size
,
3379 const Value
*DstSV
, uint64_t DstSVOff
) {
3380 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3382 // Expand memset to a series of load/store ops if the size operand
3383 // falls below a certain threshold.
3384 std::vector
<EVT
> MemOps
;
3387 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, TLI
.getMaxStoresPerMemset(),
3388 Size
, Align
, Str
, CopyFromStr
, DAG
, TLI
))
3391 SmallVector
<SDValue
, 8> OutChains
;
3392 uint64_t DstOff
= 0;
3394 unsigned NumMemOps
= MemOps
.size();
3395 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3397 unsigned VTSize
= VT
.getSizeInBits() / 8;
3398 SDValue Value
= getMemsetValue(Src
, VT
, DAG
, dl
);
3399 SDValue Store
= DAG
.getStore(Chain
, dl
, Value
,
3400 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3401 DstSV
, DstSVOff
+ DstOff
);
3402 OutChains
.push_back(Store
);
3406 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3407 &OutChains
[0], OutChains
.size());
3410 SDValue
SelectionDAG::getMemcpy(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3411 SDValue Src
, SDValue Size
,
3412 unsigned Align
, bool AlwaysInline
,
3413 const Value
*DstSV
, uint64_t DstSVOff
,
3414 const Value
*SrcSV
, uint64_t SrcSVOff
) {
3416 // Check to see if we should lower the memcpy to loads and stores first.
3417 // For cases within the target-specified limits, this is the best choice.
3418 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3420 // Memcpy with size zero? Just return the original chain.
3421 if (ConstantSize
->isNullValue())
3425 getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3426 ConstantSize
->getZExtValue(),
3427 Align
, false, DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3428 if (Result
.getNode())
3432 // Then check to see if we should lower the memcpy with target-specific
3433 // code. If the target chooses to do this, this is the next best.
3435 TLI
.EmitTargetCodeForMemcpy(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3437 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3438 if (Result
.getNode())
3441 // If we really need inline code and the target declined to provide it,
3442 // use a (potentially long) sequence of loads and stores.
3444 assert(ConstantSize
&& "AlwaysInline requires a constant size!");
3445 return getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3446 ConstantSize
->getZExtValue(), Align
, true,
3447 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3450 // Emit a library call.
3451 TargetLowering::ArgListTy Args
;
3452 TargetLowering::ArgListEntry Entry
;
3453 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType(*getContext());
3454 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3455 Entry
.Node
= Src
; Args
.push_back(Entry
);
3456 Entry
.Node
= Size
; Args
.push_back(Entry
);
3457 // FIXME: pass in DebugLoc
3458 std::pair
<SDValue
,SDValue
> CallResult
=
3459 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3460 false, false, false, false, 0,
3461 TLI
.getLibcallCallingConv(RTLIB::MEMCPY
), false,
3462 /*isReturnValueUsed=*/false,
3463 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMCPY
),
3464 TLI
.getPointerTy()),
3465 Args
, *this, dl
, GetOrdering(Chain
.getNode()));
3466 return CallResult
.second
;
3469 SDValue
SelectionDAG::getMemmove(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3470 SDValue Src
, SDValue Size
,
3472 const Value
*DstSV
, uint64_t DstSVOff
,
3473 const Value
*SrcSV
, uint64_t SrcSVOff
) {
3475 // Check to see if we should lower the memmove to loads and stores first.
3476 // For cases within the target-specified limits, this is the best choice.
3477 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3479 // Memmove with size zero? Just return the original chain.
3480 if (ConstantSize
->isNullValue())
3484 getMemmoveLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3485 ConstantSize
->getZExtValue(),
3486 Align
, false, DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3487 if (Result
.getNode())
3491 // Then check to see if we should lower the memmove with target-specific
3492 // code. If the target chooses to do this, this is the next best.
3494 TLI
.EmitTargetCodeForMemmove(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3495 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3496 if (Result
.getNode())
3499 // Emit a library call.
3500 TargetLowering::ArgListTy Args
;
3501 TargetLowering::ArgListEntry Entry
;
3502 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType(*getContext());
3503 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3504 Entry
.Node
= Src
; Args
.push_back(Entry
);
3505 Entry
.Node
= Size
; Args
.push_back(Entry
);
3506 // FIXME: pass in DebugLoc
3507 std::pair
<SDValue
,SDValue
> CallResult
=
3508 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3509 false, false, false, false, 0,
3510 TLI
.getLibcallCallingConv(RTLIB::MEMMOVE
), false,
3511 /*isReturnValueUsed=*/false,
3512 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMMOVE
),
3513 TLI
.getPointerTy()),
3514 Args
, *this, dl
, GetOrdering(Chain
.getNode()));
3515 return CallResult
.second
;
3518 SDValue
SelectionDAG::getMemset(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3519 SDValue Src
, SDValue Size
,
3521 const Value
*DstSV
, uint64_t DstSVOff
) {
3523 // Check to see if we should lower the memset to stores first.
3524 // For cases within the target-specified limits, this is the best choice.
3525 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3527 // Memset with size zero? Just return the original chain.
3528 if (ConstantSize
->isNullValue())
3532 getMemsetStores(*this, dl
, Chain
, Dst
, Src
, ConstantSize
->getZExtValue(),
3533 Align
, DstSV
, DstSVOff
);
3534 if (Result
.getNode())
3538 // Then check to see if we should lower the memset with target-specific
3539 // code. If the target chooses to do this, this is the next best.
3541 TLI
.EmitTargetCodeForMemset(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3543 if (Result
.getNode())
3546 // Emit a library call.
3547 const Type
*IntPtrTy
= TLI
.getTargetData()->getIntPtrType(*getContext());
3548 TargetLowering::ArgListTy Args
;
3549 TargetLowering::ArgListEntry Entry
;
3550 Entry
.Node
= Dst
; Entry
.Ty
= IntPtrTy
;
3551 Args
.push_back(Entry
);
3552 // Extend or truncate the argument to be an i32 value for the call.
3553 if (Src
.getValueType().bitsGT(MVT::i32
))
3554 Src
= getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Src
);
3556 Src
= getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, Src
);
3558 Entry
.Ty
= Type::getInt32Ty(*getContext());
3559 Entry
.isSExt
= true;
3560 Args
.push_back(Entry
);
3562 Entry
.Ty
= IntPtrTy
;
3563 Entry
.isSExt
= false;
3564 Args
.push_back(Entry
);
3565 // FIXME: pass in DebugLoc
3566 std::pair
<SDValue
,SDValue
> CallResult
=
3567 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3568 false, false, false, false, 0,
3569 TLI
.getLibcallCallingConv(RTLIB::MEMSET
), false,
3570 /*isReturnValueUsed=*/false,
3571 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMSET
),
3572 TLI
.getPointerTy()),
3573 Args
, *this, dl
, GetOrdering(Chain
.getNode()));
3574 return CallResult
.second
;
3577 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3579 SDValue Ptr
, SDValue Cmp
,
3580 SDValue Swp
, const Value
* PtrVal
,
3581 unsigned Alignment
) {
3582 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3583 Alignment
= getEVTAlignment(MemVT
);
3585 // Check if the memory reference references a frame index
3587 if (const FrameIndexSDNode
*FI
=
3588 dyn_cast
<const FrameIndexSDNode
>(Ptr
.getNode()))
3589 PtrVal
= PseudoSourceValue::getFixedStack(FI
->getIndex());
3591 MachineFunction
&MF
= getMachineFunction();
3592 unsigned Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
3594 // For now, atomics are considered to be volatile always.
3595 Flags
|= MachineMemOperand::MOVolatile
;
3597 MachineMemOperand
*MMO
=
3598 MF
.getMachineMemOperand(PtrVal
, Flags
, 0,
3599 MemVT
.getStoreSize(), Alignment
);
3601 return getAtomic(Opcode
, dl
, MemVT
, Chain
, Ptr
, Cmp
, Swp
, MMO
);
3604 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3606 SDValue Ptr
, SDValue Cmp
,
3607 SDValue Swp
, MachineMemOperand
*MMO
) {
3608 assert(Opcode
== ISD::ATOMIC_CMP_SWAP
&& "Invalid Atomic Op");
3609 assert(Cmp
.getValueType() == Swp
.getValueType() && "Invalid Atomic Op Types");
3611 EVT VT
= Cmp
.getValueType();
3613 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3614 FoldingSetNodeID ID
;
3615 ID
.AddInteger(MemVT
.getRawBits());
3616 SDValue Ops
[] = {Chain
, Ptr
, Cmp
, Swp
};
3617 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 4);
3619 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3620 cast
<AtomicSDNode
>(E
)->refineAlignment(MMO
);
3621 return SDValue(E
, 0);
3623 SDNode
* N
= NodeAllocator
.Allocate
<AtomicSDNode
>();
3624 new (N
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
, Chain
, Ptr
, Cmp
, Swp
, MMO
);
3625 CSEMap
.InsertNode(N
, IP
);
3626 AllNodes
.push_back(N
);
3627 return SDValue(N
, 0);
3630 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3632 SDValue Ptr
, SDValue Val
,
3633 const Value
* PtrVal
,
3634 unsigned Alignment
) {
3635 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3636 Alignment
= getEVTAlignment(MemVT
);
3638 // Check if the memory reference references a frame index
3640 if (const FrameIndexSDNode
*FI
=
3641 dyn_cast
<const FrameIndexSDNode
>(Ptr
.getNode()))
3642 PtrVal
= PseudoSourceValue::getFixedStack(FI
->getIndex());
3644 MachineFunction
&MF
= getMachineFunction();
3645 unsigned Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
3647 // For now, atomics are considered to be volatile always.
3648 Flags
|= MachineMemOperand::MOVolatile
;
3650 MachineMemOperand
*MMO
=
3651 MF
.getMachineMemOperand(PtrVal
, Flags
, 0,
3652 MemVT
.getStoreSize(), Alignment
);
3654 return getAtomic(Opcode
, dl
, MemVT
, Chain
, Ptr
, Val
, MMO
);
3657 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3659 SDValue Ptr
, SDValue Val
,
3660 MachineMemOperand
*MMO
) {
3661 assert((Opcode
== ISD::ATOMIC_LOAD_ADD
||
3662 Opcode
== ISD::ATOMIC_LOAD_SUB
||
3663 Opcode
== ISD::ATOMIC_LOAD_AND
||
3664 Opcode
== ISD::ATOMIC_LOAD_OR
||
3665 Opcode
== ISD::ATOMIC_LOAD_XOR
||
3666 Opcode
== ISD::ATOMIC_LOAD_NAND
||
3667 Opcode
== ISD::ATOMIC_LOAD_MIN
||
3668 Opcode
== ISD::ATOMIC_LOAD_MAX
||
3669 Opcode
== ISD::ATOMIC_LOAD_UMIN
||
3670 Opcode
== ISD::ATOMIC_LOAD_UMAX
||
3671 Opcode
== ISD::ATOMIC_SWAP
) &&
3672 "Invalid Atomic Op");
3674 EVT VT
= Val
.getValueType();
3676 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3677 FoldingSetNodeID ID
;
3678 ID
.AddInteger(MemVT
.getRawBits());
3679 SDValue Ops
[] = {Chain
, Ptr
, Val
};
3680 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
3682 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3683 cast
<AtomicSDNode
>(E
)->refineAlignment(MMO
);
3684 return SDValue(E
, 0);
3686 SDNode
* N
= NodeAllocator
.Allocate
<AtomicSDNode
>();
3687 new (N
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
, Chain
, Ptr
, Val
, MMO
);
3688 CSEMap
.InsertNode(N
, IP
);
3689 AllNodes
.push_back(N
);
3690 return SDValue(N
, 0);
3693 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3694 /// Allowed to return something different (and simpler) if Simplify is true.
3695 SDValue
SelectionDAG::getMergeValues(const SDValue
*Ops
, unsigned NumOps
,
3700 SmallVector
<EVT
, 4> VTs
;
3701 VTs
.reserve(NumOps
);
3702 for (unsigned i
= 0; i
< NumOps
; ++i
)
3703 VTs
.push_back(Ops
[i
].getValueType());
3704 return getNode(ISD::MERGE_VALUES
, dl
, getVTList(&VTs
[0], NumOps
),
3709 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
,
3710 const EVT
*VTs
, unsigned NumVTs
,
3711 const SDValue
*Ops
, unsigned NumOps
,
3712 EVT MemVT
, const Value
*srcValue
, int SVOff
,
3713 unsigned Align
, bool Vol
,
3714 bool ReadMem
, bool WriteMem
) {
3715 return getMemIntrinsicNode(Opcode
, dl
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
,
3716 MemVT
, srcValue
, SVOff
, Align
, Vol
,
3721 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
, SDVTList VTList
,
3722 const SDValue
*Ops
, unsigned NumOps
,
3723 EVT MemVT
, const Value
*srcValue
, int SVOff
,
3724 unsigned Align
, bool Vol
,
3725 bool ReadMem
, bool WriteMem
) {
3726 if (Align
== 0) // Ensure that codegen never sees alignment 0
3727 Align
= getEVTAlignment(MemVT
);
3729 MachineFunction
&MF
= getMachineFunction();
3732 Flags
|= MachineMemOperand::MOStore
;
3734 Flags
|= MachineMemOperand::MOLoad
;
3736 Flags
|= MachineMemOperand::MOVolatile
;
3737 MachineMemOperand
*MMO
=
3738 MF
.getMachineMemOperand(srcValue
, Flags
, SVOff
,
3739 MemVT
.getStoreSize(), Align
);
3741 return getMemIntrinsicNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
, MMO
);
3745 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
, SDVTList VTList
,
3746 const SDValue
*Ops
, unsigned NumOps
,
3747 EVT MemVT
, MachineMemOperand
*MMO
) {
3748 assert((Opcode
== ISD::INTRINSIC_VOID
||
3749 Opcode
== ISD::INTRINSIC_W_CHAIN
||
3750 (Opcode
<= INT_MAX
&&
3751 (int)Opcode
>= ISD::FIRST_TARGET_MEMORY_OPCODE
)) &&
3752 "Opcode is not a memory-accessing opcode!");
3754 // Memoize the node unless it returns a flag.
3755 MemIntrinsicSDNode
*N
;
3756 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
3757 FoldingSetNodeID ID
;
3758 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
3760 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3761 cast
<MemIntrinsicSDNode
>(E
)->refineAlignment(MMO
);
3762 return SDValue(E
, 0);
3765 N
= NodeAllocator
.Allocate
<MemIntrinsicSDNode
>();
3766 new (N
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
, MMO
);
3767 CSEMap
.InsertNode(N
, IP
);
3769 N
= NodeAllocator
.Allocate
<MemIntrinsicSDNode
>();
3770 new (N
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
, MMO
);
3772 AllNodes
.push_back(N
);
3773 return SDValue(N
, 0);
3777 SelectionDAG::getLoad(ISD::MemIndexedMode AM
, DebugLoc dl
,
3778 ISD::LoadExtType ExtType
, EVT VT
, SDValue Chain
,
3779 SDValue Ptr
, SDValue Offset
,
3780 const Value
*SV
, int SVOffset
, EVT MemVT
,
3781 bool isVolatile
, unsigned Alignment
) {
3782 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3783 Alignment
= getEVTAlignment(VT
);
3785 // Check if the memory reference references a frame index
3787 if (const FrameIndexSDNode
*FI
=
3788 dyn_cast
<const FrameIndexSDNode
>(Ptr
.getNode()))
3789 SV
= PseudoSourceValue::getFixedStack(FI
->getIndex());
3791 MachineFunction
&MF
= getMachineFunction();
3792 unsigned Flags
= MachineMemOperand::MOLoad
;
3794 Flags
|= MachineMemOperand::MOVolatile
;
3795 MachineMemOperand
*MMO
=
3796 MF
.getMachineMemOperand(SV
, Flags
, SVOffset
,
3797 MemVT
.getStoreSize(), Alignment
);
3798 return getLoad(AM
, dl
, ExtType
, VT
, Chain
, Ptr
, Offset
, MemVT
, MMO
);
3802 SelectionDAG::getLoad(ISD::MemIndexedMode AM
, DebugLoc dl
,
3803 ISD::LoadExtType ExtType
, EVT VT
, SDValue Chain
,
3804 SDValue Ptr
, SDValue Offset
, EVT MemVT
,
3805 MachineMemOperand
*MMO
) {
3807 ExtType
= ISD::NON_EXTLOAD
;
3808 } else if (ExtType
== ISD::NON_EXTLOAD
) {
3809 assert(VT
== MemVT
&& "Non-extending load from different memory type!");
3812 assert(MemVT
.getScalarType().bitsLT(VT
.getScalarType()) &&
3813 "Should only be an extending load, not truncating!");
3814 assert(VT
.isInteger() == MemVT
.isInteger() &&
3815 "Cannot convert from FP to Int or Int -> FP!");
3816 assert(VT
.isVector() == MemVT
.isVector() &&
3817 "Cannot use trunc store to convert to or from a vector!");
3818 assert((!VT
.isVector() ||
3819 VT
.getVectorNumElements() == MemVT
.getVectorNumElements()) &&
3820 "Cannot use trunc store to change the number of vector elements!");
3823 bool Indexed
= AM
!= ISD::UNINDEXED
;
3824 assert((Indexed
|| Offset
.getOpcode() == ISD::UNDEF
) &&
3825 "Unindexed load with an offset!");
3827 SDVTList VTs
= Indexed
?
3828 getVTList(VT
, Ptr
.getValueType(), MVT::Other
) : getVTList(VT
, MVT::Other
);
3829 SDValue Ops
[] = { Chain
, Ptr
, Offset
};
3830 FoldingSetNodeID ID
;
3831 AddNodeIDNode(ID
, ISD::LOAD
, VTs
, Ops
, 3);
3832 ID
.AddInteger(MemVT
.getRawBits());
3833 ID
.AddInteger(encodeMemSDNodeFlags(ExtType
, AM
, MMO
->isVolatile()));
3835 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3836 cast
<LoadSDNode
>(E
)->refineAlignment(MMO
);
3837 return SDValue(E
, 0);
3839 SDNode
*N
= NodeAllocator
.Allocate
<LoadSDNode
>();
3840 new (N
) LoadSDNode(Ops
, dl
, VTs
, AM
, ExtType
, MemVT
, MMO
);
3841 CSEMap
.InsertNode(N
, IP
);
3842 AllNodes
.push_back(N
);
3843 return SDValue(N
, 0);
3846 SDValue
SelectionDAG::getLoad(EVT VT
, DebugLoc dl
,
3847 SDValue Chain
, SDValue Ptr
,
3848 const Value
*SV
, int SVOffset
,
3849 bool isVolatile
, unsigned Alignment
) {
3850 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3851 return getLoad(ISD::UNINDEXED
, dl
, ISD::NON_EXTLOAD
, VT
, Chain
, Ptr
, Undef
,
3852 SV
, SVOffset
, VT
, isVolatile
, Alignment
);
3855 SDValue
SelectionDAG::getExtLoad(ISD::LoadExtType ExtType
, DebugLoc dl
, EVT VT
,
3856 SDValue Chain
, SDValue Ptr
,
3858 int SVOffset
, EVT MemVT
,
3859 bool isVolatile
, unsigned Alignment
) {
3860 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3861 return getLoad(ISD::UNINDEXED
, dl
, ExtType
, VT
, Chain
, Ptr
, Undef
,
3862 SV
, SVOffset
, MemVT
, isVolatile
, Alignment
);
3866 SelectionDAG::getIndexedLoad(SDValue OrigLoad
, DebugLoc dl
, SDValue Base
,
3867 SDValue Offset
, ISD::MemIndexedMode AM
) {
3868 LoadSDNode
*LD
= cast
<LoadSDNode
>(OrigLoad
);
3869 assert(LD
->getOffset().getOpcode() == ISD::UNDEF
&&
3870 "Load is already a indexed load!");
3871 return getLoad(AM
, dl
, LD
->getExtensionType(), OrigLoad
.getValueType(),
3872 LD
->getChain(), Base
, Offset
, LD
->getSrcValue(),
3873 LD
->getSrcValueOffset(), LD
->getMemoryVT(),
3874 LD
->isVolatile(), LD
->getAlignment());
3877 SDValue
SelectionDAG::getStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
3878 SDValue Ptr
, const Value
*SV
, int SVOffset
,
3879 bool isVolatile
, unsigned Alignment
) {
3880 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3881 Alignment
= getEVTAlignment(Val
.getValueType());
3883 // Check if the memory reference references a frame index
3885 if (const FrameIndexSDNode
*FI
=
3886 dyn_cast
<const FrameIndexSDNode
>(Ptr
.getNode()))
3887 SV
= PseudoSourceValue::getFixedStack(FI
->getIndex());
3889 MachineFunction
&MF
= getMachineFunction();
3890 unsigned Flags
= MachineMemOperand::MOStore
;
3892 Flags
|= MachineMemOperand::MOVolatile
;
3893 MachineMemOperand
*MMO
=
3894 MF
.getMachineMemOperand(SV
, Flags
, SVOffset
,
3895 Val
.getValueType().getStoreSize(), Alignment
);
3897 return getStore(Chain
, dl
, Val
, Ptr
, MMO
);
3900 SDValue
SelectionDAG::getStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
3901 SDValue Ptr
, MachineMemOperand
*MMO
) {
3902 EVT VT
= Val
.getValueType();
3903 SDVTList VTs
= getVTList(MVT::Other
);
3904 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3905 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
3906 FoldingSetNodeID ID
;
3907 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3908 ID
.AddInteger(VT
.getRawBits());
3909 ID
.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED
, MMO
->isVolatile()));
3911 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3912 cast
<StoreSDNode
>(E
)->refineAlignment(MMO
);
3913 return SDValue(E
, 0);
3915 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3916 new (N
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
, false, VT
, MMO
);
3917 CSEMap
.InsertNode(N
, IP
);
3918 AllNodes
.push_back(N
);
3919 return SDValue(N
, 0);
3922 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
3923 SDValue Ptr
, const Value
*SV
,
3924 int SVOffset
, EVT SVT
,
3925 bool isVolatile
, unsigned Alignment
) {
3926 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3927 Alignment
= getEVTAlignment(SVT
);
3929 // Check if the memory reference references a frame index
3931 if (const FrameIndexSDNode
*FI
=
3932 dyn_cast
<const FrameIndexSDNode
>(Ptr
.getNode()))
3933 SV
= PseudoSourceValue::getFixedStack(FI
->getIndex());
3935 MachineFunction
&MF
= getMachineFunction();
3936 unsigned Flags
= MachineMemOperand::MOStore
;
3938 Flags
|= MachineMemOperand::MOVolatile
;
3939 MachineMemOperand
*MMO
=
3940 MF
.getMachineMemOperand(SV
, Flags
, SVOffset
, SVT
.getStoreSize(), Alignment
);
3942 return getTruncStore(Chain
, dl
, Val
, Ptr
, SVT
, MMO
);
3945 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
3946 SDValue Ptr
, EVT SVT
,
3947 MachineMemOperand
*MMO
) {
3948 EVT VT
= Val
.getValueType();
3951 return getStore(Chain
, dl
, Val
, Ptr
, MMO
);
3953 assert(SVT
.getScalarType().bitsLT(VT
.getScalarType()) &&
3954 "Should only be a truncating store, not extending!");
3955 assert(VT
.isInteger() == SVT
.isInteger() &&
3956 "Can't do FP-INT conversion!");
3957 assert(VT
.isVector() == SVT
.isVector() &&
3958 "Cannot use trunc store to convert to or from a vector!");
3959 assert((!VT
.isVector() ||
3960 VT
.getVectorNumElements() == SVT
.getVectorNumElements()) &&
3961 "Cannot use trunc store to change the number of vector elements!");
3963 SDVTList VTs
= getVTList(MVT::Other
);
3964 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3965 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
3966 FoldingSetNodeID ID
;
3967 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3968 ID
.AddInteger(SVT
.getRawBits());
3969 ID
.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED
, MMO
->isVolatile()));
3971 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3972 cast
<StoreSDNode
>(E
)->refineAlignment(MMO
);
3973 return SDValue(E
, 0);
3975 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3976 new (N
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
, true, SVT
, MMO
);
3977 CSEMap
.InsertNode(N
, IP
);
3978 AllNodes
.push_back(N
);
3979 return SDValue(N
, 0);
3983 SelectionDAG::getIndexedStore(SDValue OrigStore
, DebugLoc dl
, SDValue Base
,
3984 SDValue Offset
, ISD::MemIndexedMode AM
) {
3985 StoreSDNode
*ST
= cast
<StoreSDNode
>(OrigStore
);
3986 assert(ST
->getOffset().getOpcode() == ISD::UNDEF
&&
3987 "Store is already a indexed store!");
3988 SDVTList VTs
= getVTList(Base
.getValueType(), MVT::Other
);
3989 SDValue Ops
[] = { ST
->getChain(), ST
->getValue(), Base
, Offset
};
3990 FoldingSetNodeID ID
;
3991 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3992 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
3993 ID
.AddInteger(ST
->getRawSubclassData());
3995 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3996 return SDValue(E
, 0);
3998 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3999 new (N
) StoreSDNode(Ops
, dl
, VTs
, AM
,
4000 ST
->isTruncatingStore(), ST
->getMemoryVT(),
4001 ST
->getMemOperand());
4002 CSEMap
.InsertNode(N
, IP
);
4003 AllNodes
.push_back(N
);
4004 return SDValue(N
, 0);
4007 SDValue
SelectionDAG::getVAArg(EVT VT
, DebugLoc dl
,
4008 SDValue Chain
, SDValue Ptr
,
4010 SDValue Ops
[] = { Chain
, Ptr
, SV
};
4011 return getNode(ISD::VAARG
, dl
, getVTList(VT
, MVT::Other
), Ops
, 3);
4014 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
4015 const SDUse
*Ops
, unsigned NumOps
) {
4017 case 0: return getNode(Opcode
, DL
, VT
);
4018 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
4019 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
4020 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
4024 // Copy from an SDUse array into an SDValue array for use with
4025 // the regular getNode logic.
4026 SmallVector
<SDValue
, 8> NewOps(Ops
, Ops
+ NumOps
);
4027 return getNode(Opcode
, DL
, VT
, &NewOps
[0], NumOps
);
4030 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
4031 const SDValue
*Ops
, unsigned NumOps
) {
4033 case 0: return getNode(Opcode
, DL
, VT
);
4034 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
4035 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
4036 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
4042 case ISD::SELECT_CC
: {
4043 assert(NumOps
== 5 && "SELECT_CC takes 5 operands!");
4044 assert(Ops
[0].getValueType() == Ops
[1].getValueType() &&
4045 "LHS and RHS of condition must have same type!");
4046 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
4047 "True and False arms of SelectCC must have same type!");
4048 assert(Ops
[2].getValueType() == VT
&&
4049 "select_cc node must be of same type as true and false value!");
4053 assert(NumOps
== 5 && "BR_CC takes 5 operands!");
4054 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
4055 "LHS/RHS of comparison should match types!");
4062 SDVTList VTs
= getVTList(VT
);
4064 if (VT
!= MVT::Flag
) {
4065 FoldingSetNodeID ID
;
4066 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, NumOps
);
4069 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4070 return SDValue(E
, 0);
4072 N
= NodeAllocator
.Allocate
<SDNode
>();
4073 new (N
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
4074 CSEMap
.InsertNode(N
, IP
);
4076 N
= NodeAllocator
.Allocate
<SDNode
>();
4077 new (N
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
4080 AllNodes
.push_back(N
);
4084 return SDValue(N
, 0);
4087 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
4088 const std::vector
<EVT
> &ResultTys
,
4089 const SDValue
*Ops
, unsigned NumOps
) {
4090 return getNode(Opcode
, DL
, getVTList(&ResultTys
[0], ResultTys
.size()),
4094 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
4095 const EVT
*VTs
, unsigned NumVTs
,
4096 const SDValue
*Ops
, unsigned NumOps
) {
4098 return getNode(Opcode
, DL
, VTs
[0], Ops
, NumOps
);
4099 return getNode(Opcode
, DL
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
);
4102 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4103 const SDValue
*Ops
, unsigned NumOps
) {
4104 if (VTList
.NumVTs
== 1)
4105 return getNode(Opcode
, DL
, VTList
.VTs
[0], Ops
, NumOps
);
4109 // FIXME: figure out how to safely handle things like
4110 // int foo(int x) { return 1 << (x & 255); }
4111 // int bar() { return foo(256); }
4112 case ISD::SRA_PARTS
:
4113 case ISD::SRL_PARTS
:
4114 case ISD::SHL_PARTS
:
4115 if (N3
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
4116 cast
<VTSDNode
>(N3
.getOperand(1))->getVT() != MVT::i1
)
4117 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
4118 else if (N3
.getOpcode() == ISD::AND
)
4119 if (ConstantSDNode
*AndRHS
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(1))) {
4120 // If the and is only masking out bits that cannot effect the shift,
4121 // eliminate the and.
4122 unsigned NumBits
= VT
.getScalarType().getSizeInBits()*2;
4123 if ((AndRHS
->getValue() & (NumBits
-1)) == NumBits
-1)
4124 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
4130 // Memoize the node unless it returns a flag.
4132 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
4133 FoldingSetNodeID ID
;
4134 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
4136 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4137 return SDValue(E
, 0);
4140 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
4141 new (N
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
4142 } else if (NumOps
== 2) {
4143 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
4144 new (N
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
4145 } else if (NumOps
== 3) {
4146 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
4147 new (N
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1], Ops
[2]);
4149 N
= NodeAllocator
.Allocate
<SDNode
>();
4150 new (N
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
4152 CSEMap
.InsertNode(N
, IP
);
4155 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
4156 new (N
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
4157 } else if (NumOps
== 2) {
4158 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
4159 new (N
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
4160 } else if (NumOps
== 3) {
4161 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
4162 new (N
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1], Ops
[2]);
4164 N
= NodeAllocator
.Allocate
<SDNode
>();
4165 new (N
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
4168 AllNodes
.push_back(N
);
4172 return SDValue(N
, 0);
4175 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
) {
4176 return getNode(Opcode
, DL
, VTList
, 0, 0);
4179 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4181 SDValue Ops
[] = { N1
};
4182 return getNode(Opcode
, DL
, VTList
, Ops
, 1);
4185 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4186 SDValue N1
, SDValue N2
) {
4187 SDValue Ops
[] = { N1
, N2
};
4188 return getNode(Opcode
, DL
, VTList
, Ops
, 2);
4191 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4192 SDValue N1
, SDValue N2
, SDValue N3
) {
4193 SDValue Ops
[] = { N1
, N2
, N3
};
4194 return getNode(Opcode
, DL
, VTList
, Ops
, 3);
4197 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4198 SDValue N1
, SDValue N2
, SDValue N3
,
4200 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
4201 return getNode(Opcode
, DL
, VTList
, Ops
, 4);
4204 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4205 SDValue N1
, SDValue N2
, SDValue N3
,
4206 SDValue N4
, SDValue N5
) {
4207 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
4208 return getNode(Opcode
, DL
, VTList
, Ops
, 5);
4211 SDVTList
SelectionDAG::getVTList(EVT VT
) {
4212 return makeVTList(SDNode::getValueTypeList(VT
), 1);
4215 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
) {
4216 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4217 E
= VTList
.rend(); I
!= E
; ++I
)
4218 if (I
->NumVTs
== 2 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
)
4221 EVT
*Array
= Allocator
.Allocate
<EVT
>(2);
4224 SDVTList Result
= makeVTList(Array
, 2);
4225 VTList
.push_back(Result
);
4229 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
) {
4230 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4231 E
= VTList
.rend(); I
!= E
; ++I
)
4232 if (I
->NumVTs
== 3 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
4236 EVT
*Array
= Allocator
.Allocate
<EVT
>(3);
4240 SDVTList Result
= makeVTList(Array
, 3);
4241 VTList
.push_back(Result
);
4245 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
) {
4246 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4247 E
= VTList
.rend(); I
!= E
; ++I
)
4248 if (I
->NumVTs
== 4 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
4249 I
->VTs
[2] == VT3
&& I
->VTs
[3] == VT4
)
4252 EVT
*Array
= Allocator
.Allocate
<EVT
>(4);
4257 SDVTList Result
= makeVTList(Array
, 4);
4258 VTList
.push_back(Result
);
4262 SDVTList
SelectionDAG::getVTList(const EVT
*VTs
, unsigned NumVTs
) {
4264 case 0: llvm_unreachable("Cannot have nodes without results!");
4265 case 1: return getVTList(VTs
[0]);
4266 case 2: return getVTList(VTs
[0], VTs
[1]);
4267 case 3: return getVTList(VTs
[0], VTs
[1], VTs
[2]);
4268 case 4: return getVTList(VTs
[0], VTs
[1], VTs
[2], VTs
[3]);
4272 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4273 E
= VTList
.rend(); I
!= E
; ++I
) {
4274 if (I
->NumVTs
!= NumVTs
|| VTs
[0] != I
->VTs
[0] || VTs
[1] != I
->VTs
[1])
4277 bool NoMatch
= false;
4278 for (unsigned i
= 2; i
!= NumVTs
; ++i
)
4279 if (VTs
[i
] != I
->VTs
[i
]) {
4287 EVT
*Array
= Allocator
.Allocate
<EVT
>(NumVTs
);
4288 std::copy(VTs
, VTs
+NumVTs
, Array
);
4289 SDVTList Result
= makeVTList(Array
, NumVTs
);
4290 VTList
.push_back(Result
);
4295 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4296 /// specified operands. If the resultant node already exists in the DAG,
4297 /// this does not modify the specified node, instead it returns the node that
4298 /// already exists. If the resultant node does not exist in the DAG, the
4299 /// input node is returned. As a degenerate case, if you specify the same
4300 /// input operands as the node already has, the input node is returned.
4301 SDValue
SelectionDAG::UpdateNodeOperands(SDValue InN
, SDValue Op
) {
4302 SDNode
*N
= InN
.getNode();
4303 assert(N
->getNumOperands() == 1 && "Update with wrong number of operands");
4305 // Check to see if there is no change.
4306 if (Op
== N
->getOperand(0)) return InN
;
4308 // See if the modified node already exists.
4309 void *InsertPos
= 0;
4310 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op
, InsertPos
))
4311 return SDValue(Existing
, InN
.getResNo());
4313 // Nope it doesn't. Remove the node from its current place in the maps.
4315 if (!RemoveNodeFromCSEMaps(N
))
4318 // Now we update the operands.
4319 N
->OperandList
[0].set(Op
);
4321 // If this gets put into a CSE map, add it.
4322 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4326 SDValue
SelectionDAG::
4327 UpdateNodeOperands(SDValue InN
, SDValue Op1
, SDValue Op2
) {
4328 SDNode
*N
= InN
.getNode();
4329 assert(N
->getNumOperands() == 2 && "Update with wrong number of operands");
4331 // Check to see if there is no change.
4332 if (Op1
== N
->getOperand(0) && Op2
== N
->getOperand(1))
4333 return InN
; // No operands changed, just return the input node.
4335 // See if the modified node already exists.
4336 void *InsertPos
= 0;
4337 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op1
, Op2
, InsertPos
))
4338 return SDValue(Existing
, InN
.getResNo());
4340 // Nope it doesn't. Remove the node from its current place in the maps.
4342 if (!RemoveNodeFromCSEMaps(N
))
4345 // Now we update the operands.
4346 if (N
->OperandList
[0] != Op1
)
4347 N
->OperandList
[0].set(Op1
);
4348 if (N
->OperandList
[1] != Op2
)
4349 N
->OperandList
[1].set(Op2
);
4351 // If this gets put into a CSE map, add it.
4352 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4356 SDValue
SelectionDAG::
4357 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
, SDValue Op3
) {
4358 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4359 return UpdateNodeOperands(N
, Ops
, 3);
4362 SDValue
SelectionDAG::
4363 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
,
4364 SDValue Op3
, SDValue Op4
) {
4365 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
};
4366 return UpdateNodeOperands(N
, Ops
, 4);
4369 SDValue
SelectionDAG::
4370 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
,
4371 SDValue Op3
, SDValue Op4
, SDValue Op5
) {
4372 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
, Op5
};
4373 return UpdateNodeOperands(N
, Ops
, 5);
4376 SDValue
SelectionDAG::
4377 UpdateNodeOperands(SDValue InN
, const SDValue
*Ops
, unsigned NumOps
) {
4378 SDNode
*N
= InN
.getNode();
4379 assert(N
->getNumOperands() == NumOps
&&
4380 "Update with wrong number of operands");
4382 // Check to see if there is no change.
4383 bool AnyChange
= false;
4384 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
4385 if (Ops
[i
] != N
->getOperand(i
)) {
4391 // No operands changed, just return the input node.
4392 if (!AnyChange
) return InN
;
4394 // See if the modified node already exists.
4395 void *InsertPos
= 0;
4396 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Ops
, NumOps
, InsertPos
))
4397 return SDValue(Existing
, InN
.getResNo());
4399 // Nope it doesn't. Remove the node from its current place in the maps.
4401 if (!RemoveNodeFromCSEMaps(N
))
4404 // Now we update the operands.
4405 for (unsigned i
= 0; i
!= NumOps
; ++i
)
4406 if (N
->OperandList
[i
] != Ops
[i
])
4407 N
->OperandList
[i
].set(Ops
[i
]);
4409 // If this gets put into a CSE map, add it.
4410 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4414 /// DropOperands - Release the operands and set this node to have
4416 void SDNode::DropOperands() {
4417 // Unlike the code in MorphNodeTo that does this, we don't need to
4418 // watch for dead nodes here.
4419 for (op_iterator I
= op_begin(), E
= op_end(); I
!= E
; ) {
4425 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4428 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4430 SDVTList VTs
= getVTList(VT
);
4431 return SelectNodeTo(N
, MachineOpc
, VTs
, 0, 0);
4434 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4435 EVT VT
, SDValue Op1
) {
4436 SDVTList VTs
= getVTList(VT
);
4437 SDValue Ops
[] = { Op1
};
4438 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4441 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4442 EVT VT
, SDValue Op1
,
4444 SDVTList VTs
= getVTList(VT
);
4445 SDValue Ops
[] = { Op1
, Op2
};
4446 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4449 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4450 EVT VT
, SDValue Op1
,
4451 SDValue Op2
, SDValue Op3
) {
4452 SDVTList VTs
= getVTList(VT
);
4453 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4454 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4457 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4458 EVT VT
, const SDValue
*Ops
,
4460 SDVTList VTs
= getVTList(VT
);
4461 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4464 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4465 EVT VT1
, EVT VT2
, const SDValue
*Ops
,
4467 SDVTList VTs
= getVTList(VT1
, VT2
);
4468 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4471 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4473 SDVTList VTs
= getVTList(VT1
, VT2
);
4474 return SelectNodeTo(N
, MachineOpc
, VTs
, (SDValue
*)0, 0);
4477 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4478 EVT VT1
, EVT VT2
, EVT VT3
,
4479 const SDValue
*Ops
, unsigned NumOps
) {
4480 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4481 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4484 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4485 EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
,
4486 const SDValue
*Ops
, unsigned NumOps
) {
4487 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4488 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4491 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4494 SDVTList VTs
= getVTList(VT1
, VT2
);
4495 SDValue Ops
[] = { Op1
};
4496 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4499 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4501 SDValue Op1
, SDValue Op2
) {
4502 SDVTList VTs
= getVTList(VT1
, VT2
);
4503 SDValue Ops
[] = { Op1
, Op2
};
4504 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4507 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4509 SDValue Op1
, SDValue Op2
,
4511 SDVTList VTs
= getVTList(VT1
, VT2
);
4512 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4513 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4516 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4517 EVT VT1
, EVT VT2
, EVT VT3
,
4518 SDValue Op1
, SDValue Op2
,
4520 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4521 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4522 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4525 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4526 SDVTList VTs
, const SDValue
*Ops
,
4528 return MorphNodeTo(N
, ~MachineOpc
, VTs
, Ops
, NumOps
);
4531 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4533 SDVTList VTs
= getVTList(VT
);
4534 return MorphNodeTo(N
, Opc
, VTs
, 0, 0);
4537 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4538 EVT VT
, SDValue Op1
) {
4539 SDVTList VTs
= getVTList(VT
);
4540 SDValue Ops
[] = { Op1
};
4541 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 1);
4544 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4545 EVT VT
, SDValue Op1
,
4547 SDVTList VTs
= getVTList(VT
);
4548 SDValue Ops
[] = { Op1
, Op2
};
4549 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 2);
4552 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4553 EVT VT
, SDValue Op1
,
4554 SDValue Op2
, SDValue Op3
) {
4555 SDVTList VTs
= getVTList(VT
);
4556 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4557 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 3);
4560 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4561 EVT VT
, const SDValue
*Ops
,
4563 SDVTList VTs
= getVTList(VT
);
4564 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4567 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4568 EVT VT1
, EVT VT2
, const SDValue
*Ops
,
4570 SDVTList VTs
= getVTList(VT1
, VT2
);
4571 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4574 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4576 SDVTList VTs
= getVTList(VT1
, VT2
);
4577 return MorphNodeTo(N
, Opc
, VTs
, (SDValue
*)0, 0);
4580 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4581 EVT VT1
, EVT VT2
, EVT VT3
,
4582 const SDValue
*Ops
, unsigned NumOps
) {
4583 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4584 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4587 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4590 SDVTList VTs
= getVTList(VT1
, VT2
);
4591 SDValue Ops
[] = { Op1
};
4592 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 1);
4595 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4597 SDValue Op1
, SDValue Op2
) {
4598 SDVTList VTs
= getVTList(VT1
, VT2
);
4599 SDValue Ops
[] = { Op1
, Op2
};
4600 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 2);
4603 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4605 SDValue Op1
, SDValue Op2
,
4607 SDVTList VTs
= getVTList(VT1
, VT2
);
4608 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4609 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 3);
4612 /// MorphNodeTo - These *mutate* the specified node to have the specified
4613 /// return type, opcode, and operands.
4615 /// Note that MorphNodeTo returns the resultant node. If there is already a
4616 /// node of the specified opcode and operands, it returns that node instead of
4617 /// the current one. Note that the DebugLoc need not be the same.
4619 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4620 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4621 /// node, and because it doesn't require CSE recalculation for any of
4622 /// the node's users.
4624 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4625 SDVTList VTs
, const SDValue
*Ops
,
4627 // If an identical node already exists, use it.
4629 if (VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Flag
) {
4630 FoldingSetNodeID ID
;
4631 AddNodeIDNode(ID
, Opc
, VTs
, Ops
, NumOps
);
4632 if (SDNode
*ON
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4636 if (!RemoveNodeFromCSEMaps(N
))
4639 // Start the morphing.
4641 N
->ValueList
= VTs
.VTs
;
4642 N
->NumValues
= VTs
.NumVTs
;
4644 // Clear the operands list, updating used nodes to remove this from their
4645 // use list. Keep track of any operands that become dead as a result.
4646 SmallPtrSet
<SDNode
*, 16> DeadNodeSet
;
4647 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
4649 SDNode
*Used
= Use
.getNode();
4651 if (Used
->use_empty())
4652 DeadNodeSet
.insert(Used
);
4655 if (MachineSDNode
*MN
= dyn_cast
<MachineSDNode
>(N
)) {
4656 // Initialize the memory references information.
4657 MN
->setMemRefs(0, 0);
4658 // If NumOps is larger than the # of operands we can have in a
4659 // MachineSDNode, reallocate the operand list.
4660 if (NumOps
> MN
->NumOperands
|| !MN
->OperandsNeedDelete
) {
4661 if (MN
->OperandsNeedDelete
)
4662 delete[] MN
->OperandList
;
4663 if (NumOps
> array_lengthof(MN
->LocalOperands
))
4664 // We're creating a final node that will live unmorphed for the
4665 // remainder of the current SelectionDAG iteration, so we can allocate
4666 // the operands directly out of a pool with no recycling metadata.
4667 MN
->InitOperands(OperandAllocator
.Allocate
<SDUse
>(NumOps
),
4670 MN
->InitOperands(MN
->LocalOperands
, Ops
, NumOps
);
4671 MN
->OperandsNeedDelete
= false;
4673 MN
->InitOperands(MN
->OperandList
, Ops
, NumOps
);
4675 // If NumOps is larger than the # of operands we currently have, reallocate
4676 // the operand list.
4677 if (NumOps
> N
->NumOperands
) {
4678 if (N
->OperandsNeedDelete
)
4679 delete[] N
->OperandList
;
4680 N
->InitOperands(new SDUse
[NumOps
], Ops
, NumOps
);
4681 N
->OperandsNeedDelete
= true;
4683 N
->InitOperands(N
->OperandList
, Ops
, NumOps
);
4686 // Delete any nodes that are still dead after adding the uses for the
4688 SmallVector
<SDNode
*, 16> DeadNodes
;
4689 for (SmallPtrSet
<SDNode
*, 16>::iterator I
= DeadNodeSet
.begin(),
4690 E
= DeadNodeSet
.end(); I
!= E
; ++I
)
4691 if ((*I
)->use_empty())
4692 DeadNodes
.push_back(*I
);
4693 RemoveDeadNodes(DeadNodes
);
4696 CSEMap
.InsertNode(N
, IP
); // Memoize the new node.
4701 /// getMachineNode - These are used for target selectors to create a new node
4702 /// with specified return type(s), MachineInstr opcode, and operands.
4704 /// Note that getMachineNode returns the resultant node. If there is already a
4705 /// node of the specified opcode and operands, it returns that node instead of
4706 /// the current one.
4708 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
) {
4709 SDVTList VTs
= getVTList(VT
);
4710 return getMachineNode(Opcode
, dl
, VTs
, 0, 0);
4714 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
, SDValue Op1
) {
4715 SDVTList VTs
= getVTList(VT
);
4716 SDValue Ops
[] = { Op1
};
4717 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4721 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4722 SDValue Op1
, SDValue Op2
) {
4723 SDVTList VTs
= getVTList(VT
);
4724 SDValue Ops
[] = { Op1
, Op2
};
4725 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4729 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4730 SDValue Op1
, SDValue Op2
, SDValue Op3
) {
4731 SDVTList VTs
= getVTList(VT
);
4732 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4733 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4737 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4738 const SDValue
*Ops
, unsigned NumOps
) {
4739 SDVTList VTs
= getVTList(VT
);
4740 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
4744 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT1
, EVT VT2
) {
4745 SDVTList VTs
= getVTList(VT1
, VT2
);
4746 return getMachineNode(Opcode
, dl
, VTs
, 0, 0);
4750 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4751 EVT VT1
, EVT VT2
, SDValue Op1
) {
4752 SDVTList VTs
= getVTList(VT1
, VT2
);
4753 SDValue Ops
[] = { Op1
};
4754 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4758 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4759 EVT VT1
, EVT VT2
, SDValue Op1
, SDValue Op2
) {
4760 SDVTList VTs
= getVTList(VT1
, VT2
);
4761 SDValue Ops
[] = { Op1
, Op2
};
4762 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4766 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4767 EVT VT1
, EVT VT2
, SDValue Op1
,
4768 SDValue Op2
, SDValue Op3
) {
4769 SDVTList VTs
= getVTList(VT1
, VT2
);
4770 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4771 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4775 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4777 const SDValue
*Ops
, unsigned NumOps
) {
4778 SDVTList VTs
= getVTList(VT1
, VT2
);
4779 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
4783 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4784 EVT VT1
, EVT VT2
, EVT VT3
,
4785 SDValue Op1
, SDValue Op2
) {
4786 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4787 SDValue Ops
[] = { Op1
, Op2
};
4788 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4792 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4793 EVT VT1
, EVT VT2
, EVT VT3
,
4794 SDValue Op1
, SDValue Op2
, SDValue Op3
) {
4795 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4796 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4797 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4801 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4802 EVT VT1
, EVT VT2
, EVT VT3
,
4803 const SDValue
*Ops
, unsigned NumOps
) {
4804 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4805 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
4809 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT1
,
4810 EVT VT2
, EVT VT3
, EVT VT4
,
4811 const SDValue
*Ops
, unsigned NumOps
) {
4812 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4813 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
4817 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4818 const std::vector
<EVT
> &ResultTys
,
4819 const SDValue
*Ops
, unsigned NumOps
) {
4820 SDVTList VTs
= getVTList(&ResultTys
[0], ResultTys
.size());
4821 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
4825 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTs
,
4826 const SDValue
*Ops
, unsigned NumOps
) {
4827 bool DoCSE
= VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Flag
;
4832 FoldingSetNodeID ID
;
4833 AddNodeIDNode(ID
, ~Opcode
, VTs
, Ops
, NumOps
);
4835 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4836 return cast
<MachineSDNode
>(E
);
4839 // Allocate a new MachineSDNode.
4840 N
= NodeAllocator
.Allocate
<MachineSDNode
>();
4841 new (N
) MachineSDNode(~Opcode
, DL
, VTs
);
4843 // Initialize the operands list.
4844 if (NumOps
> array_lengthof(N
->LocalOperands
))
4845 // We're creating a final node that will live unmorphed for the
4846 // remainder of the current SelectionDAG iteration, so we can allocate
4847 // the operands directly out of a pool with no recycling metadata.
4848 N
->InitOperands(OperandAllocator
.Allocate
<SDUse
>(NumOps
),
4851 N
->InitOperands(N
->LocalOperands
, Ops
, NumOps
);
4852 N
->OperandsNeedDelete
= false;
4855 CSEMap
.InsertNode(N
, IP
);
4857 AllNodes
.push_back(N
);
4864 /// getTargetExtractSubreg - A convenience function for creating
4865 /// TargetInstrInfo::EXTRACT_SUBREG nodes.
4867 SelectionDAG::getTargetExtractSubreg(int SRIdx
, DebugLoc DL
, EVT VT
,
4869 SDValue SRIdxVal
= getTargetConstant(SRIdx
, MVT::i32
);
4870 SDNode
*Subreg
= getMachineNode(TargetInstrInfo::EXTRACT_SUBREG
, DL
,
4871 VT
, Operand
, SRIdxVal
);
4872 return SDValue(Subreg
, 0);
4875 /// getTargetInsertSubreg - A convenience function for creating
4876 /// TargetInstrInfo::INSERT_SUBREG nodes.
4878 SelectionDAG::getTargetInsertSubreg(int SRIdx
, DebugLoc DL
, EVT VT
,
4879 SDValue Operand
, SDValue Subreg
) {
4880 SDValue SRIdxVal
= getTargetConstant(SRIdx
, MVT::i32
);
4881 SDNode
*Result
= getMachineNode(TargetInstrInfo::INSERT_SUBREG
, DL
,
4882 VT
, Operand
, Subreg
, SRIdxVal
);
4883 return SDValue(Result
, 0);
4886 /// getNodeIfExists - Get the specified node if it's already available, or
4887 /// else return NULL.
4888 SDNode
*SelectionDAG::getNodeIfExists(unsigned Opcode
, SDVTList VTList
,
4889 const SDValue
*Ops
, unsigned NumOps
) {
4890 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
4891 FoldingSetNodeID ID
;
4892 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
4894 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4900 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4901 /// This can cause recursive merging of nodes in the DAG.
4903 /// This version assumes From has a single result value.
4905 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN
, SDValue To
,
4906 DAGUpdateListener
*UpdateListener
) {
4907 SDNode
*From
= FromN
.getNode();
4908 assert(From
->getNumValues() == 1 && FromN
.getResNo() == 0 &&
4909 "Cannot replace with this method!");
4910 assert(From
!= To
.getNode() && "Cannot replace uses of with self");
4912 // Iterate over all the existing uses of From. New uses will be added
4913 // to the beginning of the use list, which we avoid visiting.
4914 // This specifically avoids visiting uses of From that arise while the
4915 // replacement is happening, because any such uses would be the result
4916 // of CSE: If an existing node looks like From after one of its operands
4917 // is replaced by To, we don't want to replace of all its users with To
4918 // too. See PR3018 for more info.
4919 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4923 // This node is about to morph, remove its old self from the CSE maps.
4924 RemoveNodeFromCSEMaps(User
);
4926 // A user can appear in a use list multiple times, and when this
4927 // happens the uses are usually next to each other in the list.
4928 // To help reduce the number of CSE recomputations, process all
4929 // the uses of this user that we can find this way.
4931 SDUse
&Use
= UI
.getUse();
4934 } while (UI
!= UE
&& *UI
== User
);
4936 // Now that we have modified User, add it back to the CSE maps. If it
4937 // already exists there, recursively merge the results together.
4938 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4942 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4943 /// This can cause recursive merging of nodes in the DAG.
4945 /// This version assumes that for each value of From, there is a
4946 /// corresponding value in To in the same position with the same type.
4948 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
,
4949 DAGUpdateListener
*UpdateListener
) {
4951 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
4952 assert((!From
->hasAnyUseOfValue(i
) ||
4953 From
->getValueType(i
) == To
->getValueType(i
)) &&
4954 "Cannot use this version of ReplaceAllUsesWith!");
4957 // Handle the trivial case.
4961 // Iterate over just the existing users of From. See the comments in
4962 // the ReplaceAllUsesWith above.
4963 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4967 // This node is about to morph, remove its old self from the CSE maps.
4968 RemoveNodeFromCSEMaps(User
);
4970 // A user can appear in a use list multiple times, and when this
4971 // happens the uses are usually next to each other in the list.
4972 // To help reduce the number of CSE recomputations, process all
4973 // the uses of this user that we can find this way.
4975 SDUse
&Use
= UI
.getUse();
4978 } while (UI
!= UE
&& *UI
== User
);
4980 // Now that we have modified User, add it back to the CSE maps. If it
4981 // already exists there, recursively merge the results together.
4982 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4986 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4987 /// This can cause recursive merging of nodes in the DAG.
4989 /// This version can replace From with any result values. To must match the
4990 /// number and types of values returned by From.
4991 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
,
4993 DAGUpdateListener
*UpdateListener
) {
4994 if (From
->getNumValues() == 1) // Handle the simple case efficiently.
4995 return ReplaceAllUsesWith(SDValue(From
, 0), To
[0], UpdateListener
);
4997 // Iterate over just the existing users of From. See the comments in
4998 // the ReplaceAllUsesWith above.
4999 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
5003 // This node is about to morph, remove its old self from the CSE maps.
5004 RemoveNodeFromCSEMaps(User
);
5006 // A user can appear in a use list multiple times, and when this
5007 // happens the uses are usually next to each other in the list.
5008 // To help reduce the number of CSE recomputations, process all
5009 // the uses of this user that we can find this way.
5011 SDUse
&Use
= UI
.getUse();
5012 const SDValue
&ToOp
= To
[Use
.getResNo()];
5015 } while (UI
!= UE
&& *UI
== User
);
5017 // Now that we have modified User, add it back to the CSE maps. If it
5018 // already exists there, recursively merge the results together.
5019 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
5023 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5024 /// uses of other values produced by From.getNode() alone. The Deleted
5025 /// vector is handled the same way as for ReplaceAllUsesWith.
5026 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
,
5027 DAGUpdateListener
*UpdateListener
){
5028 // Handle the really simple, really trivial case efficiently.
5029 if (From
== To
) return;
5031 // Handle the simple, trivial, case efficiently.
5032 if (From
.getNode()->getNumValues() == 1) {
5033 ReplaceAllUsesWith(From
, To
, UpdateListener
);
5037 // Iterate over just the existing users of From. See the comments in
5038 // the ReplaceAllUsesWith above.
5039 SDNode::use_iterator UI
= From
.getNode()->use_begin(),
5040 UE
= From
.getNode()->use_end();
5043 bool UserRemovedFromCSEMaps
= false;
5045 // A user can appear in a use list multiple times, and when this
5046 // happens the uses are usually next to each other in the list.
5047 // To help reduce the number of CSE recomputations, process all
5048 // the uses of this user that we can find this way.
5050 SDUse
&Use
= UI
.getUse();
5052 // Skip uses of different values from the same node.
5053 if (Use
.getResNo() != From
.getResNo()) {
5058 // If this node hasn't been modified yet, it's still in the CSE maps,
5059 // so remove its old self from the CSE maps.
5060 if (!UserRemovedFromCSEMaps
) {
5061 RemoveNodeFromCSEMaps(User
);
5062 UserRemovedFromCSEMaps
= true;
5067 } while (UI
!= UE
&& *UI
== User
);
5069 // We are iterating over all uses of the From node, so if a use
5070 // doesn't use the specific value, no changes are made.
5071 if (!UserRemovedFromCSEMaps
)
5074 // Now that we have modified User, add it back to the CSE maps. If it
5075 // already exists there, recursively merge the results together.
5076 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
5081 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5082 /// to record information about a use.
5089 /// operator< - Sort Memos by User.
5090 bool operator<(const UseMemo
&L
, const UseMemo
&R
) {
5091 return (intptr_t)L
.User
< (intptr_t)R
.User
;
5095 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5096 /// uses of other values produced by From.getNode() alone. The same value
5097 /// may appear in both the From and To list. The Deleted vector is
5098 /// handled the same way as for ReplaceAllUsesWith.
5099 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue
*From
,
5102 DAGUpdateListener
*UpdateListener
){
5103 // Handle the simple, trivial case efficiently.
5105 return ReplaceAllUsesOfValueWith(*From
, *To
, UpdateListener
);
5107 // Read up all the uses and make records of them. This helps
5108 // processing new uses that are introduced during the
5109 // replacement process.
5110 SmallVector
<UseMemo
, 4> Uses
;
5111 for (unsigned i
= 0; i
!= Num
; ++i
) {
5112 unsigned FromResNo
= From
[i
].getResNo();
5113 SDNode
*FromNode
= From
[i
].getNode();
5114 for (SDNode::use_iterator UI
= FromNode
->use_begin(),
5115 E
= FromNode
->use_end(); UI
!= E
; ++UI
) {
5116 SDUse
&Use
= UI
.getUse();
5117 if (Use
.getResNo() == FromResNo
) {
5118 UseMemo Memo
= { *UI
, i
, &Use
};
5119 Uses
.push_back(Memo
);
5124 // Sort the uses, so that all the uses from a given User are together.
5125 std::sort(Uses
.begin(), Uses
.end());
5127 for (unsigned UseIndex
= 0, UseIndexEnd
= Uses
.size();
5128 UseIndex
!= UseIndexEnd
; ) {
5129 // We know that this user uses some value of From. If it is the right
5130 // value, update it.
5131 SDNode
*User
= Uses
[UseIndex
].User
;
5133 // This node is about to morph, remove its old self from the CSE maps.
5134 RemoveNodeFromCSEMaps(User
);
5136 // The Uses array is sorted, so all the uses for a given User
5137 // are next to each other in the list.
5138 // To help reduce the number of CSE recomputations, process all
5139 // the uses of this user that we can find this way.
5141 unsigned i
= Uses
[UseIndex
].Index
;
5142 SDUse
&Use
= *Uses
[UseIndex
].Use
;
5146 } while (UseIndex
!= UseIndexEnd
&& Uses
[UseIndex
].User
== User
);
5148 // Now that we have modified User, add it back to the CSE maps. If it
5149 // already exists there, recursively merge the results together.
5150 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
5154 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5155 /// based on their topological order. It returns the maximum id and a vector
5156 /// of the SDNodes* in assigned order by reference.
5157 unsigned SelectionDAG::AssignTopologicalOrder() {
5159 unsigned DAGSize
= 0;
5161 // SortedPos tracks the progress of the algorithm. Nodes before it are
5162 // sorted, nodes after it are unsorted. When the algorithm completes
5163 // it is at the end of the list.
5164 allnodes_iterator SortedPos
= allnodes_begin();
5166 // Visit all the nodes. Move nodes with no operands to the front of
5167 // the list immediately. Annotate nodes that do have operands with their
5168 // operand count. Before we do this, the Node Id fields of the nodes
5169 // may contain arbitrary values. After, the Node Id fields for nodes
5170 // before SortedPos will contain the topological sort index, and the
5171 // Node Id fields for nodes At SortedPos and after will contain the
5172 // count of outstanding operands.
5173 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ) {
5175 unsigned Degree
= N
->getNumOperands();
5177 // A node with no uses, add it to the result array immediately.
5178 N
->setNodeId(DAGSize
++);
5179 allnodes_iterator Q
= N
;
5181 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(Q
));
5184 // Temporarily use the Node Id as scratch space for the degree count.
5185 N
->setNodeId(Degree
);
5189 // Visit all the nodes. As we iterate, moves nodes into sorted order,
5190 // such that by the time the end is reached all nodes will be sorted.
5191 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ++I
) {
5193 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
5196 unsigned Degree
= P
->getNodeId();
5199 // All of P's operands are sorted, so P may sorted now.
5200 P
->setNodeId(DAGSize
++);
5202 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(P
));
5205 // Update P's outstanding operand count.
5206 P
->setNodeId(Degree
);
5211 assert(SortedPos
== AllNodes
.end() &&
5212 "Topological sort incomplete!");
5213 assert(AllNodes
.front().getOpcode() == ISD::EntryToken
&&
5214 "First node in topological sort is not the entry token!");
5215 assert(AllNodes
.front().getNodeId() == 0 &&
5216 "First node in topological sort has non-zero id!");
5217 assert(AllNodes
.front().getNumOperands() == 0 &&
5218 "First node in topological sort has operands!");
5219 assert(AllNodes
.back().getNodeId() == (int)DAGSize
-1 &&
5220 "Last node in topologic sort has unexpected id!");
5221 assert(AllNodes
.back().use_empty() &&
5222 "Last node in topologic sort has users!");
5223 assert(DAGSize
== allnodes_size() && "Node count mismatch!");
5227 /// AssignOrdering - Assign an order to the SDNode.
5228 void SelectionDAG::AssignOrdering(SDNode
*SD
, unsigned Order
) {
5229 assert(SD
&& "Trying to assign an order to a null node!");
5231 Ordering
->add(SD
, Order
);
5234 /// GetOrdering - Get the order for the SDNode.
5235 unsigned SelectionDAG::GetOrdering(const SDNode
*SD
) const {
5236 assert(SD
&& "Trying to get the order of a null node!");
5237 return Ordering
? Ordering
->getOrder(SD
) : 0;
5241 //===----------------------------------------------------------------------===//
5243 //===----------------------------------------------------------------------===//
5245 HandleSDNode::~HandleSDNode() {
5249 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc
, const GlobalValue
*GA
,
5250 EVT VT
, int64_t o
, unsigned char TF
)
5251 : SDNode(Opc
, DebugLoc::getUnknownLoc(), getSDVTList(VT
)),
5252 Offset(o
), TargetFlags(TF
) {
5253 TheGlobal
= const_cast<GlobalValue
*>(GA
);
5256 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
, EVT memvt
,
5257 MachineMemOperand
*mmo
)
5258 : SDNode(Opc
, dl
, VTs
), MemoryVT(memvt
), MMO(mmo
) {
5259 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, MMO
->isVolatile());
5260 assert(isVolatile() == MMO
->isVolatile() && "Volatile encoding error!");
5261 assert(memvt
.getStoreSize() == MMO
->getSize() && "Size mismatch!");
5264 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
,
5265 const SDValue
*Ops
, unsigned NumOps
, EVT memvt
,
5266 MachineMemOperand
*mmo
)
5267 : SDNode(Opc
, dl
, VTs
, Ops
, NumOps
),
5268 MemoryVT(memvt
), MMO(mmo
) {
5269 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, MMO
->isVolatile());
5270 assert(isVolatile() == MMO
->isVolatile() && "Volatile encoding error!");
5271 assert(memvt
.getStoreSize() == MMO
->getSize() && "Size mismatch!");
5274 /// Profile - Gather unique data for the node.
5276 void SDNode::Profile(FoldingSetNodeID
&ID
) const {
5277 AddNodeIDNode(ID
, this);
5282 std::vector
<EVT
> VTs
;
5285 VTs
.reserve(MVT::LAST_VALUETYPE
);
5286 for (unsigned i
= 0; i
< MVT::LAST_VALUETYPE
; ++i
)
5287 VTs
.push_back(MVT((MVT::SimpleValueType
)i
));
5292 static ManagedStatic
<std::set
<EVT
, EVT::compareRawBits
> > EVTs
;
5293 static ManagedStatic
<EVTArray
> SimpleVTArray
;
5294 static ManagedStatic
<sys::SmartMutex
<true> > VTMutex
;
5296 /// getValueTypeList - Return a pointer to the specified value type.
5298 const EVT
*SDNode::getValueTypeList(EVT VT
) {
5299 if (VT
.isExtended()) {
5300 sys::SmartScopedLock
<true> Lock(*VTMutex
);
5301 return &(*EVTs
->insert(VT
).first
);
5303 return &SimpleVTArray
->VTs
[VT
.getSimpleVT().SimpleTy
];
5307 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5308 /// indicated value. This method ignores uses of other values defined by this
5310 bool SDNode::hasNUsesOfValue(unsigned NUses
, unsigned Value
) const {
5311 assert(Value
< getNumValues() && "Bad value!");
5313 // TODO: Only iterate over uses of a given value of the node
5314 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
) {
5315 if (UI
.getUse().getResNo() == Value
) {
5322 // Found exactly the right number of uses?
5327 /// hasAnyUseOfValue - Return true if there are any use of the indicated
5328 /// value. This method ignores uses of other values defined by this operation.
5329 bool SDNode::hasAnyUseOfValue(unsigned Value
) const {
5330 assert(Value
< getNumValues() && "Bad value!");
5332 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
)
5333 if (UI
.getUse().getResNo() == Value
)
5340 /// isOnlyUserOf - Return true if this node is the only use of N.
5342 bool SDNode::isOnlyUserOf(SDNode
*N
) const {
5344 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
5355 /// isOperand - Return true if this node is an operand of N.
5357 bool SDValue::isOperandOf(SDNode
*N
) const {
5358 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
5359 if (*this == N
->getOperand(i
))
5364 bool SDNode::isOperandOf(SDNode
*N
) const {
5365 for (unsigned i
= 0, e
= N
->NumOperands
; i
!= e
; ++i
)
5366 if (this == N
->OperandList
[i
].getNode())
5371 /// reachesChainWithoutSideEffects - Return true if this operand (which must
5372 /// be a chain) reaches the specified operand without crossing any
5373 /// side-effecting instructions. In practice, this looks through token
5374 /// factors and non-volatile loads. In order to remain efficient, this only
5375 /// looks a couple of nodes in, it does not do an exhaustive search.
5376 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest
,
5377 unsigned Depth
) const {
5378 if (*this == Dest
) return true;
5380 // Don't search too deeply, we just want to be able to see through
5381 // TokenFactor's etc.
5382 if (Depth
== 0) return false;
5384 // If this is a token factor, all inputs to the TF happen in parallel. If any
5385 // of the operands of the TF reach dest, then we can do the xform.
5386 if (getOpcode() == ISD::TokenFactor
) {
5387 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
5388 if (getOperand(i
).reachesChainWithoutSideEffects(Dest
, Depth
-1))
5393 // Loads don't have side effects, look through them.
5394 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(*this)) {
5395 if (!Ld
->isVolatile())
5396 return Ld
->getChain().reachesChainWithoutSideEffects(Dest
, Depth
-1);
5401 /// isPredecessorOf - Return true if this node is a predecessor of N. This node
5402 /// is either an operand of N or it can be reached by traversing up the operands.
5403 /// NOTE: this is an expensive method. Use it carefully.
5404 bool SDNode::isPredecessorOf(SDNode
*N
) const {
5405 SmallPtrSet
<SDNode
*, 32> Visited
;
5406 SmallVector
<SDNode
*, 16> Worklist
;
5407 Worklist
.push_back(N
);
5410 N
= Worklist
.pop_back_val();
5411 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
5412 SDNode
*Op
= N
->getOperand(i
).getNode();
5415 if (Visited
.insert(Op
))
5416 Worklist
.push_back(Op
);
5418 } while (!Worklist
.empty());
5423 uint64_t SDNode::getConstantOperandVal(unsigned Num
) const {
5424 assert(Num
< NumOperands
&& "Invalid child # of SDNode!");
5425 return cast
<ConstantSDNode
>(OperandList
[Num
])->getZExtValue();
5428 std::string
SDNode::getOperationName(const SelectionDAG
*G
) const {
5429 switch (getOpcode()) {
5431 if (getOpcode() < ISD::BUILTIN_OP_END
)
5432 return "<<Unknown DAG Node>>";
5433 if (isMachineOpcode()) {
5435 if (const TargetInstrInfo
*TII
= G
->getTarget().getInstrInfo())
5436 if (getMachineOpcode() < TII
->getNumOpcodes())
5437 return TII
->get(getMachineOpcode()).getName();
5438 return "<<Unknown Machine Node>>";
5441 const TargetLowering
&TLI
= G
->getTargetLoweringInfo();
5442 const char *Name
= TLI
.getTargetNodeName(getOpcode());
5443 if (Name
) return Name
;
5444 return "<<Unknown Target Node>>";
5446 return "<<Unknown Node>>";
5449 case ISD::DELETED_NODE
:
5450 return "<<Deleted Node!>>";
5452 case ISD::PREFETCH
: return "Prefetch";
5453 case ISD::MEMBARRIER
: return "MemBarrier";
5454 case ISD::ATOMIC_CMP_SWAP
: return "AtomicCmpSwap";
5455 case ISD::ATOMIC_SWAP
: return "AtomicSwap";
5456 case ISD::ATOMIC_LOAD_ADD
: return "AtomicLoadAdd";
5457 case ISD::ATOMIC_LOAD_SUB
: return "AtomicLoadSub";
5458 case ISD::ATOMIC_LOAD_AND
: return "AtomicLoadAnd";
5459 case ISD::ATOMIC_LOAD_OR
: return "AtomicLoadOr";
5460 case ISD::ATOMIC_LOAD_XOR
: return "AtomicLoadXor";
5461 case ISD::ATOMIC_LOAD_NAND
: return "AtomicLoadNand";
5462 case ISD::ATOMIC_LOAD_MIN
: return "AtomicLoadMin";
5463 case ISD::ATOMIC_LOAD_MAX
: return "AtomicLoadMax";
5464 case ISD::ATOMIC_LOAD_UMIN
: return "AtomicLoadUMin";
5465 case ISD::ATOMIC_LOAD_UMAX
: return "AtomicLoadUMax";
5466 case ISD::PCMARKER
: return "PCMarker";
5467 case ISD::READCYCLECOUNTER
: return "ReadCycleCounter";
5468 case ISD::SRCVALUE
: return "SrcValue";
5469 case ISD::EntryToken
: return "EntryToken";
5470 case ISD::TokenFactor
: return "TokenFactor";
5471 case ISD::AssertSext
: return "AssertSext";
5472 case ISD::AssertZext
: return "AssertZext";
5474 case ISD::BasicBlock
: return "BasicBlock";
5475 case ISD::VALUETYPE
: return "ValueType";
5476 case ISD::Register
: return "Register";
5478 case ISD::Constant
: return "Constant";
5479 case ISD::ConstantFP
: return "ConstantFP";
5480 case ISD::GlobalAddress
: return "GlobalAddress";
5481 case ISD::GlobalTLSAddress
: return "GlobalTLSAddress";
5482 case ISD::FrameIndex
: return "FrameIndex";
5483 case ISD::JumpTable
: return "JumpTable";
5484 case ISD::GLOBAL_OFFSET_TABLE
: return "GLOBAL_OFFSET_TABLE";
5485 case ISD::RETURNADDR
: return "RETURNADDR";
5486 case ISD::FRAMEADDR
: return "FRAMEADDR";
5487 case ISD::FRAME_TO_ARGS_OFFSET
: return "FRAME_TO_ARGS_OFFSET";
5488 case ISD::EXCEPTIONADDR
: return "EXCEPTIONADDR";
5489 case ISD::LSDAADDR
: return "LSDAADDR";
5490 case ISD::EHSELECTION
: return "EHSELECTION";
5491 case ISD::EH_RETURN
: return "EH_RETURN";
5492 case ISD::ConstantPool
: return "ConstantPool";
5493 case ISD::ExternalSymbol
: return "ExternalSymbol";
5494 case ISD::BlockAddress
: return "BlockAddress";
5495 case ISD::INTRINSIC_WO_CHAIN
:
5496 case ISD::INTRINSIC_VOID
:
5497 case ISD::INTRINSIC_W_CHAIN
: {
5498 unsigned OpNo
= getOpcode() == ISD::INTRINSIC_WO_CHAIN
? 0 : 1;
5499 unsigned IID
= cast
<ConstantSDNode
>(getOperand(OpNo
))->getZExtValue();
5500 if (IID
< Intrinsic::num_intrinsics
)
5501 return Intrinsic::getName((Intrinsic::ID
)IID
);
5502 else if (const TargetIntrinsicInfo
*TII
= G
->getTarget().getIntrinsicInfo())
5503 return TII
->getName(IID
);
5504 llvm_unreachable("Invalid intrinsic ID");
5507 case ISD::BUILD_VECTOR
: return "BUILD_VECTOR";
5508 case ISD::TargetConstant
: return "TargetConstant";
5509 case ISD::TargetConstantFP
:return "TargetConstantFP";
5510 case ISD::TargetGlobalAddress
: return "TargetGlobalAddress";
5511 case ISD::TargetGlobalTLSAddress
: return "TargetGlobalTLSAddress";
5512 case ISD::TargetFrameIndex
: return "TargetFrameIndex";
5513 case ISD::TargetJumpTable
: return "TargetJumpTable";
5514 case ISD::TargetConstantPool
: return "TargetConstantPool";
5515 case ISD::TargetExternalSymbol
: return "TargetExternalSymbol";
5516 case ISD::TargetBlockAddress
: return "TargetBlockAddress";
5518 case ISD::CopyToReg
: return "CopyToReg";
5519 case ISD::CopyFromReg
: return "CopyFromReg";
5520 case ISD::UNDEF
: return "undef";
5521 case ISD::MERGE_VALUES
: return "merge_values";
5522 case ISD::INLINEASM
: return "inlineasm";
5523 case ISD::EH_LABEL
: return "eh_label";
5524 case ISD::HANDLENODE
: return "handlenode";
5527 case ISD::FABS
: return "fabs";
5528 case ISD::FNEG
: return "fneg";
5529 case ISD::FSQRT
: return "fsqrt";
5530 case ISD::FSIN
: return "fsin";
5531 case ISD::FCOS
: return "fcos";
5532 case ISD::FPOWI
: return "fpowi";
5533 case ISD::FPOW
: return "fpow";
5534 case ISD::FTRUNC
: return "ftrunc";
5535 case ISD::FFLOOR
: return "ffloor";
5536 case ISD::FCEIL
: return "fceil";
5537 case ISD::FRINT
: return "frint";
5538 case ISD::FNEARBYINT
: return "fnearbyint";
5541 case ISD::ADD
: return "add";
5542 case ISD::SUB
: return "sub";
5543 case ISD::MUL
: return "mul";
5544 case ISD::MULHU
: return "mulhu";
5545 case ISD::MULHS
: return "mulhs";
5546 case ISD::SDIV
: return "sdiv";
5547 case ISD::UDIV
: return "udiv";
5548 case ISD::SREM
: return "srem";
5549 case ISD::UREM
: return "urem";
5550 case ISD::SMUL_LOHI
: return "smul_lohi";
5551 case ISD::UMUL_LOHI
: return "umul_lohi";
5552 case ISD::SDIVREM
: return "sdivrem";
5553 case ISD::UDIVREM
: return "udivrem";
5554 case ISD::AND
: return "and";
5555 case ISD::OR
: return "or";
5556 case ISD::XOR
: return "xor";
5557 case ISD::SHL
: return "shl";
5558 case ISD::SRA
: return "sra";
5559 case ISD::SRL
: return "srl";
5560 case ISD::ROTL
: return "rotl";
5561 case ISD::ROTR
: return "rotr";
5562 case ISD::FADD
: return "fadd";
5563 case ISD::FSUB
: return "fsub";
5564 case ISD::FMUL
: return "fmul";
5565 case ISD::FDIV
: return "fdiv";
5566 case ISD::FREM
: return "frem";
5567 case ISD::FCOPYSIGN
: return "fcopysign";
5568 case ISD::FGETSIGN
: return "fgetsign";
5570 case ISD::SETCC
: return "setcc";
5571 case ISD::VSETCC
: return "vsetcc";
5572 case ISD::SELECT
: return "select";
5573 case ISD::SELECT_CC
: return "select_cc";
5574 case ISD::INSERT_VECTOR_ELT
: return "insert_vector_elt";
5575 case ISD::EXTRACT_VECTOR_ELT
: return "extract_vector_elt";
5576 case ISD::CONCAT_VECTORS
: return "concat_vectors";
5577 case ISD::EXTRACT_SUBVECTOR
: return "extract_subvector";
5578 case ISD::SCALAR_TO_VECTOR
: return "scalar_to_vector";
5579 case ISD::VECTOR_SHUFFLE
: return "vector_shuffle";
5580 case ISD::CARRY_FALSE
: return "carry_false";
5581 case ISD::ADDC
: return "addc";
5582 case ISD::ADDE
: return "adde";
5583 case ISD::SADDO
: return "saddo";
5584 case ISD::UADDO
: return "uaddo";
5585 case ISD::SSUBO
: return "ssubo";
5586 case ISD::USUBO
: return "usubo";
5587 case ISD::SMULO
: return "smulo";
5588 case ISD::UMULO
: return "umulo";
5589 case ISD::SUBC
: return "subc";
5590 case ISD::SUBE
: return "sube";
5591 case ISD::SHL_PARTS
: return "shl_parts";
5592 case ISD::SRA_PARTS
: return "sra_parts";
5593 case ISD::SRL_PARTS
: return "srl_parts";
5595 // Conversion operators.
5596 case ISD::SIGN_EXTEND
: return "sign_extend";
5597 case ISD::ZERO_EXTEND
: return "zero_extend";
5598 case ISD::ANY_EXTEND
: return "any_extend";
5599 case ISD::SIGN_EXTEND_INREG
: return "sign_extend_inreg";
5600 case ISD::TRUNCATE
: return "truncate";
5601 case ISD::FP_ROUND
: return "fp_round";
5602 case ISD::FLT_ROUNDS_
: return "flt_rounds";
5603 case ISD::FP_ROUND_INREG
: return "fp_round_inreg";
5604 case ISD::FP_EXTEND
: return "fp_extend";
5606 case ISD::SINT_TO_FP
: return "sint_to_fp";
5607 case ISD::UINT_TO_FP
: return "uint_to_fp";
5608 case ISD::FP_TO_SINT
: return "fp_to_sint";
5609 case ISD::FP_TO_UINT
: return "fp_to_uint";
5610 case ISD::BIT_CONVERT
: return "bit_convert";
5612 case ISD::CONVERT_RNDSAT
: {
5613 switch (cast
<CvtRndSatSDNode
>(this)->getCvtCode()) {
5614 default: llvm_unreachable("Unknown cvt code!");
5615 case ISD::CVT_FF
: return "cvt_ff";
5616 case ISD::CVT_FS
: return "cvt_fs";
5617 case ISD::CVT_FU
: return "cvt_fu";
5618 case ISD::CVT_SF
: return "cvt_sf";
5619 case ISD::CVT_UF
: return "cvt_uf";
5620 case ISD::CVT_SS
: return "cvt_ss";
5621 case ISD::CVT_SU
: return "cvt_su";
5622 case ISD::CVT_US
: return "cvt_us";
5623 case ISD::CVT_UU
: return "cvt_uu";
5627 // Control flow instructions
5628 case ISD::BR
: return "br";
5629 case ISD::BRIND
: return "brind";
5630 case ISD::BR_JT
: return "br_jt";
5631 case ISD::BRCOND
: return "brcond";
5632 case ISD::BR_CC
: return "br_cc";
5633 case ISD::CALLSEQ_START
: return "callseq_start";
5634 case ISD::CALLSEQ_END
: return "callseq_end";
5637 case ISD::LOAD
: return "load";
5638 case ISD::STORE
: return "store";
5639 case ISD::VAARG
: return "vaarg";
5640 case ISD::VACOPY
: return "vacopy";
5641 case ISD::VAEND
: return "vaend";
5642 case ISD::VASTART
: return "vastart";
5643 case ISD::DYNAMIC_STACKALLOC
: return "dynamic_stackalloc";
5644 case ISD::EXTRACT_ELEMENT
: return "extract_element";
5645 case ISD::BUILD_PAIR
: return "build_pair";
5646 case ISD::STACKSAVE
: return "stacksave";
5647 case ISD::STACKRESTORE
: return "stackrestore";
5648 case ISD::TRAP
: return "trap";
5651 case ISD::BSWAP
: return "bswap";
5652 case ISD::CTPOP
: return "ctpop";
5653 case ISD::CTTZ
: return "cttz";
5654 case ISD::CTLZ
: return "ctlz";
5657 case ISD::TRAMPOLINE
: return "trampoline";
5660 switch (cast
<CondCodeSDNode
>(this)->get()) {
5661 default: llvm_unreachable("Unknown setcc condition!");
5662 case ISD::SETOEQ
: return "setoeq";
5663 case ISD::SETOGT
: return "setogt";
5664 case ISD::SETOGE
: return "setoge";
5665 case ISD::SETOLT
: return "setolt";
5666 case ISD::SETOLE
: return "setole";
5667 case ISD::SETONE
: return "setone";
5669 case ISD::SETO
: return "seto";
5670 case ISD::SETUO
: return "setuo";
5671 case ISD::SETUEQ
: return "setue";
5672 case ISD::SETUGT
: return "setugt";
5673 case ISD::SETUGE
: return "setuge";
5674 case ISD::SETULT
: return "setult";
5675 case ISD::SETULE
: return "setule";
5676 case ISD::SETUNE
: return "setune";
5678 case ISD::SETEQ
: return "seteq";
5679 case ISD::SETGT
: return "setgt";
5680 case ISD::SETGE
: return "setge";
5681 case ISD::SETLT
: return "setlt";
5682 case ISD::SETLE
: return "setle";
5683 case ISD::SETNE
: return "setne";
5688 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM
) {
5697 return "<post-inc>";
5699 return "<post-dec>";
5703 std::string
ISD::ArgFlagsTy::getArgFlagsString() {
5704 std::string S
= "< ";
5718 if (getByValAlign())
5719 S
+= "byval-align:" + utostr(getByValAlign()) + " ";
5721 S
+= "orig-align:" + utostr(getOrigAlign()) + " ";
5723 S
+= "byval-size:" + utostr(getByValSize()) + " ";
5727 void SDNode::dump() const { dump(0); }
5728 void SDNode::dump(const SelectionDAG
*G
) const {
5732 void SDNode::print_types(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5733 OS
<< (void*)this << ": ";
5735 for (unsigned i
= 0, e
= getNumValues(); i
!= e
; ++i
) {
5737 if (getValueType(i
) == MVT::Other
)
5740 OS
<< getValueType(i
).getEVTString();
5742 OS
<< " = " << getOperationName(G
);
5745 void SDNode::print_details(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5746 if (const MachineSDNode
*MN
= dyn_cast
<MachineSDNode
>(this)) {
5747 if (!MN
->memoperands_empty()) {
5750 for (MachineSDNode::mmo_iterator i
= MN
->memoperands_begin(),
5751 e
= MN
->memoperands_end(); i
!= e
; ++i
) {
5758 } else if (const ShuffleVectorSDNode
*SVN
=
5759 dyn_cast
<ShuffleVectorSDNode
>(this)) {
5761 for (unsigned i
= 0, e
= ValueList
[0].getVectorNumElements(); i
!= e
; ++i
) {
5762 int Idx
= SVN
->getMaskElt(i
);
5770 } else if (const ConstantSDNode
*CSDN
= dyn_cast
<ConstantSDNode
>(this)) {
5771 OS
<< '<' << CSDN
->getAPIntValue() << '>';
5772 } else if (const ConstantFPSDNode
*CSDN
= dyn_cast
<ConstantFPSDNode
>(this)) {
5773 if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEsingle
)
5774 OS
<< '<' << CSDN
->getValueAPF().convertToFloat() << '>';
5775 else if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEdouble
)
5776 OS
<< '<' << CSDN
->getValueAPF().convertToDouble() << '>';
5779 CSDN
->getValueAPF().bitcastToAPInt().dump();
5782 } else if (const GlobalAddressSDNode
*GADN
=
5783 dyn_cast
<GlobalAddressSDNode
>(this)) {
5784 int64_t offset
= GADN
->getOffset();
5786 WriteAsOperand(OS
, GADN
->getGlobal());
5789 OS
<< " + " << offset
;
5791 OS
<< " " << offset
;
5792 if (unsigned int TF
= GADN
->getTargetFlags())
5793 OS
<< " [TF=" << TF
<< ']';
5794 } else if (const FrameIndexSDNode
*FIDN
= dyn_cast
<FrameIndexSDNode
>(this)) {
5795 OS
<< "<" << FIDN
->getIndex() << ">";
5796 } else if (const JumpTableSDNode
*JTDN
= dyn_cast
<JumpTableSDNode
>(this)) {
5797 OS
<< "<" << JTDN
->getIndex() << ">";
5798 if (unsigned int TF
= JTDN
->getTargetFlags())
5799 OS
<< " [TF=" << TF
<< ']';
5800 } else if (const ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(this)){
5801 int offset
= CP
->getOffset();
5802 if (CP
->isMachineConstantPoolEntry())
5803 OS
<< "<" << *CP
->getMachineCPVal() << ">";
5805 OS
<< "<" << *CP
->getConstVal() << ">";
5807 OS
<< " + " << offset
;
5809 OS
<< " " << offset
;
5810 if (unsigned int TF
= CP
->getTargetFlags())
5811 OS
<< " [TF=" << TF
<< ']';
5812 } else if (const BasicBlockSDNode
*BBDN
= dyn_cast
<BasicBlockSDNode
>(this)) {
5814 const Value
*LBB
= (const Value
*)BBDN
->getBasicBlock()->getBasicBlock();
5816 OS
<< LBB
->getName() << " ";
5817 OS
<< (const void*)BBDN
->getBasicBlock() << ">";
5818 } else if (const RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(this)) {
5819 if (G
&& R
->getReg() &&
5820 TargetRegisterInfo::isPhysicalRegister(R
->getReg())) {
5821 OS
<< " %" << G
->getTarget().getRegisterInfo()->getName(R
->getReg());
5823 OS
<< " %reg" << R
->getReg();
5825 } else if (const ExternalSymbolSDNode
*ES
=
5826 dyn_cast
<ExternalSymbolSDNode
>(this)) {
5827 OS
<< "'" << ES
->getSymbol() << "'";
5828 if (unsigned int TF
= ES
->getTargetFlags())
5829 OS
<< " [TF=" << TF
<< ']';
5830 } else if (const SrcValueSDNode
*M
= dyn_cast
<SrcValueSDNode
>(this)) {
5832 OS
<< "<" << M
->getValue() << ">";
5835 } else if (const VTSDNode
*N
= dyn_cast
<VTSDNode
>(this)) {
5836 OS
<< ":" << N
->getVT().getEVTString();
5838 else if (const LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(this)) {
5839 OS
<< "<" << *LD
->getMemOperand();
5842 switch (LD
->getExtensionType()) {
5843 default: doExt
= false; break;
5844 case ISD::EXTLOAD
: OS
<< ", anyext"; break;
5845 case ISD::SEXTLOAD
: OS
<< ", sext"; break;
5846 case ISD::ZEXTLOAD
: OS
<< ", zext"; break;
5849 OS
<< " from " << LD
->getMemoryVT().getEVTString();
5851 const char *AM
= getIndexedModeName(LD
->getAddressingMode());
5856 } else if (const StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(this)) {
5857 OS
<< "<" << *ST
->getMemOperand();
5859 if (ST
->isTruncatingStore())
5860 OS
<< ", trunc to " << ST
->getMemoryVT().getEVTString();
5862 const char *AM
= getIndexedModeName(ST
->getAddressingMode());
5867 } else if (const MemSDNode
* M
= dyn_cast
<MemSDNode
>(this)) {
5868 OS
<< "<" << *M
->getMemOperand() << ">";
5869 } else if (const BlockAddressSDNode
*BA
=
5870 dyn_cast
<BlockAddressSDNode
>(this)) {
5872 WriteAsOperand(OS
, BA
->getBlockAddress()->getFunction(), false);
5874 WriteAsOperand(OS
, BA
->getBlockAddress()->getBasicBlock(), false);
5876 if (unsigned int TF
= BA
->getTargetFlags())
5877 OS
<< " [TF=" << TF
<< ']';
5881 if (unsigned Order
= G
->GetOrdering(this))
5882 OS
<< " [ORD=" << Order
<< ']';
5885 void SDNode::print(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5887 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
5888 if (i
) OS
<< ", "; else OS
<< " ";
5889 OS
<< (void*)getOperand(i
).getNode();
5890 if (unsigned RN
= getOperand(i
).getResNo())
5893 print_details(OS
, G
);
5896 static void printrWithDepthHelper(raw_ostream
&OS
, const SDNode
*N
,
5897 const SelectionDAG
*G
, unsigned depth
,
5910 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
5912 printrWithDepthHelper(OS
, N
->getOperand(i
).getNode(), G
, depth
-1, indent
+2);
5916 void SDNode::printrWithDepth(raw_ostream
&OS
, const SelectionDAG
*G
,
5917 unsigned depth
) const {
5918 printrWithDepthHelper(OS
, this, G
, depth
, 0);
5921 void SDNode::printrFull(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5922 // Don't print impossibly deep things.
5923 printrWithDepth(OS
, G
, 100);
5926 void SDNode::dumprWithDepth(const SelectionDAG
*G
, unsigned depth
) const {
5927 printrWithDepth(dbgs(), G
, depth
);
5930 void SDNode::dumprFull(const SelectionDAG
*G
) const {
5931 // Don't print impossibly deep things.
5932 dumprWithDepth(G
, 100);
5935 static void DumpNodes(const SDNode
*N
, unsigned indent
, const SelectionDAG
*G
) {
5936 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
5937 if (N
->getOperand(i
).getNode()->hasOneUse())
5938 DumpNodes(N
->getOperand(i
).getNode(), indent
+2, G
);
5940 dbgs() << "\n" << std::string(indent
+2, ' ')
5941 << (void*)N
->getOperand(i
).getNode() << ": <multiple use>";
5945 dbgs().indent(indent
);
5949 SDValue
SelectionDAG::UnrollVectorOp(SDNode
*N
, unsigned ResNE
) {
5950 assert(N
->getNumValues() == 1 &&
5951 "Can't unroll a vector with multiple results!");
5953 EVT VT
= N
->getValueType(0);
5954 unsigned NE
= VT
.getVectorNumElements();
5955 EVT EltVT
= VT
.getVectorElementType();
5956 DebugLoc dl
= N
->getDebugLoc();
5958 SmallVector
<SDValue
, 8> Scalars
;
5959 SmallVector
<SDValue
, 4> Operands(N
->getNumOperands());
5961 // If ResNE is 0, fully unroll the vector op.
5964 else if (NE
> ResNE
)
5968 for (i
= 0; i
!= NE
; ++i
) {
5969 for (unsigned j
= 0; j
!= N
->getNumOperands(); ++j
) {
5970 SDValue Operand
= N
->getOperand(j
);
5971 EVT OperandVT
= Operand
.getValueType();
5972 if (OperandVT
.isVector()) {
5973 // A vector operand; extract a single element.
5974 EVT OperandEltVT
= OperandVT
.getVectorElementType();
5975 Operands
[j
] = getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
5978 getConstant(i
, MVT::i32
));
5980 // A scalar operand; just use it as is.
5981 Operands
[j
] = Operand
;
5985 switch (N
->getOpcode()) {
5987 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
,
5988 &Operands
[0], Operands
.size()));
5995 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
, Operands
[0],
5996 getShiftAmountOperand(Operands
[1])));
5998 case ISD::SIGN_EXTEND_INREG
:
5999 case ISD::FP_ROUND_INREG
: {
6000 EVT ExtVT
= cast
<VTSDNode
>(Operands
[1])->getVT().getVectorElementType();
6001 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
,
6003 getValueType(ExtVT
)));
6008 for (; i
< ResNE
; ++i
)
6009 Scalars
.push_back(getUNDEF(EltVT
));
6011 return getNode(ISD::BUILD_VECTOR
, dl
,
6012 EVT::getVectorVT(*getContext(), EltVT
, ResNE
),
6013 &Scalars
[0], Scalars
.size());
6017 /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6018 /// location that is 'Dist' units away from the location that the 'Base' load
6019 /// is loading from.
6020 bool SelectionDAG::isConsecutiveLoad(LoadSDNode
*LD
, LoadSDNode
*Base
,
6021 unsigned Bytes
, int Dist
) const {
6022 if (LD
->getChain() != Base
->getChain())
6024 EVT VT
= LD
->getValueType(0);
6025 if (VT
.getSizeInBits() / 8 != Bytes
)
6028 SDValue Loc
= LD
->getOperand(1);
6029 SDValue BaseLoc
= Base
->getOperand(1);
6030 if (Loc
.getOpcode() == ISD::FrameIndex
) {
6031 if (BaseLoc
.getOpcode() != ISD::FrameIndex
)
6033 const MachineFrameInfo
*MFI
= getMachineFunction().getFrameInfo();
6034 int FI
= cast
<FrameIndexSDNode
>(Loc
)->getIndex();
6035 int BFI
= cast
<FrameIndexSDNode
>(BaseLoc
)->getIndex();
6036 int FS
= MFI
->getObjectSize(FI
);
6037 int BFS
= MFI
->getObjectSize(BFI
);
6038 if (FS
!= BFS
|| FS
!= (int)Bytes
) return false;
6039 return MFI
->getObjectOffset(FI
) == (MFI
->getObjectOffset(BFI
) + Dist
*Bytes
);
6041 if (Loc
.getOpcode() == ISD::ADD
&& Loc
.getOperand(0) == BaseLoc
) {
6042 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(Loc
.getOperand(1));
6043 if (V
&& (V
->getSExtValue() == Dist
*Bytes
))
6047 GlobalValue
*GV1
= NULL
;
6048 GlobalValue
*GV2
= NULL
;
6049 int64_t Offset1
= 0;
6050 int64_t Offset2
= 0;
6051 bool isGA1
= TLI
.isGAPlusOffset(Loc
.getNode(), GV1
, Offset1
);
6052 bool isGA2
= TLI
.isGAPlusOffset(BaseLoc
.getNode(), GV2
, Offset2
);
6053 if (isGA1
&& isGA2
&& GV1
== GV2
)
6054 return Offset1
== (Offset2
+ Dist
*Bytes
);
6059 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6060 /// it cannot be inferred.
6061 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr
) const {
6062 // If this is a GlobalAddress + cst, return the alignment.
6064 int64_t GVOffset
= 0;
6065 if (TLI
.isGAPlusOffset(Ptr
.getNode(), GV
, GVOffset
))
6066 return MinAlign(GV
->getAlignment(), GVOffset
);
6068 // If this is a direct reference to a stack slot, use information about the
6069 // stack slot's alignment.
6070 int FrameIdx
= 1 << 31;
6071 int64_t FrameOffset
= 0;
6072 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
)) {
6073 FrameIdx
= FI
->getIndex();
6074 } else if (Ptr
.getOpcode() == ISD::ADD
&&
6075 isa
<ConstantSDNode
>(Ptr
.getOperand(1)) &&
6076 isa
<FrameIndexSDNode
>(Ptr
.getOperand(0))) {
6077 FrameIdx
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
6078 FrameOffset
= Ptr
.getConstantOperandVal(1);
6081 if (FrameIdx
!= (1 << 31)) {
6082 // FIXME: Handle FI+CST.
6083 const MachineFrameInfo
&MFI
= *getMachineFunction().getFrameInfo();
6084 unsigned FIInfoAlign
= MinAlign(MFI
.getObjectAlignment(FrameIdx
),
6086 if (MFI
.isFixedObjectIndex(FrameIdx
)) {
6087 int64_t ObjectOffset
= MFI
.getObjectOffset(FrameIdx
) + FrameOffset
;
6089 // The alignment of the frame index can be determined from its offset from
6090 // the incoming frame position. If the frame object is at offset 32 and
6091 // the stack is guaranteed to be 16-byte aligned, then we know that the
6092 // object is 16-byte aligned.
6093 unsigned StackAlign
= getTarget().getFrameInfo()->getStackAlignment();
6094 unsigned Align
= MinAlign(ObjectOffset
, StackAlign
);
6096 // Finally, the frame object itself may have a known alignment. Factor
6097 // the alignment + offset into a new alignment. For example, if we know
6098 // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6099 // 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte
6100 // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6101 return std::max(Align
, FIInfoAlign
);
6109 void SelectionDAG::dump() const {
6110 dbgs() << "SelectionDAG has " << AllNodes
.size() << " nodes:";
6112 for (allnodes_const_iterator I
= allnodes_begin(), E
= allnodes_end();
6114 const SDNode
*N
= I
;
6115 if (!N
->hasOneUse() && N
!= getRoot().getNode())
6116 DumpNodes(N
, 2, this);
6119 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6124 void SDNode::printr(raw_ostream
&OS
, const SelectionDAG
*G
) const {
6126 print_details(OS
, G
);
6129 typedef SmallPtrSet
<const SDNode
*, 128> VisitedSDNodeSet
;
6130 static void DumpNodesr(raw_ostream
&OS
, const SDNode
*N
, unsigned indent
,
6131 const SelectionDAG
*G
, VisitedSDNodeSet
&once
) {
6132 if (!once
.insert(N
)) // If we've been here before, return now.
6135 // Dump the current SDNode, but don't end the line yet.
6136 OS
<< std::string(indent
, ' ');
6139 // Having printed this SDNode, walk the children:
6140 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
6141 const SDNode
*child
= N
->getOperand(i
).getNode();
6146 if (child
->getNumOperands() == 0) {
6147 // This child has no grandchildren; print it inline right here.
6148 child
->printr(OS
, G
);
6150 } else { // Just the address. FIXME: also print the child's opcode.
6152 if (unsigned RN
= N
->getOperand(i
).getResNo())
6159 // Dump children that have grandchildren on their own line(s).
6160 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
6161 const SDNode
*child
= N
->getOperand(i
).getNode();
6162 DumpNodesr(OS
, child
, indent
+2, G
, once
);
6166 void SDNode::dumpr() const {
6167 VisitedSDNodeSet once
;
6168 DumpNodesr(dbgs(), this, 0, 0, once
);
6171 void SDNode::dumpr(const SelectionDAG
*G
) const {
6172 VisitedSDNodeSet once
;
6173 DumpNodesr(dbgs(), this, 0, G
, once
);
6177 // getAddressSpace - Return the address space this GlobalAddress belongs to.
6178 unsigned GlobalAddressSDNode::getAddressSpace() const {
6179 return getGlobal()->getType()->getAddressSpace();
6183 const Type
*ConstantPoolSDNode::getType() const {
6184 if (isMachineConstantPoolEntry())
6185 return Val
.MachineCPVal
->getType();
6186 return Val
.ConstVal
->getType();
6189 bool BuildVectorSDNode::isConstantSplat(APInt
&SplatValue
,
6191 unsigned &SplatBitSize
,
6193 unsigned MinSplatBits
,
6195 EVT VT
= getValueType(0);
6196 assert(VT
.isVector() && "Expected a vector type");
6197 unsigned sz
= VT
.getSizeInBits();
6198 if (MinSplatBits
> sz
)
6201 SplatValue
= APInt(sz
, 0);
6202 SplatUndef
= APInt(sz
, 0);
6204 // Get the bits. Bits with undefined values (when the corresponding element
6205 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6206 // in SplatValue. If any of the values are not constant, give up and return
6208 unsigned int nOps
= getNumOperands();
6209 assert(nOps
> 0 && "isConstantSplat has 0-size build vector");
6210 unsigned EltBitSize
= VT
.getVectorElementType().getSizeInBits();
6212 for (unsigned j
= 0; j
< nOps
; ++j
) {
6213 unsigned i
= isBigEndian
? nOps
-1-j
: j
;
6214 SDValue OpVal
= getOperand(i
);
6215 unsigned BitPos
= j
* EltBitSize
;
6217 if (OpVal
.getOpcode() == ISD::UNDEF
)
6218 SplatUndef
|= APInt::getBitsSet(sz
, BitPos
, BitPos
+ EltBitSize
);
6219 else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
))
6220 SplatValue
|= (APInt(CN
->getAPIntValue()).zextOrTrunc(EltBitSize
).
6221 zextOrTrunc(sz
) << BitPos
);
6222 else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
))
6223 SplatValue
|= CN
->getValueAPF().bitcastToAPInt().zextOrTrunc(sz
) <<BitPos
;
6228 // The build_vector is all constants or undefs. Find the smallest element
6229 // size that splats the vector.
6231 HasAnyUndefs
= (SplatUndef
!= 0);
6234 unsigned HalfSize
= sz
/ 2;
6235 APInt HighValue
= APInt(SplatValue
).lshr(HalfSize
).trunc(HalfSize
);
6236 APInt LowValue
= APInt(SplatValue
).trunc(HalfSize
);
6237 APInt HighUndef
= APInt(SplatUndef
).lshr(HalfSize
).trunc(HalfSize
);
6238 APInt LowUndef
= APInt(SplatUndef
).trunc(HalfSize
);
6240 // If the two halves do not match (ignoring undef bits), stop here.
6241 if ((HighValue
& ~LowUndef
) != (LowValue
& ~HighUndef
) ||
6242 MinSplatBits
> HalfSize
)
6245 SplatValue
= HighValue
| LowValue
;
6246 SplatUndef
= HighUndef
& LowUndef
;
6255 bool ShuffleVectorSDNode::isSplatMask(const int *Mask
, EVT VT
) {
6256 // Find the first non-undef value in the shuffle mask.
6258 for (i
= 0, e
= VT
.getVectorNumElements(); i
!= e
&& Mask
[i
] < 0; ++i
)
6261 assert(i
!= e
&& "VECTOR_SHUFFLE node with all undef indices!");
6263 // Make sure all remaining elements are either undef or the same as the first
6265 for (int Idx
= Mask
[i
]; i
!= e
; ++i
)
6266 if (Mask
[i
] >= 0 && Mask
[i
] != Idx
)