Add some new debugging APIs to print out "raw" SelectionDAGs to make
[llvm-core.git] / lib / CodeGen / SelectionDAG / SelectionDAG.cpp
blob49b08bba7906bc21758915a8b1f6423349fea18a
1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeOrdering.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/Function.h"
19 #include "llvm/GlobalAlias.h"
20 #include "llvm/GlobalVariable.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/Assembly/Writer.h"
24 #include "llvm/CallingConv.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/Target/TargetRegisterInfo.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/Target/TargetFrameInfo.h"
33 #include "llvm/Target/TargetLowering.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetIntrinsicInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/ManagedStatic.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/System/Mutex.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallSet.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/StringExtras.h"
50 #include <algorithm>
51 #include <cmath>
52 using namespace llvm;
54 /// makeVTList - Return an instance of the SDVTList struct initialized with the
55 /// specified members.
56 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
57 SDVTList Res = {VTs, NumVTs};
58 return Res;
61 static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
62 switch (VT.getSimpleVT().SimpleTy) {
63 default: llvm_unreachable("Unknown FP format");
64 case MVT::f32: return &APFloat::IEEEsingle;
65 case MVT::f64: return &APFloat::IEEEdouble;
66 case MVT::f80: return &APFloat::x87DoubleExtended;
67 case MVT::f128: return &APFloat::IEEEquad;
68 case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
72 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74 //===----------------------------------------------------------------------===//
75 // ConstantFPSDNode Class
76 //===----------------------------------------------------------------------===//
78 /// isExactlyValue - We don't rely on operator== working on double values, as
79 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
80 /// As such, this method can be used to do an exact bit-for-bit comparison of
81 /// two floating point values.
82 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
83 return getValueAPF().bitwiseIsEqual(V);
86 bool ConstantFPSDNode::isValueValidForType(EVT VT,
87 const APFloat& Val) {
88 assert(VT.isFloatingPoint() && "Can only convert between FP types");
90 // PPC long double cannot be converted to any other type.
91 if (VT == MVT::ppcf128 ||
92 &Val.getSemantics() == &APFloat::PPCDoubleDouble)
93 return false;
95 // convert modifies in place, so make a copy.
96 APFloat Val2 = APFloat(Val);
97 bool losesInfo;
98 (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
99 &losesInfo);
100 return !losesInfo;
103 //===----------------------------------------------------------------------===//
104 // ISD Namespace
105 //===----------------------------------------------------------------------===//
107 /// isBuildVectorAllOnes - Return true if the specified node is a
108 /// BUILD_VECTOR where all of the elements are ~0 or undef.
109 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
110 // Look through a bit convert.
111 if (N->getOpcode() == ISD::BIT_CONVERT)
112 N = N->getOperand(0).getNode();
114 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116 unsigned i = 0, e = N->getNumOperands();
118 // Skip over all of the undef values.
119 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120 ++i;
122 // Do not accept an all-undef vector.
123 if (i == e) return false;
125 // Do not accept build_vectors that aren't all constants or which have non-~0
126 // elements.
127 SDValue NotZero = N->getOperand(i);
128 if (isa<ConstantSDNode>(NotZero)) {
129 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
130 return false;
131 } else if (isa<ConstantFPSDNode>(NotZero)) {
132 if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
133 bitcastToAPInt().isAllOnesValue())
134 return false;
135 } else
136 return false;
138 // Okay, we have at least one ~0 value, check to see if the rest match or are
139 // undefs.
140 for (++i; i != e; ++i)
141 if (N->getOperand(i) != NotZero &&
142 N->getOperand(i).getOpcode() != ISD::UNDEF)
143 return false;
144 return true;
148 /// isBuildVectorAllZeros - Return true if the specified node is a
149 /// BUILD_VECTOR where all of the elements are 0 or undef.
150 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
151 // Look through a bit convert.
152 if (N->getOpcode() == ISD::BIT_CONVERT)
153 N = N->getOperand(0).getNode();
155 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157 unsigned i = 0, e = N->getNumOperands();
159 // Skip over all of the undef values.
160 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
161 ++i;
163 // Do not accept an all-undef vector.
164 if (i == e) return false;
166 // Do not accept build_vectors that aren't all constants or which have non-0
167 // elements.
168 SDValue Zero = N->getOperand(i);
169 if (isa<ConstantSDNode>(Zero)) {
170 if (!cast<ConstantSDNode>(Zero)->isNullValue())
171 return false;
172 } else if (isa<ConstantFPSDNode>(Zero)) {
173 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
174 return false;
175 } else
176 return false;
178 // Okay, we have at least one 0 value, check to see if the rest match or are
179 // undefs.
180 for (++i; i != e; ++i)
181 if (N->getOperand(i) != Zero &&
182 N->getOperand(i).getOpcode() != ISD::UNDEF)
183 return false;
184 return true;
187 /// isScalarToVector - Return true if the specified node is a
188 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
189 /// element is not an undef.
190 bool ISD::isScalarToVector(const SDNode *N) {
191 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
192 return true;
194 if (N->getOpcode() != ISD::BUILD_VECTOR)
195 return false;
196 if (N->getOperand(0).getOpcode() == ISD::UNDEF)
197 return false;
198 unsigned NumElems = N->getNumOperands();
199 for (unsigned i = 1; i < NumElems; ++i) {
200 SDValue V = N->getOperand(i);
201 if (V.getOpcode() != ISD::UNDEF)
202 return false;
204 return true;
207 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208 /// when given the operation for (X op Y).
209 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210 // To perform this operation, we just need to swap the L and G bits of the
211 // operation.
212 unsigned OldL = (Operation >> 2) & 1;
213 unsigned OldG = (Operation >> 1) & 1;
214 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
215 (OldL << 1) | // New G bit
216 (OldG << 2)); // New L bit.
219 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220 /// 'op' is a valid SetCC operation.
221 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222 unsigned Operation = Op;
223 if (isInteger)
224 Operation ^= 7; // Flip L, G, E bits, but not U.
225 else
226 Operation ^= 15; // Flip all of the condition bits.
228 if (Operation > ISD::SETTRUE2)
229 Operation &= ~8; // Don't let N and U bits get set.
231 return ISD::CondCode(Operation);
235 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
236 /// signed operation and 2 if the result is an unsigned comparison. Return zero
237 /// if the operation does not depend on the sign of the input (setne and seteq).
238 static int isSignedOp(ISD::CondCode Opcode) {
239 switch (Opcode) {
240 default: llvm_unreachable("Illegal integer setcc operation!");
241 case ISD::SETEQ:
242 case ISD::SETNE: return 0;
243 case ISD::SETLT:
244 case ISD::SETLE:
245 case ISD::SETGT:
246 case ISD::SETGE: return 1;
247 case ISD::SETULT:
248 case ISD::SETULE:
249 case ISD::SETUGT:
250 case ISD::SETUGE: return 2;
254 /// getSetCCOrOperation - Return the result of a logical OR between different
255 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
256 /// returns SETCC_INVALID if it is not possible to represent the resultant
257 /// comparison.
258 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259 bool isInteger) {
260 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261 // Cannot fold a signed integer setcc with an unsigned integer setcc.
262 return ISD::SETCC_INVALID;
264 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
266 // If the N and U bits get set then the resultant comparison DOES suddenly
267 // care about orderedness, and is true when ordered.
268 if (Op > ISD::SETTRUE2)
269 Op &= ~16; // Clear the U bit if the N bit is set.
271 // Canonicalize illegal integer setcc's.
272 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
273 Op = ISD::SETNE;
275 return ISD::CondCode(Op);
278 /// getSetCCAndOperation - Return the result of a logical AND between different
279 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
280 /// function returns zero if it is not possible to represent the resultant
281 /// comparison.
282 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283 bool isInteger) {
284 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285 // Cannot fold a signed setcc with an unsigned setcc.
286 return ISD::SETCC_INVALID;
288 // Combine all of the condition bits.
289 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291 // Canonicalize illegal integer setcc's.
292 if (isInteger) {
293 switch (Result) {
294 default: break;
295 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
296 case ISD::SETOEQ: // SETEQ & SETU[LG]E
297 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
298 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
299 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
303 return Result;
306 const TargetMachine &SelectionDAG::getTarget() const {
307 return MF->getTarget();
310 //===----------------------------------------------------------------------===//
311 // SDNode Profile Support
312 //===----------------------------------------------------------------------===//
314 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
317 ID.AddInteger(OpC);
320 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321 /// solely with their pointer.
322 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323 ID.AddPointer(VTList.VTs);
326 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328 static void AddNodeIDOperands(FoldingSetNodeID &ID,
329 const SDValue *Ops, unsigned NumOps) {
330 for (; NumOps; --NumOps, ++Ops) {
331 ID.AddPointer(Ops->getNode());
332 ID.AddInteger(Ops->getResNo());
336 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338 static void AddNodeIDOperands(FoldingSetNodeID &ID,
339 const SDUse *Ops, unsigned NumOps) {
340 for (; NumOps; --NumOps, ++Ops) {
341 ID.AddPointer(Ops->getNode());
342 ID.AddInteger(Ops->getResNo());
346 static void AddNodeIDNode(FoldingSetNodeID &ID,
347 unsigned short OpC, SDVTList VTList,
348 const SDValue *OpList, unsigned N) {
349 AddNodeIDOpcode(ID, OpC);
350 AddNodeIDValueTypes(ID, VTList);
351 AddNodeIDOperands(ID, OpList, N);
354 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355 /// the NodeID data.
356 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357 switch (N->getOpcode()) {
358 case ISD::TargetExternalSymbol:
359 case ISD::ExternalSymbol:
360 llvm_unreachable("Should only be used on nodes with operands");
361 default: break; // Normal nodes don't need extra info.
362 case ISD::TargetConstant:
363 case ISD::Constant:
364 ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365 break;
366 case ISD::TargetConstantFP:
367 case ISD::ConstantFP: {
368 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369 break;
371 case ISD::TargetGlobalAddress:
372 case ISD::GlobalAddress:
373 case ISD::TargetGlobalTLSAddress:
374 case ISD::GlobalTLSAddress: {
375 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376 ID.AddPointer(GA->getGlobal());
377 ID.AddInteger(GA->getOffset());
378 ID.AddInteger(GA->getTargetFlags());
379 break;
381 case ISD::BasicBlock:
382 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383 break;
384 case ISD::Register:
385 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386 break;
388 case ISD::SRCVALUE:
389 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390 break;
391 case ISD::FrameIndex:
392 case ISD::TargetFrameIndex:
393 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394 break;
395 case ISD::JumpTable:
396 case ISD::TargetJumpTable:
397 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399 break;
400 case ISD::ConstantPool:
401 case ISD::TargetConstantPool: {
402 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403 ID.AddInteger(CP->getAlignment());
404 ID.AddInteger(CP->getOffset());
405 if (CP->isMachineConstantPoolEntry())
406 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407 else
408 ID.AddPointer(CP->getConstVal());
409 ID.AddInteger(CP->getTargetFlags());
410 break;
412 case ISD::LOAD: {
413 const LoadSDNode *LD = cast<LoadSDNode>(N);
414 ID.AddInteger(LD->getMemoryVT().getRawBits());
415 ID.AddInteger(LD->getRawSubclassData());
416 break;
418 case ISD::STORE: {
419 const StoreSDNode *ST = cast<StoreSDNode>(N);
420 ID.AddInteger(ST->getMemoryVT().getRawBits());
421 ID.AddInteger(ST->getRawSubclassData());
422 break;
424 case ISD::ATOMIC_CMP_SWAP:
425 case ISD::ATOMIC_SWAP:
426 case ISD::ATOMIC_LOAD_ADD:
427 case ISD::ATOMIC_LOAD_SUB:
428 case ISD::ATOMIC_LOAD_AND:
429 case ISD::ATOMIC_LOAD_OR:
430 case ISD::ATOMIC_LOAD_XOR:
431 case ISD::ATOMIC_LOAD_NAND:
432 case ISD::ATOMIC_LOAD_MIN:
433 case ISD::ATOMIC_LOAD_MAX:
434 case ISD::ATOMIC_LOAD_UMIN:
435 case ISD::ATOMIC_LOAD_UMAX: {
436 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437 ID.AddInteger(AT->getMemoryVT().getRawBits());
438 ID.AddInteger(AT->getRawSubclassData());
439 break;
441 case ISD::VECTOR_SHUFFLE: {
442 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444 i != e; ++i)
445 ID.AddInteger(SVN->getMaskElt(i));
446 break;
448 case ISD::TargetBlockAddress:
449 case ISD::BlockAddress: {
450 ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451 ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452 break;
454 } // end switch (N->getOpcode())
457 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458 /// data.
459 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460 AddNodeIDOpcode(ID, N->getOpcode());
461 // Add the return value info.
462 AddNodeIDValueTypes(ID, N->getVTList());
463 // Add the operand info.
464 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466 // Handle SDNode leafs with special info.
467 AddNodeIDCustom(ID, N);
470 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471 /// the CSE map that carries volatility, indexing mode, and
472 /// extension/truncation information.
474 static inline unsigned
475 encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
476 assert((ConvType & 3) == ConvType &&
477 "ConvType may not require more than 2 bits!");
478 assert((AM & 7) == AM &&
479 "AM may not require more than 3 bits!");
480 return ConvType |
481 (AM << 2) |
482 (isVolatile << 5);
485 //===----------------------------------------------------------------------===//
486 // SelectionDAG Class
487 //===----------------------------------------------------------------------===//
489 /// doNotCSE - Return true if CSE should not be performed for this node.
490 static bool doNotCSE(SDNode *N) {
491 if (N->getValueType(0) == MVT::Flag)
492 return true; // Never CSE anything that produces a flag.
494 switch (N->getOpcode()) {
495 default: break;
496 case ISD::HANDLENODE:
497 case ISD::EH_LABEL:
498 return true; // Never CSE these nodes.
501 // Check that remaining values produced are not flags.
502 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
503 if (N->getValueType(i) == MVT::Flag)
504 return true; // Never CSE anything that produces a flag.
506 return false;
509 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
510 /// SelectionDAG.
511 void SelectionDAG::RemoveDeadNodes() {
512 // Create a dummy node (which is not added to allnodes), that adds a reference
513 // to the root node, preventing it from being deleted.
514 HandleSDNode Dummy(getRoot());
516 SmallVector<SDNode*, 128> DeadNodes;
518 // Add all obviously-dead nodes to the DeadNodes worklist.
519 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
520 if (I->use_empty())
521 DeadNodes.push_back(I);
523 RemoveDeadNodes(DeadNodes);
525 // If the root changed (e.g. it was a dead load, update the root).
526 setRoot(Dummy.getValue());
529 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
530 /// given list, and any nodes that become unreachable as a result.
531 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
532 DAGUpdateListener *UpdateListener) {
534 // Process the worklist, deleting the nodes and adding their uses to the
535 // worklist.
536 while (!DeadNodes.empty()) {
537 SDNode *N = DeadNodes.pop_back_val();
539 if (UpdateListener)
540 UpdateListener->NodeDeleted(N, 0);
542 // Take the node out of the appropriate CSE map.
543 RemoveNodeFromCSEMaps(N);
545 // Next, brutally remove the operand list. This is safe to do, as there are
546 // no cycles in the graph.
547 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
548 SDUse &Use = *I++;
549 SDNode *Operand = Use.getNode();
550 Use.set(SDValue());
552 // Now that we removed this operand, see if there are no uses of it left.
553 if (Operand->use_empty())
554 DeadNodes.push_back(Operand);
557 DeallocateNode(N);
561 void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
562 SmallVector<SDNode*, 16> DeadNodes(1, N);
563 RemoveDeadNodes(DeadNodes, UpdateListener);
566 void SelectionDAG::DeleteNode(SDNode *N) {
567 // First take this out of the appropriate CSE map.
568 RemoveNodeFromCSEMaps(N);
570 // Finally, remove uses due to operands of this node, remove from the
571 // AllNodes list, and delete the node.
572 DeleteNodeNotInCSEMaps(N);
575 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
576 assert(N != AllNodes.begin() && "Cannot delete the entry node!");
577 assert(N->use_empty() && "Cannot delete a node that is not dead!");
579 // Drop all of the operands and decrement used node's use counts.
580 N->DropOperands();
582 DeallocateNode(N);
585 void SelectionDAG::DeallocateNode(SDNode *N) {
586 if (N->OperandsNeedDelete)
587 delete[] N->OperandList;
589 // Set the opcode to DELETED_NODE to help catch bugs when node
590 // memory is reallocated.
591 N->NodeType = ISD::DELETED_NODE;
593 NodeAllocator.Deallocate(AllNodes.remove(N));
595 // Remove the ordering of this node.
596 if (Ordering) Ordering->remove(N);
599 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
600 /// correspond to it. This is useful when we're about to delete or repurpose
601 /// the node. We don't want future request for structurally identical nodes
602 /// to return N anymore.
603 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
604 bool Erased = false;
605 switch (N->getOpcode()) {
606 case ISD::EntryToken:
607 llvm_unreachable("EntryToken should not be in CSEMaps!");
608 return false;
609 case ISD::HANDLENODE: return false; // noop.
610 case ISD::CONDCODE:
611 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
612 "Cond code doesn't exist!");
613 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
614 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
615 break;
616 case ISD::ExternalSymbol:
617 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
618 break;
619 case ISD::TargetExternalSymbol: {
620 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
621 Erased = TargetExternalSymbols.erase(
622 std::pair<std::string,unsigned char>(ESN->getSymbol(),
623 ESN->getTargetFlags()));
624 break;
626 case ISD::VALUETYPE: {
627 EVT VT = cast<VTSDNode>(N)->getVT();
628 if (VT.isExtended()) {
629 Erased = ExtendedValueTypeNodes.erase(VT);
630 } else {
631 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
632 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
634 break;
636 default:
637 // Remove it from the CSE Map.
638 Erased = CSEMap.RemoveNode(N);
639 break;
641 #ifndef NDEBUG
642 // Verify that the node was actually in one of the CSE maps, unless it has a
643 // flag result (which cannot be CSE'd) or is one of the special cases that are
644 // not subject to CSE.
645 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
646 !N->isMachineOpcode() && !doNotCSE(N)) {
647 N->dump(this);
648 dbgs() << "\n";
649 llvm_unreachable("Node is not in map!");
651 #endif
652 return Erased;
655 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
656 /// maps and modified in place. Add it back to the CSE maps, unless an identical
657 /// node already exists, in which case transfer all its users to the existing
658 /// node. This transfer can potentially trigger recursive merging.
660 void
661 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
662 DAGUpdateListener *UpdateListener) {
663 // For node types that aren't CSE'd, just act as if no identical node
664 // already exists.
665 if (!doNotCSE(N)) {
666 SDNode *Existing = CSEMap.GetOrInsertNode(N);
667 if (Existing != N) {
668 // If there was already an existing matching node, use ReplaceAllUsesWith
669 // to replace the dead one with the existing one. This can cause
670 // recursive merging of other unrelated nodes down the line.
671 ReplaceAllUsesWith(N, Existing, UpdateListener);
673 // N is now dead. Inform the listener if it exists and delete it.
674 if (UpdateListener)
675 UpdateListener->NodeDeleted(N, Existing);
676 DeleteNodeNotInCSEMaps(N);
677 return;
681 // If the node doesn't already exist, we updated it. Inform a listener if
682 // it exists.
683 if (UpdateListener)
684 UpdateListener->NodeUpdated(N);
687 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
688 /// were replaced with those specified. If this node is never memoized,
689 /// return null, otherwise return a pointer to the slot it would take. If a
690 /// node already exists with these operands, the slot will be non-null.
691 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
692 void *&InsertPos) {
693 if (doNotCSE(N))
694 return 0;
696 SDValue Ops[] = { Op };
697 FoldingSetNodeID ID;
698 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
699 AddNodeIDCustom(ID, N);
700 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
701 return Node;
704 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
705 /// were replaced with those specified. If this node is never memoized,
706 /// return null, otherwise return a pointer to the slot it would take. If a
707 /// node already exists with these operands, the slot will be non-null.
708 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
709 SDValue Op1, SDValue Op2,
710 void *&InsertPos) {
711 if (doNotCSE(N))
712 return 0;
714 SDValue Ops[] = { Op1, Op2 };
715 FoldingSetNodeID ID;
716 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
717 AddNodeIDCustom(ID, N);
718 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
719 return Node;
723 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
724 /// were replaced with those specified. If this node is never memoized,
725 /// return null, otherwise return a pointer to the slot it would take. If a
726 /// node already exists with these operands, the slot will be non-null.
727 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
728 const SDValue *Ops,unsigned NumOps,
729 void *&InsertPos) {
730 if (doNotCSE(N))
731 return 0;
733 FoldingSetNodeID ID;
734 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
735 AddNodeIDCustom(ID, N);
736 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
737 return Node;
740 /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
741 void SelectionDAG::VerifyNode(SDNode *N) {
742 switch (N->getOpcode()) {
743 default:
744 break;
745 case ISD::BUILD_PAIR: {
746 EVT VT = N->getValueType(0);
747 assert(N->getNumValues() == 1 && "Too many results!");
748 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
749 "Wrong return type!");
750 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
751 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
752 "Mismatched operand types!");
753 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
754 "Wrong operand type!");
755 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
756 "Wrong return type size");
757 break;
759 case ISD::BUILD_VECTOR: {
760 assert(N->getNumValues() == 1 && "Too many results!");
761 assert(N->getValueType(0).isVector() && "Wrong return type!");
762 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
763 "Wrong number of operands!");
764 EVT EltVT = N->getValueType(0).getVectorElementType();
765 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
766 assert((I->getValueType() == EltVT ||
767 (EltVT.isInteger() && I->getValueType().isInteger() &&
768 EltVT.bitsLE(I->getValueType()))) &&
769 "Wrong operand type!");
770 break;
775 /// getEVTAlignment - Compute the default alignment value for the
776 /// given type.
778 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
779 const Type *Ty = VT == MVT::iPTR ?
780 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
781 VT.getTypeForEVT(*getContext());
783 return TLI.getTargetData()->getABITypeAlignment(Ty);
786 // EntryNode could meaningfully have debug info if we can find it...
787 SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
788 : TLI(tli), FLI(fli), DW(0),
789 EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
790 getVTList(MVT::Other)),
791 Root(getEntryNode()), Ordering(0) {
792 AllNodes.push_back(&EntryNode);
793 if (DisableScheduling)
794 Ordering = new SDNodeOrdering();
797 void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
798 DwarfWriter *dw) {
799 MF = &mf;
800 MMI = mmi;
801 DW = dw;
802 Context = &mf.getFunction()->getContext();
805 SelectionDAG::~SelectionDAG() {
806 allnodes_clear();
807 delete Ordering;
810 void SelectionDAG::allnodes_clear() {
811 assert(&*AllNodes.begin() == &EntryNode);
812 AllNodes.remove(AllNodes.begin());
813 while (!AllNodes.empty())
814 DeallocateNode(AllNodes.begin());
817 void SelectionDAG::clear() {
818 allnodes_clear();
819 OperandAllocator.Reset();
820 CSEMap.clear();
822 ExtendedValueTypeNodes.clear();
823 ExternalSymbols.clear();
824 TargetExternalSymbols.clear();
825 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
826 static_cast<CondCodeSDNode*>(0));
827 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
828 static_cast<SDNode*>(0));
830 EntryNode.UseList = 0;
831 AllNodes.push_back(&EntryNode);
832 Root = getEntryNode();
833 if (DisableScheduling)
834 Ordering = new SDNodeOrdering();
837 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
838 return VT.bitsGT(Op.getValueType()) ?
839 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
840 getNode(ISD::TRUNCATE, DL, VT, Op);
843 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
844 return VT.bitsGT(Op.getValueType()) ?
845 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
846 getNode(ISD::TRUNCATE, DL, VT, Op);
849 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
850 assert(!VT.isVector() &&
851 "getZeroExtendInReg should use the vector element type instead of "
852 "the vector type!");
853 if (Op.getValueType() == VT) return Op;
854 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
855 APInt Imm = APInt::getLowBitsSet(BitWidth,
856 VT.getSizeInBits());
857 return getNode(ISD::AND, DL, Op.getValueType(), Op,
858 getConstant(Imm, Op.getValueType()));
861 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
863 SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
864 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
865 SDValue NegOne =
866 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
867 return getNode(ISD::XOR, DL, VT, Val, NegOne);
870 SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
871 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
872 assert((EltVT.getSizeInBits() >= 64 ||
873 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
874 "getConstant with a uint64_t value that doesn't fit in the type!");
875 return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
878 SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
879 return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
882 SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
883 assert(VT.isInteger() && "Cannot create FP integer constant!");
885 EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
886 assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
887 "APInt size does not match type size!");
889 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
890 FoldingSetNodeID ID;
891 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
892 ID.AddPointer(&Val);
893 void *IP = 0;
894 SDNode *N = NULL;
895 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
896 if (!VT.isVector())
897 return SDValue(N, 0);
899 if (!N) {
900 N = NodeAllocator.Allocate<ConstantSDNode>();
901 new (N) ConstantSDNode(isT, &Val, EltVT);
902 CSEMap.InsertNode(N, IP);
903 AllNodes.push_back(N);
906 SDValue Result(N, 0);
907 if (VT.isVector()) {
908 SmallVector<SDValue, 8> Ops;
909 Ops.assign(VT.getVectorNumElements(), Result);
910 Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
911 VT, &Ops[0], Ops.size());
913 return Result;
916 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
917 return getConstant(Val, TLI.getPointerTy(), isTarget);
921 SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
922 return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
925 SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
926 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
928 EVT EltVT =
929 VT.isVector() ? VT.getVectorElementType() : VT;
931 // Do the map lookup using the actual bit pattern for the floating point
932 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
933 // we don't have issues with SNANs.
934 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
935 FoldingSetNodeID ID;
936 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
937 ID.AddPointer(&V);
938 void *IP = 0;
939 SDNode *N = NULL;
940 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
941 if (!VT.isVector())
942 return SDValue(N, 0);
944 if (!N) {
945 N = NodeAllocator.Allocate<ConstantFPSDNode>();
946 new (N) ConstantFPSDNode(isTarget, &V, EltVT);
947 CSEMap.InsertNode(N, IP);
948 AllNodes.push_back(N);
951 SDValue Result(N, 0);
952 if (VT.isVector()) {
953 SmallVector<SDValue, 8> Ops;
954 Ops.assign(VT.getVectorNumElements(), Result);
955 // FIXME DebugLoc info might be appropriate here
956 Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
957 VT, &Ops[0], Ops.size());
959 return Result;
962 SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
963 EVT EltVT =
964 VT.isVector() ? VT.getVectorElementType() : VT;
965 if (EltVT==MVT::f32)
966 return getConstantFP(APFloat((float)Val), VT, isTarget);
967 else
968 return getConstantFP(APFloat(Val), VT, isTarget);
971 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
972 EVT VT, int64_t Offset,
973 bool isTargetGA,
974 unsigned char TargetFlags) {
975 assert((TargetFlags == 0 || isTargetGA) &&
976 "Cannot set target flags on target-independent globals");
978 // Truncate (with sign-extension) the offset value to the pointer size.
979 EVT PTy = TLI.getPointerTy();
980 unsigned BitWidth = PTy.getSizeInBits();
981 if (BitWidth < 64)
982 Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
984 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
985 if (!GVar) {
986 // If GV is an alias then use the aliasee for determining thread-localness.
987 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
988 GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
991 unsigned Opc;
992 if (GVar && GVar->isThreadLocal())
993 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
994 else
995 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
997 FoldingSetNodeID ID;
998 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
999 ID.AddPointer(GV);
1000 ID.AddInteger(Offset);
1001 ID.AddInteger(TargetFlags);
1002 void *IP = 0;
1003 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1004 return SDValue(E, 0);
1006 SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1007 new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1008 CSEMap.InsertNode(N, IP);
1009 AllNodes.push_back(N);
1010 return SDValue(N, 0);
1013 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1014 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1015 FoldingSetNodeID ID;
1016 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1017 ID.AddInteger(FI);
1018 void *IP = 0;
1019 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1020 return SDValue(E, 0);
1022 SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1023 new (N) FrameIndexSDNode(FI, VT, isTarget);
1024 CSEMap.InsertNode(N, IP);
1025 AllNodes.push_back(N);
1026 return SDValue(N, 0);
1029 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1030 unsigned char TargetFlags) {
1031 assert((TargetFlags == 0 || isTarget) &&
1032 "Cannot set target flags on target-independent jump tables");
1033 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1034 FoldingSetNodeID ID;
1035 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1036 ID.AddInteger(JTI);
1037 ID.AddInteger(TargetFlags);
1038 void *IP = 0;
1039 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1040 return SDValue(E, 0);
1042 SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1043 new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1044 CSEMap.InsertNode(N, IP);
1045 AllNodes.push_back(N);
1046 return SDValue(N, 0);
1049 SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1050 unsigned Alignment, int Offset,
1051 bool isTarget,
1052 unsigned char TargetFlags) {
1053 assert((TargetFlags == 0 || isTarget) &&
1054 "Cannot set target flags on target-independent globals");
1055 if (Alignment == 0)
1056 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1057 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1058 FoldingSetNodeID ID;
1059 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1060 ID.AddInteger(Alignment);
1061 ID.AddInteger(Offset);
1062 ID.AddPointer(C);
1063 ID.AddInteger(TargetFlags);
1064 void *IP = 0;
1065 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1066 return SDValue(E, 0);
1068 SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1069 new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1070 CSEMap.InsertNode(N, IP);
1071 AllNodes.push_back(N);
1072 return SDValue(N, 0);
1076 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1077 unsigned Alignment, int Offset,
1078 bool isTarget,
1079 unsigned char TargetFlags) {
1080 assert((TargetFlags == 0 || isTarget) &&
1081 "Cannot set target flags on target-independent globals");
1082 if (Alignment == 0)
1083 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1084 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1085 FoldingSetNodeID ID;
1086 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1087 ID.AddInteger(Alignment);
1088 ID.AddInteger(Offset);
1089 C->AddSelectionDAGCSEId(ID);
1090 ID.AddInteger(TargetFlags);
1091 void *IP = 0;
1092 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1093 return SDValue(E, 0);
1095 SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1096 new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1097 CSEMap.InsertNode(N, IP);
1098 AllNodes.push_back(N);
1099 return SDValue(N, 0);
1102 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1103 FoldingSetNodeID ID;
1104 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1105 ID.AddPointer(MBB);
1106 void *IP = 0;
1107 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1108 return SDValue(E, 0);
1110 SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1111 new (N) BasicBlockSDNode(MBB);
1112 CSEMap.InsertNode(N, IP);
1113 AllNodes.push_back(N);
1114 return SDValue(N, 0);
1117 SDValue SelectionDAG::getValueType(EVT VT) {
1118 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1119 ValueTypeNodes.size())
1120 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1122 SDNode *&N = VT.isExtended() ?
1123 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1125 if (N) return SDValue(N, 0);
1126 N = NodeAllocator.Allocate<VTSDNode>();
1127 new (N) VTSDNode(VT);
1128 AllNodes.push_back(N);
1129 return SDValue(N, 0);
1132 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1133 SDNode *&N = ExternalSymbols[Sym];
1134 if (N) return SDValue(N, 0);
1135 N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1136 new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1137 AllNodes.push_back(N);
1138 return SDValue(N, 0);
1141 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1142 unsigned char TargetFlags) {
1143 SDNode *&N =
1144 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1145 TargetFlags)];
1146 if (N) return SDValue(N, 0);
1147 N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1148 new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1149 AllNodes.push_back(N);
1150 return SDValue(N, 0);
1153 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1154 if ((unsigned)Cond >= CondCodeNodes.size())
1155 CondCodeNodes.resize(Cond+1);
1157 if (CondCodeNodes[Cond] == 0) {
1158 CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1159 new (N) CondCodeSDNode(Cond);
1160 CondCodeNodes[Cond] = N;
1161 AllNodes.push_back(N);
1164 return SDValue(CondCodeNodes[Cond], 0);
1167 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1168 // the shuffle mask M that point at N1 to point at N2, and indices that point
1169 // N2 to point at N1.
1170 static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1171 std::swap(N1, N2);
1172 int NElts = M.size();
1173 for (int i = 0; i != NElts; ++i) {
1174 if (M[i] >= NElts)
1175 M[i] -= NElts;
1176 else if (M[i] >= 0)
1177 M[i] += NElts;
1181 SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1182 SDValue N2, const int *Mask) {
1183 assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1184 assert(VT.isVector() && N1.getValueType().isVector() &&
1185 "Vector Shuffle VTs must be a vectors");
1186 assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1187 && "Vector Shuffle VTs must have same element type");
1189 // Canonicalize shuffle undef, undef -> undef
1190 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1191 return getUNDEF(VT);
1193 // Validate that all indices in Mask are within the range of the elements
1194 // input to the shuffle.
1195 unsigned NElts = VT.getVectorNumElements();
1196 SmallVector<int, 8> MaskVec;
1197 for (unsigned i = 0; i != NElts; ++i) {
1198 assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1199 MaskVec.push_back(Mask[i]);
1202 // Canonicalize shuffle v, v -> v, undef
1203 if (N1 == N2) {
1204 N2 = getUNDEF(VT);
1205 for (unsigned i = 0; i != NElts; ++i)
1206 if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1209 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1210 if (N1.getOpcode() == ISD::UNDEF)
1211 commuteShuffle(N1, N2, MaskVec);
1213 // Canonicalize all index into lhs, -> shuffle lhs, undef
1214 // Canonicalize all index into rhs, -> shuffle rhs, undef
1215 bool AllLHS = true, AllRHS = true;
1216 bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1217 for (unsigned i = 0; i != NElts; ++i) {
1218 if (MaskVec[i] >= (int)NElts) {
1219 if (N2Undef)
1220 MaskVec[i] = -1;
1221 else
1222 AllLHS = false;
1223 } else if (MaskVec[i] >= 0) {
1224 AllRHS = false;
1227 if (AllLHS && AllRHS)
1228 return getUNDEF(VT);
1229 if (AllLHS && !N2Undef)
1230 N2 = getUNDEF(VT);
1231 if (AllRHS) {
1232 N1 = getUNDEF(VT);
1233 commuteShuffle(N1, N2, MaskVec);
1236 // If Identity shuffle, or all shuffle in to undef, return that node.
1237 bool AllUndef = true;
1238 bool Identity = true;
1239 for (unsigned i = 0; i != NElts; ++i) {
1240 if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1241 if (MaskVec[i] >= 0) AllUndef = false;
1243 if (Identity && NElts == N1.getValueType().getVectorNumElements())
1244 return N1;
1245 if (AllUndef)
1246 return getUNDEF(VT);
1248 FoldingSetNodeID ID;
1249 SDValue Ops[2] = { N1, N2 };
1250 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1251 for (unsigned i = 0; i != NElts; ++i)
1252 ID.AddInteger(MaskVec[i]);
1254 void* IP = 0;
1255 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1256 return SDValue(E, 0);
1258 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1259 // SDNode doesn't have access to it. This memory will be "leaked" when
1260 // the node is deallocated, but recovered when the NodeAllocator is released.
1261 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1262 memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1264 ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1265 new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1266 CSEMap.InsertNode(N, IP);
1267 AllNodes.push_back(N);
1268 return SDValue(N, 0);
1271 SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1272 SDValue Val, SDValue DTy,
1273 SDValue STy, SDValue Rnd, SDValue Sat,
1274 ISD::CvtCode Code) {
1275 // If the src and dest types are the same and the conversion is between
1276 // integer types of the same sign or two floats, no conversion is necessary.
1277 if (DTy == STy &&
1278 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1279 return Val;
1281 FoldingSetNodeID ID;
1282 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1283 AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1284 void* IP = 0;
1285 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1286 return SDValue(E, 0);
1288 CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1289 new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1290 CSEMap.InsertNode(N, IP);
1291 AllNodes.push_back(N);
1292 return SDValue(N, 0);
1295 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1296 FoldingSetNodeID ID;
1297 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1298 ID.AddInteger(RegNo);
1299 void *IP = 0;
1300 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1301 return SDValue(E, 0);
1303 SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1304 new (N) RegisterSDNode(RegNo, VT);
1305 CSEMap.InsertNode(N, IP);
1306 AllNodes.push_back(N);
1307 return SDValue(N, 0);
1310 SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1311 SDValue Root,
1312 unsigned LabelID) {
1313 FoldingSetNodeID ID;
1314 SDValue Ops[] = { Root };
1315 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1316 ID.AddInteger(LabelID);
1317 void *IP = 0;
1318 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1319 return SDValue(E, 0);
1321 SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1322 new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1323 CSEMap.InsertNode(N, IP);
1324 AllNodes.push_back(N);
1325 return SDValue(N, 0);
1328 SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1329 bool isTarget,
1330 unsigned char TargetFlags) {
1331 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1333 FoldingSetNodeID ID;
1334 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1335 ID.AddPointer(BA);
1336 ID.AddInteger(TargetFlags);
1337 void *IP = 0;
1338 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1339 return SDValue(E, 0);
1341 SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1342 new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1343 CSEMap.InsertNode(N, IP);
1344 AllNodes.push_back(N);
1345 return SDValue(N, 0);
1348 SDValue SelectionDAG::getSrcValue(const Value *V) {
1349 assert((!V || isa<PointerType>(V->getType())) &&
1350 "SrcValue is not a pointer?");
1352 FoldingSetNodeID ID;
1353 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1354 ID.AddPointer(V);
1356 void *IP = 0;
1357 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1358 return SDValue(E, 0);
1360 SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1361 new (N) SrcValueSDNode(V);
1362 CSEMap.InsertNode(N, IP);
1363 AllNodes.push_back(N);
1364 return SDValue(N, 0);
1367 /// getShiftAmountOperand - Return the specified value casted to
1368 /// the target's desired shift amount type.
1369 SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1370 EVT OpTy = Op.getValueType();
1371 MVT ShTy = TLI.getShiftAmountTy();
1372 if (OpTy == ShTy || OpTy.isVector()) return Op;
1374 ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
1375 return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1378 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1379 /// specified value type.
1380 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1381 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1382 unsigned ByteSize = VT.getStoreSize();
1383 const Type *Ty = VT.getTypeForEVT(*getContext());
1384 unsigned StackAlign =
1385 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1387 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1388 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1391 /// CreateStackTemporary - Create a stack temporary suitable for holding
1392 /// either of the specified value types.
1393 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1394 unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1395 VT2.getStoreSizeInBits())/8;
1396 const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1397 const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1398 const TargetData *TD = TLI.getTargetData();
1399 unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1400 TD->getPrefTypeAlignment(Ty2));
1402 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1403 int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1404 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1407 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1408 SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1409 // These setcc operations always fold.
1410 switch (Cond) {
1411 default: break;
1412 case ISD::SETFALSE:
1413 case ISD::SETFALSE2: return getConstant(0, VT);
1414 case ISD::SETTRUE:
1415 case ISD::SETTRUE2: return getConstant(1, VT);
1417 case ISD::SETOEQ:
1418 case ISD::SETOGT:
1419 case ISD::SETOGE:
1420 case ISD::SETOLT:
1421 case ISD::SETOLE:
1422 case ISD::SETONE:
1423 case ISD::SETO:
1424 case ISD::SETUO:
1425 case ISD::SETUEQ:
1426 case ISD::SETUNE:
1427 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1428 break;
1431 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1432 const APInt &C2 = N2C->getAPIntValue();
1433 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1434 const APInt &C1 = N1C->getAPIntValue();
1436 switch (Cond) {
1437 default: llvm_unreachable("Unknown integer setcc!");
1438 case ISD::SETEQ: return getConstant(C1 == C2, VT);
1439 case ISD::SETNE: return getConstant(C1 != C2, VT);
1440 case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1441 case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1442 case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1443 case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1444 case ISD::SETLT: return getConstant(C1.slt(C2), VT);
1445 case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
1446 case ISD::SETLE: return getConstant(C1.sle(C2), VT);
1447 case ISD::SETGE: return getConstant(C1.sge(C2), VT);
1451 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1452 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1453 // No compile time operations on this type yet.
1454 if (N1C->getValueType(0) == MVT::ppcf128)
1455 return SDValue();
1457 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1458 switch (Cond) {
1459 default: break;
1460 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
1461 return getUNDEF(VT);
1462 // fall through
1463 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1464 case ISD::SETNE: if (R==APFloat::cmpUnordered)
1465 return getUNDEF(VT);
1466 // fall through
1467 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1468 R==APFloat::cmpLessThan, VT);
1469 case ISD::SETLT: if (R==APFloat::cmpUnordered)
1470 return getUNDEF(VT);
1471 // fall through
1472 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1473 case ISD::SETGT: if (R==APFloat::cmpUnordered)
1474 return getUNDEF(VT);
1475 // fall through
1476 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1477 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1478 return getUNDEF(VT);
1479 // fall through
1480 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1481 R==APFloat::cmpEqual, VT);
1482 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1483 return getUNDEF(VT);
1484 // fall through
1485 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1486 R==APFloat::cmpEqual, VT);
1487 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1488 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1489 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1490 R==APFloat::cmpEqual, VT);
1491 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1492 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1493 R==APFloat::cmpLessThan, VT);
1494 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1495 R==APFloat::cmpUnordered, VT);
1496 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1497 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1499 } else {
1500 // Ensure that the constant occurs on the RHS.
1501 return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1505 // Could not fold it.
1506 return SDValue();
1509 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1510 /// use this predicate to simplify operations downstream.
1511 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1512 // This predicate is not safe for vector operations.
1513 if (Op.getValueType().isVector())
1514 return false;
1516 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1517 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1520 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1521 /// this predicate to simplify operations downstream. Mask is known to be zero
1522 /// for bits that V cannot have.
1523 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1524 unsigned Depth) const {
1525 APInt KnownZero, KnownOne;
1526 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1527 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1528 return (KnownZero & Mask) == Mask;
1531 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1532 /// known to be either zero or one and return them in the KnownZero/KnownOne
1533 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1534 /// processing.
1535 void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1536 APInt &KnownZero, APInt &KnownOne,
1537 unsigned Depth) const {
1538 unsigned BitWidth = Mask.getBitWidth();
1539 assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1540 "Mask size mismatches value type size!");
1542 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
1543 if (Depth == 6 || Mask == 0)
1544 return; // Limit search depth.
1546 APInt KnownZero2, KnownOne2;
1548 switch (Op.getOpcode()) {
1549 case ISD::Constant:
1550 // We know all of the bits for a constant!
1551 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1552 KnownZero = ~KnownOne & Mask;
1553 return;
1554 case ISD::AND:
1555 // If either the LHS or the RHS are Zero, the result is zero.
1556 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1557 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1558 KnownZero2, KnownOne2, Depth+1);
1559 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1560 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1562 // Output known-1 bits are only known if set in both the LHS & RHS.
1563 KnownOne &= KnownOne2;
1564 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1565 KnownZero |= KnownZero2;
1566 return;
1567 case ISD::OR:
1568 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1569 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1570 KnownZero2, KnownOne2, Depth+1);
1571 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1572 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1574 // Output known-0 bits are only known if clear in both the LHS & RHS.
1575 KnownZero &= KnownZero2;
1576 // Output known-1 are known to be set if set in either the LHS | RHS.
1577 KnownOne |= KnownOne2;
1578 return;
1579 case ISD::XOR: {
1580 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1581 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1582 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1583 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1585 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1586 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1587 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1588 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1589 KnownZero = KnownZeroOut;
1590 return;
1592 case ISD::MUL: {
1593 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1594 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1595 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1596 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1597 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1599 // If low bits are zero in either operand, output low known-0 bits.
1600 // Also compute a conserative estimate for high known-0 bits.
1601 // More trickiness is possible, but this is sufficient for the
1602 // interesting case of alignment computation.
1603 KnownOne.clear();
1604 unsigned TrailZ = KnownZero.countTrailingOnes() +
1605 KnownZero2.countTrailingOnes();
1606 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
1607 KnownZero2.countLeadingOnes(),
1608 BitWidth) - BitWidth;
1610 TrailZ = std::min(TrailZ, BitWidth);
1611 LeadZ = std::min(LeadZ, BitWidth);
1612 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1613 APInt::getHighBitsSet(BitWidth, LeadZ);
1614 KnownZero &= Mask;
1615 return;
1617 case ISD::UDIV: {
1618 // For the purposes of computing leading zeros we can conservatively
1619 // treat a udiv as a logical right shift by the power of 2 known to
1620 // be less than the denominator.
1621 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1622 ComputeMaskedBits(Op.getOperand(0),
1623 AllOnes, KnownZero2, KnownOne2, Depth+1);
1624 unsigned LeadZ = KnownZero2.countLeadingOnes();
1626 KnownOne2.clear();
1627 KnownZero2.clear();
1628 ComputeMaskedBits(Op.getOperand(1),
1629 AllOnes, KnownZero2, KnownOne2, Depth+1);
1630 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1631 if (RHSUnknownLeadingOnes != BitWidth)
1632 LeadZ = std::min(BitWidth,
1633 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1635 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1636 return;
1638 case ISD::SELECT:
1639 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1640 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1641 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1642 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1644 // Only known if known in both the LHS and RHS.
1645 KnownOne &= KnownOne2;
1646 KnownZero &= KnownZero2;
1647 return;
1648 case ISD::SELECT_CC:
1649 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1650 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1651 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1652 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1654 // Only known if known in both the LHS and RHS.
1655 KnownOne &= KnownOne2;
1656 KnownZero &= KnownZero2;
1657 return;
1658 case ISD::SADDO:
1659 case ISD::UADDO:
1660 case ISD::SSUBO:
1661 case ISD::USUBO:
1662 case ISD::SMULO:
1663 case ISD::UMULO:
1664 if (Op.getResNo() != 1)
1665 return;
1666 // The boolean result conforms to getBooleanContents. Fall through.
1667 case ISD::SETCC:
1668 // If we know the result of a setcc has the top bits zero, use this info.
1669 if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1670 BitWidth > 1)
1671 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1672 return;
1673 case ISD::SHL:
1674 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1675 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1676 unsigned ShAmt = SA->getZExtValue();
1678 // If the shift count is an invalid immediate, don't do anything.
1679 if (ShAmt >= BitWidth)
1680 return;
1682 ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1683 KnownZero, KnownOne, Depth+1);
1684 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1685 KnownZero <<= ShAmt;
1686 KnownOne <<= ShAmt;
1687 // low bits known zero.
1688 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1690 return;
1691 case ISD::SRL:
1692 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1693 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1694 unsigned ShAmt = SA->getZExtValue();
1696 // If the shift count is an invalid immediate, don't do anything.
1697 if (ShAmt >= BitWidth)
1698 return;
1700 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1701 KnownZero, KnownOne, Depth+1);
1702 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1703 KnownZero = KnownZero.lshr(ShAmt);
1704 KnownOne = KnownOne.lshr(ShAmt);
1706 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1707 KnownZero |= HighBits; // High bits known zero.
1709 return;
1710 case ISD::SRA:
1711 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1712 unsigned ShAmt = SA->getZExtValue();
1714 // If the shift count is an invalid immediate, don't do anything.
1715 if (ShAmt >= BitWidth)
1716 return;
1718 APInt InDemandedMask = (Mask << ShAmt);
1719 // If any of the demanded bits are produced by the sign extension, we also
1720 // demand the input sign bit.
1721 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1722 if (HighBits.getBoolValue())
1723 InDemandedMask |= APInt::getSignBit(BitWidth);
1725 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1726 Depth+1);
1727 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1728 KnownZero = KnownZero.lshr(ShAmt);
1729 KnownOne = KnownOne.lshr(ShAmt);
1731 // Handle the sign bits.
1732 APInt SignBit = APInt::getSignBit(BitWidth);
1733 SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
1735 if (KnownZero.intersects(SignBit)) {
1736 KnownZero |= HighBits; // New bits are known zero.
1737 } else if (KnownOne.intersects(SignBit)) {
1738 KnownOne |= HighBits; // New bits are known one.
1741 return;
1742 case ISD::SIGN_EXTEND_INREG: {
1743 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1744 unsigned EBits = EVT.getScalarType().getSizeInBits();
1746 // Sign extension. Compute the demanded bits in the result that are not
1747 // present in the input.
1748 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1750 APInt InSignBit = APInt::getSignBit(EBits);
1751 APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1753 // If the sign extended bits are demanded, we know that the sign
1754 // bit is demanded.
1755 InSignBit.zext(BitWidth);
1756 if (NewBits.getBoolValue())
1757 InputDemandedBits |= InSignBit;
1759 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1760 KnownZero, KnownOne, Depth+1);
1761 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1763 // If the sign bit of the input is known set or clear, then we know the
1764 // top bits of the result.
1765 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
1766 KnownZero |= NewBits;
1767 KnownOne &= ~NewBits;
1768 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1769 KnownOne |= NewBits;
1770 KnownZero &= ~NewBits;
1771 } else { // Input sign bit unknown
1772 KnownZero &= ~NewBits;
1773 KnownOne &= ~NewBits;
1775 return;
1777 case ISD::CTTZ:
1778 case ISD::CTLZ:
1779 case ISD::CTPOP: {
1780 unsigned LowBits = Log2_32(BitWidth)+1;
1781 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1782 KnownOne.clear();
1783 return;
1785 case ISD::LOAD: {
1786 if (ISD::isZEXTLoad(Op.getNode())) {
1787 LoadSDNode *LD = cast<LoadSDNode>(Op);
1788 EVT VT = LD->getMemoryVT();
1789 unsigned MemBits = VT.getScalarType().getSizeInBits();
1790 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1792 return;
1794 case ISD::ZERO_EXTEND: {
1795 EVT InVT = Op.getOperand(0).getValueType();
1796 unsigned InBits = InVT.getScalarType().getSizeInBits();
1797 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1798 APInt InMask = Mask;
1799 InMask.trunc(InBits);
1800 KnownZero.trunc(InBits);
1801 KnownOne.trunc(InBits);
1802 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1803 KnownZero.zext(BitWidth);
1804 KnownOne.zext(BitWidth);
1805 KnownZero |= NewBits;
1806 return;
1808 case ISD::SIGN_EXTEND: {
1809 EVT InVT = Op.getOperand(0).getValueType();
1810 unsigned InBits = InVT.getScalarType().getSizeInBits();
1811 APInt InSignBit = APInt::getSignBit(InBits);
1812 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1813 APInt InMask = Mask;
1814 InMask.trunc(InBits);
1816 // If any of the sign extended bits are demanded, we know that the sign
1817 // bit is demanded. Temporarily set this bit in the mask for our callee.
1818 if (NewBits.getBoolValue())
1819 InMask |= InSignBit;
1821 KnownZero.trunc(InBits);
1822 KnownOne.trunc(InBits);
1823 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1825 // Note if the sign bit is known to be zero or one.
1826 bool SignBitKnownZero = KnownZero.isNegative();
1827 bool SignBitKnownOne = KnownOne.isNegative();
1828 assert(!(SignBitKnownZero && SignBitKnownOne) &&
1829 "Sign bit can't be known to be both zero and one!");
1831 // If the sign bit wasn't actually demanded by our caller, we don't
1832 // want it set in the KnownZero and KnownOne result values. Reset the
1833 // mask and reapply it to the result values.
1834 InMask = Mask;
1835 InMask.trunc(InBits);
1836 KnownZero &= InMask;
1837 KnownOne &= InMask;
1839 KnownZero.zext(BitWidth);
1840 KnownOne.zext(BitWidth);
1842 // If the sign bit is known zero or one, the top bits match.
1843 if (SignBitKnownZero)
1844 KnownZero |= NewBits;
1845 else if (SignBitKnownOne)
1846 KnownOne |= NewBits;
1847 return;
1849 case ISD::ANY_EXTEND: {
1850 EVT InVT = Op.getOperand(0).getValueType();
1851 unsigned InBits = InVT.getScalarType().getSizeInBits();
1852 APInt InMask = Mask;
1853 InMask.trunc(InBits);
1854 KnownZero.trunc(InBits);
1855 KnownOne.trunc(InBits);
1856 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1857 KnownZero.zext(BitWidth);
1858 KnownOne.zext(BitWidth);
1859 return;
1861 case ISD::TRUNCATE: {
1862 EVT InVT = Op.getOperand(0).getValueType();
1863 unsigned InBits = InVT.getScalarType().getSizeInBits();
1864 APInt InMask = Mask;
1865 InMask.zext(InBits);
1866 KnownZero.zext(InBits);
1867 KnownOne.zext(InBits);
1868 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1869 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1870 KnownZero.trunc(BitWidth);
1871 KnownOne.trunc(BitWidth);
1872 break;
1874 case ISD::AssertZext: {
1875 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1876 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1877 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1878 KnownOne, Depth+1);
1879 KnownZero |= (~InMask) & Mask;
1880 return;
1882 case ISD::FGETSIGN:
1883 // All bits are zero except the low bit.
1884 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1885 return;
1887 case ISD::SUB: {
1888 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1889 // We know that the top bits of C-X are clear if X contains less bits
1890 // than C (i.e. no wrap-around can happen). For example, 20-X is
1891 // positive if we can prove that X is >= 0 and < 16.
1892 if (CLHS->getAPIntValue().isNonNegative()) {
1893 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1894 // NLZ can't be BitWidth with no sign bit
1895 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1896 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1897 Depth+1);
1899 // If all of the MaskV bits are known to be zero, then we know the
1900 // output top bits are zero, because we now know that the output is
1901 // from [0-C].
1902 if ((KnownZero2 & MaskV) == MaskV) {
1903 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1904 // Top bits known zero.
1905 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1910 // fall through
1911 case ISD::ADD: {
1912 // Output known-0 bits are known if clear or set in both the low clear bits
1913 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1914 // low 3 bits clear.
1915 APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1916 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1917 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1918 unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1920 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1921 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1922 KnownZeroOut = std::min(KnownZeroOut,
1923 KnownZero2.countTrailingOnes());
1925 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1926 return;
1928 case ISD::SREM:
1929 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1930 const APInt &RA = Rem->getAPIntValue();
1931 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1932 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1933 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1934 ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1936 // If the sign bit of the first operand is zero, the sign bit of
1937 // the result is zero. If the first operand has no one bits below
1938 // the second operand's single 1 bit, its sign will be zero.
1939 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1940 KnownZero2 |= ~LowBits;
1942 KnownZero |= KnownZero2 & Mask;
1944 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1947 return;
1948 case ISD::UREM: {
1949 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1950 const APInt &RA = Rem->getAPIntValue();
1951 if (RA.isPowerOf2()) {
1952 APInt LowBits = (RA - 1);
1953 APInt Mask2 = LowBits & Mask;
1954 KnownZero |= ~LowBits & Mask;
1955 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1956 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1957 break;
1961 // Since the result is less than or equal to either operand, any leading
1962 // zero bits in either operand must also exist in the result.
1963 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1964 ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1965 Depth+1);
1966 ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1967 Depth+1);
1969 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1970 KnownZero2.countLeadingOnes());
1971 KnownOne.clear();
1972 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1973 return;
1975 default:
1976 // Allow the target to implement this method for its nodes.
1977 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1978 case ISD::INTRINSIC_WO_CHAIN:
1979 case ISD::INTRINSIC_W_CHAIN:
1980 case ISD::INTRINSIC_VOID:
1981 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1982 Depth);
1984 return;
1988 /// ComputeNumSignBits - Return the number of times the sign bit of the
1989 /// register is replicated into the other bits. We know that at least 1 bit
1990 /// is always equal to the sign bit (itself), but other cases can give us
1991 /// information. For example, immediately after an "SRA X, 2", we know that
1992 /// the top 3 bits are all equal to each other, so we return 3.
1993 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1994 EVT VT = Op.getValueType();
1995 assert(VT.isInteger() && "Invalid VT!");
1996 unsigned VTBits = VT.getScalarType().getSizeInBits();
1997 unsigned Tmp, Tmp2;
1998 unsigned FirstAnswer = 1;
2000 if (Depth == 6)
2001 return 1; // Limit search depth.
2003 switch (Op.getOpcode()) {
2004 default: break;
2005 case ISD::AssertSext:
2006 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2007 return VTBits-Tmp+1;
2008 case ISD::AssertZext:
2009 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2010 return VTBits-Tmp;
2012 case ISD::Constant: {
2013 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2014 // If negative, return # leading ones.
2015 if (Val.isNegative())
2016 return Val.countLeadingOnes();
2018 // Return # leading zeros.
2019 return Val.countLeadingZeros();
2022 case ISD::SIGN_EXTEND:
2023 Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2024 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2026 case ISD::SIGN_EXTEND_INREG:
2027 // Max of the input and what this extends.
2028 Tmp =
2029 cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2030 Tmp = VTBits-Tmp+1;
2032 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2033 return std::max(Tmp, Tmp2);
2035 case ISD::SRA:
2036 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2037 // SRA X, C -> adds C sign bits.
2038 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2039 Tmp += C->getZExtValue();
2040 if (Tmp > VTBits) Tmp = VTBits;
2042 return Tmp;
2043 case ISD::SHL:
2044 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2045 // shl destroys sign bits.
2046 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2047 if (C->getZExtValue() >= VTBits || // Bad shift.
2048 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
2049 return Tmp - C->getZExtValue();
2051 break;
2052 case ISD::AND:
2053 case ISD::OR:
2054 case ISD::XOR: // NOT is handled here.
2055 // Logical binary ops preserve the number of sign bits at the worst.
2056 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2057 if (Tmp != 1) {
2058 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2059 FirstAnswer = std::min(Tmp, Tmp2);
2060 // We computed what we know about the sign bits as our first
2061 // answer. Now proceed to the generic code that uses
2062 // ComputeMaskedBits, and pick whichever answer is better.
2064 break;
2066 case ISD::SELECT:
2067 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2068 if (Tmp == 1) return 1; // Early out.
2069 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2070 return std::min(Tmp, Tmp2);
2072 case ISD::SADDO:
2073 case ISD::UADDO:
2074 case ISD::SSUBO:
2075 case ISD::USUBO:
2076 case ISD::SMULO:
2077 case ISD::UMULO:
2078 if (Op.getResNo() != 1)
2079 break;
2080 // The boolean result conforms to getBooleanContents. Fall through.
2081 case ISD::SETCC:
2082 // If setcc returns 0/-1, all bits are sign bits.
2083 if (TLI.getBooleanContents() ==
2084 TargetLowering::ZeroOrNegativeOneBooleanContent)
2085 return VTBits;
2086 break;
2087 case ISD::ROTL:
2088 case ISD::ROTR:
2089 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2090 unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2092 // Handle rotate right by N like a rotate left by 32-N.
2093 if (Op.getOpcode() == ISD::ROTR)
2094 RotAmt = (VTBits-RotAmt) & (VTBits-1);
2096 // If we aren't rotating out all of the known-in sign bits, return the
2097 // number that are left. This handles rotl(sext(x), 1) for example.
2098 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2099 if (Tmp > RotAmt+1) return Tmp-RotAmt;
2101 break;
2102 case ISD::ADD:
2103 // Add can have at most one carry bit. Thus we know that the output
2104 // is, at worst, one more bit than the inputs.
2105 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2106 if (Tmp == 1) return 1; // Early out.
2108 // Special case decrementing a value (ADD X, -1):
2109 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2110 if (CRHS->isAllOnesValue()) {
2111 APInt KnownZero, KnownOne;
2112 APInt Mask = APInt::getAllOnesValue(VTBits);
2113 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2115 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2116 // sign bits set.
2117 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2118 return VTBits;
2120 // If we are subtracting one from a positive number, there is no carry
2121 // out of the result.
2122 if (KnownZero.isNegative())
2123 return Tmp;
2126 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2127 if (Tmp2 == 1) return 1;
2128 return std::min(Tmp, Tmp2)-1;
2129 break;
2131 case ISD::SUB:
2132 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2133 if (Tmp2 == 1) return 1;
2135 // Handle NEG.
2136 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2137 if (CLHS->isNullValue()) {
2138 APInt KnownZero, KnownOne;
2139 APInt Mask = APInt::getAllOnesValue(VTBits);
2140 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2141 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2142 // sign bits set.
2143 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2144 return VTBits;
2146 // If the input is known to be positive (the sign bit is known clear),
2147 // the output of the NEG has the same number of sign bits as the input.
2148 if (KnownZero.isNegative())
2149 return Tmp2;
2151 // Otherwise, we treat this like a SUB.
2154 // Sub can have at most one carry bit. Thus we know that the output
2155 // is, at worst, one more bit than the inputs.
2156 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2157 if (Tmp == 1) return 1; // Early out.
2158 return std::min(Tmp, Tmp2)-1;
2159 break;
2160 case ISD::TRUNCATE:
2161 // FIXME: it's tricky to do anything useful for this, but it is an important
2162 // case for targets like X86.
2163 break;
2166 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2167 if (Op.getOpcode() == ISD::LOAD) {
2168 LoadSDNode *LD = cast<LoadSDNode>(Op);
2169 unsigned ExtType = LD->getExtensionType();
2170 switch (ExtType) {
2171 default: break;
2172 case ISD::SEXTLOAD: // '17' bits known
2173 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2174 return VTBits-Tmp+1;
2175 case ISD::ZEXTLOAD: // '16' bits known
2176 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2177 return VTBits-Tmp;
2181 // Allow the target to implement this method for its nodes.
2182 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2183 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2184 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2185 Op.getOpcode() == ISD::INTRINSIC_VOID) {
2186 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2187 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2190 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2191 // use this information.
2192 APInt KnownZero, KnownOne;
2193 APInt Mask = APInt::getAllOnesValue(VTBits);
2194 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2196 if (KnownZero.isNegative()) { // sign bit is 0
2197 Mask = KnownZero;
2198 } else if (KnownOne.isNegative()) { // sign bit is 1;
2199 Mask = KnownOne;
2200 } else {
2201 // Nothing known.
2202 return FirstAnswer;
2205 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2206 // the number of identical bits in the top of the input value.
2207 Mask = ~Mask;
2208 Mask <<= Mask.getBitWidth()-VTBits;
2209 // Return # leading zeros. We use 'min' here in case Val was zero before
2210 // shifting. We don't want to return '64' as for an i32 "0".
2211 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2214 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2215 // If we're told that NaNs won't happen, assume they won't.
2216 if (FiniteOnlyFPMath())
2217 return true;
2219 // If the value is a constant, we can obviously see if it is a NaN or not.
2220 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2221 return !C->getValueAPF().isNaN();
2223 // TODO: Recognize more cases here.
2225 return false;
2228 bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2229 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2230 if (!GA) return false;
2231 if (GA->getOffset() != 0) return false;
2232 GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2233 if (!GV) return false;
2234 MachineModuleInfo *MMI = getMachineModuleInfo();
2235 return MMI && MMI->hasDebugInfo();
2239 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
2240 /// element of the result of the vector shuffle.
2241 SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2242 unsigned i) {
2243 EVT VT = N->getValueType(0);
2244 DebugLoc dl = N->getDebugLoc();
2245 if (N->getMaskElt(i) < 0)
2246 return getUNDEF(VT.getVectorElementType());
2247 unsigned Index = N->getMaskElt(i);
2248 unsigned NumElems = VT.getVectorNumElements();
2249 SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2250 Index %= NumElems;
2252 if (V.getOpcode() == ISD::BIT_CONVERT) {
2253 V = V.getOperand(0);
2254 EVT VVT = V.getValueType();
2255 if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2256 return SDValue();
2258 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2259 return (Index == 0) ? V.getOperand(0)
2260 : getUNDEF(VT.getVectorElementType());
2261 if (V.getOpcode() == ISD::BUILD_VECTOR)
2262 return V.getOperand(Index);
2263 if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2264 return getShuffleScalarElt(SVN, Index);
2265 return SDValue();
2269 /// getNode - Gets or creates the specified node.
2271 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2272 FoldingSetNodeID ID;
2273 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2274 void *IP = 0;
2275 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2276 return SDValue(E, 0);
2278 SDNode *N = NodeAllocator.Allocate<SDNode>();
2279 new (N) SDNode(Opcode, DL, getVTList(VT));
2280 CSEMap.InsertNode(N, IP);
2282 AllNodes.push_back(N);
2283 #ifndef NDEBUG
2284 VerifyNode(N);
2285 #endif
2286 return SDValue(N, 0);
2289 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2290 EVT VT, SDValue Operand) {
2291 // Constant fold unary operations with an integer constant operand.
2292 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2293 const APInt &Val = C->getAPIntValue();
2294 unsigned BitWidth = VT.getSizeInBits();
2295 switch (Opcode) {
2296 default: break;
2297 case ISD::SIGN_EXTEND:
2298 return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2299 case ISD::ANY_EXTEND:
2300 case ISD::ZERO_EXTEND:
2301 case ISD::TRUNCATE:
2302 return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2303 case ISD::UINT_TO_FP:
2304 case ISD::SINT_TO_FP: {
2305 const uint64_t zero[] = {0, 0};
2306 // No compile time operations on this type.
2307 if (VT==MVT::ppcf128)
2308 break;
2309 APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2310 (void)apf.convertFromAPInt(Val,
2311 Opcode==ISD::SINT_TO_FP,
2312 APFloat::rmNearestTiesToEven);
2313 return getConstantFP(apf, VT);
2315 case ISD::BIT_CONVERT:
2316 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2317 return getConstantFP(Val.bitsToFloat(), VT);
2318 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2319 return getConstantFP(Val.bitsToDouble(), VT);
2320 break;
2321 case ISD::BSWAP:
2322 return getConstant(Val.byteSwap(), VT);
2323 case ISD::CTPOP:
2324 return getConstant(Val.countPopulation(), VT);
2325 case ISD::CTLZ:
2326 return getConstant(Val.countLeadingZeros(), VT);
2327 case ISD::CTTZ:
2328 return getConstant(Val.countTrailingZeros(), VT);
2332 // Constant fold unary operations with a floating point constant operand.
2333 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2334 APFloat V = C->getValueAPF(); // make copy
2335 if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2336 switch (Opcode) {
2337 case ISD::FNEG:
2338 V.changeSign();
2339 return getConstantFP(V, VT);
2340 case ISD::FABS:
2341 V.clearSign();
2342 return getConstantFP(V, VT);
2343 case ISD::FP_ROUND:
2344 case ISD::FP_EXTEND: {
2345 bool ignored;
2346 // This can return overflow, underflow, or inexact; we don't care.
2347 // FIXME need to be more flexible about rounding mode.
2348 (void)V.convert(*EVTToAPFloatSemantics(VT),
2349 APFloat::rmNearestTiesToEven, &ignored);
2350 return getConstantFP(V, VT);
2352 case ISD::FP_TO_SINT:
2353 case ISD::FP_TO_UINT: {
2354 integerPart x[2];
2355 bool ignored;
2356 assert(integerPartWidth >= 64);
2357 // FIXME need to be more flexible about rounding mode.
2358 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2359 Opcode==ISD::FP_TO_SINT,
2360 APFloat::rmTowardZero, &ignored);
2361 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
2362 break;
2363 APInt api(VT.getSizeInBits(), 2, x);
2364 return getConstant(api, VT);
2366 case ISD::BIT_CONVERT:
2367 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2368 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2369 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2370 return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2371 break;
2376 unsigned OpOpcode = Operand.getNode()->getOpcode();
2377 switch (Opcode) {
2378 case ISD::TokenFactor:
2379 case ISD::MERGE_VALUES:
2380 case ISD::CONCAT_VECTORS:
2381 return Operand; // Factor, merge or concat of one node? No need.
2382 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2383 case ISD::FP_EXTEND:
2384 assert(VT.isFloatingPoint() &&
2385 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2386 if (Operand.getValueType() == VT) return Operand; // noop conversion.
2387 assert((!VT.isVector() ||
2388 VT.getVectorNumElements() ==
2389 Operand.getValueType().getVectorNumElements()) &&
2390 "Vector element count mismatch!");
2391 if (Operand.getOpcode() == ISD::UNDEF)
2392 return getUNDEF(VT);
2393 break;
2394 case ISD::SIGN_EXTEND:
2395 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2396 "Invalid SIGN_EXTEND!");
2397 if (Operand.getValueType() == VT) return Operand; // noop extension
2398 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2399 "Invalid sext node, dst < src!");
2400 assert((!VT.isVector() ||
2401 VT.getVectorNumElements() ==
2402 Operand.getValueType().getVectorNumElements()) &&
2403 "Vector element count mismatch!");
2404 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2405 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2406 break;
2407 case ISD::ZERO_EXTEND:
2408 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2409 "Invalid ZERO_EXTEND!");
2410 if (Operand.getValueType() == VT) return Operand; // noop extension
2411 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2412 "Invalid zext node, dst < src!");
2413 assert((!VT.isVector() ||
2414 VT.getVectorNumElements() ==
2415 Operand.getValueType().getVectorNumElements()) &&
2416 "Vector element count mismatch!");
2417 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
2418 return getNode(ISD::ZERO_EXTEND, DL, VT,
2419 Operand.getNode()->getOperand(0));
2420 break;
2421 case ISD::ANY_EXTEND:
2422 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2423 "Invalid ANY_EXTEND!");
2424 if (Operand.getValueType() == VT) return Operand; // noop extension
2425 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2426 "Invalid anyext node, dst < src!");
2427 assert((!VT.isVector() ||
2428 VT.getVectorNumElements() ==
2429 Operand.getValueType().getVectorNumElements()) &&
2430 "Vector element count mismatch!");
2431 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2432 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2433 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2434 break;
2435 case ISD::TRUNCATE:
2436 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2437 "Invalid TRUNCATE!");
2438 if (Operand.getValueType() == VT) return Operand; // noop truncate
2439 assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2440 "Invalid truncate node, src < dst!");
2441 assert((!VT.isVector() ||
2442 VT.getVectorNumElements() ==
2443 Operand.getValueType().getVectorNumElements()) &&
2444 "Vector element count mismatch!");
2445 if (OpOpcode == ISD::TRUNCATE)
2446 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2447 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2448 OpOpcode == ISD::ANY_EXTEND) {
2449 // If the source is smaller than the dest, we still need an extend.
2450 if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2451 .bitsLT(VT.getScalarType()))
2452 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2453 else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2454 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2455 else
2456 return Operand.getNode()->getOperand(0);
2458 break;
2459 case ISD::BIT_CONVERT:
2460 // Basic sanity checking.
2461 assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2462 && "Cannot BIT_CONVERT between types of different sizes!");
2463 if (VT == Operand.getValueType()) return Operand; // noop conversion.
2464 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
2465 return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2466 if (OpOpcode == ISD::UNDEF)
2467 return getUNDEF(VT);
2468 break;
2469 case ISD::SCALAR_TO_VECTOR:
2470 assert(VT.isVector() && !Operand.getValueType().isVector() &&
2471 (VT.getVectorElementType() == Operand.getValueType() ||
2472 (VT.getVectorElementType().isInteger() &&
2473 Operand.getValueType().isInteger() &&
2474 VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2475 "Illegal SCALAR_TO_VECTOR node!");
2476 if (OpOpcode == ISD::UNDEF)
2477 return getUNDEF(VT);
2478 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2479 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2480 isa<ConstantSDNode>(Operand.getOperand(1)) &&
2481 Operand.getConstantOperandVal(1) == 0 &&
2482 Operand.getOperand(0).getValueType() == VT)
2483 return Operand.getOperand(0);
2484 break;
2485 case ISD::FNEG:
2486 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2487 if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2488 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2489 Operand.getNode()->getOperand(0));
2490 if (OpOpcode == ISD::FNEG) // --X -> X
2491 return Operand.getNode()->getOperand(0);
2492 break;
2493 case ISD::FABS:
2494 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
2495 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2496 break;
2499 SDNode *N;
2500 SDVTList VTs = getVTList(VT);
2501 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2502 FoldingSetNodeID ID;
2503 SDValue Ops[1] = { Operand };
2504 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2505 void *IP = 0;
2506 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2507 return SDValue(E, 0);
2509 N = NodeAllocator.Allocate<UnarySDNode>();
2510 new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2511 CSEMap.InsertNode(N, IP);
2512 } else {
2513 N = NodeAllocator.Allocate<UnarySDNode>();
2514 new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2517 AllNodes.push_back(N);
2518 #ifndef NDEBUG
2519 VerifyNode(N);
2520 #endif
2521 return SDValue(N, 0);
2524 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2525 EVT VT,
2526 ConstantSDNode *Cst1,
2527 ConstantSDNode *Cst2) {
2528 const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2530 switch (Opcode) {
2531 case ISD::ADD: return getConstant(C1 + C2, VT);
2532 case ISD::SUB: return getConstant(C1 - C2, VT);
2533 case ISD::MUL: return getConstant(C1 * C2, VT);
2534 case ISD::UDIV:
2535 if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2536 break;
2537 case ISD::UREM:
2538 if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2539 break;
2540 case ISD::SDIV:
2541 if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2542 break;
2543 case ISD::SREM:
2544 if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2545 break;
2546 case ISD::AND: return getConstant(C1 & C2, VT);
2547 case ISD::OR: return getConstant(C1 | C2, VT);
2548 case ISD::XOR: return getConstant(C1 ^ C2, VT);
2549 case ISD::SHL: return getConstant(C1 << C2, VT);
2550 case ISD::SRL: return getConstant(C1.lshr(C2), VT);
2551 case ISD::SRA: return getConstant(C1.ashr(C2), VT);
2552 case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2553 case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2554 default: break;
2557 return SDValue();
2560 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2561 SDValue N1, SDValue N2) {
2562 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2563 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2564 switch (Opcode) {
2565 default: break;
2566 case ISD::TokenFactor:
2567 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2568 N2.getValueType() == MVT::Other && "Invalid token factor!");
2569 // Fold trivial token factors.
2570 if (N1.getOpcode() == ISD::EntryToken) return N2;
2571 if (N2.getOpcode() == ISD::EntryToken) return N1;
2572 if (N1 == N2) return N1;
2573 break;
2574 case ISD::CONCAT_VECTORS:
2575 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2576 // one big BUILD_VECTOR.
2577 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2578 N2.getOpcode() == ISD::BUILD_VECTOR) {
2579 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2580 Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2581 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2583 break;
2584 case ISD::AND:
2585 assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2586 N1.getValueType() == VT && "Binary operator types must match!");
2587 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2588 // worth handling here.
2589 if (N2C && N2C->isNullValue())
2590 return N2;
2591 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
2592 return N1;
2593 break;
2594 case ISD::OR:
2595 case ISD::XOR:
2596 case ISD::ADD:
2597 case ISD::SUB:
2598 assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2599 N1.getValueType() == VT && "Binary operator types must match!");
2600 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2601 // it's worth handling here.
2602 if (N2C && N2C->isNullValue())
2603 return N1;
2604 break;
2605 case ISD::UDIV:
2606 case ISD::UREM:
2607 case ISD::MULHU:
2608 case ISD::MULHS:
2609 case ISD::MUL:
2610 case ISD::SDIV:
2611 case ISD::SREM:
2612 assert(VT.isInteger() && "This operator does not apply to FP types!");
2613 // fall through
2614 case ISD::FADD:
2615 case ISD::FSUB:
2616 case ISD::FMUL:
2617 case ISD::FDIV:
2618 case ISD::FREM:
2619 if (UnsafeFPMath) {
2620 if (Opcode == ISD::FADD) {
2621 // 0+x --> x
2622 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2623 if (CFP->getValueAPF().isZero())
2624 return N2;
2625 // x+0 --> x
2626 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2627 if (CFP->getValueAPF().isZero())
2628 return N1;
2629 } else if (Opcode == ISD::FSUB) {
2630 // x-0 --> x
2631 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2632 if (CFP->getValueAPF().isZero())
2633 return N1;
2636 assert(N1.getValueType() == N2.getValueType() &&
2637 N1.getValueType() == VT && "Binary operator types must match!");
2638 break;
2639 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
2640 assert(N1.getValueType() == VT &&
2641 N1.getValueType().isFloatingPoint() &&
2642 N2.getValueType().isFloatingPoint() &&
2643 "Invalid FCOPYSIGN!");
2644 break;
2645 case ISD::SHL:
2646 case ISD::SRA:
2647 case ISD::SRL:
2648 case ISD::ROTL:
2649 case ISD::ROTR:
2650 assert(VT == N1.getValueType() &&
2651 "Shift operators return type must be the same as their first arg");
2652 assert(VT.isInteger() && N2.getValueType().isInteger() &&
2653 "Shifts only work on integers");
2655 // Always fold shifts of i1 values so the code generator doesn't need to
2656 // handle them. Since we know the size of the shift has to be less than the
2657 // size of the value, the shift/rotate count is guaranteed to be zero.
2658 if (VT == MVT::i1)
2659 return N1;
2660 if (N2C && N2C->isNullValue())
2661 return N1;
2662 break;
2663 case ISD::FP_ROUND_INREG: {
2664 EVT EVT = cast<VTSDNode>(N2)->getVT();
2665 assert(VT == N1.getValueType() && "Not an inreg round!");
2666 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2667 "Cannot FP_ROUND_INREG integer types");
2668 assert(EVT.isVector() == VT.isVector() &&
2669 "FP_ROUND_INREG type should be vector iff the operand "
2670 "type is vector!");
2671 assert((!EVT.isVector() ||
2672 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2673 "Vector element counts must match in FP_ROUND_INREG");
2674 assert(EVT.bitsLE(VT) && "Not rounding down!");
2675 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2676 break;
2678 case ISD::FP_ROUND:
2679 assert(VT.isFloatingPoint() &&
2680 N1.getValueType().isFloatingPoint() &&
2681 VT.bitsLE(N1.getValueType()) &&
2682 isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2683 if (N1.getValueType() == VT) return N1; // noop conversion.
2684 break;
2685 case ISD::AssertSext:
2686 case ISD::AssertZext: {
2687 EVT EVT = cast<VTSDNode>(N2)->getVT();
2688 assert(VT == N1.getValueType() && "Not an inreg extend!");
2689 assert(VT.isInteger() && EVT.isInteger() &&
2690 "Cannot *_EXTEND_INREG FP types");
2691 assert(!EVT.isVector() &&
2692 "AssertSExt/AssertZExt type should be the vector element type "
2693 "rather than the vector type!");
2694 assert(EVT.bitsLE(VT) && "Not extending!");
2695 if (VT == EVT) return N1; // noop assertion.
2696 break;
2698 case ISD::SIGN_EXTEND_INREG: {
2699 EVT EVT = cast<VTSDNode>(N2)->getVT();
2700 assert(VT == N1.getValueType() && "Not an inreg extend!");
2701 assert(VT.isInteger() && EVT.isInteger() &&
2702 "Cannot *_EXTEND_INREG FP types");
2703 assert(EVT.isVector() == VT.isVector() &&
2704 "SIGN_EXTEND_INREG type should be vector iff the operand "
2705 "type is vector!");
2706 assert((!EVT.isVector() ||
2707 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2708 "Vector element counts must match in SIGN_EXTEND_INREG");
2709 assert(EVT.bitsLE(VT) && "Not extending!");
2710 if (EVT == VT) return N1; // Not actually extending
2712 if (N1C) {
2713 APInt Val = N1C->getAPIntValue();
2714 unsigned FromBits = EVT.getScalarType().getSizeInBits();
2715 Val <<= Val.getBitWidth()-FromBits;
2716 Val = Val.ashr(Val.getBitWidth()-FromBits);
2717 return getConstant(Val, VT);
2719 break;
2721 case ISD::EXTRACT_VECTOR_ELT:
2722 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2723 if (N1.getOpcode() == ISD::UNDEF)
2724 return getUNDEF(VT);
2726 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2727 // expanding copies of large vectors from registers.
2728 if (N2C &&
2729 N1.getOpcode() == ISD::CONCAT_VECTORS &&
2730 N1.getNumOperands() > 0) {
2731 unsigned Factor =
2732 N1.getOperand(0).getValueType().getVectorNumElements();
2733 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2734 N1.getOperand(N2C->getZExtValue() / Factor),
2735 getConstant(N2C->getZExtValue() % Factor,
2736 N2.getValueType()));
2739 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2740 // expanding large vector constants.
2741 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2742 SDValue Elt = N1.getOperand(N2C->getZExtValue());
2743 EVT VEltTy = N1.getValueType().getVectorElementType();
2744 if (Elt.getValueType() != VEltTy) {
2745 // If the vector element type is not legal, the BUILD_VECTOR operands
2746 // are promoted and implicitly truncated. Make that explicit here.
2747 Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2749 if (VT != VEltTy) {
2750 // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2751 // result is implicitly extended.
2752 Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2754 return Elt;
2757 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2758 // operations are lowered to scalars.
2759 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2760 // If the indices are the same, return the inserted element.
2761 if (N1.getOperand(2) == N2)
2762 return N1.getOperand(1);
2763 // If the indices are known different, extract the element from
2764 // the original vector.
2765 else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2766 isa<ConstantSDNode>(N2))
2767 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2769 break;
2770 case ISD::EXTRACT_ELEMENT:
2771 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2772 assert(!N1.getValueType().isVector() && !VT.isVector() &&
2773 (N1.getValueType().isInteger() == VT.isInteger()) &&
2774 "Wrong types for EXTRACT_ELEMENT!");
2776 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2777 // 64-bit integers into 32-bit parts. Instead of building the extract of
2778 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2779 if (N1.getOpcode() == ISD::BUILD_PAIR)
2780 return N1.getOperand(N2C->getZExtValue());
2782 // EXTRACT_ELEMENT of a constant int is also very common.
2783 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2784 unsigned ElementSize = VT.getSizeInBits();
2785 unsigned Shift = ElementSize * N2C->getZExtValue();
2786 APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2787 return getConstant(ShiftedVal.trunc(ElementSize), VT);
2789 break;
2790 case ISD::EXTRACT_SUBVECTOR:
2791 if (N1.getValueType() == VT) // Trivial extraction.
2792 return N1;
2793 break;
2796 if (N1C) {
2797 if (N2C) {
2798 SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2799 if (SV.getNode()) return SV;
2800 } else { // Cannonicalize constant to RHS if commutative
2801 if (isCommutativeBinOp(Opcode)) {
2802 std::swap(N1C, N2C);
2803 std::swap(N1, N2);
2808 // Constant fold FP operations.
2809 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2810 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2811 if (N1CFP) {
2812 if (!N2CFP && isCommutativeBinOp(Opcode)) {
2813 // Cannonicalize constant to RHS if commutative
2814 std::swap(N1CFP, N2CFP);
2815 std::swap(N1, N2);
2816 } else if (N2CFP && VT != MVT::ppcf128) {
2817 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2818 APFloat::opStatus s;
2819 switch (Opcode) {
2820 case ISD::FADD:
2821 s = V1.add(V2, APFloat::rmNearestTiesToEven);
2822 if (s != APFloat::opInvalidOp)
2823 return getConstantFP(V1, VT);
2824 break;
2825 case ISD::FSUB:
2826 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2827 if (s!=APFloat::opInvalidOp)
2828 return getConstantFP(V1, VT);
2829 break;
2830 case ISD::FMUL:
2831 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2832 if (s!=APFloat::opInvalidOp)
2833 return getConstantFP(V1, VT);
2834 break;
2835 case ISD::FDIV:
2836 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2837 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2838 return getConstantFP(V1, VT);
2839 break;
2840 case ISD::FREM :
2841 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2842 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2843 return getConstantFP(V1, VT);
2844 break;
2845 case ISD::FCOPYSIGN:
2846 V1.copySign(V2);
2847 return getConstantFP(V1, VT);
2848 default: break;
2853 // Canonicalize an UNDEF to the RHS, even over a constant.
2854 if (N1.getOpcode() == ISD::UNDEF) {
2855 if (isCommutativeBinOp(Opcode)) {
2856 std::swap(N1, N2);
2857 } else {
2858 switch (Opcode) {
2859 case ISD::FP_ROUND_INREG:
2860 case ISD::SIGN_EXTEND_INREG:
2861 case ISD::SUB:
2862 case ISD::FSUB:
2863 case ISD::FDIV:
2864 case ISD::FREM:
2865 case ISD::SRA:
2866 return N1; // fold op(undef, arg2) -> undef
2867 case ISD::UDIV:
2868 case ISD::SDIV:
2869 case ISD::UREM:
2870 case ISD::SREM:
2871 case ISD::SRL:
2872 case ISD::SHL:
2873 if (!VT.isVector())
2874 return getConstant(0, VT); // fold op(undef, arg2) -> 0
2875 // For vectors, we can't easily build an all zero vector, just return
2876 // the LHS.
2877 return N2;
2882 // Fold a bunch of operators when the RHS is undef.
2883 if (N2.getOpcode() == ISD::UNDEF) {
2884 switch (Opcode) {
2885 case ISD::XOR:
2886 if (N1.getOpcode() == ISD::UNDEF)
2887 // Handle undef ^ undef -> 0 special case. This is a common
2888 // idiom (misuse).
2889 return getConstant(0, VT);
2890 // fallthrough
2891 case ISD::ADD:
2892 case ISD::ADDC:
2893 case ISD::ADDE:
2894 case ISD::SUB:
2895 case ISD::UDIV:
2896 case ISD::SDIV:
2897 case ISD::UREM:
2898 case ISD::SREM:
2899 return N2; // fold op(arg1, undef) -> undef
2900 case ISD::FADD:
2901 case ISD::FSUB:
2902 case ISD::FMUL:
2903 case ISD::FDIV:
2904 case ISD::FREM:
2905 if (UnsafeFPMath)
2906 return N2;
2907 break;
2908 case ISD::MUL:
2909 case ISD::AND:
2910 case ISD::SRL:
2911 case ISD::SHL:
2912 if (!VT.isVector())
2913 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2914 // For vectors, we can't easily build an all zero vector, just return
2915 // the LHS.
2916 return N1;
2917 case ISD::OR:
2918 if (!VT.isVector())
2919 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2920 // For vectors, we can't easily build an all one vector, just return
2921 // the LHS.
2922 return N1;
2923 case ISD::SRA:
2924 return N1;
2928 // Memoize this node if possible.
2929 SDNode *N;
2930 SDVTList VTs = getVTList(VT);
2931 if (VT != MVT::Flag) {
2932 SDValue Ops[] = { N1, N2 };
2933 FoldingSetNodeID ID;
2934 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2935 void *IP = 0;
2936 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2937 return SDValue(E, 0);
2939 N = NodeAllocator.Allocate<BinarySDNode>();
2940 new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2941 CSEMap.InsertNode(N, IP);
2942 } else {
2943 N = NodeAllocator.Allocate<BinarySDNode>();
2944 new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2947 AllNodes.push_back(N);
2948 #ifndef NDEBUG
2949 VerifyNode(N);
2950 #endif
2951 return SDValue(N, 0);
2954 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2955 SDValue N1, SDValue N2, SDValue N3) {
2956 // Perform various simplifications.
2957 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2958 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2959 switch (Opcode) {
2960 case ISD::CONCAT_VECTORS:
2961 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2962 // one big BUILD_VECTOR.
2963 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2964 N2.getOpcode() == ISD::BUILD_VECTOR &&
2965 N3.getOpcode() == ISD::BUILD_VECTOR) {
2966 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2967 Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2968 Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2969 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2971 break;
2972 case ISD::SETCC: {
2973 // Use FoldSetCC to simplify SETCC's.
2974 SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2975 if (Simp.getNode()) return Simp;
2976 break;
2978 case ISD::SELECT:
2979 if (N1C) {
2980 if (N1C->getZExtValue())
2981 return N2; // select true, X, Y -> X
2982 else
2983 return N3; // select false, X, Y -> Y
2986 if (N2 == N3) return N2; // select C, X, X -> X
2987 break;
2988 case ISD::BRCOND:
2989 if (N2C) {
2990 if (N2C->getZExtValue()) // Unconditional branch
2991 return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2992 else
2993 return N1; // Never-taken branch
2995 break;
2996 case ISD::VECTOR_SHUFFLE:
2997 llvm_unreachable("should use getVectorShuffle constructor!");
2998 break;
2999 case ISD::BIT_CONVERT:
3000 // Fold bit_convert nodes from a type to themselves.
3001 if (N1.getValueType() == VT)
3002 return N1;
3003 break;
3006 // Memoize node if it doesn't produce a flag.
3007 SDNode *N;
3008 SDVTList VTs = getVTList(VT);
3009 if (VT != MVT::Flag) {
3010 SDValue Ops[] = { N1, N2, N3 };
3011 FoldingSetNodeID ID;
3012 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3013 void *IP = 0;
3014 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3015 return SDValue(E, 0);
3017 N = NodeAllocator.Allocate<TernarySDNode>();
3018 new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3019 CSEMap.InsertNode(N, IP);
3020 } else {
3021 N = NodeAllocator.Allocate<TernarySDNode>();
3022 new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3025 AllNodes.push_back(N);
3026 #ifndef NDEBUG
3027 VerifyNode(N);
3028 #endif
3029 return SDValue(N, 0);
3032 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3033 SDValue N1, SDValue N2, SDValue N3,
3034 SDValue N4) {
3035 SDValue Ops[] = { N1, N2, N3, N4 };
3036 return getNode(Opcode, DL, VT, Ops, 4);
3039 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3040 SDValue N1, SDValue N2, SDValue N3,
3041 SDValue N4, SDValue N5) {
3042 SDValue Ops[] = { N1, N2, N3, N4, N5 };
3043 return getNode(Opcode, DL, VT, Ops, 5);
3046 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3047 /// the incoming stack arguments to be loaded from the stack.
3048 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3049 SmallVector<SDValue, 8> ArgChains;
3051 // Include the original chain at the beginning of the list. When this is
3052 // used by target LowerCall hooks, this helps legalize find the
3053 // CALLSEQ_BEGIN node.
3054 ArgChains.push_back(Chain);
3056 // Add a chain value for each stack argument.
3057 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3058 UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3059 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3060 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3061 if (FI->getIndex() < 0)
3062 ArgChains.push_back(SDValue(L, 1));
3064 // Build a tokenfactor for all the chains.
3065 return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3066 &ArgChains[0], ArgChains.size());
3069 /// getMemsetValue - Vectorized representation of the memset value
3070 /// operand.
3071 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3072 DebugLoc dl) {
3073 unsigned NumBits = VT.isVector() ?
3074 VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3075 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3076 APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3077 unsigned Shift = 8;
3078 for (unsigned i = NumBits; i > 8; i >>= 1) {
3079 Val = (Val << Shift) | Val;
3080 Shift <<= 1;
3082 if (VT.isInteger())
3083 return DAG.getConstant(Val, VT);
3084 return DAG.getConstantFP(APFloat(Val), VT);
3087 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3088 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3089 unsigned Shift = 8;
3090 for (unsigned i = NumBits; i > 8; i >>= 1) {
3091 Value = DAG.getNode(ISD::OR, dl, VT,
3092 DAG.getNode(ISD::SHL, dl, VT, Value,
3093 DAG.getConstant(Shift,
3094 TLI.getShiftAmountTy())),
3095 Value);
3096 Shift <<= 1;
3099 return Value;
3102 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3103 /// used when a memcpy is turned into a memset when the source is a constant
3104 /// string ptr.
3105 static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3106 const TargetLowering &TLI,
3107 std::string &Str, unsigned Offset) {
3108 // Handle vector with all elements zero.
3109 if (Str.empty()) {
3110 if (VT.isInteger())
3111 return DAG.getConstant(0, VT);
3112 unsigned NumElts = VT.getVectorNumElements();
3113 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3114 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3115 DAG.getConstant(0,
3116 EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3119 assert(!VT.isVector() && "Can't handle vector type here!");
3120 unsigned NumBits = VT.getSizeInBits();
3121 unsigned MSB = NumBits / 8;
3122 uint64_t Val = 0;
3123 if (TLI.isLittleEndian())
3124 Offset = Offset + MSB - 1;
3125 for (unsigned i = 0; i != MSB; ++i) {
3126 Val = (Val << 8) | (unsigned char)Str[Offset];
3127 Offset += TLI.isLittleEndian() ? -1 : 1;
3129 return DAG.getConstant(Val, VT);
3132 /// getMemBasePlusOffset - Returns base and offset node for the
3134 static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3135 SelectionDAG &DAG) {
3136 EVT VT = Base.getValueType();
3137 return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3138 VT, Base, DAG.getConstant(Offset, VT));
3141 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
3143 static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3144 unsigned SrcDelta = 0;
3145 GlobalAddressSDNode *G = NULL;
3146 if (Src.getOpcode() == ISD::GlobalAddress)
3147 G = cast<GlobalAddressSDNode>(Src);
3148 else if (Src.getOpcode() == ISD::ADD &&
3149 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3150 Src.getOperand(1).getOpcode() == ISD::Constant) {
3151 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3152 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3154 if (!G)
3155 return false;
3157 GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3158 if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3159 return true;
3161 return false;
3164 /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3165 /// to replace the memset / memcpy is below the threshold. It also returns the
3166 /// types of the sequence of memory ops to perform memset / memcpy.
3167 static
3168 bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3169 SDValue Dst, SDValue Src,
3170 unsigned Limit, uint64_t Size, unsigned &Align,
3171 std::string &Str, bool &isSrcStr,
3172 SelectionDAG &DAG,
3173 const TargetLowering &TLI) {
3174 isSrcStr = isMemSrcFromString(Src, Str);
3175 bool isSrcConst = isa<ConstantSDNode>(Src);
3176 EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3177 bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3178 if (VT != MVT::iAny) {
3179 const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3180 unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3181 // If source is a string constant, this will require an unaligned load.
3182 if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3183 if (Dst.getOpcode() != ISD::FrameIndex) {
3184 // Can't change destination alignment. It requires a unaligned store.
3185 if (AllowUnalign)
3186 VT = MVT::iAny;
3187 } else {
3188 int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3189 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3190 if (MFI->isFixedObjectIndex(FI)) {
3191 // Can't change destination alignment. It requires a unaligned store.
3192 if (AllowUnalign)
3193 VT = MVT::iAny;
3194 } else {
3195 // Give the stack frame object a larger alignment if needed.
3196 if (MFI->getObjectAlignment(FI) < NewAlign)
3197 MFI->setObjectAlignment(FI, NewAlign);
3198 Align = NewAlign;
3204 if (VT == MVT::iAny) {
3205 if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3206 VT = MVT::i64;
3207 } else {
3208 switch (Align & 7) {
3209 case 0: VT = MVT::i64; break;
3210 case 4: VT = MVT::i32; break;
3211 case 2: VT = MVT::i16; break;
3212 default: VT = MVT::i8; break;
3216 MVT LVT = MVT::i64;
3217 while (!TLI.isTypeLegal(LVT))
3218 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3219 assert(LVT.isInteger());
3221 if (VT.bitsGT(LVT))
3222 VT = LVT;
3225 unsigned NumMemOps = 0;
3226 while (Size != 0) {
3227 unsigned VTSize = VT.getSizeInBits() / 8;
3228 while (VTSize > Size) {
3229 // For now, only use non-vector load / store's for the left-over pieces.
3230 if (VT.isVector()) {
3231 VT = MVT::i64;
3232 while (!TLI.isTypeLegal(VT))
3233 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3234 VTSize = VT.getSizeInBits() / 8;
3235 } else {
3236 // This can result in a type that is not legal on the target, e.g.
3237 // 1 or 2 bytes on PPC.
3238 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3239 VTSize >>= 1;
3243 if (++NumMemOps > Limit)
3244 return false;
3245 MemOps.push_back(VT);
3246 Size -= VTSize;
3249 return true;
3252 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3253 SDValue Chain, SDValue Dst,
3254 SDValue Src, uint64_t Size,
3255 unsigned Align, bool AlwaysInline,
3256 const Value *DstSV, uint64_t DstSVOff,
3257 const Value *SrcSV, uint64_t SrcSVOff){
3258 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3260 // Expand memcpy to a series of load and store ops if the size operand falls
3261 // below a certain threshold.
3262 std::vector<EVT> MemOps;
3263 uint64_t Limit = -1ULL;
3264 if (!AlwaysInline)
3265 Limit = TLI.getMaxStoresPerMemcpy();
3266 unsigned DstAlign = Align; // Destination alignment can change.
3267 std::string Str;
3268 bool CopyFromStr;
3269 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3270 Str, CopyFromStr, DAG, TLI))
3271 return SDValue();
3274 bool isZeroStr = CopyFromStr && Str.empty();
3275 SmallVector<SDValue, 8> OutChains;
3276 unsigned NumMemOps = MemOps.size();
3277 uint64_t SrcOff = 0, DstOff = 0;
3278 for (unsigned i = 0; i != NumMemOps; ++i) {
3279 EVT VT = MemOps[i];
3280 unsigned VTSize = VT.getSizeInBits() / 8;
3281 SDValue Value, Store;
3283 if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3284 // It's unlikely a store of a vector immediate can be done in a single
3285 // instruction. It would require a load from a constantpool first.
3286 // We also handle store a vector with all zero's.
3287 // FIXME: Handle other cases where store of vector immediate is done in
3288 // a single instruction.
3289 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3290 Store = DAG.getStore(Chain, dl, Value,
3291 getMemBasePlusOffset(Dst, DstOff, DAG),
3292 DstSV, DstSVOff + DstOff, false, DstAlign);
3293 } else {
3294 // The type might not be legal for the target. This should only happen
3295 // if the type is smaller than a legal type, as on PPC, so the right
3296 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
3297 // to Load/Store if NVT==VT.
3298 // FIXME does the case above also need this?
3299 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3300 assert(NVT.bitsGE(VT));
3301 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3302 getMemBasePlusOffset(Src, SrcOff, DAG),
3303 SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3304 Store = DAG.getTruncStore(Chain, dl, Value,
3305 getMemBasePlusOffset(Dst, DstOff, DAG),
3306 DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3308 OutChains.push_back(Store);
3309 SrcOff += VTSize;
3310 DstOff += VTSize;
3313 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3314 &OutChains[0], OutChains.size());
3317 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3318 SDValue Chain, SDValue Dst,
3319 SDValue Src, uint64_t Size,
3320 unsigned Align, bool AlwaysInline,
3321 const Value *DstSV, uint64_t DstSVOff,
3322 const Value *SrcSV, uint64_t SrcSVOff){
3323 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3325 // Expand memmove to a series of load and store ops if the size operand falls
3326 // below a certain threshold.
3327 std::vector<EVT> MemOps;
3328 uint64_t Limit = -1ULL;
3329 if (!AlwaysInline)
3330 Limit = TLI.getMaxStoresPerMemmove();
3331 unsigned DstAlign = Align; // Destination alignment can change.
3332 std::string Str;
3333 bool CopyFromStr;
3334 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3335 Str, CopyFromStr, DAG, TLI))
3336 return SDValue();
3338 uint64_t SrcOff = 0, DstOff = 0;
3340 SmallVector<SDValue, 8> LoadValues;
3341 SmallVector<SDValue, 8> LoadChains;
3342 SmallVector<SDValue, 8> OutChains;
3343 unsigned NumMemOps = MemOps.size();
3344 for (unsigned i = 0; i < NumMemOps; i++) {
3345 EVT VT = MemOps[i];
3346 unsigned VTSize = VT.getSizeInBits() / 8;
3347 SDValue Value, Store;
3349 Value = DAG.getLoad(VT, dl, Chain,
3350 getMemBasePlusOffset(Src, SrcOff, DAG),
3351 SrcSV, SrcSVOff + SrcOff, false, Align);
3352 LoadValues.push_back(Value);
3353 LoadChains.push_back(Value.getValue(1));
3354 SrcOff += VTSize;
3356 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3357 &LoadChains[0], LoadChains.size());
3358 OutChains.clear();
3359 for (unsigned i = 0; i < NumMemOps; i++) {
3360 EVT VT = MemOps[i];
3361 unsigned VTSize = VT.getSizeInBits() / 8;
3362 SDValue Value, Store;
3364 Store = DAG.getStore(Chain, dl, LoadValues[i],
3365 getMemBasePlusOffset(Dst, DstOff, DAG),
3366 DstSV, DstSVOff + DstOff, false, DstAlign);
3367 OutChains.push_back(Store);
3368 DstOff += VTSize;
3371 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3372 &OutChains[0], OutChains.size());
3375 static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3376 SDValue Chain, SDValue Dst,
3377 SDValue Src, uint64_t Size,
3378 unsigned Align,
3379 const Value *DstSV, uint64_t DstSVOff) {
3380 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3382 // Expand memset to a series of load/store ops if the size operand
3383 // falls below a certain threshold.
3384 std::vector<EVT> MemOps;
3385 std::string Str;
3386 bool CopyFromStr;
3387 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3388 Size, Align, Str, CopyFromStr, DAG, TLI))
3389 return SDValue();
3391 SmallVector<SDValue, 8> OutChains;
3392 uint64_t DstOff = 0;
3394 unsigned NumMemOps = MemOps.size();
3395 for (unsigned i = 0; i < NumMemOps; i++) {
3396 EVT VT = MemOps[i];
3397 unsigned VTSize = VT.getSizeInBits() / 8;
3398 SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3399 SDValue Store = DAG.getStore(Chain, dl, Value,
3400 getMemBasePlusOffset(Dst, DstOff, DAG),
3401 DstSV, DstSVOff + DstOff);
3402 OutChains.push_back(Store);
3403 DstOff += VTSize;
3406 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3407 &OutChains[0], OutChains.size());
3410 SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3411 SDValue Src, SDValue Size,
3412 unsigned Align, bool AlwaysInline,
3413 const Value *DstSV, uint64_t DstSVOff,
3414 const Value *SrcSV, uint64_t SrcSVOff) {
3416 // Check to see if we should lower the memcpy to loads and stores first.
3417 // For cases within the target-specified limits, this is the best choice.
3418 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3419 if (ConstantSize) {
3420 // Memcpy with size zero? Just return the original chain.
3421 if (ConstantSize->isNullValue())
3422 return Chain;
3424 SDValue Result =
3425 getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3426 ConstantSize->getZExtValue(),
3427 Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3428 if (Result.getNode())
3429 return Result;
3432 // Then check to see if we should lower the memcpy with target-specific
3433 // code. If the target chooses to do this, this is the next best.
3434 SDValue Result =
3435 TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3436 AlwaysInline,
3437 DstSV, DstSVOff, SrcSV, SrcSVOff);
3438 if (Result.getNode())
3439 return Result;
3441 // If we really need inline code and the target declined to provide it,
3442 // use a (potentially long) sequence of loads and stores.
3443 if (AlwaysInline) {
3444 assert(ConstantSize && "AlwaysInline requires a constant size!");
3445 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3446 ConstantSize->getZExtValue(), Align, true,
3447 DstSV, DstSVOff, SrcSV, SrcSVOff);
3450 // Emit a library call.
3451 TargetLowering::ArgListTy Args;
3452 TargetLowering::ArgListEntry Entry;
3453 Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3454 Entry.Node = Dst; Args.push_back(Entry);
3455 Entry.Node = Src; Args.push_back(Entry);
3456 Entry.Node = Size; Args.push_back(Entry);
3457 // FIXME: pass in DebugLoc
3458 std::pair<SDValue,SDValue> CallResult =
3459 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3460 false, false, false, false, 0,
3461 TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3462 /*isReturnValueUsed=*/false,
3463 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3464 TLI.getPointerTy()),
3465 Args, *this, dl, GetOrdering(Chain.getNode()));
3466 return CallResult.second;
3469 SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3470 SDValue Src, SDValue Size,
3471 unsigned Align,
3472 const Value *DstSV, uint64_t DstSVOff,
3473 const Value *SrcSV, uint64_t SrcSVOff) {
3475 // Check to see if we should lower the memmove to loads and stores first.
3476 // For cases within the target-specified limits, this is the best choice.
3477 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3478 if (ConstantSize) {
3479 // Memmove with size zero? Just return the original chain.
3480 if (ConstantSize->isNullValue())
3481 return Chain;
3483 SDValue Result =
3484 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3485 ConstantSize->getZExtValue(),
3486 Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3487 if (Result.getNode())
3488 return Result;
3491 // Then check to see if we should lower the memmove with target-specific
3492 // code. If the target chooses to do this, this is the next best.
3493 SDValue Result =
3494 TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3495 DstSV, DstSVOff, SrcSV, SrcSVOff);
3496 if (Result.getNode())
3497 return Result;
3499 // Emit a library call.
3500 TargetLowering::ArgListTy Args;
3501 TargetLowering::ArgListEntry Entry;
3502 Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3503 Entry.Node = Dst; Args.push_back(Entry);
3504 Entry.Node = Src; Args.push_back(Entry);
3505 Entry.Node = Size; Args.push_back(Entry);
3506 // FIXME: pass in DebugLoc
3507 std::pair<SDValue,SDValue> CallResult =
3508 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3509 false, false, false, false, 0,
3510 TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3511 /*isReturnValueUsed=*/false,
3512 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3513 TLI.getPointerTy()),
3514 Args, *this, dl, GetOrdering(Chain.getNode()));
3515 return CallResult.second;
3518 SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3519 SDValue Src, SDValue Size,
3520 unsigned Align,
3521 const Value *DstSV, uint64_t DstSVOff) {
3523 // Check to see if we should lower the memset to stores first.
3524 // For cases within the target-specified limits, this is the best choice.
3525 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3526 if (ConstantSize) {
3527 // Memset with size zero? Just return the original chain.
3528 if (ConstantSize->isNullValue())
3529 return Chain;
3531 SDValue Result =
3532 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3533 Align, DstSV, DstSVOff);
3534 if (Result.getNode())
3535 return Result;
3538 // Then check to see if we should lower the memset with target-specific
3539 // code. If the target chooses to do this, this is the next best.
3540 SDValue Result =
3541 TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3542 DstSV, DstSVOff);
3543 if (Result.getNode())
3544 return Result;
3546 // Emit a library call.
3547 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3548 TargetLowering::ArgListTy Args;
3549 TargetLowering::ArgListEntry Entry;
3550 Entry.Node = Dst; Entry.Ty = IntPtrTy;
3551 Args.push_back(Entry);
3552 // Extend or truncate the argument to be an i32 value for the call.
3553 if (Src.getValueType().bitsGT(MVT::i32))
3554 Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3555 else
3556 Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3557 Entry.Node = Src;
3558 Entry.Ty = Type::getInt32Ty(*getContext());
3559 Entry.isSExt = true;
3560 Args.push_back(Entry);
3561 Entry.Node = Size;
3562 Entry.Ty = IntPtrTy;
3563 Entry.isSExt = false;
3564 Args.push_back(Entry);
3565 // FIXME: pass in DebugLoc
3566 std::pair<SDValue,SDValue> CallResult =
3567 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3568 false, false, false, false, 0,
3569 TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3570 /*isReturnValueUsed=*/false,
3571 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3572 TLI.getPointerTy()),
3573 Args, *this, dl, GetOrdering(Chain.getNode()));
3574 return CallResult.second;
3577 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3578 SDValue Chain,
3579 SDValue Ptr, SDValue Cmp,
3580 SDValue Swp, const Value* PtrVal,
3581 unsigned Alignment) {
3582 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3583 Alignment = getEVTAlignment(MemVT);
3585 // Check if the memory reference references a frame index
3586 if (!PtrVal)
3587 if (const FrameIndexSDNode *FI =
3588 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3589 PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3591 MachineFunction &MF = getMachineFunction();
3592 unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3594 // For now, atomics are considered to be volatile always.
3595 Flags |= MachineMemOperand::MOVolatile;
3597 MachineMemOperand *MMO =
3598 MF.getMachineMemOperand(PtrVal, Flags, 0,
3599 MemVT.getStoreSize(), Alignment);
3601 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3604 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3605 SDValue Chain,
3606 SDValue Ptr, SDValue Cmp,
3607 SDValue Swp, MachineMemOperand *MMO) {
3608 assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3609 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3611 EVT VT = Cmp.getValueType();
3613 SDVTList VTs = getVTList(VT, MVT::Other);
3614 FoldingSetNodeID ID;
3615 ID.AddInteger(MemVT.getRawBits());
3616 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3617 AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3618 void* IP = 0;
3619 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3620 cast<AtomicSDNode>(E)->refineAlignment(MMO);
3621 return SDValue(E, 0);
3623 SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3624 new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3625 CSEMap.InsertNode(N, IP);
3626 AllNodes.push_back(N);
3627 return SDValue(N, 0);
3630 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3631 SDValue Chain,
3632 SDValue Ptr, SDValue Val,
3633 const Value* PtrVal,
3634 unsigned Alignment) {
3635 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3636 Alignment = getEVTAlignment(MemVT);
3638 // Check if the memory reference references a frame index
3639 if (!PtrVal)
3640 if (const FrameIndexSDNode *FI =
3641 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3642 PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3644 MachineFunction &MF = getMachineFunction();
3645 unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3647 // For now, atomics are considered to be volatile always.
3648 Flags |= MachineMemOperand::MOVolatile;
3650 MachineMemOperand *MMO =
3651 MF.getMachineMemOperand(PtrVal, Flags, 0,
3652 MemVT.getStoreSize(), Alignment);
3654 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3657 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3658 SDValue Chain,
3659 SDValue Ptr, SDValue Val,
3660 MachineMemOperand *MMO) {
3661 assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3662 Opcode == ISD::ATOMIC_LOAD_SUB ||
3663 Opcode == ISD::ATOMIC_LOAD_AND ||
3664 Opcode == ISD::ATOMIC_LOAD_OR ||
3665 Opcode == ISD::ATOMIC_LOAD_XOR ||
3666 Opcode == ISD::ATOMIC_LOAD_NAND ||
3667 Opcode == ISD::ATOMIC_LOAD_MIN ||
3668 Opcode == ISD::ATOMIC_LOAD_MAX ||
3669 Opcode == ISD::ATOMIC_LOAD_UMIN ||
3670 Opcode == ISD::ATOMIC_LOAD_UMAX ||
3671 Opcode == ISD::ATOMIC_SWAP) &&
3672 "Invalid Atomic Op");
3674 EVT VT = Val.getValueType();
3676 SDVTList VTs = getVTList(VT, MVT::Other);
3677 FoldingSetNodeID ID;
3678 ID.AddInteger(MemVT.getRawBits());
3679 SDValue Ops[] = {Chain, Ptr, Val};
3680 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3681 void* IP = 0;
3682 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3683 cast<AtomicSDNode>(E)->refineAlignment(MMO);
3684 return SDValue(E, 0);
3686 SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3687 new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3688 CSEMap.InsertNode(N, IP);
3689 AllNodes.push_back(N);
3690 return SDValue(N, 0);
3693 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3694 /// Allowed to return something different (and simpler) if Simplify is true.
3695 SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3696 DebugLoc dl) {
3697 if (NumOps == 1)
3698 return Ops[0];
3700 SmallVector<EVT, 4> VTs;
3701 VTs.reserve(NumOps);
3702 for (unsigned i = 0; i < NumOps; ++i)
3703 VTs.push_back(Ops[i].getValueType());
3704 return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3705 Ops, NumOps);
3708 SDValue
3709 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3710 const EVT *VTs, unsigned NumVTs,
3711 const SDValue *Ops, unsigned NumOps,
3712 EVT MemVT, const Value *srcValue, int SVOff,
3713 unsigned Align, bool Vol,
3714 bool ReadMem, bool WriteMem) {
3715 return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3716 MemVT, srcValue, SVOff, Align, Vol,
3717 ReadMem, WriteMem);
3720 SDValue
3721 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3722 const SDValue *Ops, unsigned NumOps,
3723 EVT MemVT, const Value *srcValue, int SVOff,
3724 unsigned Align, bool Vol,
3725 bool ReadMem, bool WriteMem) {
3726 if (Align == 0) // Ensure that codegen never sees alignment 0
3727 Align = getEVTAlignment(MemVT);
3729 MachineFunction &MF = getMachineFunction();
3730 unsigned Flags = 0;
3731 if (WriteMem)
3732 Flags |= MachineMemOperand::MOStore;
3733 if (ReadMem)
3734 Flags |= MachineMemOperand::MOLoad;
3735 if (Vol)
3736 Flags |= MachineMemOperand::MOVolatile;
3737 MachineMemOperand *MMO =
3738 MF.getMachineMemOperand(srcValue, Flags, SVOff,
3739 MemVT.getStoreSize(), Align);
3741 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3744 SDValue
3745 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3746 const SDValue *Ops, unsigned NumOps,
3747 EVT MemVT, MachineMemOperand *MMO) {
3748 assert((Opcode == ISD::INTRINSIC_VOID ||
3749 Opcode == ISD::INTRINSIC_W_CHAIN ||
3750 (Opcode <= INT_MAX &&
3751 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3752 "Opcode is not a memory-accessing opcode!");
3754 // Memoize the node unless it returns a flag.
3755 MemIntrinsicSDNode *N;
3756 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3757 FoldingSetNodeID ID;
3758 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3759 void *IP = 0;
3760 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3761 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3762 return SDValue(E, 0);
3765 N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3766 new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3767 CSEMap.InsertNode(N, IP);
3768 } else {
3769 N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3770 new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3772 AllNodes.push_back(N);
3773 return SDValue(N, 0);
3776 SDValue
3777 SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3778 ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3779 SDValue Ptr, SDValue Offset,
3780 const Value *SV, int SVOffset, EVT MemVT,
3781 bool isVolatile, unsigned Alignment) {
3782 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3783 Alignment = getEVTAlignment(VT);
3785 // Check if the memory reference references a frame index
3786 if (!SV)
3787 if (const FrameIndexSDNode *FI =
3788 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3789 SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3791 MachineFunction &MF = getMachineFunction();
3792 unsigned Flags = MachineMemOperand::MOLoad;
3793 if (isVolatile)
3794 Flags |= MachineMemOperand::MOVolatile;
3795 MachineMemOperand *MMO =
3796 MF.getMachineMemOperand(SV, Flags, SVOffset,
3797 MemVT.getStoreSize(), Alignment);
3798 return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3801 SDValue
3802 SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3803 ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3804 SDValue Ptr, SDValue Offset, EVT MemVT,
3805 MachineMemOperand *MMO) {
3806 if (VT == MemVT) {
3807 ExtType = ISD::NON_EXTLOAD;
3808 } else if (ExtType == ISD::NON_EXTLOAD) {
3809 assert(VT == MemVT && "Non-extending load from different memory type!");
3810 } else {
3811 // Extending load.
3812 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3813 "Should only be an extending load, not truncating!");
3814 assert(VT.isInteger() == MemVT.isInteger() &&
3815 "Cannot convert from FP to Int or Int -> FP!");
3816 assert(VT.isVector() == MemVT.isVector() &&
3817 "Cannot use trunc store to convert to or from a vector!");
3818 assert((!VT.isVector() ||
3819 VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3820 "Cannot use trunc store to change the number of vector elements!");
3823 bool Indexed = AM != ISD::UNINDEXED;
3824 assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3825 "Unindexed load with an offset!");
3827 SDVTList VTs = Indexed ?
3828 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3829 SDValue Ops[] = { Chain, Ptr, Offset };
3830 FoldingSetNodeID ID;
3831 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3832 ID.AddInteger(MemVT.getRawBits());
3833 ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3834 void *IP = 0;
3835 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3836 cast<LoadSDNode>(E)->refineAlignment(MMO);
3837 return SDValue(E, 0);
3839 SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3840 new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3841 CSEMap.InsertNode(N, IP);
3842 AllNodes.push_back(N);
3843 return SDValue(N, 0);
3846 SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3847 SDValue Chain, SDValue Ptr,
3848 const Value *SV, int SVOffset,
3849 bool isVolatile, unsigned Alignment) {
3850 SDValue Undef = getUNDEF(Ptr.getValueType());
3851 return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3852 SV, SVOffset, VT, isVolatile, Alignment);
3855 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3856 SDValue Chain, SDValue Ptr,
3857 const Value *SV,
3858 int SVOffset, EVT MemVT,
3859 bool isVolatile, unsigned Alignment) {
3860 SDValue Undef = getUNDEF(Ptr.getValueType());
3861 return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3862 SV, SVOffset, MemVT, isVolatile, Alignment);
3865 SDValue
3866 SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3867 SDValue Offset, ISD::MemIndexedMode AM) {
3868 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3869 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3870 "Load is already a indexed load!");
3871 return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3872 LD->getChain(), Base, Offset, LD->getSrcValue(),
3873 LD->getSrcValueOffset(), LD->getMemoryVT(),
3874 LD->isVolatile(), LD->getAlignment());
3877 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3878 SDValue Ptr, const Value *SV, int SVOffset,
3879 bool isVolatile, unsigned Alignment) {
3880 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3881 Alignment = getEVTAlignment(Val.getValueType());
3883 // Check if the memory reference references a frame index
3884 if (!SV)
3885 if (const FrameIndexSDNode *FI =
3886 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3887 SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3889 MachineFunction &MF = getMachineFunction();
3890 unsigned Flags = MachineMemOperand::MOStore;
3891 if (isVolatile)
3892 Flags |= MachineMemOperand::MOVolatile;
3893 MachineMemOperand *MMO =
3894 MF.getMachineMemOperand(SV, Flags, SVOffset,
3895 Val.getValueType().getStoreSize(), Alignment);
3897 return getStore(Chain, dl, Val, Ptr, MMO);
3900 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3901 SDValue Ptr, MachineMemOperand *MMO) {
3902 EVT VT = Val.getValueType();
3903 SDVTList VTs = getVTList(MVT::Other);
3904 SDValue Undef = getUNDEF(Ptr.getValueType());
3905 SDValue Ops[] = { Chain, Val, Ptr, Undef };
3906 FoldingSetNodeID ID;
3907 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3908 ID.AddInteger(VT.getRawBits());
3909 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3910 void *IP = 0;
3911 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3912 cast<StoreSDNode>(E)->refineAlignment(MMO);
3913 return SDValue(E, 0);
3915 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3916 new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3917 CSEMap.InsertNode(N, IP);
3918 AllNodes.push_back(N);
3919 return SDValue(N, 0);
3922 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3923 SDValue Ptr, const Value *SV,
3924 int SVOffset, EVT SVT,
3925 bool isVolatile, unsigned Alignment) {
3926 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3927 Alignment = getEVTAlignment(SVT);
3929 // Check if the memory reference references a frame index
3930 if (!SV)
3931 if (const FrameIndexSDNode *FI =
3932 dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3933 SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3935 MachineFunction &MF = getMachineFunction();
3936 unsigned Flags = MachineMemOperand::MOStore;
3937 if (isVolatile)
3938 Flags |= MachineMemOperand::MOVolatile;
3939 MachineMemOperand *MMO =
3940 MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3942 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3945 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3946 SDValue Ptr, EVT SVT,
3947 MachineMemOperand *MMO) {
3948 EVT VT = Val.getValueType();
3950 if (VT == SVT)
3951 return getStore(Chain, dl, Val, Ptr, MMO);
3953 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
3954 "Should only be a truncating store, not extending!");
3955 assert(VT.isInteger() == SVT.isInteger() &&
3956 "Can't do FP-INT conversion!");
3957 assert(VT.isVector() == SVT.isVector() &&
3958 "Cannot use trunc store to convert to or from a vector!");
3959 assert((!VT.isVector() ||
3960 VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
3961 "Cannot use trunc store to change the number of vector elements!");
3963 SDVTList VTs = getVTList(MVT::Other);
3964 SDValue Undef = getUNDEF(Ptr.getValueType());
3965 SDValue Ops[] = { Chain, Val, Ptr, Undef };
3966 FoldingSetNodeID ID;
3967 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3968 ID.AddInteger(SVT.getRawBits());
3969 ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
3970 void *IP = 0;
3971 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3972 cast<StoreSDNode>(E)->refineAlignment(MMO);
3973 return SDValue(E, 0);
3975 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3976 new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
3977 CSEMap.InsertNode(N, IP);
3978 AllNodes.push_back(N);
3979 return SDValue(N, 0);
3982 SDValue
3983 SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3984 SDValue Offset, ISD::MemIndexedMode AM) {
3985 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3986 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3987 "Store is already a indexed store!");
3988 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3989 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3990 FoldingSetNodeID ID;
3991 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3992 ID.AddInteger(ST->getMemoryVT().getRawBits());
3993 ID.AddInteger(ST->getRawSubclassData());
3994 void *IP = 0;
3995 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3996 return SDValue(E, 0);
3998 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3999 new (N) StoreSDNode(Ops, dl, VTs, AM,
4000 ST->isTruncatingStore(), ST->getMemoryVT(),
4001 ST->getMemOperand());
4002 CSEMap.InsertNode(N, IP);
4003 AllNodes.push_back(N);
4004 return SDValue(N, 0);
4007 SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4008 SDValue Chain, SDValue Ptr,
4009 SDValue SV) {
4010 SDValue Ops[] = { Chain, Ptr, SV };
4011 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4014 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4015 const SDUse *Ops, unsigned NumOps) {
4016 switch (NumOps) {
4017 case 0: return getNode(Opcode, DL, VT);
4018 case 1: return getNode(Opcode, DL, VT, Ops[0]);
4019 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4020 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4021 default: break;
4024 // Copy from an SDUse array into an SDValue array for use with
4025 // the regular getNode logic.
4026 SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4027 return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4030 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4031 const SDValue *Ops, unsigned NumOps) {
4032 switch (NumOps) {
4033 case 0: return getNode(Opcode, DL, VT);
4034 case 1: return getNode(Opcode, DL, VT, Ops[0]);
4035 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4036 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4037 default: break;
4040 switch (Opcode) {
4041 default: break;
4042 case ISD::SELECT_CC: {
4043 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4044 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4045 "LHS and RHS of condition must have same type!");
4046 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4047 "True and False arms of SelectCC must have same type!");
4048 assert(Ops[2].getValueType() == VT &&
4049 "select_cc node must be of same type as true and false value!");
4050 break;
4052 case ISD::BR_CC: {
4053 assert(NumOps == 5 && "BR_CC takes 5 operands!");
4054 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4055 "LHS/RHS of comparison should match types!");
4056 break;
4060 // Memoize nodes.
4061 SDNode *N;
4062 SDVTList VTs = getVTList(VT);
4064 if (VT != MVT::Flag) {
4065 FoldingSetNodeID ID;
4066 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4067 void *IP = 0;
4069 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4070 return SDValue(E, 0);
4072 N = NodeAllocator.Allocate<SDNode>();
4073 new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4074 CSEMap.InsertNode(N, IP);
4075 } else {
4076 N = NodeAllocator.Allocate<SDNode>();
4077 new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4080 AllNodes.push_back(N);
4081 #ifndef NDEBUG
4082 VerifyNode(N);
4083 #endif
4084 return SDValue(N, 0);
4087 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4088 const std::vector<EVT> &ResultTys,
4089 const SDValue *Ops, unsigned NumOps) {
4090 return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4091 Ops, NumOps);
4094 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4095 const EVT *VTs, unsigned NumVTs,
4096 const SDValue *Ops, unsigned NumOps) {
4097 if (NumVTs == 1)
4098 return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4099 return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4102 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4103 const SDValue *Ops, unsigned NumOps) {
4104 if (VTList.NumVTs == 1)
4105 return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4107 #if 0
4108 switch (Opcode) {
4109 // FIXME: figure out how to safely handle things like
4110 // int foo(int x) { return 1 << (x & 255); }
4111 // int bar() { return foo(256); }
4112 case ISD::SRA_PARTS:
4113 case ISD::SRL_PARTS:
4114 case ISD::SHL_PARTS:
4115 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4116 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4117 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4118 else if (N3.getOpcode() == ISD::AND)
4119 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4120 // If the and is only masking out bits that cannot effect the shift,
4121 // eliminate the and.
4122 unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4123 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4124 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4126 break;
4128 #endif
4130 // Memoize the node unless it returns a flag.
4131 SDNode *N;
4132 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4133 FoldingSetNodeID ID;
4134 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4135 void *IP = 0;
4136 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4137 return SDValue(E, 0);
4139 if (NumOps == 1) {
4140 N = NodeAllocator.Allocate<UnarySDNode>();
4141 new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4142 } else if (NumOps == 2) {
4143 N = NodeAllocator.Allocate<BinarySDNode>();
4144 new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4145 } else if (NumOps == 3) {
4146 N = NodeAllocator.Allocate<TernarySDNode>();
4147 new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4148 } else {
4149 N = NodeAllocator.Allocate<SDNode>();
4150 new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4152 CSEMap.InsertNode(N, IP);
4153 } else {
4154 if (NumOps == 1) {
4155 N = NodeAllocator.Allocate<UnarySDNode>();
4156 new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4157 } else if (NumOps == 2) {
4158 N = NodeAllocator.Allocate<BinarySDNode>();
4159 new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4160 } else if (NumOps == 3) {
4161 N = NodeAllocator.Allocate<TernarySDNode>();
4162 new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4163 } else {
4164 N = NodeAllocator.Allocate<SDNode>();
4165 new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4168 AllNodes.push_back(N);
4169 #ifndef NDEBUG
4170 VerifyNode(N);
4171 #endif
4172 return SDValue(N, 0);
4175 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4176 return getNode(Opcode, DL, VTList, 0, 0);
4179 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4180 SDValue N1) {
4181 SDValue Ops[] = { N1 };
4182 return getNode(Opcode, DL, VTList, Ops, 1);
4185 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4186 SDValue N1, SDValue N2) {
4187 SDValue Ops[] = { N1, N2 };
4188 return getNode(Opcode, DL, VTList, Ops, 2);
4191 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4192 SDValue N1, SDValue N2, SDValue N3) {
4193 SDValue Ops[] = { N1, N2, N3 };
4194 return getNode(Opcode, DL, VTList, Ops, 3);
4197 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4198 SDValue N1, SDValue N2, SDValue N3,
4199 SDValue N4) {
4200 SDValue Ops[] = { N1, N2, N3, N4 };
4201 return getNode(Opcode, DL, VTList, Ops, 4);
4204 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4205 SDValue N1, SDValue N2, SDValue N3,
4206 SDValue N4, SDValue N5) {
4207 SDValue Ops[] = { N1, N2, N3, N4, N5 };
4208 return getNode(Opcode, DL, VTList, Ops, 5);
4211 SDVTList SelectionDAG::getVTList(EVT VT) {
4212 return makeVTList(SDNode::getValueTypeList(VT), 1);
4215 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4216 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4217 E = VTList.rend(); I != E; ++I)
4218 if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4219 return *I;
4221 EVT *Array = Allocator.Allocate<EVT>(2);
4222 Array[0] = VT1;
4223 Array[1] = VT2;
4224 SDVTList Result = makeVTList(Array, 2);
4225 VTList.push_back(Result);
4226 return Result;
4229 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4230 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4231 E = VTList.rend(); I != E; ++I)
4232 if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4233 I->VTs[2] == VT3)
4234 return *I;
4236 EVT *Array = Allocator.Allocate<EVT>(3);
4237 Array[0] = VT1;
4238 Array[1] = VT2;
4239 Array[2] = VT3;
4240 SDVTList Result = makeVTList(Array, 3);
4241 VTList.push_back(Result);
4242 return Result;
4245 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4246 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4247 E = VTList.rend(); I != E; ++I)
4248 if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4249 I->VTs[2] == VT3 && I->VTs[3] == VT4)
4250 return *I;
4252 EVT *Array = Allocator.Allocate<EVT>(4);
4253 Array[0] = VT1;
4254 Array[1] = VT2;
4255 Array[2] = VT3;
4256 Array[3] = VT4;
4257 SDVTList Result = makeVTList(Array, 4);
4258 VTList.push_back(Result);
4259 return Result;
4262 SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4263 switch (NumVTs) {
4264 case 0: llvm_unreachable("Cannot have nodes without results!");
4265 case 1: return getVTList(VTs[0]);
4266 case 2: return getVTList(VTs[0], VTs[1]);
4267 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4268 case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4269 default: break;
4272 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4273 E = VTList.rend(); I != E; ++I) {
4274 if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4275 continue;
4277 bool NoMatch = false;
4278 for (unsigned i = 2; i != NumVTs; ++i)
4279 if (VTs[i] != I->VTs[i]) {
4280 NoMatch = true;
4281 break;
4283 if (!NoMatch)
4284 return *I;
4287 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4288 std::copy(VTs, VTs+NumVTs, Array);
4289 SDVTList Result = makeVTList(Array, NumVTs);
4290 VTList.push_back(Result);
4291 return Result;
4295 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4296 /// specified operands. If the resultant node already exists in the DAG,
4297 /// this does not modify the specified node, instead it returns the node that
4298 /// already exists. If the resultant node does not exist in the DAG, the
4299 /// input node is returned. As a degenerate case, if you specify the same
4300 /// input operands as the node already has, the input node is returned.
4301 SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4302 SDNode *N = InN.getNode();
4303 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4305 // Check to see if there is no change.
4306 if (Op == N->getOperand(0)) return InN;
4308 // See if the modified node already exists.
4309 void *InsertPos = 0;
4310 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4311 return SDValue(Existing, InN.getResNo());
4313 // Nope it doesn't. Remove the node from its current place in the maps.
4314 if (InsertPos)
4315 if (!RemoveNodeFromCSEMaps(N))
4316 InsertPos = 0;
4318 // Now we update the operands.
4319 N->OperandList[0].set(Op);
4321 // If this gets put into a CSE map, add it.
4322 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4323 return InN;
4326 SDValue SelectionDAG::
4327 UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4328 SDNode *N = InN.getNode();
4329 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4331 // Check to see if there is no change.
4332 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4333 return InN; // No operands changed, just return the input node.
4335 // See if the modified node already exists.
4336 void *InsertPos = 0;
4337 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4338 return SDValue(Existing, InN.getResNo());
4340 // Nope it doesn't. Remove the node from its current place in the maps.
4341 if (InsertPos)
4342 if (!RemoveNodeFromCSEMaps(N))
4343 InsertPos = 0;
4345 // Now we update the operands.
4346 if (N->OperandList[0] != Op1)
4347 N->OperandList[0].set(Op1);
4348 if (N->OperandList[1] != Op2)
4349 N->OperandList[1].set(Op2);
4351 // If this gets put into a CSE map, add it.
4352 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4353 return InN;
4356 SDValue SelectionDAG::
4357 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4358 SDValue Ops[] = { Op1, Op2, Op3 };
4359 return UpdateNodeOperands(N, Ops, 3);
4362 SDValue SelectionDAG::
4363 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4364 SDValue Op3, SDValue Op4) {
4365 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4366 return UpdateNodeOperands(N, Ops, 4);
4369 SDValue SelectionDAG::
4370 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4371 SDValue Op3, SDValue Op4, SDValue Op5) {
4372 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4373 return UpdateNodeOperands(N, Ops, 5);
4376 SDValue SelectionDAG::
4377 UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4378 SDNode *N = InN.getNode();
4379 assert(N->getNumOperands() == NumOps &&
4380 "Update with wrong number of operands");
4382 // Check to see if there is no change.
4383 bool AnyChange = false;
4384 for (unsigned i = 0; i != NumOps; ++i) {
4385 if (Ops[i] != N->getOperand(i)) {
4386 AnyChange = true;
4387 break;
4391 // No operands changed, just return the input node.
4392 if (!AnyChange) return InN;
4394 // See if the modified node already exists.
4395 void *InsertPos = 0;
4396 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4397 return SDValue(Existing, InN.getResNo());
4399 // Nope it doesn't. Remove the node from its current place in the maps.
4400 if (InsertPos)
4401 if (!RemoveNodeFromCSEMaps(N))
4402 InsertPos = 0;
4404 // Now we update the operands.
4405 for (unsigned i = 0; i != NumOps; ++i)
4406 if (N->OperandList[i] != Ops[i])
4407 N->OperandList[i].set(Ops[i]);
4409 // If this gets put into a CSE map, add it.
4410 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4411 return InN;
4414 /// DropOperands - Release the operands and set this node to have
4415 /// zero operands.
4416 void SDNode::DropOperands() {
4417 // Unlike the code in MorphNodeTo that does this, we don't need to
4418 // watch for dead nodes here.
4419 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4420 SDUse &Use = *I++;
4421 Use.set(SDValue());
4425 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4426 /// machine opcode.
4428 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4429 EVT VT) {
4430 SDVTList VTs = getVTList(VT);
4431 return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4434 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4435 EVT VT, SDValue Op1) {
4436 SDVTList VTs = getVTList(VT);
4437 SDValue Ops[] = { Op1 };
4438 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4441 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4442 EVT VT, SDValue Op1,
4443 SDValue Op2) {
4444 SDVTList VTs = getVTList(VT);
4445 SDValue Ops[] = { Op1, Op2 };
4446 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4449 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4450 EVT VT, SDValue Op1,
4451 SDValue Op2, SDValue Op3) {
4452 SDVTList VTs = getVTList(VT);
4453 SDValue Ops[] = { Op1, Op2, Op3 };
4454 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4457 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4458 EVT VT, const SDValue *Ops,
4459 unsigned NumOps) {
4460 SDVTList VTs = getVTList(VT);
4461 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4464 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4465 EVT VT1, EVT VT2, const SDValue *Ops,
4466 unsigned NumOps) {
4467 SDVTList VTs = getVTList(VT1, VT2);
4468 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4471 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4472 EVT VT1, EVT VT2) {
4473 SDVTList VTs = getVTList(VT1, VT2);
4474 return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4477 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4478 EVT VT1, EVT VT2, EVT VT3,
4479 const SDValue *Ops, unsigned NumOps) {
4480 SDVTList VTs = getVTList(VT1, VT2, VT3);
4481 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4484 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4485 EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4486 const SDValue *Ops, unsigned NumOps) {
4487 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4488 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4491 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4492 EVT VT1, EVT VT2,
4493 SDValue Op1) {
4494 SDVTList VTs = getVTList(VT1, VT2);
4495 SDValue Ops[] = { Op1 };
4496 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4499 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4500 EVT VT1, EVT VT2,
4501 SDValue Op1, SDValue Op2) {
4502 SDVTList VTs = getVTList(VT1, VT2);
4503 SDValue Ops[] = { Op1, Op2 };
4504 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4507 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4508 EVT VT1, EVT VT2,
4509 SDValue Op1, SDValue Op2,
4510 SDValue Op3) {
4511 SDVTList VTs = getVTList(VT1, VT2);
4512 SDValue Ops[] = { Op1, Op2, Op3 };
4513 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4516 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4517 EVT VT1, EVT VT2, EVT VT3,
4518 SDValue Op1, SDValue Op2,
4519 SDValue Op3) {
4520 SDVTList VTs = getVTList(VT1, VT2, VT3);
4521 SDValue Ops[] = { Op1, Op2, Op3 };
4522 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4525 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4526 SDVTList VTs, const SDValue *Ops,
4527 unsigned NumOps) {
4528 return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4531 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4532 EVT VT) {
4533 SDVTList VTs = getVTList(VT);
4534 return MorphNodeTo(N, Opc, VTs, 0, 0);
4537 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4538 EVT VT, SDValue Op1) {
4539 SDVTList VTs = getVTList(VT);
4540 SDValue Ops[] = { Op1 };
4541 return MorphNodeTo(N, Opc, VTs, Ops, 1);
4544 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4545 EVT VT, SDValue Op1,
4546 SDValue Op2) {
4547 SDVTList VTs = getVTList(VT);
4548 SDValue Ops[] = { Op1, Op2 };
4549 return MorphNodeTo(N, Opc, VTs, Ops, 2);
4552 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4553 EVT VT, SDValue Op1,
4554 SDValue Op2, SDValue Op3) {
4555 SDVTList VTs = getVTList(VT);
4556 SDValue Ops[] = { Op1, Op2, Op3 };
4557 return MorphNodeTo(N, Opc, VTs, Ops, 3);
4560 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4561 EVT VT, const SDValue *Ops,
4562 unsigned NumOps) {
4563 SDVTList VTs = getVTList(VT);
4564 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4567 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4568 EVT VT1, EVT VT2, const SDValue *Ops,
4569 unsigned NumOps) {
4570 SDVTList VTs = getVTList(VT1, VT2);
4571 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4574 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4575 EVT VT1, EVT VT2) {
4576 SDVTList VTs = getVTList(VT1, VT2);
4577 return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4580 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4581 EVT VT1, EVT VT2, EVT VT3,
4582 const SDValue *Ops, unsigned NumOps) {
4583 SDVTList VTs = getVTList(VT1, VT2, VT3);
4584 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4587 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4588 EVT VT1, EVT VT2,
4589 SDValue Op1) {
4590 SDVTList VTs = getVTList(VT1, VT2);
4591 SDValue Ops[] = { Op1 };
4592 return MorphNodeTo(N, Opc, VTs, Ops, 1);
4595 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4596 EVT VT1, EVT VT2,
4597 SDValue Op1, SDValue Op2) {
4598 SDVTList VTs = getVTList(VT1, VT2);
4599 SDValue Ops[] = { Op1, Op2 };
4600 return MorphNodeTo(N, Opc, VTs, Ops, 2);
4603 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4604 EVT VT1, EVT VT2,
4605 SDValue Op1, SDValue Op2,
4606 SDValue Op3) {
4607 SDVTList VTs = getVTList(VT1, VT2);
4608 SDValue Ops[] = { Op1, Op2, Op3 };
4609 return MorphNodeTo(N, Opc, VTs, Ops, 3);
4612 /// MorphNodeTo - These *mutate* the specified node to have the specified
4613 /// return type, opcode, and operands.
4615 /// Note that MorphNodeTo returns the resultant node. If there is already a
4616 /// node of the specified opcode and operands, it returns that node instead of
4617 /// the current one. Note that the DebugLoc need not be the same.
4619 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4620 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4621 /// node, and because it doesn't require CSE recalculation for any of
4622 /// the node's users.
4624 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4625 SDVTList VTs, const SDValue *Ops,
4626 unsigned NumOps) {
4627 // If an identical node already exists, use it.
4628 void *IP = 0;
4629 if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4630 FoldingSetNodeID ID;
4631 AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4632 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4633 return ON;
4636 if (!RemoveNodeFromCSEMaps(N))
4637 IP = 0;
4639 // Start the morphing.
4640 N->NodeType = Opc;
4641 N->ValueList = VTs.VTs;
4642 N->NumValues = VTs.NumVTs;
4644 // Clear the operands list, updating used nodes to remove this from their
4645 // use list. Keep track of any operands that become dead as a result.
4646 SmallPtrSet<SDNode*, 16> DeadNodeSet;
4647 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4648 SDUse &Use = *I++;
4649 SDNode *Used = Use.getNode();
4650 Use.set(SDValue());
4651 if (Used->use_empty())
4652 DeadNodeSet.insert(Used);
4655 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4656 // Initialize the memory references information.
4657 MN->setMemRefs(0, 0);
4658 // If NumOps is larger than the # of operands we can have in a
4659 // MachineSDNode, reallocate the operand list.
4660 if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4661 if (MN->OperandsNeedDelete)
4662 delete[] MN->OperandList;
4663 if (NumOps > array_lengthof(MN->LocalOperands))
4664 // We're creating a final node that will live unmorphed for the
4665 // remainder of the current SelectionDAG iteration, so we can allocate
4666 // the operands directly out of a pool with no recycling metadata.
4667 MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4668 Ops, NumOps);
4669 else
4670 MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4671 MN->OperandsNeedDelete = false;
4672 } else
4673 MN->InitOperands(MN->OperandList, Ops, NumOps);
4674 } else {
4675 // If NumOps is larger than the # of operands we currently have, reallocate
4676 // the operand list.
4677 if (NumOps > N->NumOperands) {
4678 if (N->OperandsNeedDelete)
4679 delete[] N->OperandList;
4680 N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4681 N->OperandsNeedDelete = true;
4682 } else
4683 N->InitOperands(N->OperandList, Ops, NumOps);
4686 // Delete any nodes that are still dead after adding the uses for the
4687 // new operands.
4688 SmallVector<SDNode *, 16> DeadNodes;
4689 for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4690 E = DeadNodeSet.end(); I != E; ++I)
4691 if ((*I)->use_empty())
4692 DeadNodes.push_back(*I);
4693 RemoveDeadNodes(DeadNodes);
4695 if (IP)
4696 CSEMap.InsertNode(N, IP); // Memoize the new node.
4697 return N;
4701 /// getMachineNode - These are used for target selectors to create a new node
4702 /// with specified return type(s), MachineInstr opcode, and operands.
4704 /// Note that getMachineNode returns the resultant node. If there is already a
4705 /// node of the specified opcode and operands, it returns that node instead of
4706 /// the current one.
4707 MachineSDNode *
4708 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4709 SDVTList VTs = getVTList(VT);
4710 return getMachineNode(Opcode, dl, VTs, 0, 0);
4713 MachineSDNode *
4714 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4715 SDVTList VTs = getVTList(VT);
4716 SDValue Ops[] = { Op1 };
4717 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4720 MachineSDNode *
4721 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4722 SDValue Op1, SDValue Op2) {
4723 SDVTList VTs = getVTList(VT);
4724 SDValue Ops[] = { Op1, Op2 };
4725 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4728 MachineSDNode *
4729 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4730 SDValue Op1, SDValue Op2, SDValue Op3) {
4731 SDVTList VTs = getVTList(VT);
4732 SDValue Ops[] = { Op1, Op2, Op3 };
4733 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4736 MachineSDNode *
4737 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4738 const SDValue *Ops, unsigned NumOps) {
4739 SDVTList VTs = getVTList(VT);
4740 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4743 MachineSDNode *
4744 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4745 SDVTList VTs = getVTList(VT1, VT2);
4746 return getMachineNode(Opcode, dl, VTs, 0, 0);
4749 MachineSDNode *
4750 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4751 EVT VT1, EVT VT2, SDValue Op1) {
4752 SDVTList VTs = getVTList(VT1, VT2);
4753 SDValue Ops[] = { Op1 };
4754 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4757 MachineSDNode *
4758 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4759 EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4760 SDVTList VTs = getVTList(VT1, VT2);
4761 SDValue Ops[] = { Op1, Op2 };
4762 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4765 MachineSDNode *
4766 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4767 EVT VT1, EVT VT2, SDValue Op1,
4768 SDValue Op2, SDValue Op3) {
4769 SDVTList VTs = getVTList(VT1, VT2);
4770 SDValue Ops[] = { Op1, Op2, Op3 };
4771 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4774 MachineSDNode *
4775 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4776 EVT VT1, EVT VT2,
4777 const SDValue *Ops, unsigned NumOps) {
4778 SDVTList VTs = getVTList(VT1, VT2);
4779 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4782 MachineSDNode *
4783 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4784 EVT VT1, EVT VT2, EVT VT3,
4785 SDValue Op1, SDValue Op2) {
4786 SDVTList VTs = getVTList(VT1, VT2, VT3);
4787 SDValue Ops[] = { Op1, Op2 };
4788 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4791 MachineSDNode *
4792 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4793 EVT VT1, EVT VT2, EVT VT3,
4794 SDValue Op1, SDValue Op2, SDValue Op3) {
4795 SDVTList VTs = getVTList(VT1, VT2, VT3);
4796 SDValue Ops[] = { Op1, Op2, Op3 };
4797 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4800 MachineSDNode *
4801 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4802 EVT VT1, EVT VT2, EVT VT3,
4803 const SDValue *Ops, unsigned NumOps) {
4804 SDVTList VTs = getVTList(VT1, VT2, VT3);
4805 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4808 MachineSDNode *
4809 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4810 EVT VT2, EVT VT3, EVT VT4,
4811 const SDValue *Ops, unsigned NumOps) {
4812 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4813 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4816 MachineSDNode *
4817 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4818 const std::vector<EVT> &ResultTys,
4819 const SDValue *Ops, unsigned NumOps) {
4820 SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4821 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4824 MachineSDNode *
4825 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4826 const SDValue *Ops, unsigned NumOps) {
4827 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4828 MachineSDNode *N;
4829 void *IP;
4831 if (DoCSE) {
4832 FoldingSetNodeID ID;
4833 AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4834 IP = 0;
4835 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4836 return cast<MachineSDNode>(E);
4839 // Allocate a new MachineSDNode.
4840 N = NodeAllocator.Allocate<MachineSDNode>();
4841 new (N) MachineSDNode(~Opcode, DL, VTs);
4843 // Initialize the operands list.
4844 if (NumOps > array_lengthof(N->LocalOperands))
4845 // We're creating a final node that will live unmorphed for the
4846 // remainder of the current SelectionDAG iteration, so we can allocate
4847 // the operands directly out of a pool with no recycling metadata.
4848 N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4849 Ops, NumOps);
4850 else
4851 N->InitOperands(N->LocalOperands, Ops, NumOps);
4852 N->OperandsNeedDelete = false;
4854 if (DoCSE)
4855 CSEMap.InsertNode(N, IP);
4857 AllNodes.push_back(N);
4858 #ifndef NDEBUG
4859 VerifyNode(N);
4860 #endif
4861 return N;
4864 /// getTargetExtractSubreg - A convenience function for creating
4865 /// TargetInstrInfo::EXTRACT_SUBREG nodes.
4866 SDValue
4867 SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4868 SDValue Operand) {
4869 SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4870 SDNode *Subreg = getMachineNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4871 VT, Operand, SRIdxVal);
4872 return SDValue(Subreg, 0);
4875 /// getTargetInsertSubreg - A convenience function for creating
4876 /// TargetInstrInfo::INSERT_SUBREG nodes.
4877 SDValue
4878 SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4879 SDValue Operand, SDValue Subreg) {
4880 SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4881 SDNode *Result = getMachineNode(TargetInstrInfo::INSERT_SUBREG, DL,
4882 VT, Operand, Subreg, SRIdxVal);
4883 return SDValue(Result, 0);
4886 /// getNodeIfExists - Get the specified node if it's already available, or
4887 /// else return NULL.
4888 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4889 const SDValue *Ops, unsigned NumOps) {
4890 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4891 FoldingSetNodeID ID;
4892 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4893 void *IP = 0;
4894 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4895 return E;
4897 return NULL;
4900 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4901 /// This can cause recursive merging of nodes in the DAG.
4903 /// This version assumes From has a single result value.
4905 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4906 DAGUpdateListener *UpdateListener) {
4907 SDNode *From = FromN.getNode();
4908 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4909 "Cannot replace with this method!");
4910 assert(From != To.getNode() && "Cannot replace uses of with self");
4912 // Iterate over all the existing uses of From. New uses will be added
4913 // to the beginning of the use list, which we avoid visiting.
4914 // This specifically avoids visiting uses of From that arise while the
4915 // replacement is happening, because any such uses would be the result
4916 // of CSE: If an existing node looks like From after one of its operands
4917 // is replaced by To, we don't want to replace of all its users with To
4918 // too. See PR3018 for more info.
4919 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4920 while (UI != UE) {
4921 SDNode *User = *UI;
4923 // This node is about to morph, remove its old self from the CSE maps.
4924 RemoveNodeFromCSEMaps(User);
4926 // A user can appear in a use list multiple times, and when this
4927 // happens the uses are usually next to each other in the list.
4928 // To help reduce the number of CSE recomputations, process all
4929 // the uses of this user that we can find this way.
4930 do {
4931 SDUse &Use = UI.getUse();
4932 ++UI;
4933 Use.set(To);
4934 } while (UI != UE && *UI == User);
4936 // Now that we have modified User, add it back to the CSE maps. If it
4937 // already exists there, recursively merge the results together.
4938 AddModifiedNodeToCSEMaps(User, UpdateListener);
4942 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4943 /// This can cause recursive merging of nodes in the DAG.
4945 /// This version assumes that for each value of From, there is a
4946 /// corresponding value in To in the same position with the same type.
4948 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4949 DAGUpdateListener *UpdateListener) {
4950 #ifndef NDEBUG
4951 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4952 assert((!From->hasAnyUseOfValue(i) ||
4953 From->getValueType(i) == To->getValueType(i)) &&
4954 "Cannot use this version of ReplaceAllUsesWith!");
4955 #endif
4957 // Handle the trivial case.
4958 if (From == To)
4959 return;
4961 // Iterate over just the existing users of From. See the comments in
4962 // the ReplaceAllUsesWith above.
4963 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4964 while (UI != UE) {
4965 SDNode *User = *UI;
4967 // This node is about to morph, remove its old self from the CSE maps.
4968 RemoveNodeFromCSEMaps(User);
4970 // A user can appear in a use list multiple times, and when this
4971 // happens the uses are usually next to each other in the list.
4972 // To help reduce the number of CSE recomputations, process all
4973 // the uses of this user that we can find this way.
4974 do {
4975 SDUse &Use = UI.getUse();
4976 ++UI;
4977 Use.setNode(To);
4978 } while (UI != UE && *UI == User);
4980 // Now that we have modified User, add it back to the CSE maps. If it
4981 // already exists there, recursively merge the results together.
4982 AddModifiedNodeToCSEMaps(User, UpdateListener);
4986 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4987 /// This can cause recursive merging of nodes in the DAG.
4989 /// This version can replace From with any result values. To must match the
4990 /// number and types of values returned by From.
4991 void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4992 const SDValue *To,
4993 DAGUpdateListener *UpdateListener) {
4994 if (From->getNumValues() == 1) // Handle the simple case efficiently.
4995 return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4997 // Iterate over just the existing users of From. See the comments in
4998 // the ReplaceAllUsesWith above.
4999 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5000 while (UI != UE) {
5001 SDNode *User = *UI;
5003 // This node is about to morph, remove its old self from the CSE maps.
5004 RemoveNodeFromCSEMaps(User);
5006 // A user can appear in a use list multiple times, and when this
5007 // happens the uses are usually next to each other in the list.
5008 // To help reduce the number of CSE recomputations, process all
5009 // the uses of this user that we can find this way.
5010 do {
5011 SDUse &Use = UI.getUse();
5012 const SDValue &ToOp = To[Use.getResNo()];
5013 ++UI;
5014 Use.set(ToOp);
5015 } while (UI != UE && *UI == User);
5017 // Now that we have modified User, add it back to the CSE maps. If it
5018 // already exists there, recursively merge the results together.
5019 AddModifiedNodeToCSEMaps(User, UpdateListener);
5023 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5024 /// uses of other values produced by From.getNode() alone. The Deleted
5025 /// vector is handled the same way as for ReplaceAllUsesWith.
5026 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5027 DAGUpdateListener *UpdateListener){
5028 // Handle the really simple, really trivial case efficiently.
5029 if (From == To) return;
5031 // Handle the simple, trivial, case efficiently.
5032 if (From.getNode()->getNumValues() == 1) {
5033 ReplaceAllUsesWith(From, To, UpdateListener);
5034 return;
5037 // Iterate over just the existing users of From. See the comments in
5038 // the ReplaceAllUsesWith above.
5039 SDNode::use_iterator UI = From.getNode()->use_begin(),
5040 UE = From.getNode()->use_end();
5041 while (UI != UE) {
5042 SDNode *User = *UI;
5043 bool UserRemovedFromCSEMaps = false;
5045 // A user can appear in a use list multiple times, and when this
5046 // happens the uses are usually next to each other in the list.
5047 // To help reduce the number of CSE recomputations, process all
5048 // the uses of this user that we can find this way.
5049 do {
5050 SDUse &Use = UI.getUse();
5052 // Skip uses of different values from the same node.
5053 if (Use.getResNo() != From.getResNo()) {
5054 ++UI;
5055 continue;
5058 // If this node hasn't been modified yet, it's still in the CSE maps,
5059 // so remove its old self from the CSE maps.
5060 if (!UserRemovedFromCSEMaps) {
5061 RemoveNodeFromCSEMaps(User);
5062 UserRemovedFromCSEMaps = true;
5065 ++UI;
5066 Use.set(To);
5067 } while (UI != UE && *UI == User);
5069 // We are iterating over all uses of the From node, so if a use
5070 // doesn't use the specific value, no changes are made.
5071 if (!UserRemovedFromCSEMaps)
5072 continue;
5074 // Now that we have modified User, add it back to the CSE maps. If it
5075 // already exists there, recursively merge the results together.
5076 AddModifiedNodeToCSEMaps(User, UpdateListener);
5080 namespace {
5081 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5082 /// to record information about a use.
5083 struct UseMemo {
5084 SDNode *User;
5085 unsigned Index;
5086 SDUse *Use;
5089 /// operator< - Sort Memos by User.
5090 bool operator<(const UseMemo &L, const UseMemo &R) {
5091 return (intptr_t)L.User < (intptr_t)R.User;
5095 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5096 /// uses of other values produced by From.getNode() alone. The same value
5097 /// may appear in both the From and To list. The Deleted vector is
5098 /// handled the same way as for ReplaceAllUsesWith.
5099 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5100 const SDValue *To,
5101 unsigned Num,
5102 DAGUpdateListener *UpdateListener){
5103 // Handle the simple, trivial case efficiently.
5104 if (Num == 1)
5105 return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5107 // Read up all the uses and make records of them. This helps
5108 // processing new uses that are introduced during the
5109 // replacement process.
5110 SmallVector<UseMemo, 4> Uses;
5111 for (unsigned i = 0; i != Num; ++i) {
5112 unsigned FromResNo = From[i].getResNo();
5113 SDNode *FromNode = From[i].getNode();
5114 for (SDNode::use_iterator UI = FromNode->use_begin(),
5115 E = FromNode->use_end(); UI != E; ++UI) {
5116 SDUse &Use = UI.getUse();
5117 if (Use.getResNo() == FromResNo) {
5118 UseMemo Memo = { *UI, i, &Use };
5119 Uses.push_back(Memo);
5124 // Sort the uses, so that all the uses from a given User are together.
5125 std::sort(Uses.begin(), Uses.end());
5127 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5128 UseIndex != UseIndexEnd; ) {
5129 // We know that this user uses some value of From. If it is the right
5130 // value, update it.
5131 SDNode *User = Uses[UseIndex].User;
5133 // This node is about to morph, remove its old self from the CSE maps.
5134 RemoveNodeFromCSEMaps(User);
5136 // The Uses array is sorted, so all the uses for a given User
5137 // are next to each other in the list.
5138 // To help reduce the number of CSE recomputations, process all
5139 // the uses of this user that we can find this way.
5140 do {
5141 unsigned i = Uses[UseIndex].Index;
5142 SDUse &Use = *Uses[UseIndex].Use;
5143 ++UseIndex;
5145 Use.set(To[i]);
5146 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5148 // Now that we have modified User, add it back to the CSE maps. If it
5149 // already exists there, recursively merge the results together.
5150 AddModifiedNodeToCSEMaps(User, UpdateListener);
5154 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5155 /// based on their topological order. It returns the maximum id and a vector
5156 /// of the SDNodes* in assigned order by reference.
5157 unsigned SelectionDAG::AssignTopologicalOrder() {
5159 unsigned DAGSize = 0;
5161 // SortedPos tracks the progress of the algorithm. Nodes before it are
5162 // sorted, nodes after it are unsorted. When the algorithm completes
5163 // it is at the end of the list.
5164 allnodes_iterator SortedPos = allnodes_begin();
5166 // Visit all the nodes. Move nodes with no operands to the front of
5167 // the list immediately. Annotate nodes that do have operands with their
5168 // operand count. Before we do this, the Node Id fields of the nodes
5169 // may contain arbitrary values. After, the Node Id fields for nodes
5170 // before SortedPos will contain the topological sort index, and the
5171 // Node Id fields for nodes At SortedPos and after will contain the
5172 // count of outstanding operands.
5173 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5174 SDNode *N = I++;
5175 unsigned Degree = N->getNumOperands();
5176 if (Degree == 0) {
5177 // A node with no uses, add it to the result array immediately.
5178 N->setNodeId(DAGSize++);
5179 allnodes_iterator Q = N;
5180 if (Q != SortedPos)
5181 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5182 ++SortedPos;
5183 } else {
5184 // Temporarily use the Node Id as scratch space for the degree count.
5185 N->setNodeId(Degree);
5189 // Visit all the nodes. As we iterate, moves nodes into sorted order,
5190 // such that by the time the end is reached all nodes will be sorted.
5191 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5192 SDNode *N = I;
5193 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5194 UI != UE; ++UI) {
5195 SDNode *P = *UI;
5196 unsigned Degree = P->getNodeId();
5197 --Degree;
5198 if (Degree == 0) {
5199 // All of P's operands are sorted, so P may sorted now.
5200 P->setNodeId(DAGSize++);
5201 if (P != SortedPos)
5202 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5203 ++SortedPos;
5204 } else {
5205 // Update P's outstanding operand count.
5206 P->setNodeId(Degree);
5211 assert(SortedPos == AllNodes.end() &&
5212 "Topological sort incomplete!");
5213 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5214 "First node in topological sort is not the entry token!");
5215 assert(AllNodes.front().getNodeId() == 0 &&
5216 "First node in topological sort has non-zero id!");
5217 assert(AllNodes.front().getNumOperands() == 0 &&
5218 "First node in topological sort has operands!");
5219 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5220 "Last node in topologic sort has unexpected id!");
5221 assert(AllNodes.back().use_empty() &&
5222 "Last node in topologic sort has users!");
5223 assert(DAGSize == allnodes_size() && "Node count mismatch!");
5224 return DAGSize;
5227 /// AssignOrdering - Assign an order to the SDNode.
5228 void SelectionDAG::AssignOrdering(SDNode *SD, unsigned Order) {
5229 assert(SD && "Trying to assign an order to a null node!");
5230 if (Ordering)
5231 Ordering->add(SD, Order);
5234 /// GetOrdering - Get the order for the SDNode.
5235 unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5236 assert(SD && "Trying to get the order of a null node!");
5237 return Ordering ? Ordering->getOrder(SD) : 0;
5241 //===----------------------------------------------------------------------===//
5242 // SDNode Class
5243 //===----------------------------------------------------------------------===//
5245 HandleSDNode::~HandleSDNode() {
5246 DropOperands();
5249 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5250 EVT VT, int64_t o, unsigned char TF)
5251 : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5252 Offset(o), TargetFlags(TF) {
5253 TheGlobal = const_cast<GlobalValue*>(GA);
5256 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5257 MachineMemOperand *mmo)
5258 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5259 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5260 assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5261 assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5264 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5265 const SDValue *Ops, unsigned NumOps, EVT memvt,
5266 MachineMemOperand *mmo)
5267 : SDNode(Opc, dl, VTs, Ops, NumOps),
5268 MemoryVT(memvt), MMO(mmo) {
5269 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5270 assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5271 assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5274 /// Profile - Gather unique data for the node.
5276 void SDNode::Profile(FoldingSetNodeID &ID) const {
5277 AddNodeIDNode(ID, this);
5280 namespace {
5281 struct EVTArray {
5282 std::vector<EVT> VTs;
5284 EVTArray() {
5285 VTs.reserve(MVT::LAST_VALUETYPE);
5286 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5287 VTs.push_back(MVT((MVT::SimpleValueType)i));
5292 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5293 static ManagedStatic<EVTArray> SimpleVTArray;
5294 static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5296 /// getValueTypeList - Return a pointer to the specified value type.
5298 const EVT *SDNode::getValueTypeList(EVT VT) {
5299 if (VT.isExtended()) {
5300 sys::SmartScopedLock<true> Lock(*VTMutex);
5301 return &(*EVTs->insert(VT).first);
5302 } else {
5303 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5307 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5308 /// indicated value. This method ignores uses of other values defined by this
5309 /// operation.
5310 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5311 assert(Value < getNumValues() && "Bad value!");
5313 // TODO: Only iterate over uses of a given value of the node
5314 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5315 if (UI.getUse().getResNo() == Value) {
5316 if (NUses == 0)
5317 return false;
5318 --NUses;
5322 // Found exactly the right number of uses?
5323 return NUses == 0;
5327 /// hasAnyUseOfValue - Return true if there are any use of the indicated
5328 /// value. This method ignores uses of other values defined by this operation.
5329 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5330 assert(Value < getNumValues() && "Bad value!");
5332 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5333 if (UI.getUse().getResNo() == Value)
5334 return true;
5336 return false;
5340 /// isOnlyUserOf - Return true if this node is the only use of N.
5342 bool SDNode::isOnlyUserOf(SDNode *N) const {
5343 bool Seen = false;
5344 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5345 SDNode *User = *I;
5346 if (User == this)
5347 Seen = true;
5348 else
5349 return false;
5352 return Seen;
5355 /// isOperand - Return true if this node is an operand of N.
5357 bool SDValue::isOperandOf(SDNode *N) const {
5358 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5359 if (*this == N->getOperand(i))
5360 return true;
5361 return false;
5364 bool SDNode::isOperandOf(SDNode *N) const {
5365 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5366 if (this == N->OperandList[i].getNode())
5367 return true;
5368 return false;
5371 /// reachesChainWithoutSideEffects - Return true if this operand (which must
5372 /// be a chain) reaches the specified operand without crossing any
5373 /// side-effecting instructions. In practice, this looks through token
5374 /// factors and non-volatile loads. In order to remain efficient, this only
5375 /// looks a couple of nodes in, it does not do an exhaustive search.
5376 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5377 unsigned Depth) const {
5378 if (*this == Dest) return true;
5380 // Don't search too deeply, we just want to be able to see through
5381 // TokenFactor's etc.
5382 if (Depth == 0) return false;
5384 // If this is a token factor, all inputs to the TF happen in parallel. If any
5385 // of the operands of the TF reach dest, then we can do the xform.
5386 if (getOpcode() == ISD::TokenFactor) {
5387 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5388 if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5389 return true;
5390 return false;
5393 // Loads don't have side effects, look through them.
5394 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5395 if (!Ld->isVolatile())
5396 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5398 return false;
5401 /// isPredecessorOf - Return true if this node is a predecessor of N. This node
5402 /// is either an operand of N or it can be reached by traversing up the operands.
5403 /// NOTE: this is an expensive method. Use it carefully.
5404 bool SDNode::isPredecessorOf(SDNode *N) const {
5405 SmallPtrSet<SDNode *, 32> Visited;
5406 SmallVector<SDNode *, 16> Worklist;
5407 Worklist.push_back(N);
5409 do {
5410 N = Worklist.pop_back_val();
5411 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5412 SDNode *Op = N->getOperand(i).getNode();
5413 if (Op == this)
5414 return true;
5415 if (Visited.insert(Op))
5416 Worklist.push_back(Op);
5418 } while (!Worklist.empty());
5420 return false;
5423 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5424 assert(Num < NumOperands && "Invalid child # of SDNode!");
5425 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5428 std::string SDNode::getOperationName(const SelectionDAG *G) const {
5429 switch (getOpcode()) {
5430 default:
5431 if (getOpcode() < ISD::BUILTIN_OP_END)
5432 return "<<Unknown DAG Node>>";
5433 if (isMachineOpcode()) {
5434 if (G)
5435 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5436 if (getMachineOpcode() < TII->getNumOpcodes())
5437 return TII->get(getMachineOpcode()).getName();
5438 return "<<Unknown Machine Node>>";
5440 if (G) {
5441 const TargetLowering &TLI = G->getTargetLoweringInfo();
5442 const char *Name = TLI.getTargetNodeName(getOpcode());
5443 if (Name) return Name;
5444 return "<<Unknown Target Node>>";
5446 return "<<Unknown Node>>";
5448 #ifndef NDEBUG
5449 case ISD::DELETED_NODE:
5450 return "<<Deleted Node!>>";
5451 #endif
5452 case ISD::PREFETCH: return "Prefetch";
5453 case ISD::MEMBARRIER: return "MemBarrier";
5454 case ISD::ATOMIC_CMP_SWAP: return "AtomicCmpSwap";
5455 case ISD::ATOMIC_SWAP: return "AtomicSwap";
5456 case ISD::ATOMIC_LOAD_ADD: return "AtomicLoadAdd";
5457 case ISD::ATOMIC_LOAD_SUB: return "AtomicLoadSub";
5458 case ISD::ATOMIC_LOAD_AND: return "AtomicLoadAnd";
5459 case ISD::ATOMIC_LOAD_OR: return "AtomicLoadOr";
5460 case ISD::ATOMIC_LOAD_XOR: return "AtomicLoadXor";
5461 case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
5462 case ISD::ATOMIC_LOAD_MIN: return "AtomicLoadMin";
5463 case ISD::ATOMIC_LOAD_MAX: return "AtomicLoadMax";
5464 case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
5465 case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
5466 case ISD::PCMARKER: return "PCMarker";
5467 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5468 case ISD::SRCVALUE: return "SrcValue";
5469 case ISD::EntryToken: return "EntryToken";
5470 case ISD::TokenFactor: return "TokenFactor";
5471 case ISD::AssertSext: return "AssertSext";
5472 case ISD::AssertZext: return "AssertZext";
5474 case ISD::BasicBlock: return "BasicBlock";
5475 case ISD::VALUETYPE: return "ValueType";
5476 case ISD::Register: return "Register";
5478 case ISD::Constant: return "Constant";
5479 case ISD::ConstantFP: return "ConstantFP";
5480 case ISD::GlobalAddress: return "GlobalAddress";
5481 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5482 case ISD::FrameIndex: return "FrameIndex";
5483 case ISD::JumpTable: return "JumpTable";
5484 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5485 case ISD::RETURNADDR: return "RETURNADDR";
5486 case ISD::FRAMEADDR: return "FRAMEADDR";
5487 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5488 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5489 case ISD::LSDAADDR: return "LSDAADDR";
5490 case ISD::EHSELECTION: return "EHSELECTION";
5491 case ISD::EH_RETURN: return "EH_RETURN";
5492 case ISD::ConstantPool: return "ConstantPool";
5493 case ISD::ExternalSymbol: return "ExternalSymbol";
5494 case ISD::BlockAddress: return "BlockAddress";
5495 case ISD::INTRINSIC_WO_CHAIN:
5496 case ISD::INTRINSIC_VOID:
5497 case ISD::INTRINSIC_W_CHAIN: {
5498 unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5499 unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5500 if (IID < Intrinsic::num_intrinsics)
5501 return Intrinsic::getName((Intrinsic::ID)IID);
5502 else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5503 return TII->getName(IID);
5504 llvm_unreachable("Invalid intrinsic ID");
5507 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
5508 case ISD::TargetConstant: return "TargetConstant";
5509 case ISD::TargetConstantFP:return "TargetConstantFP";
5510 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5511 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5512 case ISD::TargetFrameIndex: return "TargetFrameIndex";
5513 case ISD::TargetJumpTable: return "TargetJumpTable";
5514 case ISD::TargetConstantPool: return "TargetConstantPool";
5515 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5516 case ISD::TargetBlockAddress: return "TargetBlockAddress";
5518 case ISD::CopyToReg: return "CopyToReg";
5519 case ISD::CopyFromReg: return "CopyFromReg";
5520 case ISD::UNDEF: return "undef";
5521 case ISD::MERGE_VALUES: return "merge_values";
5522 case ISD::INLINEASM: return "inlineasm";
5523 case ISD::EH_LABEL: return "eh_label";
5524 case ISD::HANDLENODE: return "handlenode";
5526 // Unary operators
5527 case ISD::FABS: return "fabs";
5528 case ISD::FNEG: return "fneg";
5529 case ISD::FSQRT: return "fsqrt";
5530 case ISD::FSIN: return "fsin";
5531 case ISD::FCOS: return "fcos";
5532 case ISD::FPOWI: return "fpowi";
5533 case ISD::FPOW: return "fpow";
5534 case ISD::FTRUNC: return "ftrunc";
5535 case ISD::FFLOOR: return "ffloor";
5536 case ISD::FCEIL: return "fceil";
5537 case ISD::FRINT: return "frint";
5538 case ISD::FNEARBYINT: return "fnearbyint";
5540 // Binary operators
5541 case ISD::ADD: return "add";
5542 case ISD::SUB: return "sub";
5543 case ISD::MUL: return "mul";
5544 case ISD::MULHU: return "mulhu";
5545 case ISD::MULHS: return "mulhs";
5546 case ISD::SDIV: return "sdiv";
5547 case ISD::UDIV: return "udiv";
5548 case ISD::SREM: return "srem";
5549 case ISD::UREM: return "urem";
5550 case ISD::SMUL_LOHI: return "smul_lohi";
5551 case ISD::UMUL_LOHI: return "umul_lohi";
5552 case ISD::SDIVREM: return "sdivrem";
5553 case ISD::UDIVREM: return "udivrem";
5554 case ISD::AND: return "and";
5555 case ISD::OR: return "or";
5556 case ISD::XOR: return "xor";
5557 case ISD::SHL: return "shl";
5558 case ISD::SRA: return "sra";
5559 case ISD::SRL: return "srl";
5560 case ISD::ROTL: return "rotl";
5561 case ISD::ROTR: return "rotr";
5562 case ISD::FADD: return "fadd";
5563 case ISD::FSUB: return "fsub";
5564 case ISD::FMUL: return "fmul";
5565 case ISD::FDIV: return "fdiv";
5566 case ISD::FREM: return "frem";
5567 case ISD::FCOPYSIGN: return "fcopysign";
5568 case ISD::FGETSIGN: return "fgetsign";
5570 case ISD::SETCC: return "setcc";
5571 case ISD::VSETCC: return "vsetcc";
5572 case ISD::SELECT: return "select";
5573 case ISD::SELECT_CC: return "select_cc";
5574 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
5575 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
5576 case ISD::CONCAT_VECTORS: return "concat_vectors";
5577 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
5578 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
5579 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
5580 case ISD::CARRY_FALSE: return "carry_false";
5581 case ISD::ADDC: return "addc";
5582 case ISD::ADDE: return "adde";
5583 case ISD::SADDO: return "saddo";
5584 case ISD::UADDO: return "uaddo";
5585 case ISD::SSUBO: return "ssubo";
5586 case ISD::USUBO: return "usubo";
5587 case ISD::SMULO: return "smulo";
5588 case ISD::UMULO: return "umulo";
5589 case ISD::SUBC: return "subc";
5590 case ISD::SUBE: return "sube";
5591 case ISD::SHL_PARTS: return "shl_parts";
5592 case ISD::SRA_PARTS: return "sra_parts";
5593 case ISD::SRL_PARTS: return "srl_parts";
5595 // Conversion operators.
5596 case ISD::SIGN_EXTEND: return "sign_extend";
5597 case ISD::ZERO_EXTEND: return "zero_extend";
5598 case ISD::ANY_EXTEND: return "any_extend";
5599 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5600 case ISD::TRUNCATE: return "truncate";
5601 case ISD::FP_ROUND: return "fp_round";
5602 case ISD::FLT_ROUNDS_: return "flt_rounds";
5603 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5604 case ISD::FP_EXTEND: return "fp_extend";
5606 case ISD::SINT_TO_FP: return "sint_to_fp";
5607 case ISD::UINT_TO_FP: return "uint_to_fp";
5608 case ISD::FP_TO_SINT: return "fp_to_sint";
5609 case ISD::FP_TO_UINT: return "fp_to_uint";
5610 case ISD::BIT_CONVERT: return "bit_convert";
5612 case ISD::CONVERT_RNDSAT: {
5613 switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5614 default: llvm_unreachable("Unknown cvt code!");
5615 case ISD::CVT_FF: return "cvt_ff";
5616 case ISD::CVT_FS: return "cvt_fs";
5617 case ISD::CVT_FU: return "cvt_fu";
5618 case ISD::CVT_SF: return "cvt_sf";
5619 case ISD::CVT_UF: return "cvt_uf";
5620 case ISD::CVT_SS: return "cvt_ss";
5621 case ISD::CVT_SU: return "cvt_su";
5622 case ISD::CVT_US: return "cvt_us";
5623 case ISD::CVT_UU: return "cvt_uu";
5627 // Control flow instructions
5628 case ISD::BR: return "br";
5629 case ISD::BRIND: return "brind";
5630 case ISD::BR_JT: return "br_jt";
5631 case ISD::BRCOND: return "brcond";
5632 case ISD::BR_CC: return "br_cc";
5633 case ISD::CALLSEQ_START: return "callseq_start";
5634 case ISD::CALLSEQ_END: return "callseq_end";
5636 // Other operators
5637 case ISD::LOAD: return "load";
5638 case ISD::STORE: return "store";
5639 case ISD::VAARG: return "vaarg";
5640 case ISD::VACOPY: return "vacopy";
5641 case ISD::VAEND: return "vaend";
5642 case ISD::VASTART: return "vastart";
5643 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5644 case ISD::EXTRACT_ELEMENT: return "extract_element";
5645 case ISD::BUILD_PAIR: return "build_pair";
5646 case ISD::STACKSAVE: return "stacksave";
5647 case ISD::STACKRESTORE: return "stackrestore";
5648 case ISD::TRAP: return "trap";
5650 // Bit manipulation
5651 case ISD::BSWAP: return "bswap";
5652 case ISD::CTPOP: return "ctpop";
5653 case ISD::CTTZ: return "cttz";
5654 case ISD::CTLZ: return "ctlz";
5656 // Trampolines
5657 case ISD::TRAMPOLINE: return "trampoline";
5659 case ISD::CONDCODE:
5660 switch (cast<CondCodeSDNode>(this)->get()) {
5661 default: llvm_unreachable("Unknown setcc condition!");
5662 case ISD::SETOEQ: return "setoeq";
5663 case ISD::SETOGT: return "setogt";
5664 case ISD::SETOGE: return "setoge";
5665 case ISD::SETOLT: return "setolt";
5666 case ISD::SETOLE: return "setole";
5667 case ISD::SETONE: return "setone";
5669 case ISD::SETO: return "seto";
5670 case ISD::SETUO: return "setuo";
5671 case ISD::SETUEQ: return "setue";
5672 case ISD::SETUGT: return "setugt";
5673 case ISD::SETUGE: return "setuge";
5674 case ISD::SETULT: return "setult";
5675 case ISD::SETULE: return "setule";
5676 case ISD::SETUNE: return "setune";
5678 case ISD::SETEQ: return "seteq";
5679 case ISD::SETGT: return "setgt";
5680 case ISD::SETGE: return "setge";
5681 case ISD::SETLT: return "setlt";
5682 case ISD::SETLE: return "setle";
5683 case ISD::SETNE: return "setne";
5688 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5689 switch (AM) {
5690 default:
5691 return "";
5692 case ISD::PRE_INC:
5693 return "<pre-inc>";
5694 case ISD::PRE_DEC:
5695 return "<pre-dec>";
5696 case ISD::POST_INC:
5697 return "<post-inc>";
5698 case ISD::POST_DEC:
5699 return "<post-dec>";
5703 std::string ISD::ArgFlagsTy::getArgFlagsString() {
5704 std::string S = "< ";
5706 if (isZExt())
5707 S += "zext ";
5708 if (isSExt())
5709 S += "sext ";
5710 if (isInReg())
5711 S += "inreg ";
5712 if (isSRet())
5713 S += "sret ";
5714 if (isByVal())
5715 S += "byval ";
5716 if (isNest())
5717 S += "nest ";
5718 if (getByValAlign())
5719 S += "byval-align:" + utostr(getByValAlign()) + " ";
5720 if (getOrigAlign())
5721 S += "orig-align:" + utostr(getOrigAlign()) + " ";
5722 if (getByValSize())
5723 S += "byval-size:" + utostr(getByValSize()) + " ";
5724 return S + ">";
5727 void SDNode::dump() const { dump(0); }
5728 void SDNode::dump(const SelectionDAG *G) const {
5729 print(dbgs(), G);
5732 void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5733 OS << (void*)this << ": ";
5735 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5736 if (i) OS << ",";
5737 if (getValueType(i) == MVT::Other)
5738 OS << "ch";
5739 else
5740 OS << getValueType(i).getEVTString();
5742 OS << " = " << getOperationName(G);
5745 void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5746 if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5747 if (!MN->memoperands_empty()) {
5748 OS << "<";
5749 OS << "Mem:";
5750 for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5751 e = MN->memoperands_end(); i != e; ++i) {
5752 OS << **i;
5753 if (next(i) != e)
5754 OS << " ";
5756 OS << ">";
5758 } else if (const ShuffleVectorSDNode *SVN =
5759 dyn_cast<ShuffleVectorSDNode>(this)) {
5760 OS << "<";
5761 for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5762 int Idx = SVN->getMaskElt(i);
5763 if (i) OS << ",";
5764 if (Idx < 0)
5765 OS << "u";
5766 else
5767 OS << Idx;
5769 OS << ">";
5770 } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5771 OS << '<' << CSDN->getAPIntValue() << '>';
5772 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5773 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5774 OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5775 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5776 OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5777 else {
5778 OS << "<APFloat(";
5779 CSDN->getValueAPF().bitcastToAPInt().dump();
5780 OS << ")>";
5782 } else if (const GlobalAddressSDNode *GADN =
5783 dyn_cast<GlobalAddressSDNode>(this)) {
5784 int64_t offset = GADN->getOffset();
5785 OS << '<';
5786 WriteAsOperand(OS, GADN->getGlobal());
5787 OS << '>';
5788 if (offset > 0)
5789 OS << " + " << offset;
5790 else
5791 OS << " " << offset;
5792 if (unsigned int TF = GADN->getTargetFlags())
5793 OS << " [TF=" << TF << ']';
5794 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5795 OS << "<" << FIDN->getIndex() << ">";
5796 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5797 OS << "<" << JTDN->getIndex() << ">";
5798 if (unsigned int TF = JTDN->getTargetFlags())
5799 OS << " [TF=" << TF << ']';
5800 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5801 int offset = CP->getOffset();
5802 if (CP->isMachineConstantPoolEntry())
5803 OS << "<" << *CP->getMachineCPVal() << ">";
5804 else
5805 OS << "<" << *CP->getConstVal() << ">";
5806 if (offset > 0)
5807 OS << " + " << offset;
5808 else
5809 OS << " " << offset;
5810 if (unsigned int TF = CP->getTargetFlags())
5811 OS << " [TF=" << TF << ']';
5812 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5813 OS << "<";
5814 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5815 if (LBB)
5816 OS << LBB->getName() << " ";
5817 OS << (const void*)BBDN->getBasicBlock() << ">";
5818 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5819 if (G && R->getReg() &&
5820 TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5821 OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5822 } else {
5823 OS << " %reg" << R->getReg();
5825 } else if (const ExternalSymbolSDNode *ES =
5826 dyn_cast<ExternalSymbolSDNode>(this)) {
5827 OS << "'" << ES->getSymbol() << "'";
5828 if (unsigned int TF = ES->getTargetFlags())
5829 OS << " [TF=" << TF << ']';
5830 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5831 if (M->getValue())
5832 OS << "<" << M->getValue() << ">";
5833 else
5834 OS << "<null>";
5835 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5836 OS << ":" << N->getVT().getEVTString();
5838 else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5839 OS << "<" << *LD->getMemOperand();
5841 bool doExt = true;
5842 switch (LD->getExtensionType()) {
5843 default: doExt = false; break;
5844 case ISD::EXTLOAD: OS << ", anyext"; break;
5845 case ISD::SEXTLOAD: OS << ", sext"; break;
5846 case ISD::ZEXTLOAD: OS << ", zext"; break;
5848 if (doExt)
5849 OS << " from " << LD->getMemoryVT().getEVTString();
5851 const char *AM = getIndexedModeName(LD->getAddressingMode());
5852 if (*AM)
5853 OS << ", " << AM;
5855 OS << ">";
5856 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5857 OS << "<" << *ST->getMemOperand();
5859 if (ST->isTruncatingStore())
5860 OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5862 const char *AM = getIndexedModeName(ST->getAddressingMode());
5863 if (*AM)
5864 OS << ", " << AM;
5866 OS << ">";
5867 } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5868 OS << "<" << *M->getMemOperand() << ">";
5869 } else if (const BlockAddressSDNode *BA =
5870 dyn_cast<BlockAddressSDNode>(this)) {
5871 OS << "<";
5872 WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5873 OS << ", ";
5874 WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5875 OS << ">";
5876 if (unsigned int TF = BA->getTargetFlags())
5877 OS << " [TF=" << TF << ']';
5880 if (G)
5881 if (unsigned Order = G->GetOrdering(this))
5882 OS << " [ORD=" << Order << ']';
5885 void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5886 print_types(OS, G);
5887 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5888 if (i) OS << ", "; else OS << " ";
5889 OS << (void*)getOperand(i).getNode();
5890 if (unsigned RN = getOperand(i).getResNo())
5891 OS << ":" << RN;
5893 print_details(OS, G);
5896 static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5897 const SelectionDAG *G, unsigned depth,
5898 unsigned indent)
5900 if (depth == 0)
5901 return;
5903 OS.indent(indent);
5905 N->print(OS, G);
5907 if (depth < 1)
5908 return;
5910 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5911 OS << '\n';
5912 printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
5916 void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
5917 unsigned depth) const {
5918 printrWithDepthHelper(OS, this, G, depth, 0);
5921 void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
5922 // Don't print impossibly deep things.
5923 printrWithDepth(OS, G, 100);
5926 void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
5927 printrWithDepth(dbgs(), G, depth);
5930 void SDNode::dumprFull(const SelectionDAG *G) const {
5931 // Don't print impossibly deep things.
5932 dumprWithDepth(G, 100);
5935 static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5936 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5937 if (N->getOperand(i).getNode()->hasOneUse())
5938 DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5939 else
5940 dbgs() << "\n" << std::string(indent+2, ' ')
5941 << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5944 dbgs() << "\n";
5945 dbgs().indent(indent);
5946 N->dump(G);
5949 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5950 assert(N->getNumValues() == 1 &&
5951 "Can't unroll a vector with multiple results!");
5953 EVT VT = N->getValueType(0);
5954 unsigned NE = VT.getVectorNumElements();
5955 EVT EltVT = VT.getVectorElementType();
5956 DebugLoc dl = N->getDebugLoc();
5958 SmallVector<SDValue, 8> Scalars;
5959 SmallVector<SDValue, 4> Operands(N->getNumOperands());
5961 // If ResNE is 0, fully unroll the vector op.
5962 if (ResNE == 0)
5963 ResNE = NE;
5964 else if (NE > ResNE)
5965 NE = ResNE;
5967 unsigned i;
5968 for (i= 0; i != NE; ++i) {
5969 for (unsigned j = 0; j != N->getNumOperands(); ++j) {
5970 SDValue Operand = N->getOperand(j);
5971 EVT OperandVT = Operand.getValueType();
5972 if (OperandVT.isVector()) {
5973 // A vector operand; extract a single element.
5974 EVT OperandEltVT = OperandVT.getVectorElementType();
5975 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
5976 OperandEltVT,
5977 Operand,
5978 getConstant(i, MVT::i32));
5979 } else {
5980 // A scalar operand; just use it as is.
5981 Operands[j] = Operand;
5985 switch (N->getOpcode()) {
5986 default:
5987 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
5988 &Operands[0], Operands.size()));
5989 break;
5990 case ISD::SHL:
5991 case ISD::SRA:
5992 case ISD::SRL:
5993 case ISD::ROTL:
5994 case ISD::ROTR:
5995 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
5996 getShiftAmountOperand(Operands[1])));
5997 break;
5998 case ISD::SIGN_EXTEND_INREG:
5999 case ISD::FP_ROUND_INREG: {
6000 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6001 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6002 Operands[0],
6003 getValueType(ExtVT)));
6008 for (; i < ResNE; ++i)
6009 Scalars.push_back(getUNDEF(EltVT));
6011 return getNode(ISD::BUILD_VECTOR, dl,
6012 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6013 &Scalars[0], Scalars.size());
6017 /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6018 /// location that is 'Dist' units away from the location that the 'Base' load
6019 /// is loading from.
6020 bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6021 unsigned Bytes, int Dist) const {
6022 if (LD->getChain() != Base->getChain())
6023 return false;
6024 EVT VT = LD->getValueType(0);
6025 if (VT.getSizeInBits() / 8 != Bytes)
6026 return false;
6028 SDValue Loc = LD->getOperand(1);
6029 SDValue BaseLoc = Base->getOperand(1);
6030 if (Loc.getOpcode() == ISD::FrameIndex) {
6031 if (BaseLoc.getOpcode() != ISD::FrameIndex)
6032 return false;
6033 const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6034 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
6035 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6036 int FS = MFI->getObjectSize(FI);
6037 int BFS = MFI->getObjectSize(BFI);
6038 if (FS != BFS || FS != (int)Bytes) return false;
6039 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6041 if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6042 ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6043 if (V && (V->getSExtValue() == Dist*Bytes))
6044 return true;
6047 GlobalValue *GV1 = NULL;
6048 GlobalValue *GV2 = NULL;
6049 int64_t Offset1 = 0;
6050 int64_t Offset2 = 0;
6051 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6052 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6053 if (isGA1 && isGA2 && GV1 == GV2)
6054 return Offset1 == (Offset2 + Dist*Bytes);
6055 return false;
6059 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6060 /// it cannot be inferred.
6061 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6062 // If this is a GlobalAddress + cst, return the alignment.
6063 GlobalValue *GV;
6064 int64_t GVOffset = 0;
6065 if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
6066 return MinAlign(GV->getAlignment(), GVOffset);
6068 // If this is a direct reference to a stack slot, use information about the
6069 // stack slot's alignment.
6070 int FrameIdx = 1 << 31;
6071 int64_t FrameOffset = 0;
6072 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6073 FrameIdx = FI->getIndex();
6074 } else if (Ptr.getOpcode() == ISD::ADD &&
6075 isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6076 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6077 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6078 FrameOffset = Ptr.getConstantOperandVal(1);
6081 if (FrameIdx != (1 << 31)) {
6082 // FIXME: Handle FI+CST.
6083 const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6084 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6085 FrameOffset);
6086 if (MFI.isFixedObjectIndex(FrameIdx)) {
6087 int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6089 // The alignment of the frame index can be determined from its offset from
6090 // the incoming frame position. If the frame object is at offset 32 and
6091 // the stack is guaranteed to be 16-byte aligned, then we know that the
6092 // object is 16-byte aligned.
6093 unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6094 unsigned Align = MinAlign(ObjectOffset, StackAlign);
6096 // Finally, the frame object itself may have a known alignment. Factor
6097 // the alignment + offset into a new alignment. For example, if we know
6098 // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6099 // 4-byte alignment of the resultant pointer. Likewise align 4 + 4-byte
6100 // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6101 return std::max(Align, FIInfoAlign);
6103 return FIInfoAlign;
6106 return 0;
6109 void SelectionDAG::dump() const {
6110 dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6112 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6113 I != E; ++I) {
6114 const SDNode *N = I;
6115 if (!N->hasOneUse() && N != getRoot().getNode())
6116 DumpNodes(N, 2, this);
6119 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6121 dbgs() << "\n\n";
6124 void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6125 print_types(OS, G);
6126 print_details(OS, G);
6129 typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6130 static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6131 const SelectionDAG *G, VisitedSDNodeSet &once) {
6132 if (!once.insert(N)) // If we've been here before, return now.
6133 return;
6135 // Dump the current SDNode, but don't end the line yet.
6136 OS << std::string(indent, ' ');
6137 N->printr(OS, G);
6139 // Having printed this SDNode, walk the children:
6140 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6141 const SDNode *child = N->getOperand(i).getNode();
6143 if (i) OS << ",";
6144 OS << " ";
6146 if (child->getNumOperands() == 0) {
6147 // This child has no grandchildren; print it inline right here.
6148 child->printr(OS, G);
6149 once.insert(child);
6150 } else { // Just the address. FIXME: also print the child's opcode.
6151 OS << (void*)child;
6152 if (unsigned RN = N->getOperand(i).getResNo())
6153 OS << ":" << RN;
6157 OS << "\n";
6159 // Dump children that have grandchildren on their own line(s).
6160 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6161 const SDNode *child = N->getOperand(i).getNode();
6162 DumpNodesr(OS, child, indent+2, G, once);
6166 void SDNode::dumpr() const {
6167 VisitedSDNodeSet once;
6168 DumpNodesr(dbgs(), this, 0, 0, once);
6171 void SDNode::dumpr(const SelectionDAG *G) const {
6172 VisitedSDNodeSet once;
6173 DumpNodesr(dbgs(), this, 0, G, once);
6177 // getAddressSpace - Return the address space this GlobalAddress belongs to.
6178 unsigned GlobalAddressSDNode::getAddressSpace() const {
6179 return getGlobal()->getType()->getAddressSpace();
6183 const Type *ConstantPoolSDNode::getType() const {
6184 if (isMachineConstantPoolEntry())
6185 return Val.MachineCPVal->getType();
6186 return Val.ConstVal->getType();
6189 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6190 APInt &SplatUndef,
6191 unsigned &SplatBitSize,
6192 bool &HasAnyUndefs,
6193 unsigned MinSplatBits,
6194 bool isBigEndian) {
6195 EVT VT = getValueType(0);
6196 assert(VT.isVector() && "Expected a vector type");
6197 unsigned sz = VT.getSizeInBits();
6198 if (MinSplatBits > sz)
6199 return false;
6201 SplatValue = APInt(sz, 0);
6202 SplatUndef = APInt(sz, 0);
6204 // Get the bits. Bits with undefined values (when the corresponding element
6205 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6206 // in SplatValue. If any of the values are not constant, give up and return
6207 // false.
6208 unsigned int nOps = getNumOperands();
6209 assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6210 unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6212 for (unsigned j = 0; j < nOps; ++j) {
6213 unsigned i = isBigEndian ? nOps-1-j : j;
6214 SDValue OpVal = getOperand(i);
6215 unsigned BitPos = j * EltBitSize;
6217 if (OpVal.getOpcode() == ISD::UNDEF)
6218 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6219 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6220 SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6221 zextOrTrunc(sz) << BitPos);
6222 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6223 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6224 else
6225 return false;
6228 // The build_vector is all constants or undefs. Find the smallest element
6229 // size that splats the vector.
6231 HasAnyUndefs = (SplatUndef != 0);
6232 while (sz > 8) {
6234 unsigned HalfSize = sz / 2;
6235 APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6236 APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6237 APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6238 APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6240 // If the two halves do not match (ignoring undef bits), stop here.
6241 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6242 MinSplatBits > HalfSize)
6243 break;
6245 SplatValue = HighValue | LowValue;
6246 SplatUndef = HighUndef & LowUndef;
6248 sz = HalfSize;
6251 SplatBitSize = sz;
6252 return true;
6255 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6256 // Find the first non-undef value in the shuffle mask.
6257 unsigned i, e;
6258 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6259 /* search */;
6261 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6263 // Make sure all remaining elements are either undef or the same as the first
6264 // non-undef value.
6265 for (int Idx = Mask[i]; i != e; ++i)
6266 if (Mask[i] >= 0 && Mask[i] != Idx)
6267 return false;
6268 return true;